mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
sched/cpupri: Remove pri_to_cpu[CPUPRI_IDLE]
pri_to_cpu[CPUPRI_IDLE=0] isn't used since cpupri_set(..., newpri) is never called with newpri = MAX_PRIO (140). Current mapping: p->rt_priority p->prio newpri cpupri -1 -1 (CPUPRI_INVALID) 140 0 (CPUPRI_IDLE) 100 1 (CPUPRI_NORMAL) 1 98 98 3 ... 49 50 50 51 50 49 49 52 ... 99 0 0 101 Even when cpupri was introduced with commit6e0534f278
("sched: use a 2-d bitmap for searching lowest-pri CPU") in v2.6.27, only (1) CPUPRI_INVALID (-1), (2) MAX_RT_PRIO (100), (3) an RT prio (RT1..RT99) were used as newprio in cpupri_set(..., newpri) -> convert_prio(newpri). MAX_RT_PRIO is used only in dec_rt_tasks() -> dec_rt_prio() -> dec_rt_prio_smp() -> cpupri_set() in case of !rt_rq->rt_nr_running. I.e. it stands for a non-rt task, including the IDLE task. Commit57785df5ac
("sched: Fix task priority bug") removed code in v2.6.33 which did set the priority of the IDLE task to MAX_PRIO. Although this happened after the introduction of cpupri, it didn't have an effect on the values used for cpupri_set(..., newpri). Remove CPUPRI_IDLE and adapt the cpupri implementation accordingly. This will save a useless for loop with an atomic_read in cpupri_find_fitness() calling __cpupri_find(). New mapping: p->rt_priority p->prio newpri cpupri -1 -1 (CPUPRI_INVALID) 100 0 (CPUPRI_NORMAL) 1 98 98 2 ... 49 50 50 50 50 49 49 51 ... 99 0 0 100 Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200922083934.19275-2-dietmar.eggemann@arm.com
This commit is contained in:
parent
a57415f5d1
commit
5e054bca44
@ -11,7 +11,7 @@
|
||||
* This code tracks the priority of each CPU so that global migration
|
||||
* decisions are easy to calculate. Each CPU can be in a state as follows:
|
||||
*
|
||||
* (INVALID), IDLE, NORMAL, RT1, ... RT99
|
||||
* (INVALID), NORMAL, RT1, ... RT99
|
||||
*
|
||||
* going from the lowest priority to the highest. CPUs in the INVALID state
|
||||
* are not eligible for routing. The system maintains this state with
|
||||
@ -19,24 +19,22 @@
|
||||
* in that class). Therefore a typical application without affinity
|
||||
* restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
|
||||
* searches). For tasks with affinity restrictions, the algorithm has a
|
||||
* worst case complexity of O(min(102, nr_domcpus)), though the scenario that
|
||||
* worst case complexity of O(min(101, nr_domcpus)), though the scenario that
|
||||
* yields the worst case search is fairly contrived.
|
||||
*/
|
||||
#include "sched.h"
|
||||
|
||||
/* Convert between a 140 based task->prio, and our 102 based cpupri */
|
||||
/* Convert between a 140 based task->prio, and our 101 based cpupri */
|
||||
static int convert_prio(int prio)
|
||||
{
|
||||
int cpupri;
|
||||
|
||||
if (prio == CPUPRI_INVALID)
|
||||
cpupri = CPUPRI_INVALID;
|
||||
else if (prio == MAX_PRIO)
|
||||
cpupri = CPUPRI_IDLE;
|
||||
else if (prio >= MAX_RT_PRIO)
|
||||
cpupri = CPUPRI_NORMAL;
|
||||
else
|
||||
cpupri = MAX_RT_PRIO - prio + 1;
|
||||
cpupri = MAX_RT_PRIO - prio;
|
||||
|
||||
return cpupri;
|
||||
}
|
||||
|
@ -1,11 +1,10 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
#define CPUPRI_NR_PRIORITIES (MAX_RT_PRIO + 2)
|
||||
#define CPUPRI_NR_PRIORITIES (MAX_RT_PRIO + 1)
|
||||
|
||||
#define CPUPRI_INVALID -1
|
||||
#define CPUPRI_IDLE 0
|
||||
#define CPUPRI_NORMAL 1
|
||||
/* values 2-101 are RT priorities 0-99 */
|
||||
#define CPUPRI_NORMAL 0
|
||||
/* values 2-100 are RT priorities 0-99 */
|
||||
|
||||
struct cpupri_vec {
|
||||
atomic_t count;
|
||||
|
Loading…
Reference in New Issue
Block a user