mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 13:43:51 +00:00
Merge git://git.kernel.org/pub/scm/linux/kernel/git/joern/logfs
* git://git.kernel.org/pub/scm/linux/kernel/git/joern/logfs:
[LogFS] Change magic number
[LogFS] Remove h_version field
[LogFS] Check feature flags
[LogFS] Only write journal if dirty
[LogFS] Fix bdev erases
[LogFS] Silence gcc
[LogFS] Prevent 64bit divisions in hash_index
[LogFS] Plug memory leak on error paths
[LogFS] Add MAINTAINERS entry
[LogFS] add new flash file system
Fixed up trivial conflict in lib/Kconfig, and a semantic conflict in
fs/logfs/inode.c introduced by write_inode() being changed to use
writeback_control' by commit a9185b41a4
("pass writeback_control to ->write_inode")
This commit is contained in:
commit
66b89159c2
@ -62,6 +62,8 @@ jfs.txt
|
||||
- info and mount options for the JFS filesystem.
|
||||
locks.txt
|
||||
- info on file locking implementations, flock() vs. fcntl(), etc.
|
||||
logfs.txt
|
||||
- info on the LogFS flash filesystem.
|
||||
mandatory-locking.txt
|
||||
- info on the Linux implementation of Sys V mandatory file locking.
|
||||
ncpfs.txt
|
||||
|
241
Documentation/filesystems/logfs.txt
Normal file
241
Documentation/filesystems/logfs.txt
Normal file
@ -0,0 +1,241 @@
|
||||
|
||||
The LogFS Flash Filesystem
|
||||
==========================
|
||||
|
||||
Specification
|
||||
=============
|
||||
|
||||
Superblocks
|
||||
-----------
|
||||
|
||||
Two superblocks exist at the beginning and end of the filesystem.
|
||||
Each superblock is 256 Bytes large, with another 3840 Bytes reserved
|
||||
for future purposes, making a total of 4096 Bytes.
|
||||
|
||||
Superblock locations may differ for MTD and block devices. On MTD the
|
||||
first non-bad block contains a superblock in the first 4096 Bytes and
|
||||
the last non-bad block contains a superblock in the last 4096 Bytes.
|
||||
On block devices, the first 4096 Bytes of the device contain the first
|
||||
superblock and the last aligned 4096 Byte-block contains the second
|
||||
superblock.
|
||||
|
||||
For the most part, the superblocks can be considered read-only. They
|
||||
are written only to correct errors detected within the superblocks,
|
||||
move the journal and change the filesystem parameters through tunefs.
|
||||
As a result, the superblock does not contain any fields that require
|
||||
constant updates, like the amount of free space, etc.
|
||||
|
||||
Segments
|
||||
--------
|
||||
|
||||
The space in the device is split up into equal-sized segments.
|
||||
Segments are the primary write unit of LogFS. Within each segments,
|
||||
writes happen from front (low addresses) to back (high addresses. If
|
||||
only a partial segment has been written, the segment number, the
|
||||
current position within and optionally a write buffer are stored in
|
||||
the journal.
|
||||
|
||||
Segments are erased as a whole. Therefore Garbage Collection may be
|
||||
required to completely free a segment before doing so.
|
||||
|
||||
Journal
|
||||
--------
|
||||
|
||||
The journal contains all global information about the filesystem that
|
||||
is subject to frequent change. At mount time, it has to be scanned
|
||||
for the most recent commit entry, which contains a list of pointers to
|
||||
all currently valid entries.
|
||||
|
||||
Object Store
|
||||
------------
|
||||
|
||||
All space except for the superblocks and journal is part of the object
|
||||
store. Each segment contains a segment header and a number of
|
||||
objects, each consisting of the object header and the payload.
|
||||
Objects are either inodes, directory entries (dentries), file data
|
||||
blocks or indirect blocks.
|
||||
|
||||
Levels
|
||||
------
|
||||
|
||||
Garbage collection (GC) may fail if all data is written
|
||||
indiscriminately. One requirement of GC is that data is seperated
|
||||
roughly according to the distance between the tree root and the data.
|
||||
Effectively that means all file data is on level 0, indirect blocks
|
||||
are on levels 1, 2, 3 4 or 5 for 1x, 2x, 3x, 4x or 5x indirect blocks,
|
||||
respectively. Inode file data is on level 6 for the inodes and 7-11
|
||||
for indirect blocks.
|
||||
|
||||
Each segment contains objects of a single level only. As a result,
|
||||
each level requires its own seperate segment to be open for writing.
|
||||
|
||||
Inode File
|
||||
----------
|
||||
|
||||
All inodes are stored in a special file, the inode file. Single
|
||||
exception is the inode file's inode (master inode) which for obvious
|
||||
reasons is stored in the journal instead. Instead of data blocks, the
|
||||
leaf nodes of the inode files are inodes.
|
||||
|
||||
Aliases
|
||||
-------
|
||||
|
||||
Writes in LogFS are done by means of a wandering tree. A naïve
|
||||
implementation would require that for each write or a block, all
|
||||
parent blocks are written as well, since the block pointers have
|
||||
changed. Such an implementation would not be very efficient.
|
||||
|
||||
In LogFS, the block pointer changes are cached in the journal by means
|
||||
of alias entries. Each alias consists of its logical address - inode
|
||||
number, block index, level and child number (index into block) - and
|
||||
the changed data. Any 8-byte word can be changes in this manner.
|
||||
|
||||
Currently aliases are used for block pointers, file size, file used
|
||||
bytes and the height of an inodes indirect tree.
|
||||
|
||||
Segment Aliases
|
||||
---------------
|
||||
|
||||
Related to regular aliases, these are used to handle bad blocks.
|
||||
Initially, bad blocks are handled by moving the affected segment
|
||||
content to a spare segment and noting this move in the journal with a
|
||||
segment alias, a simple (to, from) tupel. GC will later empty this
|
||||
segment and the alias can be removed again. This is used on MTD only.
|
||||
|
||||
Vim
|
||||
---
|
||||
|
||||
By cleverly predicting the life time of data, it is possible to
|
||||
seperate long-living data from short-living data and thereby reduce
|
||||
the GC overhead later. Each type of distinc life expectency (vim) can
|
||||
have a seperate segment open for writing. Each (level, vim) tupel can
|
||||
be open just once. If an open segment with unknown vim is encountered
|
||||
at mount time, it is closed and ignored henceforth.
|
||||
|
||||
Indirect Tree
|
||||
-------------
|
||||
|
||||
Inodes in LogFS are similar to FFS-style filesystems with direct and
|
||||
indirect block pointers. One difference is that LogFS uses a single
|
||||
indirect pointer that can be either a 1x, 2x, etc. indirect pointer.
|
||||
A height field in the inode defines the height of the indirect tree
|
||||
and thereby the indirection of the pointer.
|
||||
|
||||
Another difference is the addressing of indirect blocks. In LogFS,
|
||||
the first 16 pointers in the first indirect block are left empty,
|
||||
corresponding to the 16 direct pointers in the inode. In ext2 (maybe
|
||||
others as well) the first pointer in the first indirect block
|
||||
corresponds to logical block 12, skipping the 12 direct pointers.
|
||||
So where ext2 is using arithmetic to better utilize space, LogFS keeps
|
||||
arithmetic simple and uses compression to save space.
|
||||
|
||||
Compression
|
||||
-----------
|
||||
|
||||
Both file data and metadata can be compressed. Compression for file
|
||||
data can be enabled with chattr +c and disabled with chattr -c. Doing
|
||||
so has no effect on existing data, but new data will be stored
|
||||
accordingly. New inodes will inherit the compression flag of the
|
||||
parent directory.
|
||||
|
||||
Metadata is always compressed. However, the space accounting ignores
|
||||
this and charges for the uncompressed size. Failing to do so could
|
||||
result in GC failures when, after moving some data, indirect blocks
|
||||
compress worse than previously. Even on a 100% full medium, GC may
|
||||
not consume any extra space, so the compression gains are lost space
|
||||
to the user.
|
||||
|
||||
However, they are not lost space to the filesystem internals. By
|
||||
cheating the user for those bytes, the filesystem gained some slack
|
||||
space and GC will run less often and faster.
|
||||
|
||||
Garbage Collection and Wear Leveling
|
||||
------------------------------------
|
||||
|
||||
Garbage collection is invoked whenever the number of free segments
|
||||
falls below a threshold. The best (known) candidate is picked based
|
||||
on the least amount of valid data contained in the segment. All
|
||||
remaining valid data is copied elsewhere, thereby invalidating it.
|
||||
|
||||
The GC code also checks for aliases and writes then back if their
|
||||
number gets too large.
|
||||
|
||||
Wear leveling is done by occasionally picking a suboptimal segment for
|
||||
garbage collection. If a stale segments erase count is significantly
|
||||
lower than the active segments' erase counts, it will be picked. Wear
|
||||
leveling is rate limited, so it will never monopolize the device for
|
||||
more than one segment worth at a time.
|
||||
|
||||
Values for "occasionally", "significantly lower" are compile time
|
||||
constants.
|
||||
|
||||
Hashed directories
|
||||
------------------
|
||||
|
||||
To satisfy efficient lookup(), directory entries are hashed and
|
||||
located based on the hash. In order to both support large directories
|
||||
and not be overly inefficient for small directories, several hash
|
||||
tables of increasing size are used. For each table, the hash value
|
||||
modulo the table size gives the table index.
|
||||
|
||||
Tables sizes are chosen to limit the number of indirect blocks with a
|
||||
fully populated table to 0, 1, 2 or 3 respectively. So the first
|
||||
table contains 16 entries, the second 512-16, etc.
|
||||
|
||||
The last table is special in several ways. First its size depends on
|
||||
the effective 32bit limit on telldir/seekdir cookies. Since logfs
|
||||
uses the upper half of the address space for indirect blocks, the size
|
||||
is limited to 2^31. Secondly the table contains hash buckets with 16
|
||||
entries each.
|
||||
|
||||
Using single-entry buckets would result in birthday "attacks". At
|
||||
just 2^16 used entries, hash collisions would be likely (P >= 0.5).
|
||||
My math skills are insufficient to do the combinatorics for the 17x
|
||||
collisions necessary to overflow a bucket, but testing showed that in
|
||||
10,000 runs the lowest directory fill before a bucket overflow was
|
||||
188,057,130 entries with an average of 315,149,915 entries. So for
|
||||
directory sizes of up to a million, bucket overflows should be
|
||||
virtually impossible under normal circumstances.
|
||||
|
||||
With carefully chosen filenames, it is obviously possible to cause an
|
||||
overflow with just 21 entries (4 higher tables + 16 entries + 1). So
|
||||
there may be a security concern if a malicious user has write access
|
||||
to a directory.
|
||||
|
||||
Open For Discussion
|
||||
===================
|
||||
|
||||
Device Address Space
|
||||
--------------------
|
||||
|
||||
A device address space is used for caching. Both block devices and
|
||||
MTD provide functions to either read a single page or write a segment.
|
||||
Partial segments may be written for data integrity, but where possible
|
||||
complete segments are written for performance on simple block device
|
||||
flash media.
|
||||
|
||||
Meta Inodes
|
||||
-----------
|
||||
|
||||
Inodes are stored in the inode file, which is just a regular file for
|
||||
most purposes. At umount time, however, the inode file needs to
|
||||
remain open until all dirty inodes are written. So
|
||||
generic_shutdown_super() may not close this inode, but shouldn't
|
||||
complain about remaining inodes due to the inode file either. Same
|
||||
goes for mapping inode of the device address space.
|
||||
|
||||
Currently logfs uses a hack that essentially copies part of fs/inode.c
|
||||
code over. A general solution would be preferred.
|
||||
|
||||
Indirect block mapping
|
||||
----------------------
|
||||
|
||||
With compression, the block device (or mapping inode) cannot be used
|
||||
to cache indirect blocks. Some other place is required. Currently
|
||||
logfs uses the top half of each inode's address space. The low 8TB
|
||||
(on 32bit) are filled with file data, the high 8TB are used for
|
||||
indirect blocks.
|
||||
|
||||
One problem is that 16TB files created on 64bit systems actually have
|
||||
data in the top 8TB. But files >16TB would cause problems anyway, so
|
||||
only the limit has changed.
|
@ -3450,6 +3450,13 @@ S: Maintained
|
||||
F: Documentation/ldm.txt
|
||||
F: fs/partitions/ldm.*
|
||||
|
||||
LogFS
|
||||
M: Joern Engel <joern@logfs.org>
|
||||
L: logfs@logfs.org
|
||||
W: logfs.org
|
||||
S: Maintained
|
||||
F: fs/logfs/
|
||||
|
||||
LSILOGIC MPT FUSION DRIVERS (FC/SAS/SPI)
|
||||
M: Eric Moore <Eric.Moore@lsi.com>
|
||||
M: support@lsi.com
|
||||
|
@ -177,6 +177,7 @@ source "fs/efs/Kconfig"
|
||||
source "fs/jffs2/Kconfig"
|
||||
# UBIFS File system configuration
|
||||
source "fs/ubifs/Kconfig"
|
||||
source "fs/logfs/Kconfig"
|
||||
source "fs/cramfs/Kconfig"
|
||||
source "fs/squashfs/Kconfig"
|
||||
source "fs/freevxfs/Kconfig"
|
||||
|
@ -99,6 +99,7 @@ obj-$(CONFIG_NTFS_FS) += ntfs/
|
||||
obj-$(CONFIG_UFS_FS) += ufs/
|
||||
obj-$(CONFIG_EFS_FS) += efs/
|
||||
obj-$(CONFIG_JFFS2_FS) += jffs2/
|
||||
obj-$(CONFIG_LOGFS) += logfs/
|
||||
obj-$(CONFIG_UBIFS_FS) += ubifs/
|
||||
obj-$(CONFIG_AFFS_FS) += affs/
|
||||
obj-$(CONFIG_ROMFS_FS) += romfs/
|
||||
|
17
fs/logfs/Kconfig
Normal file
17
fs/logfs/Kconfig
Normal file
@ -0,0 +1,17 @@
|
||||
config LOGFS
|
||||
tristate "LogFS file system (EXPERIMENTAL)"
|
||||
depends on (MTD || BLOCK) && EXPERIMENTAL
|
||||
select ZLIB_INFLATE
|
||||
select ZLIB_DEFLATE
|
||||
select CRC32
|
||||
select BTREE
|
||||
help
|
||||
Flash filesystem aimed to scale efficiently to large devices.
|
||||
In comparison to JFFS2 it offers significantly faster mount
|
||||
times and potentially less RAM usage, although the latter has
|
||||
not been measured yet.
|
||||
|
||||
In its current state it is still very experimental and should
|
||||
not be used for other than testing purposes.
|
||||
|
||||
If unsure, say N.
|
13
fs/logfs/Makefile
Normal file
13
fs/logfs/Makefile
Normal file
@ -0,0 +1,13 @@
|
||||
obj-$(CONFIG_LOGFS) += logfs.o
|
||||
|
||||
logfs-y += compr.o
|
||||
logfs-y += dir.o
|
||||
logfs-y += file.o
|
||||
logfs-y += gc.o
|
||||
logfs-y += inode.o
|
||||
logfs-y += journal.o
|
||||
logfs-y += readwrite.o
|
||||
logfs-y += segment.o
|
||||
logfs-y += super.o
|
||||
logfs-$(CONFIG_BLOCK) += dev_bdev.o
|
||||
logfs-$(CONFIG_MTD) += dev_mtd.o
|
95
fs/logfs/compr.c
Normal file
95
fs/logfs/compr.c
Normal file
@ -0,0 +1,95 @@
|
||||
/*
|
||||
* fs/logfs/compr.c - compression routines
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*/
|
||||
#include "logfs.h"
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/zlib.h>
|
||||
|
||||
#define COMPR_LEVEL 3
|
||||
|
||||
static DEFINE_MUTEX(compr_mutex);
|
||||
static struct z_stream_s stream;
|
||||
|
||||
int logfs_compress(void *in, void *out, size_t inlen, size_t outlen)
|
||||
{
|
||||
int err, ret;
|
||||
|
||||
ret = -EIO;
|
||||
mutex_lock(&compr_mutex);
|
||||
err = zlib_deflateInit(&stream, COMPR_LEVEL);
|
||||
if (err != Z_OK)
|
||||
goto error;
|
||||
|
||||
stream.next_in = in;
|
||||
stream.avail_in = inlen;
|
||||
stream.total_in = 0;
|
||||
stream.next_out = out;
|
||||
stream.avail_out = outlen;
|
||||
stream.total_out = 0;
|
||||
|
||||
err = zlib_deflate(&stream, Z_FINISH);
|
||||
if (err != Z_STREAM_END)
|
||||
goto error;
|
||||
|
||||
err = zlib_deflateEnd(&stream);
|
||||
if (err != Z_OK)
|
||||
goto error;
|
||||
|
||||
if (stream.total_out >= stream.total_in)
|
||||
goto error;
|
||||
|
||||
ret = stream.total_out;
|
||||
error:
|
||||
mutex_unlock(&compr_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int logfs_uncompress(void *in, void *out, size_t inlen, size_t outlen)
|
||||
{
|
||||
int err, ret;
|
||||
|
||||
ret = -EIO;
|
||||
mutex_lock(&compr_mutex);
|
||||
err = zlib_inflateInit(&stream);
|
||||
if (err != Z_OK)
|
||||
goto error;
|
||||
|
||||
stream.next_in = in;
|
||||
stream.avail_in = inlen;
|
||||
stream.total_in = 0;
|
||||
stream.next_out = out;
|
||||
stream.avail_out = outlen;
|
||||
stream.total_out = 0;
|
||||
|
||||
err = zlib_inflate(&stream, Z_FINISH);
|
||||
if (err != Z_STREAM_END)
|
||||
goto error;
|
||||
|
||||
err = zlib_inflateEnd(&stream);
|
||||
if (err != Z_OK)
|
||||
goto error;
|
||||
|
||||
ret = 0;
|
||||
error:
|
||||
mutex_unlock(&compr_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int __init logfs_compr_init(void)
|
||||
{
|
||||
size_t size = max(zlib_deflate_workspacesize(),
|
||||
zlib_inflate_workspacesize());
|
||||
stream.workspace = vmalloc(size);
|
||||
if (!stream.workspace)
|
||||
return -ENOMEM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void logfs_compr_exit(void)
|
||||
{
|
||||
vfree(stream.workspace);
|
||||
}
|
327
fs/logfs/dev_bdev.c
Normal file
327
fs/logfs/dev_bdev.c
Normal file
@ -0,0 +1,327 @@
|
||||
/*
|
||||
* fs/logfs/dev_bdev.c - Device access methods for block devices
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*/
|
||||
#include "logfs.h"
|
||||
#include <linux/bio.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/buffer_head.h>
|
||||
|
||||
#define PAGE_OFS(ofs) ((ofs) & (PAGE_SIZE-1))
|
||||
|
||||
static void request_complete(struct bio *bio, int err)
|
||||
{
|
||||
complete((struct completion *)bio->bi_private);
|
||||
}
|
||||
|
||||
static int sync_request(struct page *page, struct block_device *bdev, int rw)
|
||||
{
|
||||
struct bio bio;
|
||||
struct bio_vec bio_vec;
|
||||
struct completion complete;
|
||||
|
||||
bio_init(&bio);
|
||||
bio.bi_io_vec = &bio_vec;
|
||||
bio_vec.bv_page = page;
|
||||
bio_vec.bv_len = PAGE_SIZE;
|
||||
bio_vec.bv_offset = 0;
|
||||
bio.bi_vcnt = 1;
|
||||
bio.bi_idx = 0;
|
||||
bio.bi_size = PAGE_SIZE;
|
||||
bio.bi_bdev = bdev;
|
||||
bio.bi_sector = page->index * (PAGE_SIZE >> 9);
|
||||
init_completion(&complete);
|
||||
bio.bi_private = &complete;
|
||||
bio.bi_end_io = request_complete;
|
||||
|
||||
submit_bio(rw, &bio);
|
||||
generic_unplug_device(bdev_get_queue(bdev));
|
||||
wait_for_completion(&complete);
|
||||
return test_bit(BIO_UPTODATE, &bio.bi_flags) ? 0 : -EIO;
|
||||
}
|
||||
|
||||
static int bdev_readpage(void *_sb, struct page *page)
|
||||
{
|
||||
struct super_block *sb = _sb;
|
||||
struct block_device *bdev = logfs_super(sb)->s_bdev;
|
||||
int err;
|
||||
|
||||
err = sync_request(page, bdev, READ);
|
||||
if (err) {
|
||||
ClearPageUptodate(page);
|
||||
SetPageError(page);
|
||||
} else {
|
||||
SetPageUptodate(page);
|
||||
ClearPageError(page);
|
||||
}
|
||||
unlock_page(page);
|
||||
return err;
|
||||
}
|
||||
|
||||
static DECLARE_WAIT_QUEUE_HEAD(wq);
|
||||
|
||||
static void writeseg_end_io(struct bio *bio, int err)
|
||||
{
|
||||
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
|
||||
struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
|
||||
struct super_block *sb = bio->bi_private;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct page *page;
|
||||
|
||||
BUG_ON(!uptodate); /* FIXME: Retry io or write elsewhere */
|
||||
BUG_ON(err);
|
||||
BUG_ON(bio->bi_vcnt == 0);
|
||||
do {
|
||||
page = bvec->bv_page;
|
||||
if (--bvec >= bio->bi_io_vec)
|
||||
prefetchw(&bvec->bv_page->flags);
|
||||
|
||||
end_page_writeback(page);
|
||||
} while (bvec >= bio->bi_io_vec);
|
||||
bio_put(bio);
|
||||
if (atomic_dec_and_test(&super->s_pending_writes))
|
||||
wake_up(&wq);
|
||||
}
|
||||
|
||||
static int __bdev_writeseg(struct super_block *sb, u64 ofs, pgoff_t index,
|
||||
size_t nr_pages)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
struct bio *bio;
|
||||
struct page *page;
|
||||
struct request_queue *q = bdev_get_queue(sb->s_bdev);
|
||||
unsigned int max_pages = queue_max_hw_sectors(q) >> (PAGE_SHIFT - 9);
|
||||
int i;
|
||||
|
||||
bio = bio_alloc(GFP_NOFS, max_pages);
|
||||
BUG_ON(!bio); /* FIXME: handle this */
|
||||
|
||||
for (i = 0; i < nr_pages; i++) {
|
||||
if (i >= max_pages) {
|
||||
/* Block layer cannot split bios :( */
|
||||
bio->bi_vcnt = i;
|
||||
bio->bi_idx = 0;
|
||||
bio->bi_size = i * PAGE_SIZE;
|
||||
bio->bi_bdev = super->s_bdev;
|
||||
bio->bi_sector = ofs >> 9;
|
||||
bio->bi_private = sb;
|
||||
bio->bi_end_io = writeseg_end_io;
|
||||
atomic_inc(&super->s_pending_writes);
|
||||
submit_bio(WRITE, bio);
|
||||
|
||||
ofs += i * PAGE_SIZE;
|
||||
index += i;
|
||||
nr_pages -= i;
|
||||
i = 0;
|
||||
|
||||
bio = bio_alloc(GFP_NOFS, max_pages);
|
||||
BUG_ON(!bio);
|
||||
}
|
||||
page = find_lock_page(mapping, index + i);
|
||||
BUG_ON(!page);
|
||||
bio->bi_io_vec[i].bv_page = page;
|
||||
bio->bi_io_vec[i].bv_len = PAGE_SIZE;
|
||||
bio->bi_io_vec[i].bv_offset = 0;
|
||||
|
||||
BUG_ON(PageWriteback(page));
|
||||
set_page_writeback(page);
|
||||
unlock_page(page);
|
||||
}
|
||||
bio->bi_vcnt = nr_pages;
|
||||
bio->bi_idx = 0;
|
||||
bio->bi_size = nr_pages * PAGE_SIZE;
|
||||
bio->bi_bdev = super->s_bdev;
|
||||
bio->bi_sector = ofs >> 9;
|
||||
bio->bi_private = sb;
|
||||
bio->bi_end_io = writeseg_end_io;
|
||||
atomic_inc(&super->s_pending_writes);
|
||||
submit_bio(WRITE, bio);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void bdev_writeseg(struct super_block *sb, u64 ofs, size_t len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int head;
|
||||
|
||||
BUG_ON(super->s_flags & LOGFS_SB_FLAG_RO);
|
||||
|
||||
if (len == 0) {
|
||||
/* This can happen when the object fit perfectly into a
|
||||
* segment, the segment gets written per sync and subsequently
|
||||
* closed.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
head = ofs & (PAGE_SIZE - 1);
|
||||
if (head) {
|
||||
ofs -= head;
|
||||
len += head;
|
||||
}
|
||||
len = PAGE_ALIGN(len);
|
||||
__bdev_writeseg(sb, ofs, ofs >> PAGE_SHIFT, len >> PAGE_SHIFT);
|
||||
generic_unplug_device(bdev_get_queue(logfs_super(sb)->s_bdev));
|
||||
}
|
||||
|
||||
|
||||
static void erase_end_io(struct bio *bio, int err)
|
||||
{
|
||||
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
|
||||
struct super_block *sb = bio->bi_private;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
BUG_ON(!uptodate); /* FIXME: Retry io or write elsewhere */
|
||||
BUG_ON(err);
|
||||
BUG_ON(bio->bi_vcnt == 0);
|
||||
bio_put(bio);
|
||||
if (atomic_dec_and_test(&super->s_pending_writes))
|
||||
wake_up(&wq);
|
||||
}
|
||||
|
||||
static int do_erase(struct super_block *sb, u64 ofs, pgoff_t index,
|
||||
size_t nr_pages)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct bio *bio;
|
||||
struct request_queue *q = bdev_get_queue(sb->s_bdev);
|
||||
unsigned int max_pages = queue_max_hw_sectors(q) >> (PAGE_SHIFT - 9);
|
||||
int i;
|
||||
|
||||
bio = bio_alloc(GFP_NOFS, max_pages);
|
||||
BUG_ON(!bio); /* FIXME: handle this */
|
||||
|
||||
for (i = 0; i < nr_pages; i++) {
|
||||
if (i >= max_pages) {
|
||||
/* Block layer cannot split bios :( */
|
||||
bio->bi_vcnt = i;
|
||||
bio->bi_idx = 0;
|
||||
bio->bi_size = i * PAGE_SIZE;
|
||||
bio->bi_bdev = super->s_bdev;
|
||||
bio->bi_sector = ofs >> 9;
|
||||
bio->bi_private = sb;
|
||||
bio->bi_end_io = erase_end_io;
|
||||
atomic_inc(&super->s_pending_writes);
|
||||
submit_bio(WRITE, bio);
|
||||
|
||||
ofs += i * PAGE_SIZE;
|
||||
index += i;
|
||||
nr_pages -= i;
|
||||
i = 0;
|
||||
|
||||
bio = bio_alloc(GFP_NOFS, max_pages);
|
||||
BUG_ON(!bio);
|
||||
}
|
||||
bio->bi_io_vec[i].bv_page = super->s_erase_page;
|
||||
bio->bi_io_vec[i].bv_len = PAGE_SIZE;
|
||||
bio->bi_io_vec[i].bv_offset = 0;
|
||||
}
|
||||
bio->bi_vcnt = nr_pages;
|
||||
bio->bi_idx = 0;
|
||||
bio->bi_size = nr_pages * PAGE_SIZE;
|
||||
bio->bi_bdev = super->s_bdev;
|
||||
bio->bi_sector = ofs >> 9;
|
||||
bio->bi_private = sb;
|
||||
bio->bi_end_io = erase_end_io;
|
||||
atomic_inc(&super->s_pending_writes);
|
||||
submit_bio(WRITE, bio);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int bdev_erase(struct super_block *sb, loff_t to, size_t len,
|
||||
int ensure_write)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
BUG_ON(to & (PAGE_SIZE - 1));
|
||||
BUG_ON(len & (PAGE_SIZE - 1));
|
||||
|
||||
if (super->s_flags & LOGFS_SB_FLAG_RO)
|
||||
return -EROFS;
|
||||
|
||||
if (ensure_write) {
|
||||
/*
|
||||
* Object store doesn't care whether erases happen or not.
|
||||
* But for the journal they are required. Otherwise a scan
|
||||
* can find an old commit entry and assume it is the current
|
||||
* one, travelling back in time.
|
||||
*/
|
||||
do_erase(sb, to, to >> PAGE_SHIFT, len >> PAGE_SHIFT);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void bdev_sync(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
wait_event(wq, atomic_read(&super->s_pending_writes) == 0);
|
||||
}
|
||||
|
||||
static struct page *bdev_find_first_sb(struct super_block *sb, u64 *ofs)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
filler_t *filler = bdev_readpage;
|
||||
|
||||
*ofs = 0;
|
||||
return read_cache_page(mapping, 0, filler, sb);
|
||||
}
|
||||
|
||||
static struct page *bdev_find_last_sb(struct super_block *sb, u64 *ofs)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
filler_t *filler = bdev_readpage;
|
||||
u64 pos = (super->s_bdev->bd_inode->i_size & ~0xfffULL) - 0x1000;
|
||||
pgoff_t index = pos >> PAGE_SHIFT;
|
||||
|
||||
*ofs = pos;
|
||||
return read_cache_page(mapping, index, filler, sb);
|
||||
}
|
||||
|
||||
static int bdev_write_sb(struct super_block *sb, struct page *page)
|
||||
{
|
||||
struct block_device *bdev = logfs_super(sb)->s_bdev;
|
||||
|
||||
/* Nothing special to do for block devices. */
|
||||
return sync_request(page, bdev, WRITE);
|
||||
}
|
||||
|
||||
static void bdev_put_device(struct super_block *sb)
|
||||
{
|
||||
close_bdev_exclusive(logfs_super(sb)->s_bdev, FMODE_READ|FMODE_WRITE);
|
||||
}
|
||||
|
||||
static const struct logfs_device_ops bd_devops = {
|
||||
.find_first_sb = bdev_find_first_sb,
|
||||
.find_last_sb = bdev_find_last_sb,
|
||||
.write_sb = bdev_write_sb,
|
||||
.readpage = bdev_readpage,
|
||||
.writeseg = bdev_writeseg,
|
||||
.erase = bdev_erase,
|
||||
.sync = bdev_sync,
|
||||
.put_device = bdev_put_device,
|
||||
};
|
||||
|
||||
int logfs_get_sb_bdev(struct file_system_type *type, int flags,
|
||||
const char *devname, struct vfsmount *mnt)
|
||||
{
|
||||
struct block_device *bdev;
|
||||
|
||||
bdev = open_bdev_exclusive(devname, FMODE_READ|FMODE_WRITE, type);
|
||||
if (IS_ERR(bdev))
|
||||
return PTR_ERR(bdev);
|
||||
|
||||
if (MAJOR(bdev->bd_dev) == MTD_BLOCK_MAJOR) {
|
||||
int mtdnr = MINOR(bdev->bd_dev);
|
||||
close_bdev_exclusive(bdev, FMODE_READ|FMODE_WRITE);
|
||||
return logfs_get_sb_mtd(type, flags, mtdnr, mnt);
|
||||
}
|
||||
|
||||
return logfs_get_sb_device(type, flags, NULL, bdev, &bd_devops, mnt);
|
||||
}
|
254
fs/logfs/dev_mtd.c
Normal file
254
fs/logfs/dev_mtd.c
Normal file
@ -0,0 +1,254 @@
|
||||
/*
|
||||
* fs/logfs/dev_mtd.c - Device access methods for MTD
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*/
|
||||
#include "logfs.h"
|
||||
#include <linux/completion.h>
|
||||
#include <linux/mount.h>
|
||||
#include <linux/sched.h>
|
||||
|
||||
#define PAGE_OFS(ofs) ((ofs) & (PAGE_SIZE-1))
|
||||
|
||||
static int mtd_read(struct super_block *sb, loff_t ofs, size_t len, void *buf)
|
||||
{
|
||||
struct mtd_info *mtd = logfs_super(sb)->s_mtd;
|
||||
size_t retlen;
|
||||
int ret;
|
||||
|
||||
ret = mtd->read(mtd, ofs, len, &retlen, buf);
|
||||
BUG_ON(ret == -EINVAL);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Not sure if we should loop instead. */
|
||||
if (retlen != len)
|
||||
return -EIO;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mtd_write(struct super_block *sb, loff_t ofs, size_t len, void *buf)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct mtd_info *mtd = super->s_mtd;
|
||||
size_t retlen;
|
||||
loff_t page_start, page_end;
|
||||
int ret;
|
||||
|
||||
if (super->s_flags & LOGFS_SB_FLAG_RO)
|
||||
return -EROFS;
|
||||
|
||||
BUG_ON((ofs >= mtd->size) || (len > mtd->size - ofs));
|
||||
BUG_ON(ofs != (ofs >> super->s_writeshift) << super->s_writeshift);
|
||||
BUG_ON(len > PAGE_CACHE_SIZE);
|
||||
page_start = ofs & PAGE_CACHE_MASK;
|
||||
page_end = PAGE_CACHE_ALIGN(ofs + len) - 1;
|
||||
ret = mtd->write(mtd, ofs, len, &retlen, buf);
|
||||
if (ret || (retlen != len))
|
||||
return -EIO;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* For as long as I can remember (since about 2001) mtd->erase has been an
|
||||
* asynchronous interface lacking the first driver to actually use the
|
||||
* asynchronous properties. So just to prevent the first implementor of such
|
||||
* a thing from breaking logfs in 2350, we do the usual pointless dance to
|
||||
* declare a completion variable and wait for completion before returning
|
||||
* from mtd_erase(). What an excercise in futility!
|
||||
*/
|
||||
static void logfs_erase_callback(struct erase_info *ei)
|
||||
{
|
||||
complete((struct completion *)ei->priv);
|
||||
}
|
||||
|
||||
static int mtd_erase_mapping(struct super_block *sb, loff_t ofs, size_t len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
struct page *page;
|
||||
pgoff_t index = ofs >> PAGE_SHIFT;
|
||||
|
||||
for (index = ofs >> PAGE_SHIFT; index < (ofs + len) >> PAGE_SHIFT; index++) {
|
||||
page = find_get_page(mapping, index);
|
||||
if (!page)
|
||||
continue;
|
||||
memset(page_address(page), 0xFF, PAGE_SIZE);
|
||||
page_cache_release(page);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mtd_erase(struct super_block *sb, loff_t ofs, size_t len,
|
||||
int ensure_write)
|
||||
{
|
||||
struct mtd_info *mtd = logfs_super(sb)->s_mtd;
|
||||
struct erase_info ei;
|
||||
DECLARE_COMPLETION_ONSTACK(complete);
|
||||
int ret;
|
||||
|
||||
BUG_ON(len % mtd->erasesize);
|
||||
if (logfs_super(sb)->s_flags & LOGFS_SB_FLAG_RO)
|
||||
return -EROFS;
|
||||
|
||||
memset(&ei, 0, sizeof(ei));
|
||||
ei.mtd = mtd;
|
||||
ei.addr = ofs;
|
||||
ei.len = len;
|
||||
ei.callback = logfs_erase_callback;
|
||||
ei.priv = (long)&complete;
|
||||
ret = mtd->erase(mtd, &ei);
|
||||
if (ret)
|
||||
return -EIO;
|
||||
|
||||
wait_for_completion(&complete);
|
||||
if (ei.state != MTD_ERASE_DONE)
|
||||
return -EIO;
|
||||
return mtd_erase_mapping(sb, ofs, len);
|
||||
}
|
||||
|
||||
static void mtd_sync(struct super_block *sb)
|
||||
{
|
||||
struct mtd_info *mtd = logfs_super(sb)->s_mtd;
|
||||
|
||||
if (mtd->sync)
|
||||
mtd->sync(mtd);
|
||||
}
|
||||
|
||||
static int mtd_readpage(void *_sb, struct page *page)
|
||||
{
|
||||
struct super_block *sb = _sb;
|
||||
int err;
|
||||
|
||||
err = mtd_read(sb, page->index << PAGE_SHIFT, PAGE_SIZE,
|
||||
page_address(page));
|
||||
if (err == -EUCLEAN) {
|
||||
err = 0;
|
||||
/* FIXME: force GC this segment */
|
||||
}
|
||||
if (err) {
|
||||
ClearPageUptodate(page);
|
||||
SetPageError(page);
|
||||
} else {
|
||||
SetPageUptodate(page);
|
||||
ClearPageError(page);
|
||||
}
|
||||
unlock_page(page);
|
||||
return err;
|
||||
}
|
||||
|
||||
static struct page *mtd_find_first_sb(struct super_block *sb, u64 *ofs)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
filler_t *filler = mtd_readpage;
|
||||
struct mtd_info *mtd = super->s_mtd;
|
||||
|
||||
if (!mtd->block_isbad)
|
||||
return NULL;
|
||||
|
||||
*ofs = 0;
|
||||
while (mtd->block_isbad(mtd, *ofs)) {
|
||||
*ofs += mtd->erasesize;
|
||||
if (*ofs >= mtd->size)
|
||||
return NULL;
|
||||
}
|
||||
BUG_ON(*ofs & ~PAGE_MASK);
|
||||
return read_cache_page(mapping, *ofs >> PAGE_SHIFT, filler, sb);
|
||||
}
|
||||
|
||||
static struct page *mtd_find_last_sb(struct super_block *sb, u64 *ofs)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
filler_t *filler = mtd_readpage;
|
||||
struct mtd_info *mtd = super->s_mtd;
|
||||
|
||||
if (!mtd->block_isbad)
|
||||
return NULL;
|
||||
|
||||
*ofs = mtd->size - mtd->erasesize;
|
||||
while (mtd->block_isbad(mtd, *ofs)) {
|
||||
*ofs -= mtd->erasesize;
|
||||
if (*ofs <= 0)
|
||||
return NULL;
|
||||
}
|
||||
*ofs = *ofs + mtd->erasesize - 0x1000;
|
||||
BUG_ON(*ofs & ~PAGE_MASK);
|
||||
return read_cache_page(mapping, *ofs >> PAGE_SHIFT, filler, sb);
|
||||
}
|
||||
|
||||
static int __mtd_writeseg(struct super_block *sb, u64 ofs, pgoff_t index,
|
||||
size_t nr_pages)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
struct page *page;
|
||||
int i, err;
|
||||
|
||||
for (i = 0; i < nr_pages; i++) {
|
||||
page = find_lock_page(mapping, index + i);
|
||||
BUG_ON(!page);
|
||||
|
||||
err = mtd_write(sb, page->index << PAGE_SHIFT, PAGE_SIZE,
|
||||
page_address(page));
|
||||
unlock_page(page);
|
||||
page_cache_release(page);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void mtd_writeseg(struct super_block *sb, u64 ofs, size_t len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int head;
|
||||
|
||||
if (super->s_flags & LOGFS_SB_FLAG_RO)
|
||||
return;
|
||||
|
||||
if (len == 0) {
|
||||
/* This can happen when the object fit perfectly into a
|
||||
* segment, the segment gets written per sync and subsequently
|
||||
* closed.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
head = ofs & (PAGE_SIZE - 1);
|
||||
if (head) {
|
||||
ofs -= head;
|
||||
len += head;
|
||||
}
|
||||
len = PAGE_ALIGN(len);
|
||||
__mtd_writeseg(sb, ofs, ofs >> PAGE_SHIFT, len >> PAGE_SHIFT);
|
||||
}
|
||||
|
||||
static void mtd_put_device(struct super_block *sb)
|
||||
{
|
||||
put_mtd_device(logfs_super(sb)->s_mtd);
|
||||
}
|
||||
|
||||
static const struct logfs_device_ops mtd_devops = {
|
||||
.find_first_sb = mtd_find_first_sb,
|
||||
.find_last_sb = mtd_find_last_sb,
|
||||
.readpage = mtd_readpage,
|
||||
.writeseg = mtd_writeseg,
|
||||
.erase = mtd_erase,
|
||||
.sync = mtd_sync,
|
||||
.put_device = mtd_put_device,
|
||||
};
|
||||
|
||||
int logfs_get_sb_mtd(struct file_system_type *type, int flags,
|
||||
int mtdnr, struct vfsmount *mnt)
|
||||
{
|
||||
struct mtd_info *mtd;
|
||||
const struct logfs_device_ops *devops = &mtd_devops;
|
||||
|
||||
mtd = get_mtd_device(NULL, mtdnr);
|
||||
return logfs_get_sb_device(type, flags, mtd, NULL, devops, mnt);
|
||||
}
|
827
fs/logfs/dir.c
Normal file
827
fs/logfs/dir.c
Normal file
@ -0,0 +1,827 @@
|
||||
/*
|
||||
* fs/logfs/dir.c - directory-related code
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*/
|
||||
#include "logfs.h"
|
||||
|
||||
|
||||
/*
|
||||
* Atomic dir operations
|
||||
*
|
||||
* Directory operations are by default not atomic. Dentries and Inodes are
|
||||
* created/removed/altered in seperate operations. Therefore we need to do
|
||||
* a small amount of journaling.
|
||||
*
|
||||
* Create, link, mkdir, mknod and symlink all share the same function to do
|
||||
* the work: __logfs_create. This function works in two atomic steps:
|
||||
* 1. allocate inode (remember in journal)
|
||||
* 2. allocate dentry (clear journal)
|
||||
*
|
||||
* As we can only get interrupted between the two, when the inode we just
|
||||
* created is simply stored in the anchor. On next mount, if we were
|
||||
* interrupted, we delete the inode. From a users point of view the
|
||||
* operation never happened.
|
||||
*
|
||||
* Unlink and rmdir also share the same function: unlink. Again, this
|
||||
* function works in two atomic steps
|
||||
* 1. remove dentry (remember inode in journal)
|
||||
* 2. unlink inode (clear journal)
|
||||
*
|
||||
* And again, on the next mount, if we were interrupted, we delete the inode.
|
||||
* From a users point of view the operation succeeded.
|
||||
*
|
||||
* Rename is the real pain to deal with, harder than all the other methods
|
||||
* combined. Depending on the circumstances we can run into three cases.
|
||||
* A "target rename" where the target dentry already existed, a "local
|
||||
* rename" where both parent directories are identical or a "cross-directory
|
||||
* rename" in the remaining case.
|
||||
*
|
||||
* Local rename is atomic, as the old dentry is simply rewritten with a new
|
||||
* name.
|
||||
*
|
||||
* Cross-directory rename works in two steps, similar to __logfs_create and
|
||||
* logfs_unlink:
|
||||
* 1. Write new dentry (remember old dentry in journal)
|
||||
* 2. Remove old dentry (clear journal)
|
||||
*
|
||||
* Here we remember a dentry instead of an inode. On next mount, if we were
|
||||
* interrupted, we delete the dentry. From a users point of view, the
|
||||
* operation succeeded.
|
||||
*
|
||||
* Target rename works in three atomic steps:
|
||||
* 1. Attach old inode to new dentry (remember old dentry and new inode)
|
||||
* 2. Remove old dentry (still remember the new inode)
|
||||
* 3. Remove victim inode
|
||||
*
|
||||
* Here we remember both an inode an a dentry. If we get interrupted
|
||||
* between steps 1 and 2, we delete both the dentry and the inode. If
|
||||
* we get interrupted between steps 2 and 3, we delete just the inode.
|
||||
* In either case, the remaining objects are deleted on next mount. From
|
||||
* a users point of view, the operation succeeded.
|
||||
*/
|
||||
|
||||
static int write_dir(struct inode *dir, struct logfs_disk_dentry *dd,
|
||||
loff_t pos)
|
||||
{
|
||||
return logfs_inode_write(dir, dd, sizeof(*dd), pos, WF_LOCK, NULL);
|
||||
}
|
||||
|
||||
static int write_inode(struct inode *inode)
|
||||
{
|
||||
return __logfs_write_inode(inode, WF_LOCK);
|
||||
}
|
||||
|
||||
static s64 dir_seek_data(struct inode *inode, s64 pos)
|
||||
{
|
||||
s64 new_pos = logfs_seek_data(inode, pos);
|
||||
|
||||
return max(pos, new_pos - 1);
|
||||
}
|
||||
|
||||
static int beyond_eof(struct inode *inode, loff_t bix)
|
||||
{
|
||||
loff_t pos = bix << inode->i_sb->s_blocksize_bits;
|
||||
return pos >= i_size_read(inode);
|
||||
}
|
||||
|
||||
/*
|
||||
* Prime value was chosen to be roughly 256 + 26. r5 hash uses 11,
|
||||
* so short names (len <= 9) don't even occupy the complete 32bit name
|
||||
* space. A prime >256 ensures short names quickly spread the 32bit
|
||||
* name space. Add about 26 for the estimated amount of information
|
||||
* of each character and pick a prime nearby, preferrably a bit-sparse
|
||||
* one.
|
||||
*/
|
||||
static u32 hash_32(const char *s, int len, u32 seed)
|
||||
{
|
||||
u32 hash = seed;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < len; i++)
|
||||
hash = hash * 293 + s[i];
|
||||
return hash;
|
||||
}
|
||||
|
||||
/*
|
||||
* We have to satisfy several conflicting requirements here. Small
|
||||
* directories should stay fairly compact and not require too many
|
||||
* indirect blocks. The number of possible locations for a given hash
|
||||
* should be small to make lookup() fast. And we should try hard not
|
||||
* to overflow the 32bit name space or nfs and 32bit host systems will
|
||||
* be unhappy.
|
||||
*
|
||||
* So we use the following scheme. First we reduce the hash to 0..15
|
||||
* and try a direct block. If that is occupied we reduce the hash to
|
||||
* 16..255 and try an indirect block. Same for 2x and 3x indirect
|
||||
* blocks. Lastly we reduce the hash to 0x800_0000 .. 0xffff_ffff,
|
||||
* but use buckets containing eight entries instead of a single one.
|
||||
*
|
||||
* Using 16 entries should allow for a reasonable amount of hash
|
||||
* collisions, so the 32bit name space can be packed fairly tight
|
||||
* before overflowing. Oh and currently we don't overflow but return
|
||||
* and error.
|
||||
*
|
||||
* How likely are collisions? Doing the appropriate math is beyond me
|
||||
* and the Bronstein textbook. But running a test program to brute
|
||||
* force collisions for a couple of days showed that on average the
|
||||
* first collision occurs after 598M entries, with 290M being the
|
||||
* smallest result. Obviously 21 entries could already cause a
|
||||
* collision if all entries are carefully chosen.
|
||||
*/
|
||||
static pgoff_t hash_index(u32 hash, int round)
|
||||
{
|
||||
u32 i0_blocks = I0_BLOCKS;
|
||||
u32 i1_blocks = I1_BLOCKS;
|
||||
u32 i2_blocks = I2_BLOCKS;
|
||||
u32 i3_blocks = I3_BLOCKS;
|
||||
|
||||
switch (round) {
|
||||
case 0:
|
||||
return hash % i0_blocks;
|
||||
case 1:
|
||||
return i0_blocks + hash % (i1_blocks - i0_blocks);
|
||||
case 2:
|
||||
return i1_blocks + hash % (i2_blocks - i1_blocks);
|
||||
case 3:
|
||||
return i2_blocks + hash % (i3_blocks - i2_blocks);
|
||||
case 4 ... 19:
|
||||
return i3_blocks + 16 * (hash % (((1<<31) - i3_blocks) / 16))
|
||||
+ round - 4;
|
||||
}
|
||||
BUG();
|
||||
}
|
||||
|
||||
static struct page *logfs_get_dd_page(struct inode *dir, struct dentry *dentry)
|
||||
{
|
||||
struct qstr *name = &dentry->d_name;
|
||||
struct page *page;
|
||||
struct logfs_disk_dentry *dd;
|
||||
u32 hash = hash_32(name->name, name->len, 0);
|
||||
pgoff_t index;
|
||||
int round;
|
||||
|
||||
if (name->len > LOGFS_MAX_NAMELEN)
|
||||
return ERR_PTR(-ENAMETOOLONG);
|
||||
|
||||
for (round = 0; round < 20; round++) {
|
||||
index = hash_index(hash, round);
|
||||
|
||||
if (beyond_eof(dir, index))
|
||||
return NULL;
|
||||
if (!logfs_exist_block(dir, index))
|
||||
continue;
|
||||
page = read_cache_page(dir->i_mapping, index,
|
||||
(filler_t *)logfs_readpage, NULL);
|
||||
if (IS_ERR(page))
|
||||
return page;
|
||||
dd = kmap_atomic(page, KM_USER0);
|
||||
BUG_ON(dd->namelen == 0);
|
||||
|
||||
if (name->len != be16_to_cpu(dd->namelen) ||
|
||||
memcmp(name->name, dd->name, name->len)) {
|
||||
kunmap_atomic(dd, KM_USER0);
|
||||
page_cache_release(page);
|
||||
continue;
|
||||
}
|
||||
|
||||
kunmap_atomic(dd, KM_USER0);
|
||||
return page;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int logfs_remove_inode(struct inode *inode)
|
||||
{
|
||||
int ret;
|
||||
|
||||
inode->i_nlink--;
|
||||
ret = write_inode(inode);
|
||||
LOGFS_BUG_ON(ret, inode->i_sb);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void abort_transaction(struct inode *inode, struct logfs_transaction *ta)
|
||||
{
|
||||
if (logfs_inode(inode)->li_block)
|
||||
logfs_inode(inode)->li_block->ta = NULL;
|
||||
kfree(ta);
|
||||
}
|
||||
|
||||
static int logfs_unlink(struct inode *dir, struct dentry *dentry)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(dir->i_sb);
|
||||
struct inode *inode = dentry->d_inode;
|
||||
struct logfs_transaction *ta;
|
||||
struct page *page;
|
||||
pgoff_t index;
|
||||
int ret;
|
||||
|
||||
ta = kzalloc(sizeof(*ta), GFP_KERNEL);
|
||||
if (!ta)
|
||||
return -ENOMEM;
|
||||
|
||||
ta->state = UNLINK_1;
|
||||
ta->ino = inode->i_ino;
|
||||
|
||||
inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
|
||||
|
||||
page = logfs_get_dd_page(dir, dentry);
|
||||
if (!page) {
|
||||
kfree(ta);
|
||||
return -ENOENT;
|
||||
}
|
||||
if (IS_ERR(page)) {
|
||||
kfree(ta);
|
||||
return PTR_ERR(page);
|
||||
}
|
||||
index = page->index;
|
||||
page_cache_release(page);
|
||||
|
||||
mutex_lock(&super->s_dirop_mutex);
|
||||
logfs_add_transaction(dir, ta);
|
||||
|
||||
ret = logfs_delete(dir, index, NULL);
|
||||
if (!ret)
|
||||
ret = write_inode(dir);
|
||||
|
||||
if (ret) {
|
||||
abort_transaction(dir, ta);
|
||||
printk(KERN_ERR"LOGFS: unable to delete inode\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
ta->state = UNLINK_2;
|
||||
logfs_add_transaction(inode, ta);
|
||||
ret = logfs_remove_inode(inode);
|
||||
out:
|
||||
mutex_unlock(&super->s_dirop_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline int logfs_empty_dir(struct inode *dir)
|
||||
{
|
||||
u64 data;
|
||||
|
||||
data = logfs_seek_data(dir, 0) << dir->i_sb->s_blocksize_bits;
|
||||
return data >= i_size_read(dir);
|
||||
}
|
||||
|
||||
static int logfs_rmdir(struct inode *dir, struct dentry *dentry)
|
||||
{
|
||||
struct inode *inode = dentry->d_inode;
|
||||
|
||||
if (!logfs_empty_dir(inode))
|
||||
return -ENOTEMPTY;
|
||||
|
||||
return logfs_unlink(dir, dentry);
|
||||
}
|
||||
|
||||
/* FIXME: readdir currently has it's own dir_walk code. I don't see a good
|
||||
* way to combine the two copies */
|
||||
#define IMPLICIT_NODES 2
|
||||
static int __logfs_readdir(struct file *file, void *buf, filldir_t filldir)
|
||||
{
|
||||
struct inode *dir = file->f_dentry->d_inode;
|
||||
loff_t pos = file->f_pos - IMPLICIT_NODES;
|
||||
struct page *page;
|
||||
struct logfs_disk_dentry *dd;
|
||||
int full;
|
||||
|
||||
BUG_ON(pos < 0);
|
||||
for (;; pos++) {
|
||||
if (beyond_eof(dir, pos))
|
||||
break;
|
||||
if (!logfs_exist_block(dir, pos)) {
|
||||
/* deleted dentry */
|
||||
pos = dir_seek_data(dir, pos);
|
||||
continue;
|
||||
}
|
||||
page = read_cache_page(dir->i_mapping, pos,
|
||||
(filler_t *)logfs_readpage, NULL);
|
||||
if (IS_ERR(page))
|
||||
return PTR_ERR(page);
|
||||
dd = kmap_atomic(page, KM_USER0);
|
||||
BUG_ON(dd->namelen == 0);
|
||||
|
||||
full = filldir(buf, (char *)dd->name, be16_to_cpu(dd->namelen),
|
||||
pos, be64_to_cpu(dd->ino), dd->type);
|
||||
kunmap_atomic(dd, KM_USER0);
|
||||
page_cache_release(page);
|
||||
if (full)
|
||||
break;
|
||||
}
|
||||
|
||||
file->f_pos = pos + IMPLICIT_NODES;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int logfs_readdir(struct file *file, void *buf, filldir_t filldir)
|
||||
{
|
||||
struct inode *inode = file->f_dentry->d_inode;
|
||||
ino_t pino = parent_ino(file->f_dentry);
|
||||
int err;
|
||||
|
||||
if (file->f_pos < 0)
|
||||
return -EINVAL;
|
||||
|
||||
if (file->f_pos == 0) {
|
||||
if (filldir(buf, ".", 1, 1, inode->i_ino, DT_DIR) < 0)
|
||||
return 0;
|
||||
file->f_pos++;
|
||||
}
|
||||
if (file->f_pos == 1) {
|
||||
if (filldir(buf, "..", 2, 2, pino, DT_DIR) < 0)
|
||||
return 0;
|
||||
file->f_pos++;
|
||||
}
|
||||
|
||||
err = __logfs_readdir(file, buf, filldir);
|
||||
return err;
|
||||
}
|
||||
|
||||
static void logfs_set_name(struct logfs_disk_dentry *dd, struct qstr *name)
|
||||
{
|
||||
dd->namelen = cpu_to_be16(name->len);
|
||||
memcpy(dd->name, name->name, name->len);
|
||||
}
|
||||
|
||||
static struct dentry *logfs_lookup(struct inode *dir, struct dentry *dentry,
|
||||
struct nameidata *nd)
|
||||
{
|
||||
struct page *page;
|
||||
struct logfs_disk_dentry *dd;
|
||||
pgoff_t index;
|
||||
u64 ino = 0;
|
||||
struct inode *inode;
|
||||
|
||||
page = logfs_get_dd_page(dir, dentry);
|
||||
if (IS_ERR(page))
|
||||
return ERR_CAST(page);
|
||||
if (!page) {
|
||||
d_add(dentry, NULL);
|
||||
return NULL;
|
||||
}
|
||||
index = page->index;
|
||||
dd = kmap_atomic(page, KM_USER0);
|
||||
ino = be64_to_cpu(dd->ino);
|
||||
kunmap_atomic(dd, KM_USER0);
|
||||
page_cache_release(page);
|
||||
|
||||
inode = logfs_iget(dir->i_sb, ino);
|
||||
if (IS_ERR(inode)) {
|
||||
printk(KERN_ERR"LogFS: Cannot read inode #%llx for dentry (%lx, %lx)n",
|
||||
ino, dir->i_ino, index);
|
||||
return ERR_CAST(inode);
|
||||
}
|
||||
return d_splice_alias(inode, dentry);
|
||||
}
|
||||
|
||||
static void grow_dir(struct inode *dir, loff_t index)
|
||||
{
|
||||
index = (index + 1) << dir->i_sb->s_blocksize_bits;
|
||||
if (i_size_read(dir) < index)
|
||||
i_size_write(dir, index);
|
||||
}
|
||||
|
||||
static int logfs_write_dir(struct inode *dir, struct dentry *dentry,
|
||||
struct inode *inode)
|
||||
{
|
||||
struct page *page;
|
||||
struct logfs_disk_dentry *dd;
|
||||
u32 hash = hash_32(dentry->d_name.name, dentry->d_name.len, 0);
|
||||
pgoff_t index;
|
||||
int round, err;
|
||||
|
||||
for (round = 0; round < 20; round++) {
|
||||
index = hash_index(hash, round);
|
||||
|
||||
if (logfs_exist_block(dir, index))
|
||||
continue;
|
||||
page = find_or_create_page(dir->i_mapping, index, GFP_KERNEL);
|
||||
if (!page)
|
||||
return -ENOMEM;
|
||||
|
||||
dd = kmap_atomic(page, KM_USER0);
|
||||
memset(dd, 0, sizeof(*dd));
|
||||
dd->ino = cpu_to_be64(inode->i_ino);
|
||||
dd->type = logfs_type(inode);
|
||||
logfs_set_name(dd, &dentry->d_name);
|
||||
kunmap_atomic(dd, KM_USER0);
|
||||
|
||||
err = logfs_write_buf(dir, page, WF_LOCK);
|
||||
unlock_page(page);
|
||||
page_cache_release(page);
|
||||
if (!err)
|
||||
grow_dir(dir, index);
|
||||
return err;
|
||||
}
|
||||
/* FIXME: Is there a better return value? In most cases neither
|
||||
* the filesystem nor the directory are full. But we have had
|
||||
* too many collisions for this particular hash and no fallback.
|
||||
*/
|
||||
return -ENOSPC;
|
||||
}
|
||||
|
||||
static int __logfs_create(struct inode *dir, struct dentry *dentry,
|
||||
struct inode *inode, const char *dest, long destlen)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(dir->i_sb);
|
||||
struct logfs_inode *li = logfs_inode(inode);
|
||||
struct logfs_transaction *ta;
|
||||
int ret;
|
||||
|
||||
ta = kzalloc(sizeof(*ta), GFP_KERNEL);
|
||||
if (!ta)
|
||||
return -ENOMEM;
|
||||
|
||||
ta->state = CREATE_1;
|
||||
ta->ino = inode->i_ino;
|
||||
mutex_lock(&super->s_dirop_mutex);
|
||||
logfs_add_transaction(inode, ta);
|
||||
|
||||
if (dest) {
|
||||
/* symlink */
|
||||
ret = logfs_inode_write(inode, dest, destlen, 0, WF_LOCK, NULL);
|
||||
if (!ret)
|
||||
ret = write_inode(inode);
|
||||
} else {
|
||||
/* creat/mkdir/mknod */
|
||||
ret = write_inode(inode);
|
||||
}
|
||||
if (ret) {
|
||||
abort_transaction(inode, ta);
|
||||
li->li_flags |= LOGFS_IF_STILLBORN;
|
||||
/* FIXME: truncate symlink */
|
||||
inode->i_nlink--;
|
||||
iput(inode);
|
||||
goto out;
|
||||
}
|
||||
|
||||
ta->state = CREATE_2;
|
||||
logfs_add_transaction(dir, ta);
|
||||
ret = logfs_write_dir(dir, dentry, inode);
|
||||
/* sync directory */
|
||||
if (!ret)
|
||||
ret = write_inode(dir);
|
||||
|
||||
if (ret) {
|
||||
logfs_del_transaction(dir, ta);
|
||||
ta->state = CREATE_2;
|
||||
logfs_add_transaction(inode, ta);
|
||||
logfs_remove_inode(inode);
|
||||
iput(inode);
|
||||
goto out;
|
||||
}
|
||||
d_instantiate(dentry, inode);
|
||||
out:
|
||||
mutex_unlock(&super->s_dirop_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int logfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
|
||||
{
|
||||
struct inode *inode;
|
||||
|
||||
/*
|
||||
* FIXME: why do we have to fill in S_IFDIR, while the mode is
|
||||
* correct for mknod, creat, etc.? Smells like the vfs *should*
|
||||
* do it for us but for some reason fails to do so.
|
||||
*/
|
||||
inode = logfs_new_inode(dir, S_IFDIR | mode);
|
||||
if (IS_ERR(inode))
|
||||
return PTR_ERR(inode);
|
||||
|
||||
inode->i_op = &logfs_dir_iops;
|
||||
inode->i_fop = &logfs_dir_fops;
|
||||
|
||||
return __logfs_create(dir, dentry, inode, NULL, 0);
|
||||
}
|
||||
|
||||
static int logfs_create(struct inode *dir, struct dentry *dentry, int mode,
|
||||
struct nameidata *nd)
|
||||
{
|
||||
struct inode *inode;
|
||||
|
||||
inode = logfs_new_inode(dir, mode);
|
||||
if (IS_ERR(inode))
|
||||
return PTR_ERR(inode);
|
||||
|
||||
inode->i_op = &logfs_reg_iops;
|
||||
inode->i_fop = &logfs_reg_fops;
|
||||
inode->i_mapping->a_ops = &logfs_reg_aops;
|
||||
|
||||
return __logfs_create(dir, dentry, inode, NULL, 0);
|
||||
}
|
||||
|
||||
static int logfs_mknod(struct inode *dir, struct dentry *dentry, int mode,
|
||||
dev_t rdev)
|
||||
{
|
||||
struct inode *inode;
|
||||
|
||||
if (dentry->d_name.len > LOGFS_MAX_NAMELEN)
|
||||
return -ENAMETOOLONG;
|
||||
|
||||
inode = logfs_new_inode(dir, mode);
|
||||
if (IS_ERR(inode))
|
||||
return PTR_ERR(inode);
|
||||
|
||||
init_special_inode(inode, mode, rdev);
|
||||
|
||||
return __logfs_create(dir, dentry, inode, NULL, 0);
|
||||
}
|
||||
|
||||
static int logfs_symlink(struct inode *dir, struct dentry *dentry,
|
||||
const char *target)
|
||||
{
|
||||
struct inode *inode;
|
||||
size_t destlen = strlen(target) + 1;
|
||||
|
||||
if (destlen > dir->i_sb->s_blocksize)
|
||||
return -ENAMETOOLONG;
|
||||
|
||||
inode = logfs_new_inode(dir, S_IFLNK | 0777);
|
||||
if (IS_ERR(inode))
|
||||
return PTR_ERR(inode);
|
||||
|
||||
inode->i_op = &logfs_symlink_iops;
|
||||
inode->i_mapping->a_ops = &logfs_reg_aops;
|
||||
|
||||
return __logfs_create(dir, dentry, inode, target, destlen);
|
||||
}
|
||||
|
||||
static int logfs_permission(struct inode *inode, int mask)
|
||||
{
|
||||
return generic_permission(inode, mask, NULL);
|
||||
}
|
||||
|
||||
static int logfs_link(struct dentry *old_dentry, struct inode *dir,
|
||||
struct dentry *dentry)
|
||||
{
|
||||
struct inode *inode = old_dentry->d_inode;
|
||||
|
||||
if (inode->i_nlink >= LOGFS_LINK_MAX)
|
||||
return -EMLINK;
|
||||
|
||||
inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
|
||||
atomic_inc(&inode->i_count);
|
||||
inode->i_nlink++;
|
||||
mark_inode_dirty_sync(inode);
|
||||
|
||||
return __logfs_create(dir, dentry, inode, NULL, 0);
|
||||
}
|
||||
|
||||
static int logfs_get_dd(struct inode *dir, struct dentry *dentry,
|
||||
struct logfs_disk_dentry *dd, loff_t *pos)
|
||||
{
|
||||
struct page *page;
|
||||
void *map;
|
||||
|
||||
page = logfs_get_dd_page(dir, dentry);
|
||||
if (IS_ERR(page))
|
||||
return PTR_ERR(page);
|
||||
*pos = page->index;
|
||||
map = kmap_atomic(page, KM_USER0);
|
||||
memcpy(dd, map, sizeof(*dd));
|
||||
kunmap_atomic(map, KM_USER0);
|
||||
page_cache_release(page);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int logfs_delete_dd(struct inode *dir, loff_t pos)
|
||||
{
|
||||
/*
|
||||
* Getting called with pos somewhere beyond eof is either a goofup
|
||||
* within this file or means someone maliciously edited the
|
||||
* (crc-protected) journal.
|
||||
*/
|
||||
BUG_ON(beyond_eof(dir, pos));
|
||||
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
|
||||
log_dir(" Delete dentry (%lx, %llx)\n", dir->i_ino, pos);
|
||||
return logfs_delete(dir, pos, NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Cross-directory rename, target does not exist. Just a little nasty.
|
||||
* Create a new dentry in the target dir, then remove the old dentry,
|
||||
* all the while taking care to remember our operation in the journal.
|
||||
*/
|
||||
static int logfs_rename_cross(struct inode *old_dir, struct dentry *old_dentry,
|
||||
struct inode *new_dir, struct dentry *new_dentry)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(old_dir->i_sb);
|
||||
struct logfs_disk_dentry dd;
|
||||
struct logfs_transaction *ta;
|
||||
loff_t pos;
|
||||
int err;
|
||||
|
||||
/* 1. locate source dd */
|
||||
err = logfs_get_dd(old_dir, old_dentry, &dd, &pos);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
ta = kzalloc(sizeof(*ta), GFP_KERNEL);
|
||||
if (!ta)
|
||||
return -ENOMEM;
|
||||
|
||||
ta->state = CROSS_RENAME_1;
|
||||
ta->dir = old_dir->i_ino;
|
||||
ta->pos = pos;
|
||||
|
||||
/* 2. write target dd */
|
||||
mutex_lock(&super->s_dirop_mutex);
|
||||
logfs_add_transaction(new_dir, ta);
|
||||
err = logfs_write_dir(new_dir, new_dentry, old_dentry->d_inode);
|
||||
if (!err)
|
||||
err = write_inode(new_dir);
|
||||
|
||||
if (err) {
|
||||
super->s_rename_dir = 0;
|
||||
super->s_rename_pos = 0;
|
||||
abort_transaction(new_dir, ta);
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* 3. remove source dd */
|
||||
ta->state = CROSS_RENAME_2;
|
||||
logfs_add_transaction(old_dir, ta);
|
||||
err = logfs_delete_dd(old_dir, pos);
|
||||
if (!err)
|
||||
err = write_inode(old_dir);
|
||||
LOGFS_BUG_ON(err, old_dir->i_sb);
|
||||
out:
|
||||
mutex_unlock(&super->s_dirop_mutex);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int logfs_replace_inode(struct inode *dir, struct dentry *dentry,
|
||||
struct logfs_disk_dentry *dd, struct inode *inode)
|
||||
{
|
||||
loff_t pos;
|
||||
int err;
|
||||
|
||||
err = logfs_get_dd(dir, dentry, dd, &pos);
|
||||
if (err)
|
||||
return err;
|
||||
dd->ino = cpu_to_be64(inode->i_ino);
|
||||
dd->type = logfs_type(inode);
|
||||
|
||||
err = write_dir(dir, dd, pos);
|
||||
if (err)
|
||||
return err;
|
||||
log_dir("Replace dentry (%lx, %llx) %s -> %llx\n", dir->i_ino, pos,
|
||||
dd->name, be64_to_cpu(dd->ino));
|
||||
return write_inode(dir);
|
||||
}
|
||||
|
||||
/* Target dentry exists - the worst case. We need to attach the source
|
||||
* inode to the target dentry, then remove the orphaned target inode and
|
||||
* source dentry.
|
||||
*/
|
||||
static int logfs_rename_target(struct inode *old_dir, struct dentry *old_dentry,
|
||||
struct inode *new_dir, struct dentry *new_dentry)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(old_dir->i_sb);
|
||||
struct inode *old_inode = old_dentry->d_inode;
|
||||
struct inode *new_inode = new_dentry->d_inode;
|
||||
int isdir = S_ISDIR(old_inode->i_mode);
|
||||
struct logfs_disk_dentry dd;
|
||||
struct logfs_transaction *ta;
|
||||
loff_t pos;
|
||||
int err;
|
||||
|
||||
BUG_ON(isdir != S_ISDIR(new_inode->i_mode));
|
||||
if (isdir) {
|
||||
if (!logfs_empty_dir(new_inode))
|
||||
return -ENOTEMPTY;
|
||||
}
|
||||
|
||||
/* 1. locate source dd */
|
||||
err = logfs_get_dd(old_dir, old_dentry, &dd, &pos);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
ta = kzalloc(sizeof(*ta), GFP_KERNEL);
|
||||
if (!ta)
|
||||
return -ENOMEM;
|
||||
|
||||
ta->state = TARGET_RENAME_1;
|
||||
ta->dir = old_dir->i_ino;
|
||||
ta->pos = pos;
|
||||
ta->ino = new_inode->i_ino;
|
||||
|
||||
/* 2. attach source inode to target dd */
|
||||
mutex_lock(&super->s_dirop_mutex);
|
||||
logfs_add_transaction(new_dir, ta);
|
||||
err = logfs_replace_inode(new_dir, new_dentry, &dd, old_inode);
|
||||
if (err) {
|
||||
super->s_rename_dir = 0;
|
||||
super->s_rename_pos = 0;
|
||||
super->s_victim_ino = 0;
|
||||
abort_transaction(new_dir, ta);
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* 3. remove source dd */
|
||||
ta->state = TARGET_RENAME_2;
|
||||
logfs_add_transaction(old_dir, ta);
|
||||
err = logfs_delete_dd(old_dir, pos);
|
||||
if (!err)
|
||||
err = write_inode(old_dir);
|
||||
LOGFS_BUG_ON(err, old_dir->i_sb);
|
||||
|
||||
/* 4. remove target inode */
|
||||
ta->state = TARGET_RENAME_3;
|
||||
logfs_add_transaction(new_inode, ta);
|
||||
err = logfs_remove_inode(new_inode);
|
||||
|
||||
out:
|
||||
mutex_unlock(&super->s_dirop_mutex);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int logfs_rename(struct inode *old_dir, struct dentry *old_dentry,
|
||||
struct inode *new_dir, struct dentry *new_dentry)
|
||||
{
|
||||
if (new_dentry->d_inode)
|
||||
return logfs_rename_target(old_dir, old_dentry,
|
||||
new_dir, new_dentry);
|
||||
return logfs_rename_cross(old_dir, old_dentry, new_dir, new_dentry);
|
||||
}
|
||||
|
||||
/* No locking done here, as this is called before .get_sb() returns. */
|
||||
int logfs_replay_journal(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct inode *inode;
|
||||
u64 ino, pos;
|
||||
int err;
|
||||
|
||||
if (super->s_victim_ino) {
|
||||
/* delete victim inode */
|
||||
ino = super->s_victim_ino;
|
||||
printk(KERN_INFO"LogFS: delete unmapped inode #%llx\n", ino);
|
||||
inode = logfs_iget(sb, ino);
|
||||
if (IS_ERR(inode))
|
||||
goto fail;
|
||||
|
||||
LOGFS_BUG_ON(i_size_read(inode) > 0, sb);
|
||||
super->s_victim_ino = 0;
|
||||
err = logfs_remove_inode(inode);
|
||||
iput(inode);
|
||||
if (err) {
|
||||
super->s_victim_ino = ino;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
if (super->s_rename_dir) {
|
||||
/* delete old dd from rename */
|
||||
ino = super->s_rename_dir;
|
||||
pos = super->s_rename_pos;
|
||||
printk(KERN_INFO"LogFS: delete unbacked dentry (%llx, %llx)\n",
|
||||
ino, pos);
|
||||
inode = logfs_iget(sb, ino);
|
||||
if (IS_ERR(inode))
|
||||
goto fail;
|
||||
|
||||
super->s_rename_dir = 0;
|
||||
super->s_rename_pos = 0;
|
||||
err = logfs_delete_dd(inode, pos);
|
||||
iput(inode);
|
||||
if (err) {
|
||||
super->s_rename_dir = ino;
|
||||
super->s_rename_pos = pos;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
fail:
|
||||
LOGFS_BUG(sb);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
const struct inode_operations logfs_symlink_iops = {
|
||||
.readlink = generic_readlink,
|
||||
.follow_link = page_follow_link_light,
|
||||
};
|
||||
|
||||
const struct inode_operations logfs_dir_iops = {
|
||||
.create = logfs_create,
|
||||
.link = logfs_link,
|
||||
.lookup = logfs_lookup,
|
||||
.mkdir = logfs_mkdir,
|
||||
.mknod = logfs_mknod,
|
||||
.rename = logfs_rename,
|
||||
.rmdir = logfs_rmdir,
|
||||
.permission = logfs_permission,
|
||||
.symlink = logfs_symlink,
|
||||
.unlink = logfs_unlink,
|
||||
};
|
||||
const struct file_operations logfs_dir_fops = {
|
||||
.fsync = logfs_fsync,
|
||||
.ioctl = logfs_ioctl,
|
||||
.readdir = logfs_readdir,
|
||||
.read = generic_read_dir,
|
||||
};
|
263
fs/logfs/file.c
Normal file
263
fs/logfs/file.c
Normal file
@ -0,0 +1,263 @@
|
||||
/*
|
||||
* fs/logfs/file.c - prepare_write, commit_write and friends
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*/
|
||||
#include "logfs.h"
|
||||
#include <linux/sched.h>
|
||||
#include <linux/writeback.h>
|
||||
|
||||
static int logfs_write_begin(struct file *file, struct address_space *mapping,
|
||||
loff_t pos, unsigned len, unsigned flags,
|
||||
struct page **pagep, void **fsdata)
|
||||
{
|
||||
struct inode *inode = mapping->host;
|
||||
struct page *page;
|
||||
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
|
||||
|
||||
page = grab_cache_page_write_begin(mapping, index, flags);
|
||||
if (!page)
|
||||
return -ENOMEM;
|
||||
*pagep = page;
|
||||
|
||||
if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
|
||||
return 0;
|
||||
if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
|
||||
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
|
||||
unsigned end = start + len;
|
||||
|
||||
/* Reading beyond i_size is simple: memset to zero */
|
||||
zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
|
||||
return 0;
|
||||
}
|
||||
return logfs_readpage_nolock(page);
|
||||
}
|
||||
|
||||
static int logfs_write_end(struct file *file, struct address_space *mapping,
|
||||
loff_t pos, unsigned len, unsigned copied, struct page *page,
|
||||
void *fsdata)
|
||||
{
|
||||
struct inode *inode = mapping->host;
|
||||
pgoff_t index = page->index;
|
||||
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
|
||||
unsigned end = start + copied;
|
||||
int ret = 0;
|
||||
|
||||
BUG_ON(PAGE_CACHE_SIZE != inode->i_sb->s_blocksize);
|
||||
BUG_ON(page->index > I3_BLOCKS);
|
||||
|
||||
if (copied < len) {
|
||||
/*
|
||||
* Short write of a non-initialized paged. Just tell userspace
|
||||
* to retry the entire page.
|
||||
*/
|
||||
if (!PageUptodate(page)) {
|
||||
copied = 0;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
if (copied == 0)
|
||||
goto out; /* FIXME: do we need to update inode? */
|
||||
|
||||
if (i_size_read(inode) < (index << PAGE_CACHE_SHIFT) + end) {
|
||||
i_size_write(inode, (index << PAGE_CACHE_SHIFT) + end);
|
||||
mark_inode_dirty_sync(inode);
|
||||
}
|
||||
|
||||
SetPageUptodate(page);
|
||||
if (!PageDirty(page)) {
|
||||
if (!get_page_reserve(inode, page))
|
||||
__set_page_dirty_nobuffers(page);
|
||||
else
|
||||
ret = logfs_write_buf(inode, page, WF_LOCK);
|
||||
}
|
||||
out:
|
||||
unlock_page(page);
|
||||
page_cache_release(page);
|
||||
return ret ? ret : copied;
|
||||
}
|
||||
|
||||
int logfs_readpage(struct file *file, struct page *page)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = logfs_readpage_nolock(page);
|
||||
unlock_page(page);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Clear the page's dirty flag in the radix tree. */
|
||||
/* TODO: mucking with PageWriteback is silly. Add a generic function to clear
|
||||
* the dirty bit from the radix tree for filesystems that don't have to wait
|
||||
* for page writeback to finish (i.e. any compressing filesystem).
|
||||
*/
|
||||
static void clear_radix_tree_dirty(struct page *page)
|
||||
{
|
||||
BUG_ON(PagePrivate(page) || page->private);
|
||||
set_page_writeback(page);
|
||||
end_page_writeback(page);
|
||||
}
|
||||
|
||||
static int __logfs_writepage(struct page *page)
|
||||
{
|
||||
struct inode *inode = page->mapping->host;
|
||||
int err;
|
||||
|
||||
err = logfs_write_buf(inode, page, WF_LOCK);
|
||||
if (err)
|
||||
set_page_dirty(page);
|
||||
else
|
||||
clear_radix_tree_dirty(page);
|
||||
unlock_page(page);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int logfs_writepage(struct page *page, struct writeback_control *wbc)
|
||||
{
|
||||
struct inode *inode = page->mapping->host;
|
||||
loff_t i_size = i_size_read(inode);
|
||||
pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
|
||||
unsigned offset;
|
||||
u64 bix;
|
||||
level_t level;
|
||||
|
||||
log_file("logfs_writepage(%lx, %lx, %p)\n", inode->i_ino, page->index,
|
||||
page);
|
||||
|
||||
logfs_unpack_index(page->index, &bix, &level);
|
||||
|
||||
/* Indirect blocks are never truncated */
|
||||
if (level != 0)
|
||||
return __logfs_writepage(page);
|
||||
|
||||
/*
|
||||
* TODO: everything below is a near-verbatim copy of nobh_writepage().
|
||||
* The relevant bits should be factored out after logfs is merged.
|
||||
*/
|
||||
|
||||
/* Is the page fully inside i_size? */
|
||||
if (bix < end_index)
|
||||
return __logfs_writepage(page);
|
||||
|
||||
/* Is the page fully outside i_size? (truncate in progress) */
|
||||
offset = i_size & (PAGE_CACHE_SIZE-1);
|
||||
if (bix > end_index || offset == 0) {
|
||||
unlock_page(page);
|
||||
return 0; /* don't care */
|
||||
}
|
||||
|
||||
/*
|
||||
* The page straddles i_size. It must be zeroed out on each and every
|
||||
* writepage invokation because it may be mmapped. "A file is mapped
|
||||
* in multiples of the page size. For a file that is not a multiple of
|
||||
* the page size, the remaining memory is zeroed when mapped, and
|
||||
* writes to that region are not written out to the file."
|
||||
*/
|
||||
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
|
||||
return __logfs_writepage(page);
|
||||
}
|
||||
|
||||
static void logfs_invalidatepage(struct page *page, unsigned long offset)
|
||||
{
|
||||
move_page_to_btree(page);
|
||||
BUG_ON(PagePrivate(page) || page->private);
|
||||
}
|
||||
|
||||
static int logfs_releasepage(struct page *page, gfp_t only_xfs_uses_this)
|
||||
{
|
||||
return 0; /* None of these are easy to release */
|
||||
}
|
||||
|
||||
|
||||
int logfs_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
|
||||
unsigned long arg)
|
||||
{
|
||||
struct logfs_inode *li = logfs_inode(inode);
|
||||
unsigned int oldflags, flags;
|
||||
int err;
|
||||
|
||||
switch (cmd) {
|
||||
case FS_IOC_GETFLAGS:
|
||||
flags = li->li_flags & LOGFS_FL_USER_VISIBLE;
|
||||
return put_user(flags, (int __user *)arg);
|
||||
case FS_IOC_SETFLAGS:
|
||||
if (IS_RDONLY(inode))
|
||||
return -EROFS;
|
||||
|
||||
if (!is_owner_or_cap(inode))
|
||||
return -EACCES;
|
||||
|
||||
err = get_user(flags, (int __user *)arg);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
mutex_lock(&inode->i_mutex);
|
||||
oldflags = li->li_flags;
|
||||
flags &= LOGFS_FL_USER_MODIFIABLE;
|
||||
flags |= oldflags & ~LOGFS_FL_USER_MODIFIABLE;
|
||||
li->li_flags = flags;
|
||||
mutex_unlock(&inode->i_mutex);
|
||||
|
||||
inode->i_ctime = CURRENT_TIME;
|
||||
mark_inode_dirty_sync(inode);
|
||||
return 0;
|
||||
|
||||
default:
|
||||
return -ENOTTY;
|
||||
}
|
||||
}
|
||||
|
||||
int logfs_fsync(struct file *file, struct dentry *dentry, int datasync)
|
||||
{
|
||||
struct super_block *sb = dentry->d_inode->i_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
/* FIXME: write anchor */
|
||||
super->s_devops->sync(sb);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int logfs_setattr(struct dentry *dentry, struct iattr *attr)
|
||||
{
|
||||
struct inode *inode = dentry->d_inode;
|
||||
int err = 0;
|
||||
|
||||
if (attr->ia_valid & ATTR_SIZE)
|
||||
err = logfs_truncate(inode, attr->ia_size);
|
||||
attr->ia_valid &= ~ATTR_SIZE;
|
||||
|
||||
if (!err)
|
||||
err = inode_change_ok(inode, attr);
|
||||
if (!err)
|
||||
err = inode_setattr(inode, attr);
|
||||
return err;
|
||||
}
|
||||
|
||||
const struct inode_operations logfs_reg_iops = {
|
||||
.setattr = logfs_setattr,
|
||||
};
|
||||
|
||||
const struct file_operations logfs_reg_fops = {
|
||||
.aio_read = generic_file_aio_read,
|
||||
.aio_write = generic_file_aio_write,
|
||||
.fsync = logfs_fsync,
|
||||
.ioctl = logfs_ioctl,
|
||||
.llseek = generic_file_llseek,
|
||||
.mmap = generic_file_readonly_mmap,
|
||||
.open = generic_file_open,
|
||||
.read = do_sync_read,
|
||||
.write = do_sync_write,
|
||||
};
|
||||
|
||||
const struct address_space_operations logfs_reg_aops = {
|
||||
.invalidatepage = logfs_invalidatepage,
|
||||
.readpage = logfs_readpage,
|
||||
.releasepage = logfs_releasepage,
|
||||
.set_page_dirty = __set_page_dirty_nobuffers,
|
||||
.writepage = logfs_writepage,
|
||||
.writepages = generic_writepages,
|
||||
.write_begin = logfs_write_begin,
|
||||
.write_end = logfs_write_end,
|
||||
};
|
730
fs/logfs/gc.c
Normal file
730
fs/logfs/gc.c
Normal file
@ -0,0 +1,730 @@
|
||||
/*
|
||||
* fs/logfs/gc.c - garbage collection code
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*/
|
||||
#include "logfs.h"
|
||||
#include <linux/sched.h>
|
||||
|
||||
/*
|
||||
* Wear leveling needs to kick in when the difference between low erase
|
||||
* counts and high erase counts gets too big. A good value for "too big"
|
||||
* may be somewhat below 10% of maximum erase count for the device.
|
||||
* Why not 397, to pick a nice round number with no specific meaning? :)
|
||||
*
|
||||
* WL_RATELIMIT is the minimum time between two wear level events. A huge
|
||||
* number of segments may fulfil the requirements for wear leveling at the
|
||||
* same time. If that happens we don't want to cause a latency from hell,
|
||||
* but just gently pick one segment every so often and minimize overhead.
|
||||
*/
|
||||
#define WL_DELTA 397
|
||||
#define WL_RATELIMIT 100
|
||||
#define MAX_OBJ_ALIASES 2600
|
||||
#define SCAN_RATIO 512 /* number of scanned segments per gc'd segment */
|
||||
#define LIST_SIZE 64 /* base size of candidate lists */
|
||||
#define SCAN_ROUNDS 128 /* maximum number of complete medium scans */
|
||||
#define SCAN_ROUNDS_HIGH 4 /* maximum number of higher-level scans */
|
||||
|
||||
static int no_free_segments(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
return super->s_free_list.count;
|
||||
}
|
||||
|
||||
/* journal has distance -1, top-most ifile layer distance 0 */
|
||||
static u8 root_distance(struct super_block *sb, gc_level_t __gc_level)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
u8 gc_level = (__force u8)__gc_level;
|
||||
|
||||
switch (gc_level) {
|
||||
case 0: /* fall through */
|
||||
case 1: /* fall through */
|
||||
case 2: /* fall through */
|
||||
case 3:
|
||||
/* file data or indirect blocks */
|
||||
return super->s_ifile_levels + super->s_iblock_levels - gc_level;
|
||||
case 6: /* fall through */
|
||||
case 7: /* fall through */
|
||||
case 8: /* fall through */
|
||||
case 9:
|
||||
/* inode file data or indirect blocks */
|
||||
return super->s_ifile_levels - (gc_level - 6);
|
||||
default:
|
||||
printk(KERN_ERR"LOGFS: segment of unknown level %x found\n",
|
||||
gc_level);
|
||||
WARN_ON(1);
|
||||
return super->s_ifile_levels + super->s_iblock_levels;
|
||||
}
|
||||
}
|
||||
|
||||
static int segment_is_reserved(struct super_block *sb, u32 segno)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_area *area;
|
||||
void *reserved;
|
||||
int i;
|
||||
|
||||
/* Some segments are reserved. Just pretend they were all valid */
|
||||
reserved = btree_lookup32(&super->s_reserved_segments, segno);
|
||||
if (reserved)
|
||||
return 1;
|
||||
|
||||
/* Currently open segments */
|
||||
for_each_area(i) {
|
||||
area = super->s_area[i];
|
||||
if (area->a_is_open && area->a_segno == segno)
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void logfs_mark_segment_bad(struct super_block *sb, u32 segno)
|
||||
{
|
||||
BUG();
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the bytes consumed by valid objects in this segment. Object headers
|
||||
* are counted, the segment header is not.
|
||||
*/
|
||||
static u32 logfs_valid_bytes(struct super_block *sb, u32 segno, u32 *ec,
|
||||
gc_level_t *gc_level)
|
||||
{
|
||||
struct logfs_segment_entry se;
|
||||
u32 ec_level;
|
||||
|
||||
logfs_get_segment_entry(sb, segno, &se);
|
||||
if (se.ec_level == cpu_to_be32(BADSEG) ||
|
||||
se.valid == cpu_to_be32(RESERVED))
|
||||
return RESERVED;
|
||||
|
||||
ec_level = be32_to_cpu(se.ec_level);
|
||||
*ec = ec_level >> 4;
|
||||
*gc_level = GC_LEVEL(ec_level & 0xf);
|
||||
return be32_to_cpu(se.valid);
|
||||
}
|
||||
|
||||
static void logfs_cleanse_block(struct super_block *sb, u64 ofs, u64 ino,
|
||||
u64 bix, gc_level_t gc_level)
|
||||
{
|
||||
struct inode *inode;
|
||||
int err, cookie;
|
||||
|
||||
inode = logfs_safe_iget(sb, ino, &cookie);
|
||||
err = logfs_rewrite_block(inode, bix, ofs, gc_level, 0);
|
||||
BUG_ON(err);
|
||||
logfs_safe_iput(inode, cookie);
|
||||
}
|
||||
|
||||
static u32 logfs_gc_segment(struct super_block *sb, u32 segno, u8 dist)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_segment_header sh;
|
||||
struct logfs_object_header oh;
|
||||
u64 ofs, ino, bix;
|
||||
u32 seg_ofs, logical_segno, cleaned = 0;
|
||||
int err, len, valid;
|
||||
gc_level_t gc_level;
|
||||
|
||||
LOGFS_BUG_ON(segment_is_reserved(sb, segno), sb);
|
||||
|
||||
btree_insert32(&super->s_reserved_segments, segno, (void *)1, GFP_NOFS);
|
||||
err = wbuf_read(sb, dev_ofs(sb, segno, 0), sizeof(sh), &sh);
|
||||
BUG_ON(err);
|
||||
gc_level = GC_LEVEL(sh.level);
|
||||
logical_segno = be32_to_cpu(sh.segno);
|
||||
if (sh.crc != logfs_crc32(&sh, sizeof(sh), 4)) {
|
||||
logfs_mark_segment_bad(sb, segno);
|
||||
cleaned = -1;
|
||||
goto out;
|
||||
}
|
||||
|
||||
for (seg_ofs = LOGFS_SEGMENT_HEADERSIZE;
|
||||
seg_ofs + sizeof(oh) < super->s_segsize; ) {
|
||||
ofs = dev_ofs(sb, logical_segno, seg_ofs);
|
||||
err = wbuf_read(sb, dev_ofs(sb, segno, seg_ofs), sizeof(oh),
|
||||
&oh);
|
||||
BUG_ON(err);
|
||||
|
||||
if (!memchr_inv(&oh, 0xff, sizeof(oh)))
|
||||
break;
|
||||
|
||||
if (oh.crc != logfs_crc32(&oh, sizeof(oh) - 4, 4)) {
|
||||
logfs_mark_segment_bad(sb, segno);
|
||||
cleaned = super->s_segsize - 1;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ino = be64_to_cpu(oh.ino);
|
||||
bix = be64_to_cpu(oh.bix);
|
||||
len = sizeof(oh) + be16_to_cpu(oh.len);
|
||||
valid = logfs_is_valid_block(sb, ofs, ino, bix, gc_level);
|
||||
if (valid == 1) {
|
||||
logfs_cleanse_block(sb, ofs, ino, bix, gc_level);
|
||||
cleaned += len;
|
||||
} else if (valid == 2) {
|
||||
/* Will be invalid upon journal commit */
|
||||
cleaned += len;
|
||||
}
|
||||
seg_ofs += len;
|
||||
}
|
||||
out:
|
||||
btree_remove32(&super->s_reserved_segments, segno);
|
||||
return cleaned;
|
||||
}
|
||||
|
||||
static struct gc_candidate *add_list(struct gc_candidate *cand,
|
||||
struct candidate_list *list)
|
||||
{
|
||||
struct rb_node **p = &list->rb_tree.rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
struct gc_candidate *cur;
|
||||
int comp;
|
||||
|
||||
cand->list = list;
|
||||
while (*p) {
|
||||
parent = *p;
|
||||
cur = rb_entry(parent, struct gc_candidate, rb_node);
|
||||
|
||||
if (list->sort_by_ec)
|
||||
comp = cand->erase_count < cur->erase_count;
|
||||
else
|
||||
comp = cand->valid < cur->valid;
|
||||
|
||||
if (comp)
|
||||
p = &parent->rb_left;
|
||||
else
|
||||
p = &parent->rb_right;
|
||||
}
|
||||
rb_link_node(&cand->rb_node, parent, p);
|
||||
rb_insert_color(&cand->rb_node, &list->rb_tree);
|
||||
|
||||
if (list->count <= list->maxcount) {
|
||||
list->count++;
|
||||
return NULL;
|
||||
}
|
||||
cand = rb_entry(rb_last(&list->rb_tree), struct gc_candidate, rb_node);
|
||||
rb_erase(&cand->rb_node, &list->rb_tree);
|
||||
cand->list = NULL;
|
||||
return cand;
|
||||
}
|
||||
|
||||
static void remove_from_list(struct gc_candidate *cand)
|
||||
{
|
||||
struct candidate_list *list = cand->list;
|
||||
|
||||
rb_erase(&cand->rb_node, &list->rb_tree);
|
||||
list->count--;
|
||||
}
|
||||
|
||||
static void free_candidate(struct super_block *sb, struct gc_candidate *cand)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
btree_remove32(&super->s_cand_tree, cand->segno);
|
||||
kfree(cand);
|
||||
}
|
||||
|
||||
u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec)
|
||||
{
|
||||
struct gc_candidate *cand;
|
||||
u32 segno;
|
||||
|
||||
BUG_ON(list->count == 0);
|
||||
|
||||
cand = rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node);
|
||||
remove_from_list(cand);
|
||||
segno = cand->segno;
|
||||
if (ec)
|
||||
*ec = cand->erase_count;
|
||||
free_candidate(sb, cand);
|
||||
return segno;
|
||||
}
|
||||
|
||||
/*
|
||||
* We have several lists to manage segments with. The reserve_list is used to
|
||||
* deal with bad blocks. We try to keep the best (lowest ec) segments on this
|
||||
* list.
|
||||
* The free_list contains free segments for normal usage. It usually gets the
|
||||
* second pick after the reserve_list. But when the free_list is running short
|
||||
* it is more important to keep the free_list full than to keep a reserve.
|
||||
*
|
||||
* Segments that are not free are put onto a per-level low_list. If we have
|
||||
* to run garbage collection, we pick a candidate from there. All segments on
|
||||
* those lists should have at least some free space so GC will make progress.
|
||||
*
|
||||
* And last we have the ec_list, which is used to pick segments for wear
|
||||
* leveling.
|
||||
*
|
||||
* If all appropriate lists are full, we simply free the candidate and forget
|
||||
* about that segment for a while. We have better candidates for each purpose.
|
||||
*/
|
||||
static void __add_candidate(struct super_block *sb, struct gc_candidate *cand)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
u32 full = super->s_segsize - LOGFS_SEGMENT_RESERVE;
|
||||
|
||||
if (cand->valid == 0) {
|
||||
/* 100% free segments */
|
||||
log_gc_noisy("add reserve segment %x (ec %x) at %llx\n",
|
||||
cand->segno, cand->erase_count,
|
||||
dev_ofs(sb, cand->segno, 0));
|
||||
cand = add_list(cand, &super->s_reserve_list);
|
||||
if (cand) {
|
||||
log_gc_noisy("add free segment %x (ec %x) at %llx\n",
|
||||
cand->segno, cand->erase_count,
|
||||
dev_ofs(sb, cand->segno, 0));
|
||||
cand = add_list(cand, &super->s_free_list);
|
||||
}
|
||||
} else {
|
||||
/* good candidates for Garbage Collection */
|
||||
if (cand->valid < full)
|
||||
cand = add_list(cand, &super->s_low_list[cand->dist]);
|
||||
/* good candidates for wear leveling,
|
||||
* segments that were recently written get ignored */
|
||||
if (cand)
|
||||
cand = add_list(cand, &super->s_ec_list);
|
||||
}
|
||||
if (cand)
|
||||
free_candidate(sb, cand);
|
||||
}
|
||||
|
||||
static int add_candidate(struct super_block *sb, u32 segno, u32 valid, u32 ec,
|
||||
u8 dist)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct gc_candidate *cand;
|
||||
|
||||
cand = kmalloc(sizeof(*cand), GFP_NOFS);
|
||||
if (!cand)
|
||||
return -ENOMEM;
|
||||
|
||||
cand->segno = segno;
|
||||
cand->valid = valid;
|
||||
cand->erase_count = ec;
|
||||
cand->dist = dist;
|
||||
|
||||
btree_insert32(&super->s_cand_tree, segno, cand, GFP_NOFS);
|
||||
__add_candidate(sb, cand);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void remove_segment_from_lists(struct super_block *sb, u32 segno)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct gc_candidate *cand;
|
||||
|
||||
cand = btree_lookup32(&super->s_cand_tree, segno);
|
||||
if (cand) {
|
||||
remove_from_list(cand);
|
||||
free_candidate(sb, cand);
|
||||
}
|
||||
}
|
||||
|
||||
static void scan_segment(struct super_block *sb, u32 segno)
|
||||
{
|
||||
u32 valid, ec = 0;
|
||||
gc_level_t gc_level = 0;
|
||||
u8 dist;
|
||||
|
||||
if (segment_is_reserved(sb, segno))
|
||||
return;
|
||||
|
||||
remove_segment_from_lists(sb, segno);
|
||||
valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
|
||||
if (valid == RESERVED)
|
||||
return;
|
||||
|
||||
dist = root_distance(sb, gc_level);
|
||||
add_candidate(sb, segno, valid, ec, dist);
|
||||
}
|
||||
|
||||
static struct gc_candidate *first_in_list(struct candidate_list *list)
|
||||
{
|
||||
if (list->count == 0)
|
||||
return NULL;
|
||||
return rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the best segment for garbage collection. Main criterion is
|
||||
* the segment requiring the least effort to clean. Secondary
|
||||
* criterion is to GC on the lowest level available.
|
||||
*
|
||||
* So we search the least effort segment on the lowest level first,
|
||||
* then move up and pick another segment iff is requires significantly
|
||||
* less effort. Hence the LOGFS_MAX_OBJECTSIZE in the comparison.
|
||||
*/
|
||||
static struct gc_candidate *get_candidate(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int i, max_dist;
|
||||
struct gc_candidate *cand = NULL, *this;
|
||||
|
||||
max_dist = min(no_free_segments(sb), LOGFS_NO_AREAS);
|
||||
|
||||
for (i = max_dist; i >= 0; i--) {
|
||||
this = first_in_list(&super->s_low_list[i]);
|
||||
if (!this)
|
||||
continue;
|
||||
if (!cand)
|
||||
cand = this;
|
||||
if (this->valid + LOGFS_MAX_OBJECTSIZE <= cand->valid)
|
||||
cand = this;
|
||||
}
|
||||
return cand;
|
||||
}
|
||||
|
||||
static int __logfs_gc_once(struct super_block *sb, struct gc_candidate *cand)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
gc_level_t gc_level;
|
||||
u32 cleaned, valid, segno, ec;
|
||||
u8 dist;
|
||||
|
||||
if (!cand) {
|
||||
log_gc("GC attempted, but no candidate found\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
segno = cand->segno;
|
||||
dist = cand->dist;
|
||||
valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
|
||||
free_candidate(sb, cand);
|
||||
log_gc("GC segment #%02x at %llx, %x required, %x free, %x valid, %llx free\n",
|
||||
segno, (u64)segno << super->s_segshift,
|
||||
dist, no_free_segments(sb), valid,
|
||||
super->s_free_bytes);
|
||||
cleaned = logfs_gc_segment(sb, segno, dist);
|
||||
log_gc("GC segment #%02x complete - now %x valid\n", segno,
|
||||
valid - cleaned);
|
||||
BUG_ON(cleaned != valid);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int logfs_gc_once(struct super_block *sb)
|
||||
{
|
||||
struct gc_candidate *cand;
|
||||
|
||||
cand = get_candidate(sb);
|
||||
if (cand)
|
||||
remove_from_list(cand);
|
||||
return __logfs_gc_once(sb, cand);
|
||||
}
|
||||
|
||||
/* returns 1 if a wrap occurs, 0 otherwise */
|
||||
static int logfs_scan_some(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
u32 segno;
|
||||
int i, ret = 0;
|
||||
|
||||
segno = super->s_sweeper;
|
||||
for (i = SCAN_RATIO; i > 0; i--) {
|
||||
segno++;
|
||||
if (segno >= super->s_no_segs) {
|
||||
segno = 0;
|
||||
ret = 1;
|
||||
/* Break out of the loop. We want to read a single
|
||||
* block from the segment size on next invocation if
|
||||
* SCAN_RATIO is set to match block size
|
||||
*/
|
||||
break;
|
||||
}
|
||||
|
||||
scan_segment(sb, segno);
|
||||
}
|
||||
super->s_sweeper = segno;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* In principle, this function should loop forever, looking for GC candidates
|
||||
* and moving data. LogFS is designed in such a way that this loop is
|
||||
* guaranteed to terminate.
|
||||
*
|
||||
* Limiting the loop to some iterations serves purely to catch cases when
|
||||
* these guarantees have failed. An actual endless loop is an obvious bug
|
||||
* and should be reported as such.
|
||||
*/
|
||||
static void __logfs_gc_pass(struct super_block *sb, int target)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_block *block;
|
||||
int round, progress, last_progress = 0;
|
||||
|
||||
if (no_free_segments(sb) >= target &&
|
||||
super->s_no_object_aliases < MAX_OBJ_ALIASES)
|
||||
return;
|
||||
|
||||
log_gc("__logfs_gc_pass(%x)\n", target);
|
||||
for (round = 0; round < SCAN_ROUNDS; ) {
|
||||
if (no_free_segments(sb) >= target)
|
||||
goto write_alias;
|
||||
|
||||
/* Sync in-memory state with on-medium state in case they
|
||||
* diverged */
|
||||
logfs_write_anchor(sb);
|
||||
round += logfs_scan_some(sb);
|
||||
if (no_free_segments(sb) >= target)
|
||||
goto write_alias;
|
||||
progress = logfs_gc_once(sb);
|
||||
if (progress)
|
||||
last_progress = round;
|
||||
else if (round - last_progress > 2)
|
||||
break;
|
||||
continue;
|
||||
|
||||
/*
|
||||
* The goto logic is nasty, I just don't know a better way to
|
||||
* code it. GC is supposed to ensure two things:
|
||||
* 1. Enough free segments are available.
|
||||
* 2. The number of aliases is bounded.
|
||||
* When 1. is achieved, we take a look at 2. and write back
|
||||
* some alias-containing blocks, if necessary. However, after
|
||||
* each such write we need to go back to 1., as writes can
|
||||
* consume free segments.
|
||||
*/
|
||||
write_alias:
|
||||
if (super->s_no_object_aliases < MAX_OBJ_ALIASES)
|
||||
return;
|
||||
if (list_empty(&super->s_object_alias)) {
|
||||
/* All aliases are still in btree */
|
||||
return;
|
||||
}
|
||||
log_gc("Write back one alias\n");
|
||||
block = list_entry(super->s_object_alias.next,
|
||||
struct logfs_block, alias_list);
|
||||
block->ops->write_block(block);
|
||||
/*
|
||||
* To round off the nasty goto logic, we reset round here. It
|
||||
* is a safety-net for GC not making any progress and limited
|
||||
* to something reasonably small. If incremented it for every
|
||||
* single alias, the loop could terminate rather quickly.
|
||||
*/
|
||||
round = 0;
|
||||
}
|
||||
LOGFS_BUG(sb);
|
||||
}
|
||||
|
||||
static int wl_ratelimit(struct super_block *sb, u64 *next_event)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
if (*next_event < super->s_gec) {
|
||||
*next_event = super->s_gec + WL_RATELIMIT;
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void logfs_wl_pass(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct gc_candidate *wl_cand, *free_cand;
|
||||
|
||||
if (wl_ratelimit(sb, &super->s_wl_gec_ostore))
|
||||
return;
|
||||
|
||||
wl_cand = first_in_list(&super->s_ec_list);
|
||||
if (!wl_cand)
|
||||
return;
|
||||
free_cand = first_in_list(&super->s_free_list);
|
||||
if (!free_cand)
|
||||
return;
|
||||
|
||||
if (wl_cand->erase_count < free_cand->erase_count + WL_DELTA) {
|
||||
remove_from_list(wl_cand);
|
||||
__logfs_gc_once(sb, wl_cand);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* The journal needs wear leveling as well. But moving the journal is an
|
||||
* expensive operation so we try to avoid it as much as possible. And if we
|
||||
* have to do it, we move the whole journal, not individual segments.
|
||||
*
|
||||
* Ratelimiting is not strictly necessary here, it mainly serves to avoid the
|
||||
* calculations. First we check whether moving the journal would be a
|
||||
* significant improvement. That means that a) the current journal segments
|
||||
* have more wear than the future journal segments and b) the current journal
|
||||
* segments have more wear than normal ostore segments.
|
||||
* Rationale for b) is that we don't have to move the journal if it is aging
|
||||
* less than the ostore, even if the reserve segments age even less (they are
|
||||
* excluded from wear leveling, after all).
|
||||
* Next we check that the superblocks have less wear than the journal. Since
|
||||
* moving the journal requires writing the superblocks, we have to protect the
|
||||
* superblocks even more than the journal.
|
||||
*
|
||||
* Also we double the acceptable wear difference, compared to ostore wear
|
||||
* leveling. Journal data is read and rewritten rapidly, comparatively. So
|
||||
* soft errors have much less time to accumulate and we allow the journal to
|
||||
* be a bit worse than the ostore.
|
||||
*/
|
||||
static void logfs_journal_wl_pass(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct gc_candidate *cand;
|
||||
u32 min_journal_ec = -1, max_reserve_ec = 0;
|
||||
int i;
|
||||
|
||||
if (wl_ratelimit(sb, &super->s_wl_gec_journal))
|
||||
return;
|
||||
|
||||
if (super->s_reserve_list.count < super->s_no_journal_segs) {
|
||||
/* Reserve is not full enough to move complete journal */
|
||||
return;
|
||||
}
|
||||
|
||||
journal_for_each(i)
|
||||
if (super->s_journal_seg[i])
|
||||
min_journal_ec = min(min_journal_ec,
|
||||
super->s_journal_ec[i]);
|
||||
cand = rb_entry(rb_first(&super->s_free_list.rb_tree),
|
||||
struct gc_candidate, rb_node);
|
||||
max_reserve_ec = cand->erase_count;
|
||||
for (i = 0; i < 2; i++) {
|
||||
struct logfs_segment_entry se;
|
||||
u32 segno = seg_no(sb, super->s_sb_ofs[i]);
|
||||
u32 ec;
|
||||
|
||||
logfs_get_segment_entry(sb, segno, &se);
|
||||
ec = be32_to_cpu(se.ec_level) >> 4;
|
||||
max_reserve_ec = max(max_reserve_ec, ec);
|
||||
}
|
||||
|
||||
if (min_journal_ec > max_reserve_ec + 2 * WL_DELTA) {
|
||||
do_logfs_journal_wl_pass(sb);
|
||||
}
|
||||
}
|
||||
|
||||
void logfs_gc_pass(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
//BUG_ON(mutex_trylock(&logfs_super(sb)->s_w_mutex));
|
||||
/* Write journal before free space is getting saturated with dirty
|
||||
* objects.
|
||||
*/
|
||||
if (super->s_dirty_used_bytes + super->s_dirty_free_bytes
|
||||
+ LOGFS_MAX_OBJECTSIZE >= super->s_free_bytes)
|
||||
logfs_write_anchor(sb);
|
||||
__logfs_gc_pass(sb, super->s_total_levels);
|
||||
logfs_wl_pass(sb);
|
||||
logfs_journal_wl_pass(sb);
|
||||
}
|
||||
|
||||
static int check_area(struct super_block *sb, int i)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_area *area = super->s_area[i];
|
||||
struct logfs_object_header oh;
|
||||
u32 segno = area->a_segno;
|
||||
u32 ofs = area->a_used_bytes;
|
||||
__be32 crc;
|
||||
int err;
|
||||
|
||||
if (!area->a_is_open)
|
||||
return 0;
|
||||
|
||||
for (ofs = area->a_used_bytes;
|
||||
ofs <= super->s_segsize - sizeof(oh);
|
||||
ofs += (u32)be16_to_cpu(oh.len) + sizeof(oh)) {
|
||||
err = wbuf_read(sb, dev_ofs(sb, segno, ofs), sizeof(oh), &oh);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (!memchr_inv(&oh, 0xff, sizeof(oh)))
|
||||
break;
|
||||
|
||||
crc = logfs_crc32(&oh, sizeof(oh) - 4, 4);
|
||||
if (crc != oh.crc) {
|
||||
printk(KERN_INFO "interrupted header at %llx\n",
|
||||
dev_ofs(sb, segno, ofs));
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if (ofs != area->a_used_bytes) {
|
||||
printk(KERN_INFO "%x bytes unaccounted data found at %llx\n",
|
||||
ofs - area->a_used_bytes,
|
||||
dev_ofs(sb, segno, area->a_used_bytes));
|
||||
area->a_used_bytes = ofs;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int logfs_check_areas(struct super_block *sb)
|
||||
{
|
||||
int i, err;
|
||||
|
||||
for_each_area(i) {
|
||||
err = check_area(sb, i);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void logfs_init_candlist(struct candidate_list *list, int maxcount,
|
||||
int sort_by_ec)
|
||||
{
|
||||
list->count = 0;
|
||||
list->maxcount = maxcount;
|
||||
list->sort_by_ec = sort_by_ec;
|
||||
list->rb_tree = RB_ROOT;
|
||||
}
|
||||
|
||||
int logfs_init_gc(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int i;
|
||||
|
||||
btree_init_mempool32(&super->s_cand_tree, super->s_btree_pool);
|
||||
logfs_init_candlist(&super->s_free_list, LIST_SIZE + SCAN_RATIO, 1);
|
||||
logfs_init_candlist(&super->s_reserve_list,
|
||||
super->s_bad_seg_reserve, 1);
|
||||
for_each_area(i)
|
||||
logfs_init_candlist(&super->s_low_list[i], LIST_SIZE, 0);
|
||||
logfs_init_candlist(&super->s_ec_list, LIST_SIZE, 1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void logfs_cleanup_list(struct super_block *sb,
|
||||
struct candidate_list *list)
|
||||
{
|
||||
struct gc_candidate *cand;
|
||||
|
||||
while (list->count) {
|
||||
cand = rb_entry(list->rb_tree.rb_node, struct gc_candidate,
|
||||
rb_node);
|
||||
remove_from_list(cand);
|
||||
free_candidate(sb, cand);
|
||||
}
|
||||
BUG_ON(list->rb_tree.rb_node);
|
||||
}
|
||||
|
||||
void logfs_cleanup_gc(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int i;
|
||||
|
||||
if (!super->s_free_list.count)
|
||||
return;
|
||||
|
||||
/*
|
||||
* FIXME: The btree may still contain a single empty node. So we
|
||||
* call the grim visitor to clean up that mess. Btree code should
|
||||
* do it for us, really.
|
||||
*/
|
||||
btree_grim_visitor32(&super->s_cand_tree, 0, NULL);
|
||||
logfs_cleanup_list(sb, &super->s_free_list);
|
||||
logfs_cleanup_list(sb, &super->s_reserve_list);
|
||||
for_each_area(i)
|
||||
logfs_cleanup_list(sb, &super->s_low_list[i]);
|
||||
logfs_cleanup_list(sb, &super->s_ec_list);
|
||||
}
|
417
fs/logfs/inode.c
Normal file
417
fs/logfs/inode.c
Normal file
@ -0,0 +1,417 @@
|
||||
/*
|
||||
* fs/logfs/inode.c - inode handling code
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*/
|
||||
#include "logfs.h"
|
||||
#include <linux/writeback.h>
|
||||
#include <linux/backing-dev.h>
|
||||
|
||||
/*
|
||||
* How soon to reuse old inode numbers? LogFS doesn't store deleted inodes
|
||||
* on the medium. It therefore also lacks a method to store the previous
|
||||
* generation number for deleted inodes. Instead a single generation number
|
||||
* is stored which will be used for new inodes. Being just a 32bit counter,
|
||||
* this can obvious wrap relatively quickly. So we only reuse inodes if we
|
||||
* know that a fair number of inodes can be created before we have to increment
|
||||
* the generation again - effectively adding some bits to the counter.
|
||||
* But being too aggressive here means we keep a very large and very sparse
|
||||
* inode file, wasting space on indirect blocks.
|
||||
* So what is a good value? Beats me. 64k seems moderately bad on both
|
||||
* fronts, so let's use that for now...
|
||||
*
|
||||
* NFS sucks, as everyone already knows.
|
||||
*/
|
||||
#define INOS_PER_WRAP (0x10000)
|
||||
|
||||
/*
|
||||
* Logfs' requirement to read inodes for garbage collection makes life a bit
|
||||
* harder. GC may have to read inodes that are in I_FREEING state, when they
|
||||
* are being written out - and waiting for GC to make progress, naturally.
|
||||
*
|
||||
* So we cannot just call iget() or some variant of it, but first have to check
|
||||
* wether the inode in question might be in I_FREEING state. Therefore we
|
||||
* maintain our own per-sb list of "almost deleted" inodes and check against
|
||||
* that list first. Normally this should be at most 1-2 entries long.
|
||||
*
|
||||
* Also, inodes have logfs-specific reference counting on top of what the vfs
|
||||
* does. When .destroy_inode is called, normally the reference count will drop
|
||||
* to zero and the inode gets deleted. But if GC accessed the inode, its
|
||||
* refcount will remain nonzero and final deletion will have to wait.
|
||||
*
|
||||
* As a result we have two sets of functions to get/put inodes:
|
||||
* logfs_safe_iget/logfs_safe_iput - safe to call from GC context
|
||||
* logfs_iget/iput - normal version
|
||||
*/
|
||||
static struct kmem_cache *logfs_inode_cache;
|
||||
|
||||
static DEFINE_SPINLOCK(logfs_inode_lock);
|
||||
|
||||
static void logfs_inode_setops(struct inode *inode)
|
||||
{
|
||||
switch (inode->i_mode & S_IFMT) {
|
||||
case S_IFDIR:
|
||||
inode->i_op = &logfs_dir_iops;
|
||||
inode->i_fop = &logfs_dir_fops;
|
||||
inode->i_mapping->a_ops = &logfs_reg_aops;
|
||||
break;
|
||||
case S_IFREG:
|
||||
inode->i_op = &logfs_reg_iops;
|
||||
inode->i_fop = &logfs_reg_fops;
|
||||
inode->i_mapping->a_ops = &logfs_reg_aops;
|
||||
break;
|
||||
case S_IFLNK:
|
||||
inode->i_op = &logfs_symlink_iops;
|
||||
inode->i_mapping->a_ops = &logfs_reg_aops;
|
||||
break;
|
||||
case S_IFSOCK: /* fall through */
|
||||
case S_IFBLK: /* fall through */
|
||||
case S_IFCHR: /* fall through */
|
||||
case S_IFIFO:
|
||||
init_special_inode(inode, inode->i_mode, inode->i_rdev);
|
||||
break;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
}
|
||||
|
||||
static struct inode *__logfs_iget(struct super_block *sb, ino_t ino)
|
||||
{
|
||||
struct inode *inode = iget_locked(sb, ino);
|
||||
int err;
|
||||
|
||||
if (!inode)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
if (!(inode->i_state & I_NEW))
|
||||
return inode;
|
||||
|
||||
err = logfs_read_inode(inode);
|
||||
if (err || inode->i_nlink == 0) {
|
||||
/* inode->i_nlink == 0 can be true when called from
|
||||
* block validator */
|
||||
/* set i_nlink to 0 to prevent caching */
|
||||
inode->i_nlink = 0;
|
||||
logfs_inode(inode)->li_flags |= LOGFS_IF_ZOMBIE;
|
||||
iget_failed(inode);
|
||||
if (!err)
|
||||
err = -ENOENT;
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
logfs_inode_setops(inode);
|
||||
unlock_new_inode(inode);
|
||||
return inode;
|
||||
}
|
||||
|
||||
struct inode *logfs_iget(struct super_block *sb, ino_t ino)
|
||||
{
|
||||
BUG_ON(ino == LOGFS_INO_MASTER);
|
||||
BUG_ON(ino == LOGFS_INO_SEGFILE);
|
||||
return __logfs_iget(sb, ino);
|
||||
}
|
||||
|
||||
/*
|
||||
* is_cached is set to 1 if we hand out a cached inode, 0 otherwise.
|
||||
* this allows logfs_iput to do the right thing later
|
||||
*/
|
||||
struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_inode *li;
|
||||
|
||||
if (ino == LOGFS_INO_MASTER)
|
||||
return super->s_master_inode;
|
||||
if (ino == LOGFS_INO_SEGFILE)
|
||||
return super->s_segfile_inode;
|
||||
|
||||
spin_lock(&logfs_inode_lock);
|
||||
list_for_each_entry(li, &super->s_freeing_list, li_freeing_list)
|
||||
if (li->vfs_inode.i_ino == ino) {
|
||||
li->li_refcount++;
|
||||
spin_unlock(&logfs_inode_lock);
|
||||
*is_cached = 1;
|
||||
return &li->vfs_inode;
|
||||
}
|
||||
spin_unlock(&logfs_inode_lock);
|
||||
|
||||
*is_cached = 0;
|
||||
return __logfs_iget(sb, ino);
|
||||
}
|
||||
|
||||
static void __logfs_destroy_inode(struct inode *inode)
|
||||
{
|
||||
struct logfs_inode *li = logfs_inode(inode);
|
||||
|
||||
BUG_ON(li->li_block);
|
||||
list_del(&li->li_freeing_list);
|
||||
kmem_cache_free(logfs_inode_cache, li);
|
||||
}
|
||||
|
||||
static void logfs_destroy_inode(struct inode *inode)
|
||||
{
|
||||
struct logfs_inode *li = logfs_inode(inode);
|
||||
|
||||
BUG_ON(list_empty(&li->li_freeing_list));
|
||||
spin_lock(&logfs_inode_lock);
|
||||
li->li_refcount--;
|
||||
if (li->li_refcount == 0)
|
||||
__logfs_destroy_inode(inode);
|
||||
spin_unlock(&logfs_inode_lock);
|
||||
}
|
||||
|
||||
void logfs_safe_iput(struct inode *inode, int is_cached)
|
||||
{
|
||||
if (inode->i_ino == LOGFS_INO_MASTER)
|
||||
return;
|
||||
if (inode->i_ino == LOGFS_INO_SEGFILE)
|
||||
return;
|
||||
|
||||
if (is_cached) {
|
||||
logfs_destroy_inode(inode);
|
||||
return;
|
||||
}
|
||||
|
||||
iput(inode);
|
||||
}
|
||||
|
||||
static void logfs_init_inode(struct super_block *sb, struct inode *inode)
|
||||
{
|
||||
struct logfs_inode *li = logfs_inode(inode);
|
||||
int i;
|
||||
|
||||
li->li_flags = 0;
|
||||
li->li_height = 0;
|
||||
li->li_used_bytes = 0;
|
||||
li->li_block = NULL;
|
||||
inode->i_uid = 0;
|
||||
inode->i_gid = 0;
|
||||
inode->i_size = 0;
|
||||
inode->i_blocks = 0;
|
||||
inode->i_ctime = CURRENT_TIME;
|
||||
inode->i_mtime = CURRENT_TIME;
|
||||
inode->i_nlink = 1;
|
||||
INIT_LIST_HEAD(&li->li_freeing_list);
|
||||
|
||||
for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
|
||||
li->li_data[i] = 0;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
static struct inode *logfs_alloc_inode(struct super_block *sb)
|
||||
{
|
||||
struct logfs_inode *li;
|
||||
|
||||
li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS);
|
||||
if (!li)
|
||||
return NULL;
|
||||
logfs_init_inode(sb, &li->vfs_inode);
|
||||
return &li->vfs_inode;
|
||||
}
|
||||
|
||||
/*
|
||||
* In logfs inodes are written to an inode file. The inode file, like any
|
||||
* other file, is managed with a inode. The inode file's inode, aka master
|
||||
* inode, requires special handling in several respects. First, it cannot be
|
||||
* written to the inode file, so it is stored in the journal instead.
|
||||
*
|
||||
* Secondly, this inode cannot be written back and destroyed before all other
|
||||
* inodes have been written. The ordering is important. Linux' VFS is happily
|
||||
* unaware of the ordering constraint and would ordinarily destroy the master
|
||||
* inode at umount time while other inodes are still in use and dirty. Not
|
||||
* good.
|
||||
*
|
||||
* So logfs makes sure the master inode is not written until all other inodes
|
||||
* have been destroyed. Sadly, this method has another side-effect. The VFS
|
||||
* will notice one remaining inode and print a frightening warning message.
|
||||
* Worse, it is impossible to judge whether such a warning was caused by the
|
||||
* master inode or any other inodes have leaked as well.
|
||||
*
|
||||
* Our attempt of solving this is with logfs_new_meta_inode() below. Its
|
||||
* purpose is to create a new inode that will not trigger the warning if such
|
||||
* an inode is still in use. An ugly hack, no doubt. Suggections for
|
||||
* improvement are welcome.
|
||||
*/
|
||||
struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino)
|
||||
{
|
||||
struct inode *inode;
|
||||
|
||||
inode = logfs_alloc_inode(sb);
|
||||
if (!inode)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
inode->i_mode = S_IFREG;
|
||||
inode->i_ino = ino;
|
||||
inode->i_sb = sb;
|
||||
|
||||
/* This is a blatant copy of alloc_inode code. We'd need alloc_inode
|
||||
* to be nonstatic, alas. */
|
||||
{
|
||||
struct address_space * const mapping = &inode->i_data;
|
||||
|
||||
mapping->a_ops = &logfs_reg_aops;
|
||||
mapping->host = inode;
|
||||
mapping->flags = 0;
|
||||
mapping_set_gfp_mask(mapping, GFP_NOFS);
|
||||
mapping->assoc_mapping = NULL;
|
||||
mapping->backing_dev_info = &default_backing_dev_info;
|
||||
inode->i_mapping = mapping;
|
||||
inode->i_nlink = 1;
|
||||
}
|
||||
|
||||
return inode;
|
||||
}
|
||||
|
||||
struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino)
|
||||
{
|
||||
struct inode *inode;
|
||||
int err;
|
||||
|
||||
inode = logfs_new_meta_inode(sb, ino);
|
||||
if (IS_ERR(inode))
|
||||
return inode;
|
||||
|
||||
err = logfs_read_inode(inode);
|
||||
if (err) {
|
||||
destroy_meta_inode(inode);
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
logfs_inode_setops(inode);
|
||||
return inode;
|
||||
}
|
||||
|
||||
static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc)
|
||||
{
|
||||
int ret;
|
||||
long flags = WF_LOCK;
|
||||
|
||||
/* Can only happen if creat() failed. Safe to skip. */
|
||||
if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN)
|
||||
return 0;
|
||||
|
||||
ret = __logfs_write_inode(inode, flags);
|
||||
LOGFS_BUG_ON(ret, inode->i_sb);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void destroy_meta_inode(struct inode *inode)
|
||||
{
|
||||
if (inode) {
|
||||
if (inode->i_data.nrpages)
|
||||
truncate_inode_pages(&inode->i_data, 0);
|
||||
logfs_clear_inode(inode);
|
||||
kmem_cache_free(logfs_inode_cache, logfs_inode(inode));
|
||||
}
|
||||
}
|
||||
|
||||
/* called with inode_lock held */
|
||||
static void logfs_drop_inode(struct inode *inode)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(inode->i_sb);
|
||||
struct logfs_inode *li = logfs_inode(inode);
|
||||
|
||||
spin_lock(&logfs_inode_lock);
|
||||
list_move(&li->li_freeing_list, &super->s_freeing_list);
|
||||
spin_unlock(&logfs_inode_lock);
|
||||
generic_drop_inode(inode);
|
||||
}
|
||||
|
||||
static void logfs_set_ino_generation(struct super_block *sb,
|
||||
struct inode *inode)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
u64 ino;
|
||||
|
||||
mutex_lock(&super->s_journal_mutex);
|
||||
ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino);
|
||||
super->s_last_ino = ino;
|
||||
super->s_inos_till_wrap--;
|
||||
if (super->s_inos_till_wrap < 0) {
|
||||
super->s_last_ino = LOGFS_RESERVED_INOS;
|
||||
super->s_generation++;
|
||||
super->s_inos_till_wrap = INOS_PER_WRAP;
|
||||
}
|
||||
inode->i_ino = ino;
|
||||
inode->i_generation = super->s_generation;
|
||||
mutex_unlock(&super->s_journal_mutex);
|
||||
}
|
||||
|
||||
struct inode *logfs_new_inode(struct inode *dir, int mode)
|
||||
{
|
||||
struct super_block *sb = dir->i_sb;
|
||||
struct inode *inode;
|
||||
|
||||
inode = new_inode(sb);
|
||||
if (!inode)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
logfs_init_inode(sb, inode);
|
||||
|
||||
/* inherit parent flags */
|
||||
logfs_inode(inode)->li_flags |=
|
||||
logfs_inode(dir)->li_flags & LOGFS_FL_INHERITED;
|
||||
|
||||
inode->i_mode = mode;
|
||||
logfs_set_ino_generation(sb, inode);
|
||||
|
||||
inode->i_uid = current_fsuid();
|
||||
inode->i_gid = current_fsgid();
|
||||
if (dir->i_mode & S_ISGID) {
|
||||
inode->i_gid = dir->i_gid;
|
||||
if (S_ISDIR(mode))
|
||||
inode->i_mode |= S_ISGID;
|
||||
}
|
||||
|
||||
logfs_inode_setops(inode);
|
||||
insert_inode_hash(inode);
|
||||
|
||||
return inode;
|
||||
}
|
||||
|
||||
static void logfs_init_once(void *_li)
|
||||
{
|
||||
struct logfs_inode *li = _li;
|
||||
int i;
|
||||
|
||||
li->li_flags = 0;
|
||||
li->li_used_bytes = 0;
|
||||
li->li_refcount = 1;
|
||||
for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
|
||||
li->li_data[i] = 0;
|
||||
inode_init_once(&li->vfs_inode);
|
||||
}
|
||||
|
||||
static int logfs_sync_fs(struct super_block *sb, int wait)
|
||||
{
|
||||
/* FIXME: write anchor */
|
||||
logfs_super(sb)->s_devops->sync(sb);
|
||||
return 0;
|
||||
}
|
||||
|
||||
const struct super_operations logfs_super_operations = {
|
||||
.alloc_inode = logfs_alloc_inode,
|
||||
.clear_inode = logfs_clear_inode,
|
||||
.delete_inode = logfs_delete_inode,
|
||||
.destroy_inode = logfs_destroy_inode,
|
||||
.drop_inode = logfs_drop_inode,
|
||||
.write_inode = logfs_write_inode,
|
||||
.statfs = logfs_statfs,
|
||||
.sync_fs = logfs_sync_fs,
|
||||
};
|
||||
|
||||
int logfs_init_inode_cache(void)
|
||||
{
|
||||
logfs_inode_cache = kmem_cache_create("logfs_inode_cache",
|
||||
sizeof(struct logfs_inode), 0, SLAB_RECLAIM_ACCOUNT,
|
||||
logfs_init_once);
|
||||
if (!logfs_inode_cache)
|
||||
return -ENOMEM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void logfs_destroy_inode_cache(void)
|
||||
{
|
||||
kmem_cache_destroy(logfs_inode_cache);
|
||||
}
|
883
fs/logfs/journal.c
Normal file
883
fs/logfs/journal.c
Normal file
@ -0,0 +1,883 @@
|
||||
/*
|
||||
* fs/logfs/journal.c - journal handling code
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*/
|
||||
#include "logfs.h"
|
||||
|
||||
static void logfs_calc_free(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
u64 reserve, no_segs = super->s_no_segs;
|
||||
s64 free;
|
||||
int i;
|
||||
|
||||
/* superblock segments */
|
||||
no_segs -= 2;
|
||||
super->s_no_journal_segs = 0;
|
||||
/* journal */
|
||||
journal_for_each(i)
|
||||
if (super->s_journal_seg[i]) {
|
||||
no_segs--;
|
||||
super->s_no_journal_segs++;
|
||||
}
|
||||
|
||||
/* open segments plus one extra per level for GC */
|
||||
no_segs -= 2 * super->s_total_levels;
|
||||
|
||||
free = no_segs * (super->s_segsize - LOGFS_SEGMENT_RESERVE);
|
||||
free -= super->s_used_bytes;
|
||||
/* just a bit extra */
|
||||
free -= super->s_total_levels * 4096;
|
||||
|
||||
/* Bad blocks are 'paid' for with speed reserve - the filesystem
|
||||
* simply gets slower as bad blocks accumulate. Until the bad blocks
|
||||
* exceed the speed reserve - then the filesystem gets smaller.
|
||||
*/
|
||||
reserve = super->s_bad_segments + super->s_bad_seg_reserve;
|
||||
reserve *= super->s_segsize - LOGFS_SEGMENT_RESERVE;
|
||||
reserve = max(reserve, super->s_speed_reserve);
|
||||
free -= reserve;
|
||||
if (free < 0)
|
||||
free = 0;
|
||||
|
||||
super->s_free_bytes = free;
|
||||
}
|
||||
|
||||
static void reserve_sb_and_journal(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct btree_head32 *head = &super->s_reserved_segments;
|
||||
int i, err;
|
||||
|
||||
err = btree_insert32(head, seg_no(sb, super->s_sb_ofs[0]), (void *)1,
|
||||
GFP_KERNEL);
|
||||
BUG_ON(err);
|
||||
|
||||
err = btree_insert32(head, seg_no(sb, super->s_sb_ofs[1]), (void *)1,
|
||||
GFP_KERNEL);
|
||||
BUG_ON(err);
|
||||
|
||||
journal_for_each(i) {
|
||||
if (!super->s_journal_seg[i])
|
||||
continue;
|
||||
err = btree_insert32(head, super->s_journal_seg[i], (void *)1,
|
||||
GFP_KERNEL);
|
||||
BUG_ON(err);
|
||||
}
|
||||
}
|
||||
|
||||
static void read_dynsb(struct super_block *sb,
|
||||
struct logfs_je_dynsb *dynsb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
super->s_gec = be64_to_cpu(dynsb->ds_gec);
|
||||
super->s_sweeper = be64_to_cpu(dynsb->ds_sweeper);
|
||||
super->s_victim_ino = be64_to_cpu(dynsb->ds_victim_ino);
|
||||
super->s_rename_dir = be64_to_cpu(dynsb->ds_rename_dir);
|
||||
super->s_rename_pos = be64_to_cpu(dynsb->ds_rename_pos);
|
||||
super->s_used_bytes = be64_to_cpu(dynsb->ds_used_bytes);
|
||||
super->s_generation = be32_to_cpu(dynsb->ds_generation);
|
||||
}
|
||||
|
||||
static void read_anchor(struct super_block *sb,
|
||||
struct logfs_je_anchor *da)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct inode *inode = super->s_master_inode;
|
||||
struct logfs_inode *li = logfs_inode(inode);
|
||||
int i;
|
||||
|
||||
super->s_last_ino = be64_to_cpu(da->da_last_ino);
|
||||
li->li_flags = 0;
|
||||
li->li_height = da->da_height;
|
||||
i_size_write(inode, be64_to_cpu(da->da_size));
|
||||
li->li_used_bytes = be64_to_cpu(da->da_used_bytes);
|
||||
|
||||
for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
|
||||
li->li_data[i] = be64_to_cpu(da->da_data[i]);
|
||||
}
|
||||
|
||||
static void read_erasecount(struct super_block *sb,
|
||||
struct logfs_je_journal_ec *ec)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int i;
|
||||
|
||||
journal_for_each(i)
|
||||
super->s_journal_ec[i] = be32_to_cpu(ec->ec[i]);
|
||||
}
|
||||
|
||||
static int read_area(struct super_block *sb, struct logfs_je_area *a)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_area *area = super->s_area[a->gc_level];
|
||||
u64 ofs;
|
||||
u32 writemask = ~(super->s_writesize - 1);
|
||||
|
||||
if (a->gc_level >= LOGFS_NO_AREAS)
|
||||
return -EIO;
|
||||
if (a->vim != VIM_DEFAULT)
|
||||
return -EIO; /* TODO: close area and continue */
|
||||
|
||||
area->a_used_bytes = be32_to_cpu(a->used_bytes);
|
||||
area->a_written_bytes = area->a_used_bytes & writemask;
|
||||
area->a_segno = be32_to_cpu(a->segno);
|
||||
if (area->a_segno)
|
||||
area->a_is_open = 1;
|
||||
|
||||
ofs = dev_ofs(sb, area->a_segno, area->a_written_bytes);
|
||||
if (super->s_writesize > 1)
|
||||
logfs_buf_recover(area, ofs, a + 1, super->s_writesize);
|
||||
else
|
||||
logfs_buf_recover(area, ofs, NULL, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void *unpack(void *from, void *to)
|
||||
{
|
||||
struct logfs_journal_header *jh = from;
|
||||
void *data = from + sizeof(struct logfs_journal_header);
|
||||
int err;
|
||||
size_t inlen, outlen;
|
||||
|
||||
inlen = be16_to_cpu(jh->h_len);
|
||||
outlen = be16_to_cpu(jh->h_datalen);
|
||||
|
||||
if (jh->h_compr == COMPR_NONE)
|
||||
memcpy(to, data, inlen);
|
||||
else {
|
||||
err = logfs_uncompress(data, to, inlen, outlen);
|
||||
BUG_ON(err);
|
||||
}
|
||||
return to;
|
||||
}
|
||||
|
||||
static int __read_je_header(struct super_block *sb, u64 ofs,
|
||||
struct logfs_journal_header *jh)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
size_t bufsize = max_t(size_t, sb->s_blocksize, super->s_writesize)
|
||||
+ MAX_JOURNAL_HEADER;
|
||||
u16 type, len, datalen;
|
||||
int err;
|
||||
|
||||
/* read header only */
|
||||
err = wbuf_read(sb, ofs, sizeof(*jh), jh);
|
||||
if (err)
|
||||
return err;
|
||||
type = be16_to_cpu(jh->h_type);
|
||||
len = be16_to_cpu(jh->h_len);
|
||||
datalen = be16_to_cpu(jh->h_datalen);
|
||||
if (len > sb->s_blocksize)
|
||||
return -EIO;
|
||||
if ((type < JE_FIRST) || (type > JE_LAST))
|
||||
return -EIO;
|
||||
if (datalen > bufsize)
|
||||
return -EIO;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __read_je_payload(struct super_block *sb, u64 ofs,
|
||||
struct logfs_journal_header *jh)
|
||||
{
|
||||
u16 len;
|
||||
int err;
|
||||
|
||||
len = be16_to_cpu(jh->h_len);
|
||||
err = wbuf_read(sb, ofs + sizeof(*jh), len, jh + 1);
|
||||
if (err)
|
||||
return err;
|
||||
if (jh->h_crc != logfs_crc32(jh, len + sizeof(*jh), 4)) {
|
||||
/* Old code was confused. It forgot about the header length
|
||||
* and stopped calculating the crc 16 bytes before the end
|
||||
* of data - ick!
|
||||
* FIXME: Remove this hack once the old code is fixed.
|
||||
*/
|
||||
if (jh->h_crc == logfs_crc32(jh, len, 4))
|
||||
WARN_ON_ONCE(1);
|
||||
else
|
||||
return -EIO;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* jh needs to be large enough to hold the complete entry, not just the header
|
||||
*/
|
||||
static int __read_je(struct super_block *sb, u64 ofs,
|
||||
struct logfs_journal_header *jh)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = __read_je_header(sb, ofs, jh);
|
||||
if (err)
|
||||
return err;
|
||||
return __read_je_payload(sb, ofs, jh);
|
||||
}
|
||||
|
||||
static int read_je(struct super_block *sb, u64 ofs)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_journal_header *jh = super->s_compressed_je;
|
||||
void *scratch = super->s_je;
|
||||
u16 type, datalen;
|
||||
int err;
|
||||
|
||||
err = __read_je(sb, ofs, jh);
|
||||
if (err)
|
||||
return err;
|
||||
type = be16_to_cpu(jh->h_type);
|
||||
datalen = be16_to_cpu(jh->h_datalen);
|
||||
|
||||
switch (type) {
|
||||
case JE_DYNSB:
|
||||
read_dynsb(sb, unpack(jh, scratch));
|
||||
break;
|
||||
case JE_ANCHOR:
|
||||
read_anchor(sb, unpack(jh, scratch));
|
||||
break;
|
||||
case JE_ERASECOUNT:
|
||||
read_erasecount(sb, unpack(jh, scratch));
|
||||
break;
|
||||
case JE_AREA:
|
||||
read_area(sb, unpack(jh, scratch));
|
||||
break;
|
||||
case JE_OBJ_ALIAS:
|
||||
err = logfs_load_object_aliases(sb, unpack(jh, scratch),
|
||||
datalen);
|
||||
break;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
return -EIO;
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
static int logfs_read_segment(struct super_block *sb, u32 segno)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_journal_header *jh = super->s_compressed_je;
|
||||
u64 ofs, seg_ofs = dev_ofs(sb, segno, 0);
|
||||
u32 h_ofs, last_ofs = 0;
|
||||
u16 len, datalen, last_len = 0;
|
||||
int i, err;
|
||||
|
||||
/* search for most recent commit */
|
||||
for (h_ofs = 0; h_ofs < super->s_segsize; h_ofs += sizeof(*jh)) {
|
||||
ofs = seg_ofs + h_ofs;
|
||||
err = __read_je_header(sb, ofs, jh);
|
||||
if (err)
|
||||
continue;
|
||||
if (jh->h_type != cpu_to_be16(JE_COMMIT))
|
||||
continue;
|
||||
err = __read_je_payload(sb, ofs, jh);
|
||||
if (err)
|
||||
continue;
|
||||
len = be16_to_cpu(jh->h_len);
|
||||
datalen = be16_to_cpu(jh->h_datalen);
|
||||
if ((datalen > sizeof(super->s_je_array)) ||
|
||||
(datalen % sizeof(__be64)))
|
||||
continue;
|
||||
last_ofs = h_ofs;
|
||||
last_len = datalen;
|
||||
h_ofs += ALIGN(len, sizeof(*jh)) - sizeof(*jh);
|
||||
}
|
||||
/* read commit */
|
||||
if (last_ofs == 0)
|
||||
return -ENOENT;
|
||||
ofs = seg_ofs + last_ofs;
|
||||
log_journal("Read commit from %llx\n", ofs);
|
||||
err = __read_je(sb, ofs, jh);
|
||||
BUG_ON(err); /* We should have caught it in the scan loop already */
|
||||
if (err)
|
||||
return err;
|
||||
/* uncompress */
|
||||
unpack(jh, super->s_je_array);
|
||||
super->s_no_je = last_len / sizeof(__be64);
|
||||
/* iterate over array */
|
||||
for (i = 0; i < super->s_no_je; i++) {
|
||||
err = read_je(sb, be64_to_cpu(super->s_je_array[i]));
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
super->s_journal_area->a_segno = segno;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static u64 read_gec(struct super_block *sb, u32 segno)
|
||||
{
|
||||
struct logfs_segment_header sh;
|
||||
__be32 crc;
|
||||
int err;
|
||||
|
||||
if (!segno)
|
||||
return 0;
|
||||
err = wbuf_read(sb, dev_ofs(sb, segno, 0), sizeof(sh), &sh);
|
||||
if (err)
|
||||
return 0;
|
||||
crc = logfs_crc32(&sh, sizeof(sh), 4);
|
||||
if (crc != sh.crc) {
|
||||
WARN_ON(sh.gec != cpu_to_be64(0xffffffffffffffffull));
|
||||
/* Most likely it was just erased */
|
||||
return 0;
|
||||
}
|
||||
return be64_to_cpu(sh.gec);
|
||||
}
|
||||
|
||||
static int logfs_read_journal(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
u64 gec[LOGFS_JOURNAL_SEGS], max;
|
||||
u32 segno;
|
||||
int i, max_i;
|
||||
|
||||
max = 0;
|
||||
max_i = -1;
|
||||
journal_for_each(i) {
|
||||
segno = super->s_journal_seg[i];
|
||||
gec[i] = read_gec(sb, super->s_journal_seg[i]);
|
||||
if (gec[i] > max) {
|
||||
max = gec[i];
|
||||
max_i = i;
|
||||
}
|
||||
}
|
||||
if (max_i == -1)
|
||||
return -EIO;
|
||||
/* FIXME: Try older segments in case of error */
|
||||
return logfs_read_segment(sb, super->s_journal_seg[max_i]);
|
||||
}
|
||||
|
||||
/*
|
||||
* First search the current segment (outer loop), then pick the next segment
|
||||
* in the array, skipping any zero entries (inner loop).
|
||||
*/
|
||||
static void journal_get_free_segment(struct logfs_area *area)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(area->a_sb);
|
||||
int i;
|
||||
|
||||
journal_for_each(i) {
|
||||
if (area->a_segno != super->s_journal_seg[i])
|
||||
continue;
|
||||
|
||||
do {
|
||||
i++;
|
||||
if (i == LOGFS_JOURNAL_SEGS)
|
||||
i = 0;
|
||||
} while (!super->s_journal_seg[i]);
|
||||
|
||||
area->a_segno = super->s_journal_seg[i];
|
||||
area->a_erase_count = ++(super->s_journal_ec[i]);
|
||||
log_journal("Journal now at %x (ec %x)\n", area->a_segno,
|
||||
area->a_erase_count);
|
||||
return;
|
||||
}
|
||||
BUG();
|
||||
}
|
||||
|
||||
static void journal_get_erase_count(struct logfs_area *area)
|
||||
{
|
||||
/* erase count is stored globally and incremented in
|
||||
* journal_get_free_segment() - nothing to do here */
|
||||
}
|
||||
|
||||
static int journal_erase_segment(struct logfs_area *area)
|
||||
{
|
||||
struct super_block *sb = area->a_sb;
|
||||
struct logfs_segment_header sh;
|
||||
u64 ofs;
|
||||
int err;
|
||||
|
||||
err = logfs_erase_segment(sb, area->a_segno, 1);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
sh.pad = 0;
|
||||
sh.type = SEG_JOURNAL;
|
||||
sh.level = 0;
|
||||
sh.segno = cpu_to_be32(area->a_segno);
|
||||
sh.ec = cpu_to_be32(area->a_erase_count);
|
||||
sh.gec = cpu_to_be64(logfs_super(sb)->s_gec);
|
||||
sh.crc = logfs_crc32(&sh, sizeof(sh), 4);
|
||||
|
||||
/* This causes a bug in segment.c. Not yet. */
|
||||
//logfs_set_segment_erased(sb, area->a_segno, area->a_erase_count, 0);
|
||||
|
||||
ofs = dev_ofs(sb, area->a_segno, 0);
|
||||
area->a_used_bytes = ALIGN(sizeof(sh), 16);
|
||||
logfs_buf_write(area, ofs, &sh, sizeof(sh));
|
||||
return 0;
|
||||
}
|
||||
|
||||
static size_t __logfs_write_header(struct logfs_super *super,
|
||||
struct logfs_journal_header *jh, size_t len, size_t datalen,
|
||||
u16 type, u8 compr)
|
||||
{
|
||||
jh->h_len = cpu_to_be16(len);
|
||||
jh->h_type = cpu_to_be16(type);
|
||||
jh->h_datalen = cpu_to_be16(datalen);
|
||||
jh->h_compr = compr;
|
||||
jh->h_pad[0] = 'H';
|
||||
jh->h_pad[1] = 'E';
|
||||
jh->h_pad[2] = 'A';
|
||||
jh->h_pad[3] = 'D';
|
||||
jh->h_pad[4] = 'R';
|
||||
jh->h_crc = logfs_crc32(jh, len + sizeof(*jh), 4);
|
||||
return ALIGN(len, 16) + sizeof(*jh);
|
||||
}
|
||||
|
||||
static size_t logfs_write_header(struct logfs_super *super,
|
||||
struct logfs_journal_header *jh, size_t datalen, u16 type)
|
||||
{
|
||||
size_t len = datalen;
|
||||
|
||||
return __logfs_write_header(super, jh, len, datalen, type, COMPR_NONE);
|
||||
}
|
||||
|
||||
static inline size_t logfs_journal_erasecount_size(struct logfs_super *super)
|
||||
{
|
||||
return LOGFS_JOURNAL_SEGS * sizeof(__be32);
|
||||
}
|
||||
|
||||
static void *logfs_write_erasecount(struct super_block *sb, void *_ec,
|
||||
u16 *type, size_t *len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_je_journal_ec *ec = _ec;
|
||||
int i;
|
||||
|
||||
journal_for_each(i)
|
||||
ec->ec[i] = cpu_to_be32(super->s_journal_ec[i]);
|
||||
*type = JE_ERASECOUNT;
|
||||
*len = logfs_journal_erasecount_size(super);
|
||||
return ec;
|
||||
}
|
||||
|
||||
static void account_shadow(void *_shadow, unsigned long _sb, u64 ignore,
|
||||
size_t ignore2)
|
||||
{
|
||||
struct logfs_shadow *shadow = _shadow;
|
||||
struct super_block *sb = (void *)_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
/* consume new space */
|
||||
super->s_free_bytes -= shadow->new_len;
|
||||
super->s_used_bytes += shadow->new_len;
|
||||
super->s_dirty_used_bytes -= shadow->new_len;
|
||||
|
||||
/* free up old space */
|
||||
super->s_free_bytes += shadow->old_len;
|
||||
super->s_used_bytes -= shadow->old_len;
|
||||
super->s_dirty_free_bytes -= shadow->old_len;
|
||||
|
||||
logfs_set_segment_used(sb, shadow->old_ofs, -shadow->old_len);
|
||||
logfs_set_segment_used(sb, shadow->new_ofs, shadow->new_len);
|
||||
|
||||
log_journal("account_shadow(%llx, %llx, %x) %llx->%llx %x->%x\n",
|
||||
shadow->ino, shadow->bix, shadow->gc_level,
|
||||
shadow->old_ofs, shadow->new_ofs,
|
||||
shadow->old_len, shadow->new_len);
|
||||
mempool_free(shadow, super->s_shadow_pool);
|
||||
}
|
||||
|
||||
static void account_shadows(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct inode *inode = super->s_master_inode;
|
||||
struct logfs_inode *li = logfs_inode(inode);
|
||||
struct shadow_tree *tree = &super->s_shadow_tree;
|
||||
|
||||
btree_grim_visitor64(&tree->new, (unsigned long)sb, account_shadow);
|
||||
btree_grim_visitor64(&tree->old, (unsigned long)sb, account_shadow);
|
||||
|
||||
if (li->li_block) {
|
||||
/*
|
||||
* We never actually use the structure, when attached to the
|
||||
* master inode. But it is easier to always free it here than
|
||||
* to have checks in several places elsewhere when allocating
|
||||
* it.
|
||||
*/
|
||||
li->li_block->ops->free_block(sb, li->li_block);
|
||||
}
|
||||
BUG_ON((s64)li->li_used_bytes < 0);
|
||||
}
|
||||
|
||||
static void *__logfs_write_anchor(struct super_block *sb, void *_da,
|
||||
u16 *type, size_t *len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_je_anchor *da = _da;
|
||||
struct inode *inode = super->s_master_inode;
|
||||
struct logfs_inode *li = logfs_inode(inode);
|
||||
int i;
|
||||
|
||||
da->da_height = li->li_height;
|
||||
da->da_last_ino = cpu_to_be64(super->s_last_ino);
|
||||
da->da_size = cpu_to_be64(i_size_read(inode));
|
||||
da->da_used_bytes = cpu_to_be64(li->li_used_bytes);
|
||||
for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
|
||||
da->da_data[i] = cpu_to_be64(li->li_data[i]);
|
||||
*type = JE_ANCHOR;
|
||||
*len = sizeof(*da);
|
||||
return da;
|
||||
}
|
||||
|
||||
static void *logfs_write_dynsb(struct super_block *sb, void *_dynsb,
|
||||
u16 *type, size_t *len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_je_dynsb *dynsb = _dynsb;
|
||||
|
||||
dynsb->ds_gec = cpu_to_be64(super->s_gec);
|
||||
dynsb->ds_sweeper = cpu_to_be64(super->s_sweeper);
|
||||
dynsb->ds_victim_ino = cpu_to_be64(super->s_victim_ino);
|
||||
dynsb->ds_rename_dir = cpu_to_be64(super->s_rename_dir);
|
||||
dynsb->ds_rename_pos = cpu_to_be64(super->s_rename_pos);
|
||||
dynsb->ds_used_bytes = cpu_to_be64(super->s_used_bytes);
|
||||
dynsb->ds_generation = cpu_to_be32(super->s_generation);
|
||||
*type = JE_DYNSB;
|
||||
*len = sizeof(*dynsb);
|
||||
return dynsb;
|
||||
}
|
||||
|
||||
static void write_wbuf(struct super_block *sb, struct logfs_area *area,
|
||||
void *wbuf)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
u64 ofs;
|
||||
pgoff_t index;
|
||||
int page_ofs;
|
||||
struct page *page;
|
||||
|
||||
ofs = dev_ofs(sb, area->a_segno,
|
||||
area->a_used_bytes & ~(super->s_writesize - 1));
|
||||
index = ofs >> PAGE_SHIFT;
|
||||
page_ofs = ofs & (PAGE_SIZE - 1);
|
||||
|
||||
page = find_lock_page(mapping, index);
|
||||
BUG_ON(!page);
|
||||
memcpy(wbuf, page_address(page) + page_ofs, super->s_writesize);
|
||||
unlock_page(page);
|
||||
}
|
||||
|
||||
static void *logfs_write_area(struct super_block *sb, void *_a,
|
||||
u16 *type, size_t *len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_area *area = super->s_area[super->s_sum_index];
|
||||
struct logfs_je_area *a = _a;
|
||||
|
||||
a->vim = VIM_DEFAULT;
|
||||
a->gc_level = super->s_sum_index;
|
||||
a->used_bytes = cpu_to_be32(area->a_used_bytes);
|
||||
a->segno = cpu_to_be32(area->a_segno);
|
||||
if (super->s_writesize > 1)
|
||||
write_wbuf(sb, area, a + 1);
|
||||
|
||||
*type = JE_AREA;
|
||||
*len = sizeof(*a) + super->s_writesize;
|
||||
return a;
|
||||
}
|
||||
|
||||
static void *logfs_write_commit(struct super_block *sb, void *h,
|
||||
u16 *type, size_t *len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
*type = JE_COMMIT;
|
||||
*len = super->s_no_je * sizeof(__be64);
|
||||
return super->s_je_array;
|
||||
}
|
||||
|
||||
static size_t __logfs_write_je(struct super_block *sb, void *buf, u16 type,
|
||||
size_t len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
void *header = super->s_compressed_je;
|
||||
void *data = header + sizeof(struct logfs_journal_header);
|
||||
ssize_t compr_len, pad_len;
|
||||
u8 compr = COMPR_ZLIB;
|
||||
|
||||
if (len == 0)
|
||||
return logfs_write_header(super, header, 0, type);
|
||||
|
||||
compr_len = logfs_compress(buf, data, len, sb->s_blocksize);
|
||||
if (compr_len < 0 || type == JE_ANCHOR) {
|
||||
BUG_ON(len > sb->s_blocksize);
|
||||
memcpy(data, buf, len);
|
||||
compr_len = len;
|
||||
compr = COMPR_NONE;
|
||||
}
|
||||
|
||||
pad_len = ALIGN(compr_len, 16);
|
||||
memset(data + compr_len, 0, pad_len - compr_len);
|
||||
|
||||
return __logfs_write_header(super, header, compr_len, len, type, compr);
|
||||
}
|
||||
|
||||
static s64 logfs_get_free_bytes(struct logfs_area *area, size_t *bytes,
|
||||
int must_pad)
|
||||
{
|
||||
u32 writesize = logfs_super(area->a_sb)->s_writesize;
|
||||
s32 ofs;
|
||||
int ret;
|
||||
|
||||
ret = logfs_open_area(area, *bytes);
|
||||
if (ret)
|
||||
return -EAGAIN;
|
||||
|
||||
ofs = area->a_used_bytes;
|
||||
area->a_used_bytes += *bytes;
|
||||
|
||||
if (must_pad) {
|
||||
area->a_used_bytes = ALIGN(area->a_used_bytes, writesize);
|
||||
*bytes = area->a_used_bytes - ofs;
|
||||
}
|
||||
|
||||
return dev_ofs(area->a_sb, area->a_segno, ofs);
|
||||
}
|
||||
|
||||
static int logfs_write_je_buf(struct super_block *sb, void *buf, u16 type,
|
||||
size_t buf_len)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_area *area = super->s_journal_area;
|
||||
struct logfs_journal_header *jh = super->s_compressed_je;
|
||||
size_t len;
|
||||
int must_pad = 0;
|
||||
s64 ofs;
|
||||
|
||||
len = __logfs_write_je(sb, buf, type, buf_len);
|
||||
if (jh->h_type == cpu_to_be16(JE_COMMIT))
|
||||
must_pad = 1;
|
||||
|
||||
ofs = logfs_get_free_bytes(area, &len, must_pad);
|
||||
if (ofs < 0)
|
||||
return ofs;
|
||||
logfs_buf_write(area, ofs, super->s_compressed_je, len);
|
||||
super->s_je_array[super->s_no_je++] = cpu_to_be64(ofs);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int logfs_write_je(struct super_block *sb,
|
||||
void* (*write)(struct super_block *sb, void *scratch,
|
||||
u16 *type, size_t *len))
|
||||
{
|
||||
void *buf;
|
||||
size_t len;
|
||||
u16 type;
|
||||
|
||||
buf = write(sb, logfs_super(sb)->s_je, &type, &len);
|
||||
return logfs_write_je_buf(sb, buf, type, len);
|
||||
}
|
||||
|
||||
int write_alias_journal(struct super_block *sb, u64 ino, u64 bix,
|
||||
level_t level, int child_no, __be64 val)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_obj_alias *oa = super->s_je;
|
||||
int err = 0, fill = super->s_je_fill;
|
||||
|
||||
log_aliases("logfs_write_obj_aliases #%x(%llx, %llx, %x, %x) %llx\n",
|
||||
fill, ino, bix, level, child_no, be64_to_cpu(val));
|
||||
oa[fill].ino = cpu_to_be64(ino);
|
||||
oa[fill].bix = cpu_to_be64(bix);
|
||||
oa[fill].val = val;
|
||||
oa[fill].level = (__force u8)level;
|
||||
oa[fill].child_no = cpu_to_be16(child_no);
|
||||
fill++;
|
||||
if (fill >= sb->s_blocksize / sizeof(*oa)) {
|
||||
err = logfs_write_je_buf(sb, oa, JE_OBJ_ALIAS, sb->s_blocksize);
|
||||
fill = 0;
|
||||
}
|
||||
|
||||
super->s_je_fill = fill;
|
||||
return err;
|
||||
}
|
||||
|
||||
static int logfs_write_obj_aliases(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int err;
|
||||
|
||||
log_journal("logfs_write_obj_aliases: %d aliases to write\n",
|
||||
super->s_no_object_aliases);
|
||||
super->s_je_fill = 0;
|
||||
err = logfs_write_obj_aliases_pagecache(sb);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (super->s_je_fill)
|
||||
err = logfs_write_je_buf(sb, super->s_je, JE_OBJ_ALIAS,
|
||||
super->s_je_fill
|
||||
* sizeof(struct logfs_obj_alias));
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write all journal entries. The goto logic ensures that all journal entries
|
||||
* are written whenever a new segment is used. It is ugly and potentially a
|
||||
* bit wasteful, but robustness is more important. With this we can *always*
|
||||
* erase all journal segments except the one containing the most recent commit.
|
||||
*/
|
||||
void logfs_write_anchor(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_area *area = super->s_journal_area;
|
||||
int i, err;
|
||||
|
||||
if (!(super->s_flags & LOGFS_SB_FLAG_DIRTY))
|
||||
return;
|
||||
super->s_flags &= ~LOGFS_SB_FLAG_DIRTY;
|
||||
|
||||
BUG_ON(super->s_flags & LOGFS_SB_FLAG_SHUTDOWN);
|
||||
mutex_lock(&super->s_journal_mutex);
|
||||
|
||||
/* Do this first or suffer corruption */
|
||||
logfs_sync_segments(sb);
|
||||
account_shadows(sb);
|
||||
|
||||
again:
|
||||
super->s_no_je = 0;
|
||||
for_each_area(i) {
|
||||
if (!super->s_area[i]->a_is_open)
|
||||
continue;
|
||||
super->s_sum_index = i;
|
||||
err = logfs_write_je(sb, logfs_write_area);
|
||||
if (err)
|
||||
goto again;
|
||||
}
|
||||
err = logfs_write_obj_aliases(sb);
|
||||
if (err)
|
||||
goto again;
|
||||
err = logfs_write_je(sb, logfs_write_erasecount);
|
||||
if (err)
|
||||
goto again;
|
||||
err = logfs_write_je(sb, __logfs_write_anchor);
|
||||
if (err)
|
||||
goto again;
|
||||
err = logfs_write_je(sb, logfs_write_dynsb);
|
||||
if (err)
|
||||
goto again;
|
||||
/*
|
||||
* Order is imperative. First we sync all writes, including the
|
||||
* non-committed journal writes. Then we write the final commit and
|
||||
* sync the current journal segment.
|
||||
* There is a theoretical bug here. Syncing the journal segment will
|
||||
* write a number of journal entries and the final commit. All these
|
||||
* are written in a single operation. If the device layer writes the
|
||||
* data back-to-front, the commit will precede the other journal
|
||||
* entries, leaving a race window.
|
||||
* Two fixes are possible. Preferred is to fix the device layer to
|
||||
* ensure writes happen front-to-back. Alternatively we can insert
|
||||
* another logfs_sync_area() super->s_devops->sync() combo before
|
||||
* writing the commit.
|
||||
*/
|
||||
/*
|
||||
* On another subject, super->s_devops->sync is usually not necessary.
|
||||
* Unless called from sys_sync or friends, a barrier would suffice.
|
||||
*/
|
||||
super->s_devops->sync(sb);
|
||||
err = logfs_write_je(sb, logfs_write_commit);
|
||||
if (err)
|
||||
goto again;
|
||||
log_journal("Write commit to %llx\n",
|
||||
be64_to_cpu(super->s_je_array[super->s_no_je - 1]));
|
||||
logfs_sync_area(area);
|
||||
BUG_ON(area->a_used_bytes != area->a_written_bytes);
|
||||
super->s_devops->sync(sb);
|
||||
|
||||
mutex_unlock(&super->s_journal_mutex);
|
||||
return;
|
||||
}
|
||||
|
||||
void do_logfs_journal_wl_pass(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_area *area = super->s_journal_area;
|
||||
u32 segno, ec;
|
||||
int i, err;
|
||||
|
||||
log_journal("Journal requires wear-leveling.\n");
|
||||
/* Drop old segments */
|
||||
journal_for_each(i)
|
||||
if (super->s_journal_seg[i]) {
|
||||
logfs_set_segment_unreserved(sb,
|
||||
super->s_journal_seg[i],
|
||||
super->s_journal_ec[i]);
|
||||
super->s_journal_seg[i] = 0;
|
||||
super->s_journal_ec[i] = 0;
|
||||
}
|
||||
/* Get new segments */
|
||||
for (i = 0; i < super->s_no_journal_segs; i++) {
|
||||
segno = get_best_cand(sb, &super->s_reserve_list, &ec);
|
||||
super->s_journal_seg[i] = segno;
|
||||
super->s_journal_ec[i] = ec;
|
||||
logfs_set_segment_reserved(sb, segno);
|
||||
}
|
||||
/* Manually move journal_area */
|
||||
area->a_segno = super->s_journal_seg[0];
|
||||
area->a_is_open = 0;
|
||||
area->a_used_bytes = 0;
|
||||
/* Write journal */
|
||||
logfs_write_anchor(sb);
|
||||
/* Write superblocks */
|
||||
err = logfs_write_sb(sb);
|
||||
BUG_ON(err);
|
||||
}
|
||||
|
||||
static const struct logfs_area_ops journal_area_ops = {
|
||||
.get_free_segment = journal_get_free_segment,
|
||||
.get_erase_count = journal_get_erase_count,
|
||||
.erase_segment = journal_erase_segment,
|
||||
};
|
||||
|
||||
int logfs_init_journal(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
size_t bufsize = max_t(size_t, sb->s_blocksize, super->s_writesize)
|
||||
+ MAX_JOURNAL_HEADER;
|
||||
int ret = -ENOMEM;
|
||||
|
||||
mutex_init(&super->s_journal_mutex);
|
||||
btree_init_mempool32(&super->s_reserved_segments, super->s_btree_pool);
|
||||
|
||||
super->s_je = kzalloc(bufsize, GFP_KERNEL);
|
||||
if (!super->s_je)
|
||||
return ret;
|
||||
|
||||
super->s_compressed_je = kzalloc(bufsize, GFP_KERNEL);
|
||||
if (!super->s_compressed_je)
|
||||
return ret;
|
||||
|
||||
super->s_master_inode = logfs_new_meta_inode(sb, LOGFS_INO_MASTER);
|
||||
if (IS_ERR(super->s_master_inode))
|
||||
return PTR_ERR(super->s_master_inode);
|
||||
|
||||
ret = logfs_read_journal(sb);
|
||||
if (ret)
|
||||
return -EIO;
|
||||
|
||||
reserve_sb_and_journal(sb);
|
||||
logfs_calc_free(sb);
|
||||
|
||||
super->s_journal_area->a_ops = &journal_area_ops;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void logfs_cleanup_journal(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
btree_grim_visitor32(&super->s_reserved_segments, 0, NULL);
|
||||
destroy_meta_inode(super->s_master_inode);
|
||||
super->s_master_inode = NULL;
|
||||
|
||||
kfree(super->s_compressed_je);
|
||||
kfree(super->s_je);
|
||||
}
|
724
fs/logfs/logfs.h
Normal file
724
fs/logfs/logfs.h
Normal file
@ -0,0 +1,724 @@
|
||||
/*
|
||||
* fs/logfs/logfs.h
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*
|
||||
* Private header for logfs.
|
||||
*/
|
||||
#ifndef FS_LOGFS_LOGFS_H
|
||||
#define FS_LOGFS_LOGFS_H
|
||||
|
||||
#undef __CHECK_ENDIAN__
|
||||
#define __CHECK_ENDIAN__
|
||||
|
||||
#include <linux/btree.h>
|
||||
#include <linux/crc32.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/mempool.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include "logfs_abi.h"
|
||||
|
||||
#define LOGFS_DEBUG_SUPER (0x0001)
|
||||
#define LOGFS_DEBUG_SEGMENT (0x0002)
|
||||
#define LOGFS_DEBUG_JOURNAL (0x0004)
|
||||
#define LOGFS_DEBUG_DIR (0x0008)
|
||||
#define LOGFS_DEBUG_FILE (0x0010)
|
||||
#define LOGFS_DEBUG_INODE (0x0020)
|
||||
#define LOGFS_DEBUG_READWRITE (0x0040)
|
||||
#define LOGFS_DEBUG_GC (0x0080)
|
||||
#define LOGFS_DEBUG_GC_NOISY (0x0100)
|
||||
#define LOGFS_DEBUG_ALIASES (0x0200)
|
||||
#define LOGFS_DEBUG_BLOCKMOVE (0x0400)
|
||||
#define LOGFS_DEBUG_ALL (0xffffffff)
|
||||
|
||||
#define LOGFS_DEBUG (0x01)
|
||||
/*
|
||||
* To enable specific log messages, simply define LOGFS_DEBUG to match any
|
||||
* or all of the above.
|
||||
*/
|
||||
#ifndef LOGFS_DEBUG
|
||||
#define LOGFS_DEBUG (0)
|
||||
#endif
|
||||
|
||||
#define log_cond(cond, fmt, arg...) do { \
|
||||
if (cond) \
|
||||
printk(KERN_DEBUG fmt, ##arg); \
|
||||
} while (0)
|
||||
|
||||
#define log_super(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_SUPER, fmt, ##arg)
|
||||
#define log_segment(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_SEGMENT, fmt, ##arg)
|
||||
#define log_journal(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_JOURNAL, fmt, ##arg)
|
||||
#define log_dir(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_DIR, fmt, ##arg)
|
||||
#define log_file(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_FILE, fmt, ##arg)
|
||||
#define log_inode(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_INODE, fmt, ##arg)
|
||||
#define log_readwrite(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_READWRITE, fmt, ##arg)
|
||||
#define log_gc(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_GC, fmt, ##arg)
|
||||
#define log_gc_noisy(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_GC_NOISY, fmt, ##arg)
|
||||
#define log_aliases(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_ALIASES, fmt, ##arg)
|
||||
#define log_blockmove(fmt, arg...) \
|
||||
log_cond(LOGFS_DEBUG & LOGFS_DEBUG_BLOCKMOVE, fmt, ##arg)
|
||||
|
||||
#define PG_pre_locked PG_owner_priv_1
|
||||
#define PagePreLocked(page) test_bit(PG_pre_locked, &(page)->flags)
|
||||
#define SetPagePreLocked(page) set_bit(PG_pre_locked, &(page)->flags)
|
||||
#define ClearPagePreLocked(page) clear_bit(PG_pre_locked, &(page)->flags)
|
||||
|
||||
/* FIXME: This should really be somewhere in the 64bit area. */
|
||||
#define LOGFS_LINK_MAX (1<<30)
|
||||
|
||||
/* Read-only filesystem */
|
||||
#define LOGFS_SB_FLAG_RO 0x0001
|
||||
#define LOGFS_SB_FLAG_DIRTY 0x0002
|
||||
#define LOGFS_SB_FLAG_OBJ_ALIAS 0x0004
|
||||
#define LOGFS_SB_FLAG_SHUTDOWN 0x0008
|
||||
|
||||
/* Write Control Flags */
|
||||
#define WF_LOCK 0x01 /* take write lock */
|
||||
#define WF_WRITE 0x02 /* write block */
|
||||
#define WF_DELETE 0x04 /* delete old block */
|
||||
|
||||
typedef u8 __bitwise level_t;
|
||||
typedef u8 __bitwise gc_level_t;
|
||||
|
||||
#define LEVEL(level) ((__force level_t)(level))
|
||||
#define GC_LEVEL(gc_level) ((__force gc_level_t)(gc_level))
|
||||
|
||||
#define SUBLEVEL(level) ( (void)((level) == LEVEL(1)), \
|
||||
(__force level_t)((__force u8)(level) - 1) )
|
||||
|
||||
/**
|
||||
* struct logfs_area - area management information
|
||||
*
|
||||
* @a_sb: the superblock this area belongs to
|
||||
* @a_is_open: 1 if the area is currently open, else 0
|
||||
* @a_segno: segment number of area
|
||||
* @a_written_bytes: number of bytes already written back
|
||||
* @a_used_bytes: number of used bytes
|
||||
* @a_ops: area operations (either journal or ostore)
|
||||
* @a_erase_count: erase count
|
||||
* @a_level: GC level
|
||||
*/
|
||||
struct logfs_area { /* a segment open for writing */
|
||||
struct super_block *a_sb;
|
||||
int a_is_open;
|
||||
u32 a_segno;
|
||||
u32 a_written_bytes;
|
||||
u32 a_used_bytes;
|
||||
const struct logfs_area_ops *a_ops;
|
||||
u32 a_erase_count;
|
||||
gc_level_t a_level;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_area_ops - area operations
|
||||
*
|
||||
* @get_free_segment: fill area->ofs with the offset of a free segment
|
||||
* @get_erase_count: fill area->erase_count (needs area->ofs)
|
||||
* @erase_segment: erase and setup segment
|
||||
*/
|
||||
struct logfs_area_ops {
|
||||
void (*get_free_segment)(struct logfs_area *area);
|
||||
void (*get_erase_count)(struct logfs_area *area);
|
||||
int (*erase_segment)(struct logfs_area *area);
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_device_ops - device access operations
|
||||
*
|
||||
* @readpage: read one page (mm page)
|
||||
* @writeseg: write one segment. may be a partial segment
|
||||
* @erase: erase one segment
|
||||
* @read: read from the device
|
||||
* @erase: erase part of the device
|
||||
*/
|
||||
struct logfs_device_ops {
|
||||
struct page *(*find_first_sb)(struct super_block *sb, u64 *ofs);
|
||||
struct page *(*find_last_sb)(struct super_block *sb, u64 *ofs);
|
||||
int (*write_sb)(struct super_block *sb, struct page *page);
|
||||
int (*readpage)(void *_sb, struct page *page);
|
||||
void (*writeseg)(struct super_block *sb, u64 ofs, size_t len);
|
||||
int (*erase)(struct super_block *sb, loff_t ofs, size_t len,
|
||||
int ensure_write);
|
||||
void (*sync)(struct super_block *sb);
|
||||
void (*put_device)(struct super_block *sb);
|
||||
};
|
||||
|
||||
/**
|
||||
* struct candidate_list - list of similar candidates
|
||||
*/
|
||||
struct candidate_list {
|
||||
struct rb_root rb_tree;
|
||||
int count;
|
||||
int maxcount;
|
||||
int sort_by_ec;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct gc_candidate - "candidate" segment to be garbage collected next
|
||||
*
|
||||
* @list: list (either free of low)
|
||||
* @segno: segment number
|
||||
* @valid: number of valid bytes
|
||||
* @erase_count: erase count of segment
|
||||
* @dist: distance from tree root
|
||||
*
|
||||
* Candidates can be on two lists. The free list contains electees rather
|
||||
* than candidates - segments that no longer contain any valid data. The
|
||||
* low list contains candidates to be picked for GC. It should be kept
|
||||
* short. It is not required to always pick a perfect candidate. In the
|
||||
* worst case GC will have to move more data than absolutely necessary.
|
||||
*/
|
||||
struct gc_candidate {
|
||||
struct rb_node rb_node;
|
||||
struct candidate_list *list;
|
||||
u32 segno;
|
||||
u32 valid;
|
||||
u32 erase_count;
|
||||
u8 dist;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_journal_entry - temporary structure used during journal scan
|
||||
*
|
||||
* @used:
|
||||
* @version: normalized version
|
||||
* @len: length
|
||||
* @offset: offset
|
||||
*/
|
||||
struct logfs_journal_entry {
|
||||
int used;
|
||||
s16 version;
|
||||
u16 len;
|
||||
u16 datalen;
|
||||
u64 offset;
|
||||
};
|
||||
|
||||
enum transaction_state {
|
||||
CREATE_1 = 1,
|
||||
CREATE_2,
|
||||
UNLINK_1,
|
||||
UNLINK_2,
|
||||
CROSS_RENAME_1,
|
||||
CROSS_RENAME_2,
|
||||
TARGET_RENAME_1,
|
||||
TARGET_RENAME_2,
|
||||
TARGET_RENAME_3
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_transaction - essential fields to support atomic dirops
|
||||
*
|
||||
* @ino: target inode
|
||||
* @dir: inode of directory containing dentry
|
||||
* @pos: pos of dentry in directory
|
||||
*/
|
||||
struct logfs_transaction {
|
||||
enum transaction_state state;
|
||||
u64 ino;
|
||||
u64 dir;
|
||||
u64 pos;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_shadow - old block in the shadow of a not-yet-committed new one
|
||||
* @old_ofs: offset of old block on medium
|
||||
* @new_ofs: offset of new block on medium
|
||||
* @ino: inode number
|
||||
* @bix: block index
|
||||
* @old_len: size of old block, including header
|
||||
* @new_len: size of new block, including header
|
||||
* @level: block level
|
||||
*/
|
||||
struct logfs_shadow {
|
||||
u64 old_ofs;
|
||||
u64 new_ofs;
|
||||
u64 ino;
|
||||
u64 bix;
|
||||
int old_len;
|
||||
int new_len;
|
||||
gc_level_t gc_level;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct shadow_tree
|
||||
* @new: shadows where old_ofs==0, indexed by new_ofs
|
||||
* @old: shadows where old_ofs!=0, indexed by old_ofs
|
||||
*/
|
||||
struct shadow_tree {
|
||||
struct btree_head64 new;
|
||||
struct btree_head64 old;
|
||||
};
|
||||
|
||||
struct object_alias_item {
|
||||
struct list_head list;
|
||||
__be64 val;
|
||||
int child_no;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_block - contains any block state
|
||||
* @type: indirect block or inode
|
||||
* @full: number of fully populated children
|
||||
* @partial: number of partially populated children
|
||||
*
|
||||
* Most blocks are directly represented by page cache pages. But when a block
|
||||
* becomes dirty, is part of a transaction, contains aliases or is otherwise
|
||||
* special, a struct logfs_block is allocated to track the additional state.
|
||||
* Inodes are very similar to indirect blocks, so they can also get one of
|
||||
* these structures added when appropriate.
|
||||
*/
|
||||
#define BLOCK_INDIRECT 1 /* Indirect block */
|
||||
#define BLOCK_INODE 2 /* Inode */
|
||||
struct logfs_block_ops;
|
||||
struct logfs_block {
|
||||
struct list_head alias_list;
|
||||
struct list_head item_list;
|
||||
struct super_block *sb;
|
||||
u64 ino;
|
||||
u64 bix;
|
||||
level_t level;
|
||||
struct page *page;
|
||||
struct inode *inode;
|
||||
struct logfs_transaction *ta;
|
||||
unsigned long alias_map[LOGFS_BLOCK_FACTOR / BITS_PER_LONG];
|
||||
struct logfs_block_ops *ops;
|
||||
int full;
|
||||
int partial;
|
||||
int reserved_bytes;
|
||||
};
|
||||
|
||||
typedef int write_alias_t(struct super_block *sb, u64 ino, u64 bix,
|
||||
level_t level, int child_no, __be64 val);
|
||||
struct logfs_block_ops {
|
||||
void (*write_block)(struct logfs_block *block);
|
||||
gc_level_t (*block_level)(struct logfs_block *block);
|
||||
void (*free_block)(struct super_block *sb, struct logfs_block*block);
|
||||
int (*write_alias)(struct super_block *sb,
|
||||
struct logfs_block *block,
|
||||
write_alias_t *write_one_alias);
|
||||
};
|
||||
|
||||
struct logfs_super {
|
||||
struct mtd_info *s_mtd; /* underlying device */
|
||||
struct block_device *s_bdev; /* underlying device */
|
||||
const struct logfs_device_ops *s_devops;/* device access */
|
||||
struct inode *s_master_inode; /* inode file */
|
||||
struct inode *s_segfile_inode; /* segment file */
|
||||
struct inode *s_mapping_inode; /* device mapping */
|
||||
atomic_t s_pending_writes; /* outstanting bios */
|
||||
long s_flags;
|
||||
mempool_t *s_btree_pool; /* for btree nodes */
|
||||
mempool_t *s_alias_pool; /* aliases in segment.c */
|
||||
u64 s_feature_incompat;
|
||||
u64 s_feature_ro_compat;
|
||||
u64 s_feature_compat;
|
||||
u64 s_feature_flags;
|
||||
u64 s_sb_ofs[2];
|
||||
struct page *s_erase_page; /* for dev_bdev.c */
|
||||
/* alias.c fields */
|
||||
struct btree_head32 s_segment_alias; /* remapped segments */
|
||||
int s_no_object_aliases;
|
||||
struct list_head s_object_alias; /* remapped objects */
|
||||
struct btree_head128 s_object_alias_tree; /* remapped objects */
|
||||
struct mutex s_object_alias_mutex;
|
||||
/* dir.c fields */
|
||||
struct mutex s_dirop_mutex; /* for creat/unlink/rename */
|
||||
u64 s_victim_ino; /* used for atomic dir-ops */
|
||||
u64 s_rename_dir; /* source directory ino */
|
||||
u64 s_rename_pos; /* position of source dd */
|
||||
/* gc.c fields */
|
||||
long s_segsize; /* size of a segment */
|
||||
int s_segshift; /* log2 of segment size */
|
||||
long s_segmask; /* 1 << s_segshift - 1 */
|
||||
long s_no_segs; /* segments on device */
|
||||
long s_no_journal_segs; /* segments used for journal */
|
||||
long s_no_blocks; /* blocks per segment */
|
||||
long s_writesize; /* minimum write size */
|
||||
int s_writeshift; /* log2 of write size */
|
||||
u64 s_size; /* filesystem size */
|
||||
struct logfs_area *s_area[LOGFS_NO_AREAS]; /* open segment array */
|
||||
u64 s_gec; /* global erase count */
|
||||
u64 s_wl_gec_ostore; /* time of last wl event */
|
||||
u64 s_wl_gec_journal; /* time of last wl event */
|
||||
u64 s_sweeper; /* current sweeper pos */
|
||||
u8 s_ifile_levels; /* max level of ifile */
|
||||
u8 s_iblock_levels; /* max level of regular files */
|
||||
u8 s_data_levels; /* # of segments to leaf block*/
|
||||
u8 s_total_levels; /* sum of above three */
|
||||
struct btree_head32 s_cand_tree; /* all candidates */
|
||||
struct candidate_list s_free_list; /* 100% free segments */
|
||||
struct candidate_list s_reserve_list; /* Bad segment reserve */
|
||||
struct candidate_list s_low_list[LOGFS_NO_AREAS];/* good candidates */
|
||||
struct candidate_list s_ec_list; /* wear level candidates */
|
||||
struct btree_head32 s_reserved_segments;/* sb, journal, bad, etc. */
|
||||
/* inode.c fields */
|
||||
u64 s_last_ino; /* highest ino used */
|
||||
long s_inos_till_wrap;
|
||||
u32 s_generation; /* i_generation for new files */
|
||||
struct list_head s_freeing_list; /* inodes being freed */
|
||||
/* journal.c fields */
|
||||
struct mutex s_journal_mutex;
|
||||
void *s_je; /* journal entry to compress */
|
||||
void *s_compressed_je; /* block to write to journal */
|
||||
u32 s_journal_seg[LOGFS_JOURNAL_SEGS]; /* journal segments */
|
||||
u32 s_journal_ec[LOGFS_JOURNAL_SEGS]; /* journal erasecounts */
|
||||
u64 s_last_version;
|
||||
struct logfs_area *s_journal_area; /* open journal segment */
|
||||
__be64 s_je_array[64];
|
||||
int s_no_je;
|
||||
|
||||
int s_sum_index; /* for the 12 summaries */
|
||||
struct shadow_tree s_shadow_tree;
|
||||
int s_je_fill; /* index of current je */
|
||||
/* readwrite.c fields */
|
||||
struct mutex s_write_mutex;
|
||||
int s_lock_count;
|
||||
mempool_t *s_block_pool; /* struct logfs_block pool */
|
||||
mempool_t *s_shadow_pool; /* struct logfs_shadow pool */
|
||||
/*
|
||||
* Space accounting:
|
||||
* - s_used_bytes specifies space used to store valid data objects.
|
||||
* - s_dirty_used_bytes is space used to store non-committed data
|
||||
* objects. Those objects have already been written themselves,
|
||||
* but they don't become valid until all indirect blocks up to the
|
||||
* journal have been written as well.
|
||||
* - s_dirty_free_bytes is space used to store the old copy of a
|
||||
* replaced object, as long as the replacement is non-committed.
|
||||
* In other words, it is the amount of space freed when all dirty
|
||||
* blocks are written back.
|
||||
* - s_free_bytes is the amount of free space available for any
|
||||
* purpose.
|
||||
* - s_root_reserve is the amount of free space available only to
|
||||
* the root user. Non-privileged users can no longer write once
|
||||
* this watermark has been reached.
|
||||
* - s_speed_reserve is space which remains unused to speed up
|
||||
* garbage collection performance.
|
||||
* - s_dirty_pages is the space reserved for currently dirty pages.
|
||||
* It is a pessimistic estimate, so some/most will get freed on
|
||||
* page writeback.
|
||||
*
|
||||
* s_used_bytes + s_free_bytes + s_speed_reserve = total usable size
|
||||
*/
|
||||
u64 s_free_bytes;
|
||||
u64 s_used_bytes;
|
||||
u64 s_dirty_free_bytes;
|
||||
u64 s_dirty_used_bytes;
|
||||
u64 s_root_reserve;
|
||||
u64 s_speed_reserve;
|
||||
u64 s_dirty_pages;
|
||||
/* Bad block handling:
|
||||
* - s_bad_seg_reserve is a number of segments usually kept
|
||||
* free. When encountering bad blocks, the affected segment's data
|
||||
* is _temporarily_ moved to a reserved segment.
|
||||
* - s_bad_segments is the number of known bad segments.
|
||||
*/
|
||||
u32 s_bad_seg_reserve;
|
||||
u32 s_bad_segments;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_inode - in-memory inode
|
||||
*
|
||||
* @vfs_inode: struct inode
|
||||
* @li_data: data pointers
|
||||
* @li_used_bytes: number of used bytes
|
||||
* @li_freeing_list: used to track inodes currently being freed
|
||||
* @li_flags: inode flags
|
||||
* @li_refcount: number of internal (GC-induced) references
|
||||
*/
|
||||
struct logfs_inode {
|
||||
struct inode vfs_inode;
|
||||
u64 li_data[LOGFS_EMBEDDED_FIELDS];
|
||||
u64 li_used_bytes;
|
||||
struct list_head li_freeing_list;
|
||||
struct logfs_block *li_block;
|
||||
u32 li_flags;
|
||||
u8 li_height;
|
||||
int li_refcount;
|
||||
};
|
||||
|
||||
#define journal_for_each(__i) for (__i = 0; __i < LOGFS_JOURNAL_SEGS; __i++)
|
||||
#define for_each_area(__i) for (__i = 0; __i < LOGFS_NO_AREAS; __i++)
|
||||
#define for_each_area_down(__i) for (__i = LOGFS_NO_AREAS - 1; __i >= 0; __i--)
|
||||
|
||||
/* compr.c */
|
||||
int logfs_compress(void *in, void *out, size_t inlen, size_t outlen);
|
||||
int logfs_uncompress(void *in, void *out, size_t inlen, size_t outlen);
|
||||
int __init logfs_compr_init(void);
|
||||
void logfs_compr_exit(void);
|
||||
|
||||
/* dev_bdev.c */
|
||||
#ifdef CONFIG_BLOCK
|
||||
int logfs_get_sb_bdev(struct file_system_type *type, int flags,
|
||||
const char *devname, struct vfsmount *mnt);
|
||||
#else
|
||||
static inline int logfs_get_sb_bdev(struct file_system_type *type, int flags,
|
||||
const char *devname, struct vfsmount *mnt)
|
||||
{
|
||||
return -ENODEV;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* dev_mtd.c */
|
||||
#ifdef CONFIG_MTD
|
||||
int logfs_get_sb_mtd(struct file_system_type *type, int flags,
|
||||
int mtdnr, struct vfsmount *mnt);
|
||||
#else
|
||||
static inline int logfs_get_sb_mtd(struct file_system_type *type, int flags,
|
||||
int mtdnr, struct vfsmount *mnt)
|
||||
{
|
||||
return -ENODEV;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* dir.c */
|
||||
extern const struct inode_operations logfs_symlink_iops;
|
||||
extern const struct inode_operations logfs_dir_iops;
|
||||
extern const struct file_operations logfs_dir_fops;
|
||||
int logfs_replay_journal(struct super_block *sb);
|
||||
|
||||
/* file.c */
|
||||
extern const struct inode_operations logfs_reg_iops;
|
||||
extern const struct file_operations logfs_reg_fops;
|
||||
extern const struct address_space_operations logfs_reg_aops;
|
||||
int logfs_readpage(struct file *file, struct page *page);
|
||||
int logfs_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
|
||||
unsigned long arg);
|
||||
int logfs_fsync(struct file *file, struct dentry *dentry, int datasync);
|
||||
|
||||
/* gc.c */
|
||||
u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec);
|
||||
void logfs_gc_pass(struct super_block *sb);
|
||||
int logfs_check_areas(struct super_block *sb);
|
||||
int logfs_init_gc(struct super_block *sb);
|
||||
void logfs_cleanup_gc(struct super_block *sb);
|
||||
|
||||
/* inode.c */
|
||||
extern const struct super_operations logfs_super_operations;
|
||||
struct inode *logfs_iget(struct super_block *sb, ino_t ino);
|
||||
struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *cookie);
|
||||
void logfs_safe_iput(struct inode *inode, int cookie);
|
||||
struct inode *logfs_new_inode(struct inode *dir, int mode);
|
||||
struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino);
|
||||
struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino);
|
||||
int logfs_init_inode_cache(void);
|
||||
void logfs_destroy_inode_cache(void);
|
||||
void destroy_meta_inode(struct inode *inode);
|
||||
void logfs_set_blocks(struct inode *inode, u64 no);
|
||||
/* these logically belong into inode.c but actually reside in readwrite.c */
|
||||
int logfs_read_inode(struct inode *inode);
|
||||
int __logfs_write_inode(struct inode *inode, long flags);
|
||||
void logfs_delete_inode(struct inode *inode);
|
||||
void logfs_clear_inode(struct inode *inode);
|
||||
|
||||
/* journal.c */
|
||||
void logfs_write_anchor(struct super_block *sb);
|
||||
int logfs_init_journal(struct super_block *sb);
|
||||
void logfs_cleanup_journal(struct super_block *sb);
|
||||
int write_alias_journal(struct super_block *sb, u64 ino, u64 bix,
|
||||
level_t level, int child_no, __be64 val);
|
||||
void do_logfs_journal_wl_pass(struct super_block *sb);
|
||||
|
||||
/* readwrite.c */
|
||||
pgoff_t logfs_pack_index(u64 bix, level_t level);
|
||||
void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level);
|
||||
int logfs_inode_write(struct inode *inode, const void *buf, size_t count,
|
||||
loff_t bix, long flags, struct shadow_tree *shadow_tree);
|
||||
int logfs_readpage_nolock(struct page *page);
|
||||
int logfs_write_buf(struct inode *inode, struct page *page, long flags);
|
||||
int logfs_delete(struct inode *inode, pgoff_t index,
|
||||
struct shadow_tree *shadow_tree);
|
||||
int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs,
|
||||
gc_level_t gc_level, long flags);
|
||||
int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix,
|
||||
gc_level_t gc_level);
|
||||
int logfs_truncate(struct inode *inode, u64 size);
|
||||
u64 logfs_seek_hole(struct inode *inode, u64 bix);
|
||||
u64 logfs_seek_data(struct inode *inode, u64 bix);
|
||||
int logfs_open_segfile(struct super_block *sb);
|
||||
int logfs_init_rw(struct super_block *sb);
|
||||
void logfs_cleanup_rw(struct super_block *sb);
|
||||
void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta);
|
||||
void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta);
|
||||
void logfs_write_block(struct logfs_block *block, long flags);
|
||||
int logfs_write_obj_aliases_pagecache(struct super_block *sb);
|
||||
void logfs_get_segment_entry(struct super_block *sb, u32 segno,
|
||||
struct logfs_segment_entry *se);
|
||||
void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment);
|
||||
void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec,
|
||||
gc_level_t gc_level);
|
||||
void logfs_set_segment_reserved(struct super_block *sb, u32 segno);
|
||||
void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec);
|
||||
struct logfs_block *__alloc_block(struct super_block *sb,
|
||||
u64 ino, u64 bix, level_t level);
|
||||
void __free_block(struct super_block *sb, struct logfs_block *block);
|
||||
void btree_write_block(struct logfs_block *block);
|
||||
void initialize_block_counters(struct page *page, struct logfs_block *block,
|
||||
__be64 *array, int page_is_empty);
|
||||
int logfs_exist_block(struct inode *inode, u64 bix);
|
||||
int get_page_reserve(struct inode *inode, struct page *page);
|
||||
extern struct logfs_block_ops indirect_block_ops;
|
||||
|
||||
/* segment.c */
|
||||
int logfs_erase_segment(struct super_block *sb, u32 ofs, int ensure_erase);
|
||||
int wbuf_read(struct super_block *sb, u64 ofs, size_t len, void *buf);
|
||||
int logfs_segment_read(struct inode *inode, struct page *page, u64 ofs, u64 bix,
|
||||
level_t level);
|
||||
int logfs_segment_write(struct inode *inode, struct page *page,
|
||||
struct logfs_shadow *shadow);
|
||||
int logfs_segment_delete(struct inode *inode, struct logfs_shadow *shadow);
|
||||
int logfs_load_object_aliases(struct super_block *sb,
|
||||
struct logfs_obj_alias *oa, int count);
|
||||
void move_page_to_btree(struct page *page);
|
||||
int logfs_init_mapping(struct super_block *sb);
|
||||
void logfs_sync_area(struct logfs_area *area);
|
||||
void logfs_sync_segments(struct super_block *sb);
|
||||
|
||||
/* area handling */
|
||||
int logfs_init_areas(struct super_block *sb);
|
||||
void logfs_cleanup_areas(struct super_block *sb);
|
||||
int logfs_open_area(struct logfs_area *area, size_t bytes);
|
||||
void __logfs_buf_write(struct logfs_area *area, u64 ofs, void *buf, size_t len,
|
||||
int use_filler);
|
||||
|
||||
static inline void logfs_buf_write(struct logfs_area *area, u64 ofs,
|
||||
void *buf, size_t len)
|
||||
{
|
||||
__logfs_buf_write(area, ofs, buf, len, 0);
|
||||
}
|
||||
|
||||
static inline void logfs_buf_recover(struct logfs_area *area, u64 ofs,
|
||||
void *buf, size_t len)
|
||||
{
|
||||
__logfs_buf_write(area, ofs, buf, len, 1);
|
||||
}
|
||||
|
||||
/* super.c */
|
||||
struct page *emergency_read_begin(struct address_space *mapping, pgoff_t index);
|
||||
void emergency_read_end(struct page *page);
|
||||
void logfs_crash_dump(struct super_block *sb);
|
||||
void *memchr_inv(const void *s, int c, size_t n);
|
||||
int logfs_statfs(struct dentry *dentry, struct kstatfs *stats);
|
||||
int logfs_get_sb_device(struct file_system_type *type, int flags,
|
||||
struct mtd_info *mtd, struct block_device *bdev,
|
||||
const struct logfs_device_ops *devops, struct vfsmount *mnt);
|
||||
int logfs_check_ds(struct logfs_disk_super *ds);
|
||||
int logfs_write_sb(struct super_block *sb);
|
||||
|
||||
static inline struct logfs_super *logfs_super(struct super_block *sb)
|
||||
{
|
||||
return sb->s_fs_info;
|
||||
}
|
||||
|
||||
static inline struct logfs_inode *logfs_inode(struct inode *inode)
|
||||
{
|
||||
return container_of(inode, struct logfs_inode, vfs_inode);
|
||||
}
|
||||
|
||||
static inline void logfs_set_ro(struct super_block *sb)
|
||||
{
|
||||
logfs_super(sb)->s_flags |= LOGFS_SB_FLAG_RO;
|
||||
}
|
||||
|
||||
#define LOGFS_BUG(sb) do { \
|
||||
struct super_block *__sb = sb; \
|
||||
logfs_crash_dump(__sb); \
|
||||
logfs_super(__sb)->s_flags |= LOGFS_SB_FLAG_RO; \
|
||||
BUG(); \
|
||||
} while (0)
|
||||
|
||||
#define LOGFS_BUG_ON(condition, sb) \
|
||||
do { if (unlikely(condition)) LOGFS_BUG((sb)); } while (0)
|
||||
|
||||
static inline __be32 logfs_crc32(void *data, size_t len, size_t skip)
|
||||
{
|
||||
return cpu_to_be32(crc32(~0, data+skip, len-skip));
|
||||
}
|
||||
|
||||
static inline u8 logfs_type(struct inode *inode)
|
||||
{
|
||||
return (inode->i_mode >> 12) & 15;
|
||||
}
|
||||
|
||||
static inline pgoff_t logfs_index(struct super_block *sb, u64 pos)
|
||||
{
|
||||
return pos >> sb->s_blocksize_bits;
|
||||
}
|
||||
|
||||
static inline u64 dev_ofs(struct super_block *sb, u32 segno, u32 ofs)
|
||||
{
|
||||
return ((u64)segno << logfs_super(sb)->s_segshift) + ofs;
|
||||
}
|
||||
|
||||
static inline u32 seg_no(struct super_block *sb, u64 ofs)
|
||||
{
|
||||
return ofs >> logfs_super(sb)->s_segshift;
|
||||
}
|
||||
|
||||
static inline u32 seg_ofs(struct super_block *sb, u64 ofs)
|
||||
{
|
||||
return ofs & logfs_super(sb)->s_segmask;
|
||||
}
|
||||
|
||||
static inline u64 seg_align(struct super_block *sb, u64 ofs)
|
||||
{
|
||||
return ofs & ~logfs_super(sb)->s_segmask;
|
||||
}
|
||||
|
||||
static inline struct logfs_block *logfs_block(struct page *page)
|
||||
{
|
||||
return (void *)page->private;
|
||||
}
|
||||
|
||||
static inline level_t shrink_level(gc_level_t __level)
|
||||
{
|
||||
u8 level = (__force u8)__level;
|
||||
|
||||
if (level >= LOGFS_MAX_LEVELS)
|
||||
level -= LOGFS_MAX_LEVELS;
|
||||
return (__force level_t)level;
|
||||
}
|
||||
|
||||
static inline gc_level_t expand_level(u64 ino, level_t __level)
|
||||
{
|
||||
u8 level = (__force u8)__level;
|
||||
|
||||
if (ino == LOGFS_INO_MASTER) {
|
||||
/* ifile has seperate areas */
|
||||
level += LOGFS_MAX_LEVELS;
|
||||
}
|
||||
return (__force gc_level_t)level;
|
||||
}
|
||||
|
||||
static inline int logfs_block_shift(struct super_block *sb, level_t level)
|
||||
{
|
||||
level = shrink_level((__force gc_level_t)level);
|
||||
return (__force int)level * (sb->s_blocksize_bits - 3);
|
||||
}
|
||||
|
||||
static inline u64 logfs_block_mask(struct super_block *sb, level_t level)
|
||||
{
|
||||
return ~0ull << logfs_block_shift(sb, level);
|
||||
}
|
||||
|
||||
static inline struct logfs_area *get_area(struct super_block *sb,
|
||||
gc_level_t gc_level)
|
||||
{
|
||||
return logfs_super(sb)->s_area[(__force u8)gc_level];
|
||||
}
|
||||
|
||||
#endif
|
629
fs/logfs/logfs_abi.h
Normal file
629
fs/logfs/logfs_abi.h
Normal file
@ -0,0 +1,629 @@
|
||||
/*
|
||||
* fs/logfs/logfs_abi.h
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*
|
||||
* Public header for logfs.
|
||||
*/
|
||||
#ifndef FS_LOGFS_LOGFS_ABI_H
|
||||
#define FS_LOGFS_LOGFS_ABI_H
|
||||
|
||||
/* For out-of-kernel compiles */
|
||||
#ifndef BUILD_BUG_ON
|
||||
#define BUILD_BUG_ON(condition) /**/
|
||||
#endif
|
||||
|
||||
#define SIZE_CHECK(type, size) \
|
||||
static inline void check_##type(void) \
|
||||
{ \
|
||||
BUILD_BUG_ON(sizeof(struct type) != (size)); \
|
||||
}
|
||||
|
||||
/*
|
||||
* Throughout the logfs code, we're constantly dealing with blocks at
|
||||
* various positions or offsets. To remove confusion, we stricly
|
||||
* distinguish between a "position" - the logical position within a
|
||||
* file and an "offset" - the physical location within the device.
|
||||
*
|
||||
* Any usage of the term offset for a logical location or position for
|
||||
* a physical one is a bug and should get fixed.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Block are allocated in one of several segments depending on their
|
||||
* level. The following levels are used:
|
||||
* 0 - regular data block
|
||||
* 1 - i1 indirect blocks
|
||||
* 2 - i2 indirect blocks
|
||||
* 3 - i3 indirect blocks
|
||||
* 4 - i4 indirect blocks
|
||||
* 5 - i5 indirect blocks
|
||||
* 6 - ifile data blocks
|
||||
* 7 - ifile i1 indirect blocks
|
||||
* 8 - ifile i2 indirect blocks
|
||||
* 9 - ifile i3 indirect blocks
|
||||
* 10 - ifile i4 indirect blocks
|
||||
* 11 - ifile i5 indirect blocks
|
||||
* Potential levels to be used in the future:
|
||||
* 12 - gc recycled blocks, long-lived data
|
||||
* 13 - replacement blocks, short-lived data
|
||||
*
|
||||
* Levels 1-11 are necessary for robust gc operations and help seperate
|
||||
* short-lived metadata from longer-lived file data. In the future,
|
||||
* file data should get seperated into several segments based on simple
|
||||
* heuristics. Old data recycled during gc operation is expected to be
|
||||
* long-lived. New data is of uncertain life expectancy. New data
|
||||
* used to replace older blocks in existing files is expected to be
|
||||
* short-lived.
|
||||
*/
|
||||
|
||||
|
||||
/* Magic numbers. 64bit for superblock, 32bit for statfs f_type */
|
||||
#define LOGFS_MAGIC 0x7a3a8e5cb9d5bf67ull
|
||||
#define LOGFS_MAGIC_U32 0xc97e8168u
|
||||
|
||||
/*
|
||||
* Various blocksize related macros. Blocksize is currently fixed at 4KiB.
|
||||
* Sooner or later that should become configurable and the macros replaced
|
||||
* by something superblock-dependent. Pointers in indirect blocks are and
|
||||
* will remain 64bit.
|
||||
*
|
||||
* LOGFS_BLOCKSIZE - self-explaining
|
||||
* LOGFS_BLOCK_FACTOR - number of pointers per indirect block
|
||||
* LOGFS_BLOCK_BITS - log2 of LOGFS_BLOCK_FACTOR, used for shifts
|
||||
*/
|
||||
#define LOGFS_BLOCKSIZE (4096ull)
|
||||
#define LOGFS_BLOCK_FACTOR (LOGFS_BLOCKSIZE / sizeof(u64))
|
||||
#define LOGFS_BLOCK_BITS (9)
|
||||
|
||||
/*
|
||||
* Number of blocks at various levels of indirection. There are 16 direct
|
||||
* block pointers plus a single indirect pointer.
|
||||
*/
|
||||
#define I0_BLOCKS (16)
|
||||
#define I1_BLOCKS LOGFS_BLOCK_FACTOR
|
||||
#define I2_BLOCKS (LOGFS_BLOCK_FACTOR * I1_BLOCKS)
|
||||
#define I3_BLOCKS (LOGFS_BLOCK_FACTOR * I2_BLOCKS)
|
||||
#define I4_BLOCKS (LOGFS_BLOCK_FACTOR * I3_BLOCKS)
|
||||
#define I5_BLOCKS (LOGFS_BLOCK_FACTOR * I4_BLOCKS)
|
||||
|
||||
#define INDIRECT_INDEX I0_BLOCKS
|
||||
#define LOGFS_EMBEDDED_FIELDS (I0_BLOCKS + 1)
|
||||
|
||||
/*
|
||||
* Sizes at which files require another level of indirection. Files smaller
|
||||
* than LOGFS_EMBEDDED_SIZE can be completely stored in the inode itself,
|
||||
* similar like ext2 fast symlinks.
|
||||
*
|
||||
* Data at a position smaller than LOGFS_I0_SIZE is accessed through the
|
||||
* direct pointers, else through the 1x indirect pointer and so forth.
|
||||
*/
|
||||
#define LOGFS_EMBEDDED_SIZE (LOGFS_EMBEDDED_FIELDS * sizeof(u64))
|
||||
#define LOGFS_I0_SIZE (I0_BLOCKS * LOGFS_BLOCKSIZE)
|
||||
#define LOGFS_I1_SIZE (I1_BLOCKS * LOGFS_BLOCKSIZE)
|
||||
#define LOGFS_I2_SIZE (I2_BLOCKS * LOGFS_BLOCKSIZE)
|
||||
#define LOGFS_I3_SIZE (I3_BLOCKS * LOGFS_BLOCKSIZE)
|
||||
#define LOGFS_I4_SIZE (I4_BLOCKS * LOGFS_BLOCKSIZE)
|
||||
#define LOGFS_I5_SIZE (I5_BLOCKS * LOGFS_BLOCKSIZE)
|
||||
|
||||
/*
|
||||
* Each indirect block pointer must have this flag set, if all block pointers
|
||||
* behind it are set, i.e. there is no hole hidden in the shadow of this
|
||||
* indirect block pointer.
|
||||
*/
|
||||
#define LOGFS_FULLY_POPULATED (1ULL << 63)
|
||||
#define pure_ofs(ofs) (ofs & ~LOGFS_FULLY_POPULATED)
|
||||
|
||||
/*
|
||||
* LogFS needs to seperate data into levels. Each level is defined as the
|
||||
* maximal possible distance from the master inode (inode of the inode file).
|
||||
* Data blocks reside on level 0, 1x indirect block on level 1, etc.
|
||||
* Inodes reside on level 6, indirect blocks for the inode file on levels 7-11.
|
||||
* This effort is necessary to guarantee garbage collection to always make
|
||||
* progress.
|
||||
*
|
||||
* LOGFS_MAX_INDIRECT is the maximal indirection through indirect blocks,
|
||||
* LOGFS_MAX_LEVELS is one more for the actual data level of a file. It is
|
||||
* the maximal number of levels for one file.
|
||||
* LOGFS_NO_AREAS is twice that, as the inode file and regular files are
|
||||
* effectively stacked on top of each other.
|
||||
*/
|
||||
#define LOGFS_MAX_INDIRECT (5)
|
||||
#define LOGFS_MAX_LEVELS (LOGFS_MAX_INDIRECT + 1)
|
||||
#define LOGFS_NO_AREAS (2 * LOGFS_MAX_LEVELS)
|
||||
|
||||
/* Maximum size of filenames */
|
||||
#define LOGFS_MAX_NAMELEN (255)
|
||||
|
||||
/* Number of segments in the primary journal. */
|
||||
#define LOGFS_JOURNAL_SEGS (16)
|
||||
|
||||
/* Maximum number of free/erased/etc. segments in journal entries */
|
||||
#define MAX_CACHED_SEGS (64)
|
||||
|
||||
|
||||
/*
|
||||
* LOGFS_OBJECT_HEADERSIZE is the size of a single header in the object store,
|
||||
* LOGFS_MAX_OBJECTSIZE the size of the largest possible object, including
|
||||
* its header,
|
||||
* LOGFS_SEGMENT_RESERVE is the amount of space reserved for each segment for
|
||||
* its segment header and the padded space at the end when no further objects
|
||||
* fit.
|
||||
*/
|
||||
#define LOGFS_OBJECT_HEADERSIZE (0x1c)
|
||||
#define LOGFS_SEGMENT_HEADERSIZE (0x18)
|
||||
#define LOGFS_MAX_OBJECTSIZE (LOGFS_OBJECT_HEADERSIZE + LOGFS_BLOCKSIZE)
|
||||
#define LOGFS_SEGMENT_RESERVE \
|
||||
(LOGFS_SEGMENT_HEADERSIZE + LOGFS_MAX_OBJECTSIZE - 1)
|
||||
|
||||
/*
|
||||
* Segment types:
|
||||
* SEG_SUPER - Data or indirect block
|
||||
* SEG_JOURNAL - Inode
|
||||
* SEG_OSTORE - Dentry
|
||||
*/
|
||||
enum {
|
||||
SEG_SUPER = 0x01,
|
||||
SEG_JOURNAL = 0x02,
|
||||
SEG_OSTORE = 0x03,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_segment_header - per-segment header in the ostore
|
||||
*
|
||||
* @crc: crc32 of header (there is no data)
|
||||
* @pad: unused, must be 0
|
||||
* @type: segment type, see above
|
||||
* @level: GC level for all objects in this segment
|
||||
* @segno: segment number
|
||||
* @ec: erase count for this segment
|
||||
* @gec: global erase count at time of writing
|
||||
*/
|
||||
struct logfs_segment_header {
|
||||
__be32 crc;
|
||||
__be16 pad;
|
||||
__u8 type;
|
||||
__u8 level;
|
||||
__be32 segno;
|
||||
__be32 ec;
|
||||
__be64 gec;
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_segment_header, LOGFS_SEGMENT_HEADERSIZE);
|
||||
|
||||
#define LOGFS_FEATURES_INCOMPAT (0ull)
|
||||
#define LOGFS_FEATURES_RO_COMPAT (0ull)
|
||||
#define LOGFS_FEATURES_COMPAT (0ull)
|
||||
|
||||
/**
|
||||
* struct logfs_disk_super - on-medium superblock
|
||||
*
|
||||
* @ds_magic: magic number, must equal LOGFS_MAGIC
|
||||
* @ds_crc: crc32 of structure starting with the next field
|
||||
* @ds_ifile_levels: maximum number of levels for ifile
|
||||
* @ds_iblock_levels: maximum number of levels for regular files
|
||||
* @ds_data_levels: number of seperate levels for data
|
||||
* @pad0: reserved, must be 0
|
||||
* @ds_feature_incompat: incompatible filesystem features
|
||||
* @ds_feature_ro_compat: read-only compatible filesystem features
|
||||
* @ds_feature_compat: compatible filesystem features
|
||||
* @ds_flags: flags
|
||||
* @ds_segment_shift: log2 of segment size
|
||||
* @ds_block_shift: log2 of block size
|
||||
* @ds_write_shift: log2 of write size
|
||||
* @pad1: reserved, must be 0
|
||||
* @ds_journal_seg: segments used by primary journal
|
||||
* @ds_root_reserve: bytes reserved for the superuser
|
||||
* @ds_speed_reserve: bytes reserved to speed up GC
|
||||
* @ds_bad_seg_reserve: number of segments reserved to handle bad blocks
|
||||
* @pad2: reserved, must be 0
|
||||
* @pad3: reserved, must be 0
|
||||
*
|
||||
* Contains only read-only fields. Read-write fields like the amount of used
|
||||
* space is tracked in the dynamic superblock, which is stored in the journal.
|
||||
*/
|
||||
struct logfs_disk_super {
|
||||
struct logfs_segment_header ds_sh;
|
||||
__be64 ds_magic;
|
||||
|
||||
__be32 ds_crc;
|
||||
__u8 ds_ifile_levels;
|
||||
__u8 ds_iblock_levels;
|
||||
__u8 ds_data_levels;
|
||||
__u8 ds_segment_shift;
|
||||
__u8 ds_block_shift;
|
||||
__u8 ds_write_shift;
|
||||
__u8 pad0[6];
|
||||
|
||||
__be64 ds_filesystem_size;
|
||||
__be32 ds_segment_size;
|
||||
__be32 ds_bad_seg_reserve;
|
||||
|
||||
__be64 ds_feature_incompat;
|
||||
__be64 ds_feature_ro_compat;
|
||||
|
||||
__be64 ds_feature_compat;
|
||||
__be64 ds_feature_flags;
|
||||
|
||||
__be64 ds_root_reserve;
|
||||
__be64 ds_speed_reserve;
|
||||
|
||||
__be32 ds_journal_seg[LOGFS_JOURNAL_SEGS];
|
||||
|
||||
__be64 ds_super_ofs[2];
|
||||
__be64 pad3[8];
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_disk_super, 256);
|
||||
|
||||
/*
|
||||
* Object types:
|
||||
* OBJ_BLOCK - Data or indirect block
|
||||
* OBJ_INODE - Inode
|
||||
* OBJ_DENTRY - Dentry
|
||||
*/
|
||||
enum {
|
||||
OBJ_BLOCK = 0x04,
|
||||
OBJ_INODE = 0x05,
|
||||
OBJ_DENTRY = 0x06,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_object_header - per-object header in the ostore
|
||||
*
|
||||
* @crc: crc32 of header, excluding data_crc
|
||||
* @len: length of data
|
||||
* @type: object type, see above
|
||||
* @compr: compression type
|
||||
* @ino: inode number
|
||||
* @bix: block index
|
||||
* @data_crc: crc32 of payload
|
||||
*/
|
||||
struct logfs_object_header {
|
||||
__be32 crc;
|
||||
__be16 len;
|
||||
__u8 type;
|
||||
__u8 compr;
|
||||
__be64 ino;
|
||||
__be64 bix;
|
||||
__be32 data_crc;
|
||||
} __attribute__((packed));
|
||||
|
||||
SIZE_CHECK(logfs_object_header, LOGFS_OBJECT_HEADERSIZE);
|
||||
|
||||
/*
|
||||
* Reserved inode numbers:
|
||||
* LOGFS_INO_MASTER - master inode (for inode file)
|
||||
* LOGFS_INO_ROOT - root directory
|
||||
* LOGFS_INO_SEGFILE - per-segment used bytes and erase count
|
||||
*/
|
||||
enum {
|
||||
LOGFS_INO_MAPPING = 0x00,
|
||||
LOGFS_INO_MASTER = 0x01,
|
||||
LOGFS_INO_ROOT = 0x02,
|
||||
LOGFS_INO_SEGFILE = 0x03,
|
||||
LOGFS_RESERVED_INOS = 0x10,
|
||||
};
|
||||
|
||||
/*
|
||||
* Inode flags. High bits should never be written to the medium. They are
|
||||
* reserved for in-memory usage.
|
||||
* Low bits should either remain in sync with the corresponding FS_*_FL or
|
||||
* reuse slots that obviously don't make sense for logfs.
|
||||
*
|
||||
* LOGFS_IF_DIRTY Inode must be written back
|
||||
* LOGFS_IF_ZOMBIE Inode has been deleted
|
||||
* LOGFS_IF_STILLBORN -ENOSPC happened when creating inode
|
||||
*/
|
||||
#define LOGFS_IF_COMPRESSED 0x00000004 /* == FS_COMPR_FL */
|
||||
#define LOGFS_IF_DIRTY 0x20000000
|
||||
#define LOGFS_IF_ZOMBIE 0x40000000
|
||||
#define LOGFS_IF_STILLBORN 0x80000000
|
||||
|
||||
/* Flags available to chattr */
|
||||
#define LOGFS_FL_USER_VISIBLE (LOGFS_IF_COMPRESSED)
|
||||
#define LOGFS_FL_USER_MODIFIABLE (LOGFS_IF_COMPRESSED)
|
||||
/* Flags inherited from parent directory on file/directory creation */
|
||||
#define LOGFS_FL_INHERITED (LOGFS_IF_COMPRESSED)
|
||||
|
||||
/**
|
||||
* struct logfs_disk_inode - on-medium inode
|
||||
*
|
||||
* @di_mode: file mode
|
||||
* @di_pad: reserved, must be 0
|
||||
* @di_flags: inode flags, see above
|
||||
* @di_uid: user id
|
||||
* @di_gid: group id
|
||||
* @di_ctime: change time
|
||||
* @di_mtime: modify time
|
||||
* @di_refcount: reference count (aka nlink or link count)
|
||||
* @di_generation: inode generation, for nfs
|
||||
* @di_used_bytes: number of bytes used
|
||||
* @di_size: file size
|
||||
* @di_data: data pointers
|
||||
*/
|
||||
struct logfs_disk_inode {
|
||||
__be16 di_mode;
|
||||
__u8 di_height;
|
||||
__u8 di_pad;
|
||||
__be32 di_flags;
|
||||
__be32 di_uid;
|
||||
__be32 di_gid;
|
||||
|
||||
__be64 di_ctime;
|
||||
__be64 di_mtime;
|
||||
|
||||
__be64 di_atime;
|
||||
__be32 di_refcount;
|
||||
__be32 di_generation;
|
||||
|
||||
__be64 di_used_bytes;
|
||||
__be64 di_size;
|
||||
|
||||
__be64 di_data[LOGFS_EMBEDDED_FIELDS];
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_disk_inode, 200);
|
||||
|
||||
#define INODE_POINTER_OFS \
|
||||
(offsetof(struct logfs_disk_inode, di_data) / sizeof(__be64))
|
||||
#define INODE_USED_OFS \
|
||||
(offsetof(struct logfs_disk_inode, di_used_bytes) / sizeof(__be64))
|
||||
#define INODE_SIZE_OFS \
|
||||
(offsetof(struct logfs_disk_inode, di_size) / sizeof(__be64))
|
||||
#define INODE_HEIGHT_OFS (0)
|
||||
|
||||
/**
|
||||
* struct logfs_disk_dentry - on-medium dentry structure
|
||||
*
|
||||
* @ino: inode number
|
||||
* @namelen: length of file name
|
||||
* @type: file type, identical to bits 12..15 of mode
|
||||
* @name: file name
|
||||
*/
|
||||
/* FIXME: add 6 bytes of padding to remove the __packed */
|
||||
struct logfs_disk_dentry {
|
||||
__be64 ino;
|
||||
__be16 namelen;
|
||||
__u8 type;
|
||||
__u8 name[LOGFS_MAX_NAMELEN];
|
||||
} __attribute__((packed));
|
||||
|
||||
SIZE_CHECK(logfs_disk_dentry, 266);
|
||||
|
||||
#define RESERVED 0xffffffff
|
||||
#define BADSEG 0xffffffff
|
||||
/**
|
||||
* struct logfs_segment_entry - segment file entry
|
||||
*
|
||||
* @ec_level: erase count and level
|
||||
* @valid: number of valid bytes
|
||||
*
|
||||
* Segment file contains one entry for every segment. ec_level contains the
|
||||
* erasecount in the upper 28 bits and the level in the lower 4 bits. An
|
||||
* ec_level of BADSEG (-1) identifies bad segments. valid contains the number
|
||||
* of valid bytes or RESERVED (-1 again) if the segment is used for either the
|
||||
* superblock or the journal, or when the segment is bad.
|
||||
*/
|
||||
struct logfs_segment_entry {
|
||||
__be32 ec_level;
|
||||
__be32 valid;
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_segment_entry, 8);
|
||||
|
||||
/**
|
||||
* struct logfs_journal_header - header for journal entries (JEs)
|
||||
*
|
||||
* @h_crc: crc32 of journal entry
|
||||
* @h_len: length of compressed journal entry,
|
||||
* not including header
|
||||
* @h_datalen: length of uncompressed data
|
||||
* @h_type: JE type
|
||||
* @h_compr: compression type
|
||||
* @h_pad: reserved
|
||||
*/
|
||||
struct logfs_journal_header {
|
||||
__be32 h_crc;
|
||||
__be16 h_len;
|
||||
__be16 h_datalen;
|
||||
__be16 h_type;
|
||||
__u8 h_compr;
|
||||
__u8 h_pad[5];
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_journal_header, 16);
|
||||
|
||||
/*
|
||||
* Life expectency of data.
|
||||
* VIM_DEFAULT - default vim
|
||||
* VIM_SEGFILE - for segment file only - very short-living
|
||||
* VIM_GC - GC'd data - likely long-living
|
||||
*/
|
||||
enum logfs_vim {
|
||||
VIM_DEFAULT = 0,
|
||||
VIM_SEGFILE = 1,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct logfs_je_area - wbuf header
|
||||
*
|
||||
* @segno: segment number of area
|
||||
* @used_bytes: number of bytes already used
|
||||
* @gc_level: GC level
|
||||
* @vim: life expectancy of data
|
||||
*
|
||||
* "Areas" are segments currently being used for writing. There is at least
|
||||
* one area per GC level. Several may be used to seperate long-living from
|
||||
* short-living data. If an area with unknown vim is encountered, it can
|
||||
* simply be closed.
|
||||
* The write buffer immediately follow this header.
|
||||
*/
|
||||
struct logfs_je_area {
|
||||
__be32 segno;
|
||||
__be32 used_bytes;
|
||||
__u8 gc_level;
|
||||
__u8 vim;
|
||||
} __attribute__((packed));
|
||||
|
||||
SIZE_CHECK(logfs_je_area, 10);
|
||||
|
||||
#define MAX_JOURNAL_HEADER \
|
||||
(sizeof(struct logfs_journal_header) + sizeof(struct logfs_je_area))
|
||||
|
||||
/**
|
||||
* struct logfs_je_dynsb - dynamic superblock
|
||||
*
|
||||
* @ds_gec: global erase count
|
||||
* @ds_sweeper: current position of GC "sweeper"
|
||||
* @ds_rename_dir: source directory ino (see dir.c documentation)
|
||||
* @ds_rename_pos: position of source dd (see dir.c documentation)
|
||||
* @ds_victim_ino: victims of incomplete dir operation (see dir.c)
|
||||
* @ds_victim_ino: parent inode of victim (see dir.c)
|
||||
* @ds_used_bytes: number of used bytes
|
||||
*/
|
||||
struct logfs_je_dynsb {
|
||||
__be64 ds_gec;
|
||||
__be64 ds_sweeper;
|
||||
|
||||
__be64 ds_rename_dir;
|
||||
__be64 ds_rename_pos;
|
||||
|
||||
__be64 ds_victim_ino;
|
||||
__be64 ds_victim_parent; /* XXX */
|
||||
|
||||
__be64 ds_used_bytes;
|
||||
__be32 ds_generation;
|
||||
__be32 pad;
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_je_dynsb, 64);
|
||||
|
||||
/**
|
||||
* struct logfs_je_anchor - anchor of filesystem tree, aka master inode
|
||||
*
|
||||
* @da_size: size of inode file
|
||||
* @da_last_ino: last created inode
|
||||
* @da_used_bytes: number of bytes used
|
||||
* @da_data: data pointers
|
||||
*/
|
||||
struct logfs_je_anchor {
|
||||
__be64 da_size;
|
||||
__be64 da_last_ino;
|
||||
|
||||
__be64 da_used_bytes;
|
||||
u8 da_height;
|
||||
u8 pad[7];
|
||||
|
||||
__be64 da_data[LOGFS_EMBEDDED_FIELDS];
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_je_anchor, 168);
|
||||
|
||||
/**
|
||||
* struct logfs_je_spillout - spillout entry (from 1st to 2nd journal)
|
||||
*
|
||||
* @so_segment: segments used for 2nd journal
|
||||
*
|
||||
* Length of the array is given by h_len field in the header.
|
||||
*/
|
||||
struct logfs_je_spillout {
|
||||
__be64 so_segment[0];
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_je_spillout, 0);
|
||||
|
||||
/**
|
||||
* struct logfs_je_journal_ec - erase counts for all journal segments
|
||||
*
|
||||
* @ec: erase count
|
||||
*
|
||||
* Length of the array is given by h_len field in the header.
|
||||
*/
|
||||
struct logfs_je_journal_ec {
|
||||
__be32 ec[0];
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_je_journal_ec, 0);
|
||||
|
||||
/**
|
||||
* struct logfs_je_free_segments - list of free segmetns with erase count
|
||||
*/
|
||||
struct logfs_je_free_segments {
|
||||
__be32 segno;
|
||||
__be32 ec;
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_je_free_segments, 8);
|
||||
|
||||
/**
|
||||
* struct logfs_seg_alias - list of segment aliases
|
||||
*/
|
||||
struct logfs_seg_alias {
|
||||
__be32 old_segno;
|
||||
__be32 new_segno;
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_seg_alias, 8);
|
||||
|
||||
/**
|
||||
* struct logfs_obj_alias - list of object aliases
|
||||
*/
|
||||
struct logfs_obj_alias {
|
||||
__be64 ino;
|
||||
__be64 bix;
|
||||
__be64 val;
|
||||
u8 level;
|
||||
u8 pad[5];
|
||||
__be16 child_no;
|
||||
};
|
||||
|
||||
SIZE_CHECK(logfs_obj_alias, 32);
|
||||
|
||||
/**
|
||||
* Compression types.
|
||||
*
|
||||
* COMPR_NONE - uncompressed
|
||||
* COMPR_ZLIB - compressed with zlib
|
||||
*/
|
||||
enum {
|
||||
COMPR_NONE = 0,
|
||||
COMPR_ZLIB = 1,
|
||||
};
|
||||
|
||||
/*
|
||||
* Journal entries come in groups of 16. First group contains unique
|
||||
* entries, next groups contain one entry per level
|
||||
*
|
||||
* JE_FIRST - smallest possible journal entry number
|
||||
*
|
||||
* JEG_BASE - base group, containing unique entries
|
||||
* JE_COMMIT - commit entry, validates all previous entries
|
||||
* JE_DYNSB - dynamic superblock, anything that ought to be in the
|
||||
* superblock but cannot because it is read-write data
|
||||
* JE_ANCHOR - anchor aka master inode aka inode file's inode
|
||||
* JE_ERASECOUNT erasecounts for all journal segments
|
||||
* JE_SPILLOUT - unused
|
||||
* JE_SEG_ALIAS - aliases segments
|
||||
* JE_AREA - area description
|
||||
*
|
||||
* JE_LAST - largest possible journal entry number
|
||||
*/
|
||||
enum {
|
||||
JE_FIRST = 0x01,
|
||||
|
||||
JEG_BASE = 0x00,
|
||||
JE_COMMIT = 0x02,
|
||||
JE_DYNSB = 0x03,
|
||||
JE_ANCHOR = 0x04,
|
||||
JE_ERASECOUNT = 0x05,
|
||||
JE_SPILLOUT = 0x06,
|
||||
JE_OBJ_ALIAS = 0x0d,
|
||||
JE_AREA = 0x0e,
|
||||
|
||||
JE_LAST = 0x0e,
|
||||
};
|
||||
|
||||
#endif
|
2246
fs/logfs/readwrite.c
Normal file
2246
fs/logfs/readwrite.c
Normal file
File diff suppressed because it is too large
Load Diff
927
fs/logfs/segment.c
Normal file
927
fs/logfs/segment.c
Normal file
@ -0,0 +1,927 @@
|
||||
/*
|
||||
* fs/logfs/segment.c - Handling the Object Store
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*
|
||||
* Object store or ostore makes up the complete device with exception of
|
||||
* the superblock and journal areas. Apart from its own metadata it stores
|
||||
* three kinds of objects: inodes, dentries and blocks, both data and indirect.
|
||||
*/
|
||||
#include "logfs.h"
|
||||
|
||||
static int logfs_mark_segment_bad(struct super_block *sb, u32 segno)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct btree_head32 *head = &super->s_reserved_segments;
|
||||
int err;
|
||||
|
||||
err = btree_insert32(head, segno, (void *)1, GFP_NOFS);
|
||||
if (err)
|
||||
return err;
|
||||
logfs_super(sb)->s_bad_segments++;
|
||||
/* FIXME: write to journal */
|
||||
return 0;
|
||||
}
|
||||
|
||||
int logfs_erase_segment(struct super_block *sb, u32 segno, int ensure_erase)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
super->s_gec++;
|
||||
|
||||
return super->s_devops->erase(sb, (u64)segno << super->s_segshift,
|
||||
super->s_segsize, ensure_erase);
|
||||
}
|
||||
|
||||
static s64 logfs_get_free_bytes(struct logfs_area *area, size_t bytes)
|
||||
{
|
||||
s32 ofs;
|
||||
|
||||
logfs_open_area(area, bytes);
|
||||
|
||||
ofs = area->a_used_bytes;
|
||||
area->a_used_bytes += bytes;
|
||||
BUG_ON(area->a_used_bytes >= logfs_super(area->a_sb)->s_segsize);
|
||||
|
||||
return dev_ofs(area->a_sb, area->a_segno, ofs);
|
||||
}
|
||||
|
||||
static struct page *get_mapping_page(struct super_block *sb, pgoff_t index,
|
||||
int use_filler)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
filler_t *filler = super->s_devops->readpage;
|
||||
struct page *page;
|
||||
|
||||
BUG_ON(mapping_gfp_mask(mapping) & __GFP_FS);
|
||||
if (use_filler)
|
||||
page = read_cache_page(mapping, index, filler, sb);
|
||||
else {
|
||||
page = find_or_create_page(mapping, index, GFP_NOFS);
|
||||
unlock_page(page);
|
||||
}
|
||||
return page;
|
||||
}
|
||||
|
||||
void __logfs_buf_write(struct logfs_area *area, u64 ofs, void *buf, size_t len,
|
||||
int use_filler)
|
||||
{
|
||||
pgoff_t index = ofs >> PAGE_SHIFT;
|
||||
struct page *page;
|
||||
long offset = ofs & (PAGE_SIZE-1);
|
||||
long copylen;
|
||||
|
||||
/* Only logfs_wbuf_recover may use len==0 */
|
||||
BUG_ON(!len && !use_filler);
|
||||
do {
|
||||
copylen = min((ulong)len, PAGE_SIZE - offset);
|
||||
|
||||
page = get_mapping_page(area->a_sb, index, use_filler);
|
||||
SetPageUptodate(page);
|
||||
BUG_ON(!page); /* FIXME: reserve a pool */
|
||||
memcpy(page_address(page) + offset, buf, copylen);
|
||||
SetPagePrivate(page);
|
||||
page_cache_release(page);
|
||||
|
||||
buf += copylen;
|
||||
len -= copylen;
|
||||
offset = 0;
|
||||
index++;
|
||||
} while (len);
|
||||
}
|
||||
|
||||
/*
|
||||
* bdev_writeseg will write full pages. Memset the tail to prevent data leaks.
|
||||
*/
|
||||
static void pad_wbuf(struct logfs_area *area, int final)
|
||||
{
|
||||
struct super_block *sb = area->a_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct page *page;
|
||||
u64 ofs = dev_ofs(sb, area->a_segno, area->a_used_bytes);
|
||||
pgoff_t index = ofs >> PAGE_SHIFT;
|
||||
long offset = ofs & (PAGE_SIZE-1);
|
||||
u32 len = PAGE_SIZE - offset;
|
||||
|
||||
if (len == PAGE_SIZE) {
|
||||
/* The math in this function can surely use some love */
|
||||
len = 0;
|
||||
}
|
||||
if (len) {
|
||||
BUG_ON(area->a_used_bytes >= super->s_segsize);
|
||||
|
||||
page = get_mapping_page(area->a_sb, index, 0);
|
||||
BUG_ON(!page); /* FIXME: reserve a pool */
|
||||
memset(page_address(page) + offset, 0xff, len);
|
||||
SetPagePrivate(page);
|
||||
page_cache_release(page);
|
||||
}
|
||||
|
||||
if (!final)
|
||||
return;
|
||||
|
||||
area->a_used_bytes += len;
|
||||
for ( ; area->a_used_bytes < super->s_segsize;
|
||||
area->a_used_bytes += PAGE_SIZE) {
|
||||
/* Memset another page */
|
||||
index++;
|
||||
page = get_mapping_page(area->a_sb, index, 0);
|
||||
BUG_ON(!page); /* FIXME: reserve a pool */
|
||||
memset(page_address(page), 0xff, PAGE_SIZE);
|
||||
SetPagePrivate(page);
|
||||
page_cache_release(page);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* We have to be careful with the alias tree. Since lookup is done by bix,
|
||||
* it needs to be normalized, so 14, 15, 16, etc. all match when dealing with
|
||||
* indirect blocks. So always use it through accessor functions.
|
||||
*/
|
||||
static void *alias_tree_lookup(struct super_block *sb, u64 ino, u64 bix,
|
||||
level_t level)
|
||||
{
|
||||
struct btree_head128 *head = &logfs_super(sb)->s_object_alias_tree;
|
||||
pgoff_t index = logfs_pack_index(bix, level);
|
||||
|
||||
return btree_lookup128(head, ino, index);
|
||||
}
|
||||
|
||||
static int alias_tree_insert(struct super_block *sb, u64 ino, u64 bix,
|
||||
level_t level, void *val)
|
||||
{
|
||||
struct btree_head128 *head = &logfs_super(sb)->s_object_alias_tree;
|
||||
pgoff_t index = logfs_pack_index(bix, level);
|
||||
|
||||
return btree_insert128(head, ino, index, val, GFP_NOFS);
|
||||
}
|
||||
|
||||
static int btree_write_alias(struct super_block *sb, struct logfs_block *block,
|
||||
write_alias_t *write_one_alias)
|
||||
{
|
||||
struct object_alias_item *item;
|
||||
int err;
|
||||
|
||||
list_for_each_entry(item, &block->item_list, list) {
|
||||
err = write_alias_journal(sb, block->ino, block->bix,
|
||||
block->level, item->child_no, item->val);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static gc_level_t btree_block_level(struct logfs_block *block)
|
||||
{
|
||||
return expand_level(block->ino, block->level);
|
||||
}
|
||||
|
||||
static struct logfs_block_ops btree_block_ops = {
|
||||
.write_block = btree_write_block,
|
||||
.block_level = btree_block_level,
|
||||
.free_block = __free_block,
|
||||
.write_alias = btree_write_alias,
|
||||
};
|
||||
|
||||
int logfs_load_object_aliases(struct super_block *sb,
|
||||
struct logfs_obj_alias *oa, int count)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_block *block;
|
||||
struct object_alias_item *item;
|
||||
u64 ino, bix;
|
||||
level_t level;
|
||||
int i, err;
|
||||
|
||||
super->s_flags |= LOGFS_SB_FLAG_OBJ_ALIAS;
|
||||
count /= sizeof(*oa);
|
||||
for (i = 0; i < count; i++) {
|
||||
item = mempool_alloc(super->s_alias_pool, GFP_NOFS);
|
||||
if (!item)
|
||||
return -ENOMEM;
|
||||
memset(item, 0, sizeof(*item));
|
||||
|
||||
super->s_no_object_aliases++;
|
||||
item->val = oa[i].val;
|
||||
item->child_no = be16_to_cpu(oa[i].child_no);
|
||||
|
||||
ino = be64_to_cpu(oa[i].ino);
|
||||
bix = be64_to_cpu(oa[i].bix);
|
||||
level = LEVEL(oa[i].level);
|
||||
|
||||
log_aliases("logfs_load_object_aliases(%llx, %llx, %x, %x) %llx\n",
|
||||
ino, bix, level, item->child_no,
|
||||
be64_to_cpu(item->val));
|
||||
block = alias_tree_lookup(sb, ino, bix, level);
|
||||
if (!block) {
|
||||
block = __alloc_block(sb, ino, bix, level);
|
||||
block->ops = &btree_block_ops;
|
||||
err = alias_tree_insert(sb, ino, bix, level, block);
|
||||
BUG_ON(err); /* mempool empty */
|
||||
}
|
||||
if (test_and_set_bit(item->child_no, block->alias_map)) {
|
||||
printk(KERN_ERR"LogFS: Alias collision detected\n");
|
||||
return -EIO;
|
||||
}
|
||||
list_move_tail(&block->alias_list, &super->s_object_alias);
|
||||
list_add(&item->list, &block->item_list);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void kill_alias(void *_block, unsigned long ignore0,
|
||||
u64 ignore1, u64 ignore2, size_t ignore3)
|
||||
{
|
||||
struct logfs_block *block = _block;
|
||||
struct super_block *sb = block->sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct object_alias_item *item;
|
||||
|
||||
while (!list_empty(&block->item_list)) {
|
||||
item = list_entry(block->item_list.next, typeof(*item), list);
|
||||
list_del(&item->list);
|
||||
mempool_free(item, super->s_alias_pool);
|
||||
}
|
||||
block->ops->free_block(sb, block);
|
||||
}
|
||||
|
||||
static int obj_type(struct inode *inode, level_t level)
|
||||
{
|
||||
if (level == 0) {
|
||||
if (S_ISDIR(inode->i_mode))
|
||||
return OBJ_DENTRY;
|
||||
if (inode->i_ino == LOGFS_INO_MASTER)
|
||||
return OBJ_INODE;
|
||||
}
|
||||
return OBJ_BLOCK;
|
||||
}
|
||||
|
||||
static int obj_len(struct super_block *sb, int obj_type)
|
||||
{
|
||||
switch (obj_type) {
|
||||
case OBJ_DENTRY:
|
||||
return sizeof(struct logfs_disk_dentry);
|
||||
case OBJ_INODE:
|
||||
return sizeof(struct logfs_disk_inode);
|
||||
case OBJ_BLOCK:
|
||||
return sb->s_blocksize;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
}
|
||||
|
||||
static int __logfs_segment_write(struct inode *inode, void *buf,
|
||||
struct logfs_shadow *shadow, int type, int len, int compr)
|
||||
{
|
||||
struct logfs_area *area;
|
||||
struct super_block *sb = inode->i_sb;
|
||||
s64 ofs;
|
||||
struct logfs_object_header h;
|
||||
int acc_len;
|
||||
|
||||
if (shadow->gc_level == 0)
|
||||
acc_len = len;
|
||||
else
|
||||
acc_len = obj_len(sb, type);
|
||||
|
||||
area = get_area(sb, shadow->gc_level);
|
||||
ofs = logfs_get_free_bytes(area, len + LOGFS_OBJECT_HEADERSIZE);
|
||||
LOGFS_BUG_ON(ofs <= 0, sb);
|
||||
/*
|
||||
* Order is important. logfs_get_free_bytes(), by modifying the
|
||||
* segment file, may modify the content of the very page we're about
|
||||
* to write now. Which is fine, as long as the calculated crc and
|
||||
* written data still match. So do the modifications _before_
|
||||
* calculating the crc.
|
||||
*/
|
||||
|
||||
h.len = cpu_to_be16(len);
|
||||
h.type = type;
|
||||
h.compr = compr;
|
||||
h.ino = cpu_to_be64(inode->i_ino);
|
||||
h.bix = cpu_to_be64(shadow->bix);
|
||||
h.crc = logfs_crc32(&h, sizeof(h) - 4, 4);
|
||||
h.data_crc = logfs_crc32(buf, len, 0);
|
||||
|
||||
logfs_buf_write(area, ofs, &h, sizeof(h));
|
||||
logfs_buf_write(area, ofs + LOGFS_OBJECT_HEADERSIZE, buf, len);
|
||||
|
||||
shadow->new_ofs = ofs;
|
||||
shadow->new_len = acc_len + LOGFS_OBJECT_HEADERSIZE;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static s64 logfs_segment_write_compress(struct inode *inode, void *buf,
|
||||
struct logfs_shadow *shadow, int type, int len)
|
||||
{
|
||||
struct super_block *sb = inode->i_sb;
|
||||
void *compressor_buf = logfs_super(sb)->s_compressed_je;
|
||||
ssize_t compr_len;
|
||||
int ret;
|
||||
|
||||
mutex_lock(&logfs_super(sb)->s_journal_mutex);
|
||||
compr_len = logfs_compress(buf, compressor_buf, len, len);
|
||||
|
||||
if (compr_len >= 0) {
|
||||
ret = __logfs_segment_write(inode, compressor_buf, shadow,
|
||||
type, compr_len, COMPR_ZLIB);
|
||||
} else {
|
||||
ret = __logfs_segment_write(inode, buf, shadow, type, len,
|
||||
COMPR_NONE);
|
||||
}
|
||||
mutex_unlock(&logfs_super(sb)->s_journal_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* logfs_segment_write - write data block to object store
|
||||
* @inode: inode containing data
|
||||
*
|
||||
* Returns an errno or zero.
|
||||
*/
|
||||
int logfs_segment_write(struct inode *inode, struct page *page,
|
||||
struct logfs_shadow *shadow)
|
||||
{
|
||||
struct super_block *sb = inode->i_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int do_compress, type, len;
|
||||
int ret;
|
||||
void *buf;
|
||||
|
||||
super->s_flags |= LOGFS_SB_FLAG_DIRTY;
|
||||
BUG_ON(super->s_flags & LOGFS_SB_FLAG_SHUTDOWN);
|
||||
do_compress = logfs_inode(inode)->li_flags & LOGFS_IF_COMPRESSED;
|
||||
if (shadow->gc_level != 0) {
|
||||
/* temporarily disable compression for indirect blocks */
|
||||
do_compress = 0;
|
||||
}
|
||||
|
||||
type = obj_type(inode, shrink_level(shadow->gc_level));
|
||||
len = obj_len(sb, type);
|
||||
buf = kmap(page);
|
||||
if (do_compress)
|
||||
ret = logfs_segment_write_compress(inode, buf, shadow, type,
|
||||
len);
|
||||
else
|
||||
ret = __logfs_segment_write(inode, buf, shadow, type, len,
|
||||
COMPR_NONE);
|
||||
kunmap(page);
|
||||
|
||||
log_segment("logfs_segment_write(%llx, %llx, %x) %llx->%llx %x->%x\n",
|
||||
shadow->ino, shadow->bix, shadow->gc_level,
|
||||
shadow->old_ofs, shadow->new_ofs,
|
||||
shadow->old_len, shadow->new_len);
|
||||
/* this BUG_ON did catch a locking bug. useful */
|
||||
BUG_ON(!(shadow->new_ofs & (super->s_segsize - 1)));
|
||||
return ret;
|
||||
}
|
||||
|
||||
int wbuf_read(struct super_block *sb, u64 ofs, size_t len, void *buf)
|
||||
{
|
||||
pgoff_t index = ofs >> PAGE_SHIFT;
|
||||
struct page *page;
|
||||
long offset = ofs & (PAGE_SIZE-1);
|
||||
long copylen;
|
||||
|
||||
while (len) {
|
||||
copylen = min((ulong)len, PAGE_SIZE - offset);
|
||||
|
||||
page = get_mapping_page(sb, index, 1);
|
||||
if (IS_ERR(page))
|
||||
return PTR_ERR(page);
|
||||
memcpy(buf, page_address(page) + offset, copylen);
|
||||
page_cache_release(page);
|
||||
|
||||
buf += copylen;
|
||||
len -= copylen;
|
||||
offset = 0;
|
||||
index++;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* The "position" of indirect blocks is ambiguous. It can be the position
|
||||
* of any data block somewhere behind this indirect block. So we need to
|
||||
* normalize the positions through logfs_block_mask() before comparing.
|
||||
*/
|
||||
static int check_pos(struct super_block *sb, u64 pos1, u64 pos2, level_t level)
|
||||
{
|
||||
return (pos1 & logfs_block_mask(sb, level)) !=
|
||||
(pos2 & logfs_block_mask(sb, level));
|
||||
}
|
||||
|
||||
#if 0
|
||||
static int read_seg_header(struct super_block *sb, u64 ofs,
|
||||
struct logfs_segment_header *sh)
|
||||
{
|
||||
__be32 crc;
|
||||
int err;
|
||||
|
||||
err = wbuf_read(sb, ofs, sizeof(*sh), sh);
|
||||
if (err)
|
||||
return err;
|
||||
crc = logfs_crc32(sh, sizeof(*sh), 4);
|
||||
if (crc != sh->crc) {
|
||||
printk(KERN_ERR"LOGFS: header crc error at %llx: expected %x, "
|
||||
"got %x\n", ofs, be32_to_cpu(sh->crc),
|
||||
be32_to_cpu(crc));
|
||||
return -EIO;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static int read_obj_header(struct super_block *sb, u64 ofs,
|
||||
struct logfs_object_header *oh)
|
||||
{
|
||||
__be32 crc;
|
||||
int err;
|
||||
|
||||
err = wbuf_read(sb, ofs, sizeof(*oh), oh);
|
||||
if (err)
|
||||
return err;
|
||||
crc = logfs_crc32(oh, sizeof(*oh) - 4, 4);
|
||||
if (crc != oh->crc) {
|
||||
printk(KERN_ERR"LOGFS: header crc error at %llx: expected %x, "
|
||||
"got %x\n", ofs, be32_to_cpu(oh->crc),
|
||||
be32_to_cpu(crc));
|
||||
return -EIO;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void move_btree_to_page(struct inode *inode, struct page *page,
|
||||
__be64 *data)
|
||||
{
|
||||
struct super_block *sb = inode->i_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct btree_head128 *head = &super->s_object_alias_tree;
|
||||
struct logfs_block *block;
|
||||
struct object_alias_item *item, *next;
|
||||
|
||||
if (!(super->s_flags & LOGFS_SB_FLAG_OBJ_ALIAS))
|
||||
return;
|
||||
|
||||
block = btree_remove128(head, inode->i_ino, page->index);
|
||||
if (!block)
|
||||
return;
|
||||
|
||||
log_blockmove("move_btree_to_page(%llx, %llx, %x)\n",
|
||||
block->ino, block->bix, block->level);
|
||||
list_for_each_entry_safe(item, next, &block->item_list, list) {
|
||||
data[item->child_no] = item->val;
|
||||
list_del(&item->list);
|
||||
mempool_free(item, super->s_alias_pool);
|
||||
}
|
||||
block->page = page;
|
||||
SetPagePrivate(page);
|
||||
page->private = (unsigned long)block;
|
||||
block->ops = &indirect_block_ops;
|
||||
initialize_block_counters(page, block, data, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* This silences a false, yet annoying gcc warning. I hate it when my editor
|
||||
* jumps into bitops.h each time I recompile this file.
|
||||
* TODO: Complain to gcc folks about this and upgrade compiler.
|
||||
*/
|
||||
static unsigned long fnb(const unsigned long *addr,
|
||||
unsigned long size, unsigned long offset)
|
||||
{
|
||||
return find_next_bit(addr, size, offset);
|
||||
}
|
||||
|
||||
void move_page_to_btree(struct page *page)
|
||||
{
|
||||
struct logfs_block *block = logfs_block(page);
|
||||
struct super_block *sb = block->sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct object_alias_item *item;
|
||||
unsigned long pos;
|
||||
__be64 *child;
|
||||
int err;
|
||||
|
||||
if (super->s_flags & LOGFS_SB_FLAG_SHUTDOWN) {
|
||||
block->ops->free_block(sb, block);
|
||||
return;
|
||||
}
|
||||
log_blockmove("move_page_to_btree(%llx, %llx, %x)\n",
|
||||
block->ino, block->bix, block->level);
|
||||
super->s_flags |= LOGFS_SB_FLAG_OBJ_ALIAS;
|
||||
|
||||
for (pos = 0; ; pos++) {
|
||||
pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos);
|
||||
if (pos >= LOGFS_BLOCK_FACTOR)
|
||||
break;
|
||||
|
||||
item = mempool_alloc(super->s_alias_pool, GFP_NOFS);
|
||||
BUG_ON(!item); /* mempool empty */
|
||||
memset(item, 0, sizeof(*item));
|
||||
|
||||
child = kmap_atomic(page, KM_USER0);
|
||||
item->val = child[pos];
|
||||
kunmap_atomic(child, KM_USER0);
|
||||
item->child_no = pos;
|
||||
list_add(&item->list, &block->item_list);
|
||||
}
|
||||
block->page = NULL;
|
||||
ClearPagePrivate(page);
|
||||
page->private = 0;
|
||||
block->ops = &btree_block_ops;
|
||||
err = alias_tree_insert(block->sb, block->ino, block->bix, block->level,
|
||||
block);
|
||||
BUG_ON(err); /* mempool empty */
|
||||
ClearPageUptodate(page);
|
||||
}
|
||||
|
||||
static int __logfs_segment_read(struct inode *inode, void *buf,
|
||||
u64 ofs, u64 bix, level_t level)
|
||||
{
|
||||
struct super_block *sb = inode->i_sb;
|
||||
void *compressor_buf = logfs_super(sb)->s_compressed_je;
|
||||
struct logfs_object_header oh;
|
||||
__be32 crc;
|
||||
u16 len;
|
||||
int err, block_len;
|
||||
|
||||
block_len = obj_len(sb, obj_type(inode, level));
|
||||
err = read_obj_header(sb, ofs, &oh);
|
||||
if (err)
|
||||
goto out_err;
|
||||
|
||||
err = -EIO;
|
||||
if (be64_to_cpu(oh.ino) != inode->i_ino
|
||||
|| check_pos(sb, be64_to_cpu(oh.bix), bix, level)) {
|
||||
printk(KERN_ERR"LOGFS: (ino, bix) don't match at %llx: "
|
||||
"expected (%lx, %llx), got (%llx, %llx)\n",
|
||||
ofs, inode->i_ino, bix,
|
||||
be64_to_cpu(oh.ino), be64_to_cpu(oh.bix));
|
||||
goto out_err;
|
||||
}
|
||||
|
||||
len = be16_to_cpu(oh.len);
|
||||
|
||||
switch (oh.compr) {
|
||||
case COMPR_NONE:
|
||||
err = wbuf_read(sb, ofs + LOGFS_OBJECT_HEADERSIZE, len, buf);
|
||||
if (err)
|
||||
goto out_err;
|
||||
crc = logfs_crc32(buf, len, 0);
|
||||
if (crc != oh.data_crc) {
|
||||
printk(KERN_ERR"LOGFS: uncompressed data crc error at "
|
||||
"%llx: expected %x, got %x\n", ofs,
|
||||
be32_to_cpu(oh.data_crc),
|
||||
be32_to_cpu(crc));
|
||||
goto out_err;
|
||||
}
|
||||
break;
|
||||
case COMPR_ZLIB:
|
||||
mutex_lock(&logfs_super(sb)->s_journal_mutex);
|
||||
err = wbuf_read(sb, ofs + LOGFS_OBJECT_HEADERSIZE, len,
|
||||
compressor_buf);
|
||||
if (err) {
|
||||
mutex_unlock(&logfs_super(sb)->s_journal_mutex);
|
||||
goto out_err;
|
||||
}
|
||||
crc = logfs_crc32(compressor_buf, len, 0);
|
||||
if (crc != oh.data_crc) {
|
||||
printk(KERN_ERR"LOGFS: compressed data crc error at "
|
||||
"%llx: expected %x, got %x\n", ofs,
|
||||
be32_to_cpu(oh.data_crc),
|
||||
be32_to_cpu(crc));
|
||||
mutex_unlock(&logfs_super(sb)->s_journal_mutex);
|
||||
goto out_err;
|
||||
}
|
||||
err = logfs_uncompress(compressor_buf, buf, len, block_len);
|
||||
mutex_unlock(&logfs_super(sb)->s_journal_mutex);
|
||||
if (err) {
|
||||
printk(KERN_ERR"LOGFS: uncompress error at %llx\n", ofs);
|
||||
goto out_err;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
LOGFS_BUG(sb);
|
||||
err = -EIO;
|
||||
goto out_err;
|
||||
}
|
||||
return 0;
|
||||
|
||||
out_err:
|
||||
logfs_set_ro(sb);
|
||||
printk(KERN_ERR"LOGFS: device is read-only now\n");
|
||||
LOGFS_BUG(sb);
|
||||
return err;
|
||||
}
|
||||
|
||||
/**
|
||||
* logfs_segment_read - read data block from object store
|
||||
* @inode: inode containing data
|
||||
* @buf: data buffer
|
||||
* @ofs: physical data offset
|
||||
* @bix: block index
|
||||
* @level: block level
|
||||
*
|
||||
* Returns 0 on success or a negative errno.
|
||||
*/
|
||||
int logfs_segment_read(struct inode *inode, struct page *page,
|
||||
u64 ofs, u64 bix, level_t level)
|
||||
{
|
||||
int err;
|
||||
void *buf;
|
||||
|
||||
if (PageUptodate(page))
|
||||
return 0;
|
||||
|
||||
ofs &= ~LOGFS_FULLY_POPULATED;
|
||||
|
||||
buf = kmap(page);
|
||||
err = __logfs_segment_read(inode, buf, ofs, bix, level);
|
||||
if (!err) {
|
||||
move_btree_to_page(inode, page, buf);
|
||||
SetPageUptodate(page);
|
||||
}
|
||||
kunmap(page);
|
||||
log_segment("logfs_segment_read(%lx, %llx, %x) %llx (%d)\n",
|
||||
inode->i_ino, bix, level, ofs, err);
|
||||
return err;
|
||||
}
|
||||
|
||||
int logfs_segment_delete(struct inode *inode, struct logfs_shadow *shadow)
|
||||
{
|
||||
struct super_block *sb = inode->i_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_object_header h;
|
||||
u16 len;
|
||||
int err;
|
||||
|
||||
super->s_flags |= LOGFS_SB_FLAG_DIRTY;
|
||||
BUG_ON(super->s_flags & LOGFS_SB_FLAG_SHUTDOWN);
|
||||
BUG_ON(shadow->old_ofs & LOGFS_FULLY_POPULATED);
|
||||
if (!shadow->old_ofs)
|
||||
return 0;
|
||||
|
||||
log_segment("logfs_segment_delete(%llx, %llx, %x) %llx->%llx %x->%x\n",
|
||||
shadow->ino, shadow->bix, shadow->gc_level,
|
||||
shadow->old_ofs, shadow->new_ofs,
|
||||
shadow->old_len, shadow->new_len);
|
||||
err = read_obj_header(sb, shadow->old_ofs, &h);
|
||||
LOGFS_BUG_ON(err, sb);
|
||||
LOGFS_BUG_ON(be64_to_cpu(h.ino) != inode->i_ino, sb);
|
||||
LOGFS_BUG_ON(check_pos(sb, shadow->bix, be64_to_cpu(h.bix),
|
||||
shrink_level(shadow->gc_level)), sb);
|
||||
|
||||
if (shadow->gc_level == 0)
|
||||
len = be16_to_cpu(h.len);
|
||||
else
|
||||
len = obj_len(sb, h.type);
|
||||
shadow->old_len = len + sizeof(h);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void freeseg(struct super_block *sb, u32 segno)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping = super->s_mapping_inode->i_mapping;
|
||||
struct page *page;
|
||||
u64 ofs, start, end;
|
||||
|
||||
start = dev_ofs(sb, segno, 0);
|
||||
end = dev_ofs(sb, segno + 1, 0);
|
||||
for (ofs = start; ofs < end; ofs += PAGE_SIZE) {
|
||||
page = find_get_page(mapping, ofs >> PAGE_SHIFT);
|
||||
if (!page)
|
||||
continue;
|
||||
ClearPagePrivate(page);
|
||||
page_cache_release(page);
|
||||
}
|
||||
}
|
||||
|
||||
int logfs_open_area(struct logfs_area *area, size_t bytes)
|
||||
{
|
||||
struct super_block *sb = area->a_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int err, closed = 0;
|
||||
|
||||
if (area->a_is_open && area->a_used_bytes + bytes <= super->s_segsize)
|
||||
return 0;
|
||||
|
||||
if (area->a_is_open) {
|
||||
u64 ofs = dev_ofs(sb, area->a_segno, area->a_written_bytes);
|
||||
u32 len = super->s_segsize - area->a_written_bytes;
|
||||
|
||||
log_gc("logfs_close_area(%x)\n", area->a_segno);
|
||||
pad_wbuf(area, 1);
|
||||
super->s_devops->writeseg(area->a_sb, ofs, len);
|
||||
freeseg(sb, area->a_segno);
|
||||
closed = 1;
|
||||
}
|
||||
|
||||
area->a_used_bytes = 0;
|
||||
area->a_written_bytes = 0;
|
||||
again:
|
||||
area->a_ops->get_free_segment(area);
|
||||
area->a_ops->get_erase_count(area);
|
||||
|
||||
log_gc("logfs_open_area(%x, %x)\n", area->a_segno, area->a_level);
|
||||
err = area->a_ops->erase_segment(area);
|
||||
if (err) {
|
||||
printk(KERN_WARNING "LogFS: Error erasing segment %x\n",
|
||||
area->a_segno);
|
||||
logfs_mark_segment_bad(sb, area->a_segno);
|
||||
goto again;
|
||||
}
|
||||
area->a_is_open = 1;
|
||||
return closed;
|
||||
}
|
||||
|
||||
void logfs_sync_area(struct logfs_area *area)
|
||||
{
|
||||
struct super_block *sb = area->a_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
u64 ofs = dev_ofs(sb, area->a_segno, area->a_written_bytes);
|
||||
u32 len = (area->a_used_bytes - area->a_written_bytes);
|
||||
|
||||
if (super->s_writesize)
|
||||
len &= ~(super->s_writesize - 1);
|
||||
if (len == 0)
|
||||
return;
|
||||
pad_wbuf(area, 0);
|
||||
super->s_devops->writeseg(sb, ofs, len);
|
||||
area->a_written_bytes += len;
|
||||
}
|
||||
|
||||
void logfs_sync_segments(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int i;
|
||||
|
||||
for_each_area(i)
|
||||
logfs_sync_area(super->s_area[i]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Pick a free segment to be used for this area. Effectively takes a
|
||||
* candidate from the free list (not really a candidate anymore).
|
||||
*/
|
||||
static void ostore_get_free_segment(struct logfs_area *area)
|
||||
{
|
||||
struct super_block *sb = area->a_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
if (super->s_free_list.count == 0) {
|
||||
printk(KERN_ERR"LOGFS: ran out of free segments\n");
|
||||
LOGFS_BUG(sb);
|
||||
}
|
||||
|
||||
area->a_segno = get_best_cand(sb, &super->s_free_list, NULL);
|
||||
}
|
||||
|
||||
static void ostore_get_erase_count(struct logfs_area *area)
|
||||
{
|
||||
struct logfs_segment_entry se;
|
||||
u32 ec_level;
|
||||
|
||||
logfs_get_segment_entry(area->a_sb, area->a_segno, &se);
|
||||
BUG_ON(se.ec_level == cpu_to_be32(BADSEG) ||
|
||||
se.valid == cpu_to_be32(RESERVED));
|
||||
|
||||
ec_level = be32_to_cpu(se.ec_level);
|
||||
area->a_erase_count = (ec_level >> 4) + 1;
|
||||
}
|
||||
|
||||
static int ostore_erase_segment(struct logfs_area *area)
|
||||
{
|
||||
struct super_block *sb = area->a_sb;
|
||||
struct logfs_segment_header sh;
|
||||
u64 ofs;
|
||||
int err;
|
||||
|
||||
err = logfs_erase_segment(sb, area->a_segno, 0);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
sh.pad = 0;
|
||||
sh.type = SEG_OSTORE;
|
||||
sh.level = (__force u8)area->a_level;
|
||||
sh.segno = cpu_to_be32(area->a_segno);
|
||||
sh.ec = cpu_to_be32(area->a_erase_count);
|
||||
sh.gec = cpu_to_be64(logfs_super(sb)->s_gec);
|
||||
sh.crc = logfs_crc32(&sh, sizeof(sh), 4);
|
||||
|
||||
logfs_set_segment_erased(sb, area->a_segno, area->a_erase_count,
|
||||
area->a_level);
|
||||
|
||||
ofs = dev_ofs(sb, area->a_segno, 0);
|
||||
area->a_used_bytes = sizeof(sh);
|
||||
logfs_buf_write(area, ofs, &sh, sizeof(sh));
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct logfs_area_ops ostore_area_ops = {
|
||||
.get_free_segment = ostore_get_free_segment,
|
||||
.get_erase_count = ostore_get_erase_count,
|
||||
.erase_segment = ostore_erase_segment,
|
||||
};
|
||||
|
||||
static void free_area(struct logfs_area *area)
|
||||
{
|
||||
if (area)
|
||||
freeseg(area->a_sb, area->a_segno);
|
||||
kfree(area);
|
||||
}
|
||||
|
||||
static struct logfs_area *alloc_area(struct super_block *sb)
|
||||
{
|
||||
struct logfs_area *area;
|
||||
|
||||
area = kzalloc(sizeof(*area), GFP_KERNEL);
|
||||
if (!area)
|
||||
return NULL;
|
||||
|
||||
area->a_sb = sb;
|
||||
return area;
|
||||
}
|
||||
|
||||
static void map_invalidatepage(struct page *page, unsigned long l)
|
||||
{
|
||||
BUG();
|
||||
}
|
||||
|
||||
static int map_releasepage(struct page *page, gfp_t g)
|
||||
{
|
||||
/* Don't release these pages */
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct address_space_operations mapping_aops = {
|
||||
.invalidatepage = map_invalidatepage,
|
||||
.releasepage = map_releasepage,
|
||||
.set_page_dirty = __set_page_dirty_nobuffers,
|
||||
};
|
||||
|
||||
int logfs_init_mapping(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct address_space *mapping;
|
||||
struct inode *inode;
|
||||
|
||||
inode = logfs_new_meta_inode(sb, LOGFS_INO_MAPPING);
|
||||
if (IS_ERR(inode))
|
||||
return PTR_ERR(inode);
|
||||
super->s_mapping_inode = inode;
|
||||
mapping = inode->i_mapping;
|
||||
mapping->a_ops = &mapping_aops;
|
||||
/* Would it be possible to use __GFP_HIGHMEM as well? */
|
||||
mapping_set_gfp_mask(mapping, GFP_NOFS);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int logfs_init_areas(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int i = -1;
|
||||
|
||||
super->s_alias_pool = mempool_create_kmalloc_pool(600,
|
||||
sizeof(struct object_alias_item));
|
||||
if (!super->s_alias_pool)
|
||||
return -ENOMEM;
|
||||
|
||||
super->s_journal_area = alloc_area(sb);
|
||||
if (!super->s_journal_area)
|
||||
goto err;
|
||||
|
||||
for_each_area(i) {
|
||||
super->s_area[i] = alloc_area(sb);
|
||||
if (!super->s_area[i])
|
||||
goto err;
|
||||
super->s_area[i]->a_level = GC_LEVEL(i);
|
||||
super->s_area[i]->a_ops = &ostore_area_ops;
|
||||
}
|
||||
btree_init_mempool128(&super->s_object_alias_tree,
|
||||
super->s_btree_pool);
|
||||
return 0;
|
||||
|
||||
err:
|
||||
for (i--; i >= 0; i--)
|
||||
free_area(super->s_area[i]);
|
||||
free_area(super->s_journal_area);
|
||||
mempool_destroy(super->s_alias_pool);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
void logfs_cleanup_areas(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int i;
|
||||
|
||||
btree_grim_visitor128(&super->s_object_alias_tree, 0, kill_alias);
|
||||
for_each_area(i)
|
||||
free_area(super->s_area[i]);
|
||||
free_area(super->s_journal_area);
|
||||
destroy_meta_inode(super->s_mapping_inode);
|
||||
}
|
650
fs/logfs/super.c
Normal file
650
fs/logfs/super.c
Normal file
@ -0,0 +1,650 @@
|
||||
/*
|
||||
* fs/logfs/super.c
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
|
||||
*
|
||||
* Generally contains mount/umount code and also serves as a dump area for
|
||||
* any functions that don't fit elsewhere and neither justify a file of their
|
||||
* own.
|
||||
*/
|
||||
#include "logfs.h"
|
||||
#include <linux/bio.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/statfs.h>
|
||||
#include <linux/buffer_head.h>
|
||||
|
||||
static DEFINE_MUTEX(emergency_mutex);
|
||||
static struct page *emergency_page;
|
||||
|
||||
struct page *emergency_read_begin(struct address_space *mapping, pgoff_t index)
|
||||
{
|
||||
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
|
||||
struct page *page;
|
||||
int err;
|
||||
|
||||
page = read_cache_page(mapping, index, filler, NULL);
|
||||
if (page)
|
||||
return page;
|
||||
|
||||
/* No more pages available, switch to emergency page */
|
||||
printk(KERN_INFO"Logfs: Using emergency page\n");
|
||||
mutex_lock(&emergency_mutex);
|
||||
err = filler(NULL, emergency_page);
|
||||
if (err) {
|
||||
mutex_unlock(&emergency_mutex);
|
||||
printk(KERN_EMERG"Logfs: Error reading emergency page\n");
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
return emergency_page;
|
||||
}
|
||||
|
||||
void emergency_read_end(struct page *page)
|
||||
{
|
||||
if (page == emergency_page)
|
||||
mutex_unlock(&emergency_mutex);
|
||||
else
|
||||
page_cache_release(page);
|
||||
}
|
||||
|
||||
static void dump_segfile(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_segment_entry se;
|
||||
u32 segno;
|
||||
|
||||
for (segno = 0; segno < super->s_no_segs; segno++) {
|
||||
logfs_get_segment_entry(sb, segno, &se);
|
||||
printk("%3x: %6x %8x", segno, be32_to_cpu(se.ec_level),
|
||||
be32_to_cpu(se.valid));
|
||||
if (++segno < super->s_no_segs) {
|
||||
logfs_get_segment_entry(sb, segno, &se);
|
||||
printk(" %6x %8x", be32_to_cpu(se.ec_level),
|
||||
be32_to_cpu(se.valid));
|
||||
}
|
||||
if (++segno < super->s_no_segs) {
|
||||
logfs_get_segment_entry(sb, segno, &se);
|
||||
printk(" %6x %8x", be32_to_cpu(se.ec_level),
|
||||
be32_to_cpu(se.valid));
|
||||
}
|
||||
if (++segno < super->s_no_segs) {
|
||||
logfs_get_segment_entry(sb, segno, &se);
|
||||
printk(" %6x %8x", be32_to_cpu(se.ec_level),
|
||||
be32_to_cpu(se.valid));
|
||||
}
|
||||
printk("\n");
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* logfs_crash_dump - dump debug information to device
|
||||
*
|
||||
* The LogFS superblock only occupies part of a segment. This function will
|
||||
* write as much debug information as it can gather into the spare space.
|
||||
*/
|
||||
void logfs_crash_dump(struct super_block *sb)
|
||||
{
|
||||
dump_segfile(sb);
|
||||
}
|
||||
|
||||
/*
|
||||
* TODO: move to lib/string.c
|
||||
*/
|
||||
/**
|
||||
* memchr_inv - Find a character in an area of memory.
|
||||
* @s: The memory area
|
||||
* @c: The byte to search for
|
||||
* @n: The size of the area.
|
||||
*
|
||||
* returns the address of the first character other than @c, or %NULL
|
||||
* if the whole buffer contains just @c.
|
||||
*/
|
||||
void *memchr_inv(const void *s, int c, size_t n)
|
||||
{
|
||||
const unsigned char *p = s;
|
||||
while (n-- != 0)
|
||||
if ((unsigned char)c != *p++)
|
||||
return (void *)(p - 1);
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* FIXME: There should be a reserve for root, similar to ext2.
|
||||
*/
|
||||
int logfs_statfs(struct dentry *dentry, struct kstatfs *stats)
|
||||
{
|
||||
struct super_block *sb = dentry->d_sb;
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
stats->f_type = LOGFS_MAGIC_U32;
|
||||
stats->f_bsize = sb->s_blocksize;
|
||||
stats->f_blocks = super->s_size >> LOGFS_BLOCK_BITS >> 3;
|
||||
stats->f_bfree = super->s_free_bytes >> sb->s_blocksize_bits;
|
||||
stats->f_bavail = super->s_free_bytes >> sb->s_blocksize_bits;
|
||||
stats->f_files = 0;
|
||||
stats->f_ffree = 0;
|
||||
stats->f_namelen = LOGFS_MAX_NAMELEN;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int logfs_sb_set(struct super_block *sb, void *_super)
|
||||
{
|
||||
struct logfs_super *super = _super;
|
||||
|
||||
sb->s_fs_info = super;
|
||||
sb->s_mtd = super->s_mtd;
|
||||
sb->s_bdev = super->s_bdev;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int logfs_sb_test(struct super_block *sb, void *_super)
|
||||
{
|
||||
struct logfs_super *super = _super;
|
||||
struct mtd_info *mtd = super->s_mtd;
|
||||
|
||||
if (mtd && sb->s_mtd == mtd)
|
||||
return 1;
|
||||
if (super->s_bdev && sb->s_bdev == super->s_bdev)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void set_segment_header(struct logfs_segment_header *sh, u8 type,
|
||||
u8 level, u32 segno, u32 ec)
|
||||
{
|
||||
sh->pad = 0;
|
||||
sh->type = type;
|
||||
sh->level = level;
|
||||
sh->segno = cpu_to_be32(segno);
|
||||
sh->ec = cpu_to_be32(ec);
|
||||
sh->gec = cpu_to_be64(segno);
|
||||
sh->crc = logfs_crc32(sh, LOGFS_SEGMENT_HEADERSIZE, 4);
|
||||
}
|
||||
|
||||
static void logfs_write_ds(struct super_block *sb, struct logfs_disk_super *ds,
|
||||
u32 segno, u32 ec)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_segment_header *sh = &ds->ds_sh;
|
||||
int i;
|
||||
|
||||
memset(ds, 0, sizeof(*ds));
|
||||
set_segment_header(sh, SEG_SUPER, 0, segno, ec);
|
||||
|
||||
ds->ds_ifile_levels = super->s_ifile_levels;
|
||||
ds->ds_iblock_levels = super->s_iblock_levels;
|
||||
ds->ds_data_levels = super->s_data_levels; /* XXX: Remove */
|
||||
ds->ds_segment_shift = super->s_segshift;
|
||||
ds->ds_block_shift = sb->s_blocksize_bits;
|
||||
ds->ds_write_shift = super->s_writeshift;
|
||||
ds->ds_filesystem_size = cpu_to_be64(super->s_size);
|
||||
ds->ds_segment_size = cpu_to_be32(super->s_segsize);
|
||||
ds->ds_bad_seg_reserve = cpu_to_be32(super->s_bad_seg_reserve);
|
||||
ds->ds_feature_incompat = cpu_to_be64(super->s_feature_incompat);
|
||||
ds->ds_feature_ro_compat= cpu_to_be64(super->s_feature_ro_compat);
|
||||
ds->ds_feature_compat = cpu_to_be64(super->s_feature_compat);
|
||||
ds->ds_feature_flags = cpu_to_be64(super->s_feature_flags);
|
||||
ds->ds_root_reserve = cpu_to_be64(super->s_root_reserve);
|
||||
ds->ds_speed_reserve = cpu_to_be64(super->s_speed_reserve);
|
||||
journal_for_each(i)
|
||||
ds->ds_journal_seg[i] = cpu_to_be32(super->s_journal_seg[i]);
|
||||
ds->ds_magic = cpu_to_be64(LOGFS_MAGIC);
|
||||
ds->ds_crc = logfs_crc32(ds, sizeof(*ds),
|
||||
LOGFS_SEGMENT_HEADERSIZE + 12);
|
||||
}
|
||||
|
||||
static int write_one_sb(struct super_block *sb,
|
||||
struct page *(*find_sb)(struct super_block *sb, u64 *ofs))
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_disk_super *ds;
|
||||
struct logfs_segment_entry se;
|
||||
struct page *page;
|
||||
u64 ofs;
|
||||
u32 ec, segno;
|
||||
int err;
|
||||
|
||||
page = find_sb(sb, &ofs);
|
||||
if (!page)
|
||||
return -EIO;
|
||||
ds = page_address(page);
|
||||
segno = seg_no(sb, ofs);
|
||||
logfs_get_segment_entry(sb, segno, &se);
|
||||
ec = be32_to_cpu(se.ec_level) >> 4;
|
||||
ec++;
|
||||
logfs_set_segment_erased(sb, segno, ec, 0);
|
||||
logfs_write_ds(sb, ds, segno, ec);
|
||||
err = super->s_devops->write_sb(sb, page);
|
||||
page_cache_release(page);
|
||||
return err;
|
||||
}
|
||||
|
||||
int logfs_write_sb(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int err;
|
||||
|
||||
/* First superblock */
|
||||
err = write_one_sb(sb, super->s_devops->find_first_sb);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
/* Last superblock */
|
||||
err = write_one_sb(sb, super->s_devops->find_last_sb);
|
||||
if (err)
|
||||
return err;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ds_cmp(const void *ds0, const void *ds1)
|
||||
{
|
||||
size_t len = sizeof(struct logfs_disk_super);
|
||||
|
||||
/* We know the segment headers differ, so ignore them */
|
||||
len -= LOGFS_SEGMENT_HEADERSIZE;
|
||||
ds0 += LOGFS_SEGMENT_HEADERSIZE;
|
||||
ds1 += LOGFS_SEGMENT_HEADERSIZE;
|
||||
return memcmp(ds0, ds1, len);
|
||||
}
|
||||
|
||||
static int logfs_recover_sb(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct logfs_disk_super _ds0, *ds0 = &_ds0;
|
||||
struct logfs_disk_super _ds1, *ds1 = &_ds1;
|
||||
int err, valid0, valid1;
|
||||
|
||||
/* read first superblock */
|
||||
err = wbuf_read(sb, super->s_sb_ofs[0], sizeof(*ds0), ds0);
|
||||
if (err)
|
||||
return err;
|
||||
/* read last superblock */
|
||||
err = wbuf_read(sb, super->s_sb_ofs[1], sizeof(*ds1), ds1);
|
||||
if (err)
|
||||
return err;
|
||||
valid0 = logfs_check_ds(ds0) == 0;
|
||||
valid1 = logfs_check_ds(ds1) == 0;
|
||||
|
||||
if (!valid0 && valid1) {
|
||||
printk(KERN_INFO"First superblock is invalid - fixing.\n");
|
||||
return write_one_sb(sb, super->s_devops->find_first_sb);
|
||||
}
|
||||
if (valid0 && !valid1) {
|
||||
printk(KERN_INFO"Last superblock is invalid - fixing.\n");
|
||||
return write_one_sb(sb, super->s_devops->find_last_sb);
|
||||
}
|
||||
if (valid0 && valid1 && ds_cmp(ds0, ds1)) {
|
||||
printk(KERN_INFO"Superblocks don't match - fixing.\n");
|
||||
return write_one_sb(sb, super->s_devops->find_last_sb);
|
||||
}
|
||||
/* If neither is valid now, something's wrong. Didn't we properly
|
||||
* check them before?!? */
|
||||
BUG_ON(!valid0 && !valid1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int logfs_make_writeable(struct super_block *sb)
|
||||
{
|
||||
int err;
|
||||
|
||||
/* Repair any broken superblock copies */
|
||||
err = logfs_recover_sb(sb);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
/* Check areas for trailing unaccounted data */
|
||||
err = logfs_check_areas(sb);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = logfs_open_segfile(sb);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
/* Do one GC pass before any data gets dirtied */
|
||||
logfs_gc_pass(sb);
|
||||
|
||||
/* after all initializations are done, replay the journal
|
||||
* for rw-mounts, if necessary */
|
||||
err = logfs_replay_journal(sb);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int logfs_get_sb_final(struct super_block *sb, struct vfsmount *mnt)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct inode *rootdir;
|
||||
int err;
|
||||
|
||||
/* root dir */
|
||||
rootdir = logfs_iget(sb, LOGFS_INO_ROOT);
|
||||
if (IS_ERR(rootdir))
|
||||
goto fail;
|
||||
|
||||
sb->s_root = d_alloc_root(rootdir);
|
||||
if (!sb->s_root)
|
||||
goto fail;
|
||||
|
||||
super->s_erase_page = alloc_pages(GFP_KERNEL, 0);
|
||||
if (!super->s_erase_page)
|
||||
goto fail2;
|
||||
memset(page_address(super->s_erase_page), 0xFF, PAGE_SIZE);
|
||||
|
||||
/* FIXME: check for read-only mounts */
|
||||
err = logfs_make_writeable(sb);
|
||||
if (err)
|
||||
goto fail3;
|
||||
|
||||
log_super("LogFS: Finished mounting\n");
|
||||
simple_set_mnt(mnt, sb);
|
||||
return 0;
|
||||
|
||||
fail3:
|
||||
__free_page(super->s_erase_page);
|
||||
fail2:
|
||||
iput(rootdir);
|
||||
fail:
|
||||
iput(logfs_super(sb)->s_master_inode);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
int logfs_check_ds(struct logfs_disk_super *ds)
|
||||
{
|
||||
struct logfs_segment_header *sh = &ds->ds_sh;
|
||||
|
||||
if (ds->ds_magic != cpu_to_be64(LOGFS_MAGIC))
|
||||
return -EINVAL;
|
||||
if (sh->crc != logfs_crc32(sh, LOGFS_SEGMENT_HEADERSIZE, 4))
|
||||
return -EINVAL;
|
||||
if (ds->ds_crc != logfs_crc32(ds, sizeof(*ds),
|
||||
LOGFS_SEGMENT_HEADERSIZE + 12))
|
||||
return -EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct page *find_super_block(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct page *first, *last;
|
||||
|
||||
first = super->s_devops->find_first_sb(sb, &super->s_sb_ofs[0]);
|
||||
if (!first || IS_ERR(first))
|
||||
return NULL;
|
||||
last = super->s_devops->find_last_sb(sb, &super->s_sb_ofs[1]);
|
||||
if (!last || IS_ERR(first)) {
|
||||
page_cache_release(first);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!logfs_check_ds(page_address(first))) {
|
||||
page_cache_release(last);
|
||||
return first;
|
||||
}
|
||||
|
||||
/* First one didn't work, try the second superblock */
|
||||
if (!logfs_check_ds(page_address(last))) {
|
||||
page_cache_release(first);
|
||||
return last;
|
||||
}
|
||||
|
||||
/* Neither worked, sorry folks */
|
||||
page_cache_release(first);
|
||||
page_cache_release(last);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int __logfs_read_sb(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
struct page *page;
|
||||
struct logfs_disk_super *ds;
|
||||
int i;
|
||||
|
||||
page = find_super_block(sb);
|
||||
if (!page)
|
||||
return -EIO;
|
||||
|
||||
ds = page_address(page);
|
||||
super->s_size = be64_to_cpu(ds->ds_filesystem_size);
|
||||
super->s_root_reserve = be64_to_cpu(ds->ds_root_reserve);
|
||||
super->s_speed_reserve = be64_to_cpu(ds->ds_speed_reserve);
|
||||
super->s_bad_seg_reserve = be32_to_cpu(ds->ds_bad_seg_reserve);
|
||||
super->s_segsize = 1 << ds->ds_segment_shift;
|
||||
super->s_segmask = (1 << ds->ds_segment_shift) - 1;
|
||||
super->s_segshift = ds->ds_segment_shift;
|
||||
sb->s_blocksize = 1 << ds->ds_block_shift;
|
||||
sb->s_blocksize_bits = ds->ds_block_shift;
|
||||
super->s_writesize = 1 << ds->ds_write_shift;
|
||||
super->s_writeshift = ds->ds_write_shift;
|
||||
super->s_no_segs = super->s_size >> super->s_segshift;
|
||||
super->s_no_blocks = super->s_segsize >> sb->s_blocksize_bits;
|
||||
super->s_feature_incompat = be64_to_cpu(ds->ds_feature_incompat);
|
||||
super->s_feature_ro_compat = be64_to_cpu(ds->ds_feature_ro_compat);
|
||||
super->s_feature_compat = be64_to_cpu(ds->ds_feature_compat);
|
||||
super->s_feature_flags = be64_to_cpu(ds->ds_feature_flags);
|
||||
|
||||
journal_for_each(i)
|
||||
super->s_journal_seg[i] = be32_to_cpu(ds->ds_journal_seg[i]);
|
||||
|
||||
super->s_ifile_levels = ds->ds_ifile_levels;
|
||||
super->s_iblock_levels = ds->ds_iblock_levels;
|
||||
super->s_data_levels = ds->ds_data_levels;
|
||||
super->s_total_levels = super->s_ifile_levels + super->s_iblock_levels
|
||||
+ super->s_data_levels;
|
||||
page_cache_release(page);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int logfs_read_sb(struct super_block *sb, int read_only)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
int ret;
|
||||
|
||||
super->s_btree_pool = mempool_create(32, btree_alloc, btree_free, NULL);
|
||||
if (!super->s_btree_pool)
|
||||
return -ENOMEM;
|
||||
|
||||
btree_init_mempool64(&super->s_shadow_tree.new, super->s_btree_pool);
|
||||
btree_init_mempool64(&super->s_shadow_tree.old, super->s_btree_pool);
|
||||
|
||||
ret = logfs_init_mapping(sb);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = __logfs_read_sb(sb);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (super->s_feature_incompat & ~LOGFS_FEATURES_INCOMPAT)
|
||||
return -EIO;
|
||||
if ((super->s_feature_ro_compat & ~LOGFS_FEATURES_RO_COMPAT) &&
|
||||
!read_only)
|
||||
return -EIO;
|
||||
|
||||
mutex_init(&super->s_dirop_mutex);
|
||||
mutex_init(&super->s_object_alias_mutex);
|
||||
INIT_LIST_HEAD(&super->s_freeing_list);
|
||||
|
||||
ret = logfs_init_rw(sb);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = logfs_init_areas(sb);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = logfs_init_gc(sb);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = logfs_init_journal(sb);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void logfs_kill_sb(struct super_block *sb)
|
||||
{
|
||||
struct logfs_super *super = logfs_super(sb);
|
||||
|
||||
log_super("LogFS: Start unmounting\n");
|
||||
/* Alias entries slow down mount, so evict as many as possible */
|
||||
sync_filesystem(sb);
|
||||
logfs_write_anchor(sb);
|
||||
|
||||
/*
|
||||
* From this point on alias entries are simply dropped - and any
|
||||
* writes to the object store are considered bugs.
|
||||
*/
|
||||
super->s_flags |= LOGFS_SB_FLAG_SHUTDOWN;
|
||||
log_super("LogFS: Now in shutdown\n");
|
||||
generic_shutdown_super(sb);
|
||||
|
||||
BUG_ON(super->s_dirty_used_bytes || super->s_dirty_free_bytes);
|
||||
|
||||
logfs_cleanup_gc(sb);
|
||||
logfs_cleanup_journal(sb);
|
||||
logfs_cleanup_areas(sb);
|
||||
logfs_cleanup_rw(sb);
|
||||
if (super->s_erase_page)
|
||||
__free_page(super->s_erase_page);
|
||||
super->s_devops->put_device(sb);
|
||||
mempool_destroy(super->s_btree_pool);
|
||||
mempool_destroy(super->s_alias_pool);
|
||||
kfree(super);
|
||||
log_super("LogFS: Finished unmounting\n");
|
||||
}
|
||||
|
||||
int logfs_get_sb_device(struct file_system_type *type, int flags,
|
||||
struct mtd_info *mtd, struct block_device *bdev,
|
||||
const struct logfs_device_ops *devops, struct vfsmount *mnt)
|
||||
{
|
||||
struct logfs_super *super;
|
||||
struct super_block *sb;
|
||||
int err = -ENOMEM;
|
||||
static int mount_count;
|
||||
|
||||
log_super("LogFS: Start mount %x\n", mount_count++);
|
||||
super = kzalloc(sizeof(*super), GFP_KERNEL);
|
||||
if (!super)
|
||||
goto err0;
|
||||
|
||||
super->s_mtd = mtd;
|
||||
super->s_bdev = bdev;
|
||||
err = -EINVAL;
|
||||
sb = sget(type, logfs_sb_test, logfs_sb_set, super);
|
||||
if (IS_ERR(sb))
|
||||
goto err0;
|
||||
|
||||
if (sb->s_root) {
|
||||
/* Device is already in use */
|
||||
err = 0;
|
||||
simple_set_mnt(mnt, sb);
|
||||
goto err0;
|
||||
}
|
||||
|
||||
super->s_devops = devops;
|
||||
|
||||
/*
|
||||
* sb->s_maxbytes is limited to 8TB. On 32bit systems, the page cache
|
||||
* only covers 16TB and the upper 8TB are used for indirect blocks.
|
||||
* On 64bit system we could bump up the limit, but that would make
|
||||
* the filesystem incompatible with 32bit systems.
|
||||
*/
|
||||
sb->s_maxbytes = (1ull << 43) - 1;
|
||||
sb->s_op = &logfs_super_operations;
|
||||
sb->s_flags = flags | MS_NOATIME;
|
||||
|
||||
err = logfs_read_sb(sb, sb->s_flags & MS_RDONLY);
|
||||
if (err)
|
||||
goto err1;
|
||||
|
||||
sb->s_flags |= MS_ACTIVE;
|
||||
err = logfs_get_sb_final(sb, mnt);
|
||||
if (err)
|
||||
goto err1;
|
||||
return 0;
|
||||
|
||||
err1:
|
||||
up_write(&sb->s_umount);
|
||||
deactivate_super(sb);
|
||||
return err;
|
||||
err0:
|
||||
kfree(super);
|
||||
//devops->put_device(sb);
|
||||
return err;
|
||||
}
|
||||
|
||||
static int logfs_get_sb(struct file_system_type *type, int flags,
|
||||
const char *devname, void *data, struct vfsmount *mnt)
|
||||
{
|
||||
ulong mtdnr;
|
||||
|
||||
if (!devname)
|
||||
return logfs_get_sb_bdev(type, flags, devname, mnt);
|
||||
if (strncmp(devname, "mtd", 3))
|
||||
return logfs_get_sb_bdev(type, flags, devname, mnt);
|
||||
|
||||
{
|
||||
char *garbage;
|
||||
mtdnr = simple_strtoul(devname+3, &garbage, 0);
|
||||
if (*garbage)
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return logfs_get_sb_mtd(type, flags, mtdnr, mnt);
|
||||
}
|
||||
|
||||
static struct file_system_type logfs_fs_type = {
|
||||
.owner = THIS_MODULE,
|
||||
.name = "logfs",
|
||||
.get_sb = logfs_get_sb,
|
||||
.kill_sb = logfs_kill_sb,
|
||||
.fs_flags = FS_REQUIRES_DEV,
|
||||
|
||||
};
|
||||
|
||||
static int __init logfs_init(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
emergency_page = alloc_pages(GFP_KERNEL, 0);
|
||||
if (!emergency_page)
|
||||
return -ENOMEM;
|
||||
|
||||
ret = logfs_compr_init();
|
||||
if (ret)
|
||||
goto out1;
|
||||
|
||||
ret = logfs_init_inode_cache();
|
||||
if (ret)
|
||||
goto out2;
|
||||
|
||||
return register_filesystem(&logfs_fs_type);
|
||||
out2:
|
||||
logfs_compr_exit();
|
||||
out1:
|
||||
__free_pages(emergency_page, 0);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void __exit logfs_exit(void)
|
||||
{
|
||||
unregister_filesystem(&logfs_fs_type);
|
||||
logfs_destroy_inode_cache();
|
||||
logfs_compr_exit();
|
||||
__free_pages(emergency_page, 0);
|
||||
}
|
||||
|
||||
module_init(logfs_init);
|
||||
module_exit(logfs_exit);
|
||||
|
||||
MODULE_LICENSE("GPL v2");
|
||||
MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
|
||||
MODULE_DESCRIPTION("scalable flash filesystem");
|
109
include/linux/btree-128.h
Normal file
109
include/linux/btree-128.h
Normal file
@ -0,0 +1,109 @@
|
||||
extern struct btree_geo btree_geo128;
|
||||
|
||||
struct btree_head128 { struct btree_head h; };
|
||||
|
||||
static inline void btree_init_mempool128(struct btree_head128 *head,
|
||||
mempool_t *mempool)
|
||||
{
|
||||
btree_init_mempool(&head->h, mempool);
|
||||
}
|
||||
|
||||
static inline int btree_init128(struct btree_head128 *head)
|
||||
{
|
||||
return btree_init(&head->h);
|
||||
}
|
||||
|
||||
static inline void btree_destroy128(struct btree_head128 *head)
|
||||
{
|
||||
btree_destroy(&head->h);
|
||||
}
|
||||
|
||||
static inline void *btree_lookup128(struct btree_head128 *head, u64 k1, u64 k2)
|
||||
{
|
||||
u64 key[2] = {k1, k2};
|
||||
return btree_lookup(&head->h, &btree_geo128, (unsigned long *)&key);
|
||||
}
|
||||
|
||||
static inline void *btree_get_prev128(struct btree_head128 *head,
|
||||
u64 *k1, u64 *k2)
|
||||
{
|
||||
u64 key[2] = {*k1, *k2};
|
||||
void *val;
|
||||
|
||||
val = btree_get_prev(&head->h, &btree_geo128,
|
||||
(unsigned long *)&key);
|
||||
*k1 = key[0];
|
||||
*k2 = key[1];
|
||||
return val;
|
||||
}
|
||||
|
||||
static inline int btree_insert128(struct btree_head128 *head, u64 k1, u64 k2,
|
||||
void *val, gfp_t gfp)
|
||||
{
|
||||
u64 key[2] = {k1, k2};
|
||||
return btree_insert(&head->h, &btree_geo128,
|
||||
(unsigned long *)&key, val, gfp);
|
||||
}
|
||||
|
||||
static inline int btree_update128(struct btree_head128 *head, u64 k1, u64 k2,
|
||||
void *val)
|
||||
{
|
||||
u64 key[2] = {k1, k2};
|
||||
return btree_update(&head->h, &btree_geo128,
|
||||
(unsigned long *)&key, val);
|
||||
}
|
||||
|
||||
static inline void *btree_remove128(struct btree_head128 *head, u64 k1, u64 k2)
|
||||
{
|
||||
u64 key[2] = {k1, k2};
|
||||
return btree_remove(&head->h, &btree_geo128, (unsigned long *)&key);
|
||||
}
|
||||
|
||||
static inline void *btree_last128(struct btree_head128 *head, u64 *k1, u64 *k2)
|
||||
{
|
||||
u64 key[2];
|
||||
void *val;
|
||||
|
||||
val = btree_last(&head->h, &btree_geo128, (unsigned long *)&key[0]);
|
||||
if (val) {
|
||||
*k1 = key[0];
|
||||
*k2 = key[1];
|
||||
}
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
static inline int btree_merge128(struct btree_head128 *target,
|
||||
struct btree_head128 *victim,
|
||||
gfp_t gfp)
|
||||
{
|
||||
return btree_merge(&target->h, &victim->h, &btree_geo128, gfp);
|
||||
}
|
||||
|
||||
void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
|
||||
size_t index, void *__func);
|
||||
|
||||
typedef void (*visitor128_t)(void *elem, unsigned long opaque,
|
||||
u64 key1, u64 key2, size_t index);
|
||||
|
||||
static inline size_t btree_visitor128(struct btree_head128 *head,
|
||||
unsigned long opaque,
|
||||
visitor128_t func2)
|
||||
{
|
||||
return btree_visitor(&head->h, &btree_geo128, opaque,
|
||||
visitor128, func2);
|
||||
}
|
||||
|
||||
static inline size_t btree_grim_visitor128(struct btree_head128 *head,
|
||||
unsigned long opaque,
|
||||
visitor128_t func2)
|
||||
{
|
||||
return btree_grim_visitor(&head->h, &btree_geo128, opaque,
|
||||
visitor128, func2);
|
||||
}
|
||||
|
||||
#define btree_for_each_safe128(head, k1, k2, val) \
|
||||
for (val = btree_last128(head, &k1, &k2); \
|
||||
val; \
|
||||
val = btree_get_prev128(head, &k1, &k2))
|
||||
|
147
include/linux/btree-type.h
Normal file
147
include/linux/btree-type.h
Normal file
@ -0,0 +1,147 @@
|
||||
#define __BTREE_TP(pfx, type, sfx) pfx ## type ## sfx
|
||||
#define _BTREE_TP(pfx, type, sfx) __BTREE_TP(pfx, type, sfx)
|
||||
#define BTREE_TP(pfx) _BTREE_TP(pfx, BTREE_TYPE_SUFFIX,)
|
||||
#define BTREE_FN(name) BTREE_TP(btree_ ## name)
|
||||
#define BTREE_TYPE_HEAD BTREE_TP(struct btree_head)
|
||||
#define VISITOR_FN BTREE_TP(visitor)
|
||||
#define VISITOR_FN_T _BTREE_TP(visitor, BTREE_TYPE_SUFFIX, _t)
|
||||
|
||||
BTREE_TYPE_HEAD {
|
||||
struct btree_head h;
|
||||
};
|
||||
|
||||
static inline void BTREE_FN(init_mempool)(BTREE_TYPE_HEAD *head,
|
||||
mempool_t *mempool)
|
||||
{
|
||||
btree_init_mempool(&head->h, mempool);
|
||||
}
|
||||
|
||||
static inline int BTREE_FN(init)(BTREE_TYPE_HEAD *head)
|
||||
{
|
||||
return btree_init(&head->h);
|
||||
}
|
||||
|
||||
static inline void BTREE_FN(destroy)(BTREE_TYPE_HEAD *head)
|
||||
{
|
||||
btree_destroy(&head->h);
|
||||
}
|
||||
|
||||
static inline int BTREE_FN(merge)(BTREE_TYPE_HEAD *target,
|
||||
BTREE_TYPE_HEAD *victim,
|
||||
gfp_t gfp)
|
||||
{
|
||||
return btree_merge(&target->h, &victim->h, BTREE_TYPE_GEO, gfp);
|
||||
}
|
||||
|
||||
#if (BITS_PER_LONG > BTREE_TYPE_BITS)
|
||||
static inline void *BTREE_FN(lookup)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key)
|
||||
{
|
||||
unsigned long _key = key;
|
||||
return btree_lookup(&head->h, BTREE_TYPE_GEO, &_key);
|
||||
}
|
||||
|
||||
static inline int BTREE_FN(insert)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key,
|
||||
void *val, gfp_t gfp)
|
||||
{
|
||||
unsigned long _key = key;
|
||||
return btree_insert(&head->h, BTREE_TYPE_GEO, &_key, val, gfp);
|
||||
}
|
||||
|
||||
static inline int BTREE_FN(update)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key,
|
||||
void *val)
|
||||
{
|
||||
unsigned long _key = key;
|
||||
return btree_update(&head->h, BTREE_TYPE_GEO, &_key, val);
|
||||
}
|
||||
|
||||
static inline void *BTREE_FN(remove)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key)
|
||||
{
|
||||
unsigned long _key = key;
|
||||
return btree_remove(&head->h, BTREE_TYPE_GEO, &_key);
|
||||
}
|
||||
|
||||
static inline void *BTREE_FN(last)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE *key)
|
||||
{
|
||||
unsigned long _key;
|
||||
void *val = btree_last(&head->h, BTREE_TYPE_GEO, &_key);
|
||||
if (val)
|
||||
*key = _key;
|
||||
return val;
|
||||
}
|
||||
|
||||
static inline void *BTREE_FN(get_prev)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE *key)
|
||||
{
|
||||
unsigned long _key = *key;
|
||||
void *val = btree_get_prev(&head->h, BTREE_TYPE_GEO, &_key);
|
||||
if (val)
|
||||
*key = _key;
|
||||
return val;
|
||||
}
|
||||
#else
|
||||
static inline void *BTREE_FN(lookup)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key)
|
||||
{
|
||||
return btree_lookup(&head->h, BTREE_TYPE_GEO, (unsigned long *)&key);
|
||||
}
|
||||
|
||||
static inline int BTREE_FN(insert)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key,
|
||||
void *val, gfp_t gfp)
|
||||
{
|
||||
return btree_insert(&head->h, BTREE_TYPE_GEO, (unsigned long *)&key,
|
||||
val, gfp);
|
||||
}
|
||||
|
||||
static inline int BTREE_FN(update)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key,
|
||||
void *val)
|
||||
{
|
||||
return btree_update(&head->h, BTREE_TYPE_GEO, (unsigned long *)&key, val);
|
||||
}
|
||||
|
||||
static inline void *BTREE_FN(remove)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE key)
|
||||
{
|
||||
return btree_remove(&head->h, BTREE_TYPE_GEO, (unsigned long *)&key);
|
||||
}
|
||||
|
||||
static inline void *BTREE_FN(last)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE *key)
|
||||
{
|
||||
return btree_last(&head->h, BTREE_TYPE_GEO, (unsigned long *)key);
|
||||
}
|
||||
|
||||
static inline void *BTREE_FN(get_prev)(BTREE_TYPE_HEAD *head, BTREE_KEYTYPE *key)
|
||||
{
|
||||
return btree_get_prev(&head->h, BTREE_TYPE_GEO, (unsigned long *)key);
|
||||
}
|
||||
#endif
|
||||
|
||||
void VISITOR_FN(void *elem, unsigned long opaque, unsigned long *key,
|
||||
size_t index, void *__func);
|
||||
|
||||
typedef void (*VISITOR_FN_T)(void *elem, unsigned long opaque,
|
||||
BTREE_KEYTYPE key, size_t index);
|
||||
|
||||
static inline size_t BTREE_FN(visitor)(BTREE_TYPE_HEAD *head,
|
||||
unsigned long opaque,
|
||||
VISITOR_FN_T func2)
|
||||
{
|
||||
return btree_visitor(&head->h, BTREE_TYPE_GEO, opaque,
|
||||
visitorl, func2);
|
||||
}
|
||||
|
||||
static inline size_t BTREE_FN(grim_visitor)(BTREE_TYPE_HEAD *head,
|
||||
unsigned long opaque,
|
||||
VISITOR_FN_T func2)
|
||||
{
|
||||
return btree_grim_visitor(&head->h, BTREE_TYPE_GEO, opaque,
|
||||
visitorl, func2);
|
||||
}
|
||||
|
||||
#undef VISITOR_FN
|
||||
#undef VISITOR_FN_T
|
||||
#undef __BTREE_TP
|
||||
#undef _BTREE_TP
|
||||
#undef BTREE_TP
|
||||
#undef BTREE_FN
|
||||
#undef BTREE_TYPE_HEAD
|
||||
#undef BTREE_TYPE_SUFFIX
|
||||
#undef BTREE_TYPE_GEO
|
||||
#undef BTREE_KEYTYPE
|
||||
#undef BTREE_TYPE_BITS
|
243
include/linux/btree.h
Normal file
243
include/linux/btree.h
Normal file
@ -0,0 +1,243 @@
|
||||
#ifndef BTREE_H
|
||||
#define BTREE_H
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/mempool.h>
|
||||
|
||||
/**
|
||||
* DOC: B+Tree basics
|
||||
*
|
||||
* A B+Tree is a data structure for looking up arbitrary (currently allowing
|
||||
* unsigned long, u32, u64 and 2 * u64) keys into pointers. The data structure
|
||||
* is described at http://en.wikipedia.org/wiki/B-tree, we currently do not
|
||||
* use binary search to find the key on lookups.
|
||||
*
|
||||
* Each B+Tree consists of a head, that contains bookkeeping information and
|
||||
* a variable number (starting with zero) nodes. Each node contains the keys
|
||||
* and pointers to sub-nodes, or, for leaf nodes, the keys and values for the
|
||||
* tree entries.
|
||||
*
|
||||
* Each node in this implementation has the following layout:
|
||||
* [key1, key2, ..., keyN] [val1, val2, ..., valN]
|
||||
*
|
||||
* Each key here is an array of unsigned longs, geo->no_longs in total. The
|
||||
* number of keys and values (N) is geo->no_pairs.
|
||||
*/
|
||||
|
||||
/**
|
||||
* struct btree_head - btree head
|
||||
*
|
||||
* @node: the first node in the tree
|
||||
* @mempool: mempool used for node allocations
|
||||
* @height: current of the tree
|
||||
*/
|
||||
struct btree_head {
|
||||
unsigned long *node;
|
||||
mempool_t *mempool;
|
||||
int height;
|
||||
};
|
||||
|
||||
/* btree geometry */
|
||||
struct btree_geo;
|
||||
|
||||
/**
|
||||
* btree_alloc - allocate function for the mempool
|
||||
* @gfp_mask: gfp mask for the allocation
|
||||
* @pool_data: unused
|
||||
*/
|
||||
void *btree_alloc(gfp_t gfp_mask, void *pool_data);
|
||||
|
||||
/**
|
||||
* btree_free - free function for the mempool
|
||||
* @element: the element to free
|
||||
* @pool_data: unused
|
||||
*/
|
||||
void btree_free(void *element, void *pool_data);
|
||||
|
||||
/**
|
||||
* btree_init_mempool - initialise a btree with given mempool
|
||||
*
|
||||
* @head: the btree head to initialise
|
||||
* @mempool: the mempool to use
|
||||
*
|
||||
* When this function is used, there is no need to destroy
|
||||
* the mempool.
|
||||
*/
|
||||
void btree_init_mempool(struct btree_head *head, mempool_t *mempool);
|
||||
|
||||
/**
|
||||
* btree_init - initialise a btree
|
||||
*
|
||||
* @head: the btree head to initialise
|
||||
*
|
||||
* This function allocates the memory pool that the
|
||||
* btree needs. Returns zero or a negative error code
|
||||
* (-%ENOMEM) when memory allocation fails.
|
||||
*
|
||||
*/
|
||||
int __must_check btree_init(struct btree_head *head);
|
||||
|
||||
/**
|
||||
* btree_destroy - destroy mempool
|
||||
*
|
||||
* @head: the btree head to destroy
|
||||
*
|
||||
* This function destroys the internal memory pool, use only
|
||||
* when using btree_init(), not with btree_init_mempool().
|
||||
*/
|
||||
void btree_destroy(struct btree_head *head);
|
||||
|
||||
/**
|
||||
* btree_lookup - look up a key in the btree
|
||||
*
|
||||
* @head: the btree to look in
|
||||
* @geo: the btree geometry
|
||||
* @key: the key to look up
|
||||
*
|
||||
* This function returns the value for the given key, or %NULL.
|
||||
*/
|
||||
void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key);
|
||||
|
||||
/**
|
||||
* btree_insert - insert an entry into the btree
|
||||
*
|
||||
* @head: the btree to add to
|
||||
* @geo: the btree geometry
|
||||
* @key: the key to add (must not already be present)
|
||||
* @val: the value to add (must not be %NULL)
|
||||
* @gfp: allocation flags for node allocations
|
||||
*
|
||||
* This function returns 0 if the item could be added, or an
|
||||
* error code if it failed (may fail due to memory pressure).
|
||||
*/
|
||||
int __must_check btree_insert(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key, void *val, gfp_t gfp);
|
||||
/**
|
||||
* btree_update - update an entry in the btree
|
||||
*
|
||||
* @head: the btree to update
|
||||
* @geo: the btree geometry
|
||||
* @key: the key to update
|
||||
* @val: the value to change it to (must not be %NULL)
|
||||
*
|
||||
* This function returns 0 if the update was successful, or
|
||||
* -%ENOENT if the key could not be found.
|
||||
*/
|
||||
int btree_update(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key, void *val);
|
||||
/**
|
||||
* btree_remove - remove an entry from the btree
|
||||
*
|
||||
* @head: the btree to update
|
||||
* @geo: the btree geometry
|
||||
* @key: the key to remove
|
||||
*
|
||||
* This function returns the removed entry, or %NULL if the key
|
||||
* could not be found.
|
||||
*/
|
||||
void *btree_remove(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key);
|
||||
|
||||
/**
|
||||
* btree_merge - merge two btrees
|
||||
*
|
||||
* @target: the tree that gets all the entries
|
||||
* @victim: the tree that gets merged into @target
|
||||
* @geo: the btree geometry
|
||||
* @gfp: allocation flags
|
||||
*
|
||||
* The two trees @target and @victim may not contain the same keys,
|
||||
* that is a bug and triggers a BUG(). This function returns zero
|
||||
* if the trees were merged successfully, and may return a failure
|
||||
* when memory allocation fails, in which case both trees might have
|
||||
* been partially merged, i.e. some entries have been moved from
|
||||
* @victim to @target.
|
||||
*/
|
||||
int btree_merge(struct btree_head *target, struct btree_head *victim,
|
||||
struct btree_geo *geo, gfp_t gfp);
|
||||
|
||||
/**
|
||||
* btree_last - get last entry in btree
|
||||
*
|
||||
* @head: btree head
|
||||
* @geo: btree geometry
|
||||
* @key: last key
|
||||
*
|
||||
* Returns the last entry in the btree, and sets @key to the key
|
||||
* of that entry; returns NULL if the tree is empty, in that case
|
||||
* key is not changed.
|
||||
*/
|
||||
void *btree_last(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key);
|
||||
|
||||
/**
|
||||
* btree_get_prev - get previous entry
|
||||
*
|
||||
* @head: btree head
|
||||
* @geo: btree geometry
|
||||
* @key: pointer to key
|
||||
*
|
||||
* The function returns the next item right before the value pointed to by
|
||||
* @key, and updates @key with its key, or returns %NULL when there is no
|
||||
* entry with a key smaller than the given key.
|
||||
*/
|
||||
void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key);
|
||||
|
||||
|
||||
/* internal use, use btree_visitor{l,32,64,128} */
|
||||
size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long opaque,
|
||||
void (*func)(void *elem, unsigned long opaque,
|
||||
unsigned long *key, size_t index,
|
||||
void *func2),
|
||||
void *func2);
|
||||
|
||||
/* internal use, use btree_grim_visitor{l,32,64,128} */
|
||||
size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long opaque,
|
||||
void (*func)(void *elem, unsigned long opaque,
|
||||
unsigned long *key,
|
||||
size_t index, void *func2),
|
||||
void *func2);
|
||||
|
||||
|
||||
#include <linux/btree-128.h>
|
||||
|
||||
extern struct btree_geo btree_geo32;
|
||||
#define BTREE_TYPE_SUFFIX l
|
||||
#define BTREE_TYPE_BITS BITS_PER_LONG
|
||||
#define BTREE_TYPE_GEO &btree_geo32
|
||||
#define BTREE_KEYTYPE unsigned long
|
||||
#include <linux/btree-type.h>
|
||||
|
||||
#define btree_for_each_safel(head, key, val) \
|
||||
for (val = btree_lastl(head, &key); \
|
||||
val; \
|
||||
val = btree_get_prevl(head, &key))
|
||||
|
||||
#define BTREE_TYPE_SUFFIX 32
|
||||
#define BTREE_TYPE_BITS 32
|
||||
#define BTREE_TYPE_GEO &btree_geo32
|
||||
#define BTREE_KEYTYPE u32
|
||||
#include <linux/btree-type.h>
|
||||
|
||||
#define btree_for_each_safe32(head, key, val) \
|
||||
for (val = btree_last32(head, &key); \
|
||||
val; \
|
||||
val = btree_get_prev32(head, &key))
|
||||
|
||||
extern struct btree_geo btree_geo64;
|
||||
#define BTREE_TYPE_SUFFIX 64
|
||||
#define BTREE_TYPE_BITS 64
|
||||
#define BTREE_TYPE_GEO &btree_geo64
|
||||
#define BTREE_KEYTYPE u64
|
||||
#include <linux/btree-type.h>
|
||||
|
||||
#define btree_for_each_safe64(head, key, val) \
|
||||
for (val = btree_last64(head, &key); \
|
||||
val; \
|
||||
val = btree_get_prev64(head, &key))
|
||||
|
||||
#endif
|
@ -163,6 +163,9 @@ config TEXTSEARCH_FSM
|
||||
config LIST_SORT
|
||||
boolean
|
||||
|
||||
config BTREE
|
||||
boolean
|
||||
|
||||
config HAS_IOMEM
|
||||
boolean
|
||||
depends on !NO_IOMEM
|
||||
|
@ -42,6 +42,7 @@ obj-$(CONFIG_GENERIC_FIND_LAST_BIT) += find_last_bit.o
|
||||
obj-$(CONFIG_GENERIC_HWEIGHT) += hweight.o
|
||||
obj-$(CONFIG_LIST_SORT) += list_sort.o
|
||||
obj-$(CONFIG_LOCK_KERNEL) += kernel_lock.o
|
||||
obj-$(CONFIG_BTREE) += btree.o
|
||||
obj-$(CONFIG_DEBUG_PREEMPT) += smp_processor_id.o
|
||||
obj-$(CONFIG_DEBUG_LIST) += list_debug.o
|
||||
obj-$(CONFIG_DEBUG_OBJECTS) += debugobjects.o
|
||||
|
797
lib/btree.c
Normal file
797
lib/btree.c
Normal file
@ -0,0 +1,797 @@
|
||||
/*
|
||||
* lib/btree.c - Simple In-memory B+Tree
|
||||
*
|
||||
* As should be obvious for Linux kernel code, license is GPLv2
|
||||
*
|
||||
* Copyright (c) 2007-2008 Joern Engel <joern@logfs.org>
|
||||
* Bits and pieces stolen from Peter Zijlstra's code, which is
|
||||
* Copyright 2007, Red Hat Inc. Peter Zijlstra <pzijlstr@redhat.com>
|
||||
* GPLv2
|
||||
*
|
||||
* see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
|
||||
*
|
||||
* A relatively simple B+Tree implementation. I have written it as a learning
|
||||
* excercise to understand how B+Trees work. Turned out to be useful as well.
|
||||
*
|
||||
* B+Trees can be used similar to Linux radix trees (which don't have anything
|
||||
* in common with textbook radix trees, beware). Prerequisite for them working
|
||||
* well is that access to a random tree node is much faster than a large number
|
||||
* of operations within each node.
|
||||
*
|
||||
* Disks have fulfilled the prerequisite for a long time. More recently DRAM
|
||||
* has gained similar properties, as memory access times, when measured in cpu
|
||||
* cycles, have increased. Cacheline sizes have increased as well, which also
|
||||
* helps B+Trees.
|
||||
*
|
||||
* Compared to radix trees, B+Trees are more efficient when dealing with a
|
||||
* sparsely populated address space. Between 25% and 50% of the memory is
|
||||
* occupied with valid pointers. When densely populated, radix trees contain
|
||||
* ~98% pointers - hard to beat. Very sparse radix trees contain only ~2%
|
||||
* pointers.
|
||||
*
|
||||
* This particular implementation stores pointers identified by a long value.
|
||||
* Storing NULL pointers is illegal, lookup will return NULL when no entry
|
||||
* was found.
|
||||
*
|
||||
* A tricks was used that is not commonly found in textbooks. The lowest
|
||||
* values are to the right, not to the left. All used slots within a node
|
||||
* are on the left, all unused slots contain NUL values. Most operations
|
||||
* simply loop once over all slots and terminate on the first NUL.
|
||||
*/
|
||||
|
||||
#include <linux/btree.h>
|
||||
#include <linux/cache.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define NODESIZE MAX(L1_CACHE_BYTES, 128)
|
||||
|
||||
struct btree_geo {
|
||||
int keylen;
|
||||
int no_pairs;
|
||||
int no_longs;
|
||||
};
|
||||
|
||||
struct btree_geo btree_geo32 = {
|
||||
.keylen = 1,
|
||||
.no_pairs = NODESIZE / sizeof(long) / 2,
|
||||
.no_longs = NODESIZE / sizeof(long) / 2,
|
||||
};
|
||||
EXPORT_SYMBOL_GPL(btree_geo32);
|
||||
|
||||
#define LONG_PER_U64 (64 / BITS_PER_LONG)
|
||||
struct btree_geo btree_geo64 = {
|
||||
.keylen = LONG_PER_U64,
|
||||
.no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
|
||||
.no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
|
||||
};
|
||||
EXPORT_SYMBOL_GPL(btree_geo64);
|
||||
|
||||
struct btree_geo btree_geo128 = {
|
||||
.keylen = 2 * LONG_PER_U64,
|
||||
.no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
|
||||
.no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
|
||||
};
|
||||
EXPORT_SYMBOL_GPL(btree_geo128);
|
||||
|
||||
static struct kmem_cache *btree_cachep;
|
||||
|
||||
void *btree_alloc(gfp_t gfp_mask, void *pool_data)
|
||||
{
|
||||
return kmem_cache_alloc(btree_cachep, gfp_mask);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_alloc);
|
||||
|
||||
void btree_free(void *element, void *pool_data)
|
||||
{
|
||||
kmem_cache_free(btree_cachep, element);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_free);
|
||||
|
||||
static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
|
||||
{
|
||||
unsigned long *node;
|
||||
|
||||
node = mempool_alloc(head->mempool, gfp);
|
||||
memset(node, 0, NODESIZE);
|
||||
return node;
|
||||
}
|
||||
|
||||
static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < n; i++) {
|
||||
if (l1[i] < l2[i])
|
||||
return -1;
|
||||
if (l1[i] > l2[i])
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
|
||||
size_t n)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
dest[i] = src[i];
|
||||
return dest;
|
||||
}
|
||||
|
||||
static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
|
||||
{
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
s[i] = c;
|
||||
return s;
|
||||
}
|
||||
|
||||
static void dec_key(struct btree_geo *geo, unsigned long *key)
|
||||
{
|
||||
unsigned long val;
|
||||
int i;
|
||||
|
||||
for (i = geo->keylen - 1; i >= 0; i--) {
|
||||
val = key[i];
|
||||
key[i] = val - 1;
|
||||
if (val)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
|
||||
{
|
||||
return &node[n * geo->keylen];
|
||||
}
|
||||
|
||||
static void *bval(struct btree_geo *geo, unsigned long *node, int n)
|
||||
{
|
||||
return (void *)node[geo->no_longs + n];
|
||||
}
|
||||
|
||||
static void setkey(struct btree_geo *geo, unsigned long *node, int n,
|
||||
unsigned long *key)
|
||||
{
|
||||
longcpy(bkey(geo, node, n), key, geo->keylen);
|
||||
}
|
||||
|
||||
static void setval(struct btree_geo *geo, unsigned long *node, int n,
|
||||
void *val)
|
||||
{
|
||||
node[geo->no_longs + n] = (unsigned long) val;
|
||||
}
|
||||
|
||||
static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
|
||||
{
|
||||
longset(bkey(geo, node, n), 0, geo->keylen);
|
||||
node[geo->no_longs + n] = 0;
|
||||
}
|
||||
|
||||
static inline void __btree_init(struct btree_head *head)
|
||||
{
|
||||
head->node = NULL;
|
||||
head->height = 0;
|
||||
}
|
||||
|
||||
void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
|
||||
{
|
||||
__btree_init(head);
|
||||
head->mempool = mempool;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_init_mempool);
|
||||
|
||||
int btree_init(struct btree_head *head)
|
||||
{
|
||||
__btree_init(head);
|
||||
head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
|
||||
if (!head->mempool)
|
||||
return -ENOMEM;
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_init);
|
||||
|
||||
void btree_destroy(struct btree_head *head)
|
||||
{
|
||||
mempool_destroy(head->mempool);
|
||||
head->mempool = NULL;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_destroy);
|
||||
|
||||
void *btree_last(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key)
|
||||
{
|
||||
int height = head->height;
|
||||
unsigned long *node = head->node;
|
||||
|
||||
if (height == 0)
|
||||
return NULL;
|
||||
|
||||
for ( ; height > 1; height--)
|
||||
node = bval(geo, node, 0);
|
||||
|
||||
longcpy(key, bkey(geo, node, 0), geo->keylen);
|
||||
return bval(geo, node, 0);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_last);
|
||||
|
||||
static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
|
||||
unsigned long *key)
|
||||
{
|
||||
return longcmp(bkey(geo, node, pos), key, geo->keylen);
|
||||
}
|
||||
|
||||
static int keyzero(struct btree_geo *geo, unsigned long *key)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < geo->keylen; i++)
|
||||
if (key[i])
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key)
|
||||
{
|
||||
int i, height = head->height;
|
||||
unsigned long *node = head->node;
|
||||
|
||||
if (height == 0)
|
||||
return NULL;
|
||||
|
||||
for ( ; height > 1; height--) {
|
||||
for (i = 0; i < geo->no_pairs; i++)
|
||||
if (keycmp(geo, node, i, key) <= 0)
|
||||
break;
|
||||
if (i == geo->no_pairs)
|
||||
return NULL;
|
||||
node = bval(geo, node, i);
|
||||
if (!node)
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!node)
|
||||
return NULL;
|
||||
|
||||
for (i = 0; i < geo->no_pairs; i++)
|
||||
if (keycmp(geo, node, i, key) == 0)
|
||||
return bval(geo, node, i);
|
||||
return NULL;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_lookup);
|
||||
|
||||
int btree_update(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key, void *val)
|
||||
{
|
||||
int i, height = head->height;
|
||||
unsigned long *node = head->node;
|
||||
|
||||
if (height == 0)
|
||||
return -ENOENT;
|
||||
|
||||
for ( ; height > 1; height--) {
|
||||
for (i = 0; i < geo->no_pairs; i++)
|
||||
if (keycmp(geo, node, i, key) <= 0)
|
||||
break;
|
||||
if (i == geo->no_pairs)
|
||||
return -ENOENT;
|
||||
node = bval(geo, node, i);
|
||||
if (!node)
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
if (!node)
|
||||
return -ENOENT;
|
||||
|
||||
for (i = 0; i < geo->no_pairs; i++)
|
||||
if (keycmp(geo, node, i, key) == 0) {
|
||||
setval(geo, node, i, val);
|
||||
return 0;
|
||||
}
|
||||
return -ENOENT;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_update);
|
||||
|
||||
/*
|
||||
* Usually this function is quite similar to normal lookup. But the key of
|
||||
* a parent node may be smaller than the smallest key of all its siblings.
|
||||
* In such a case we cannot just return NULL, as we have only proven that no
|
||||
* key smaller than __key, but larger than this parent key exists.
|
||||
* So we set __key to the parent key and retry. We have to use the smallest
|
||||
* such parent key, which is the last parent key we encountered.
|
||||
*/
|
||||
void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *__key)
|
||||
{
|
||||
int i, height;
|
||||
unsigned long *node, *oldnode;
|
||||
unsigned long *retry_key = NULL, key[geo->keylen];
|
||||
|
||||
if (keyzero(geo, __key))
|
||||
return NULL;
|
||||
|
||||
if (head->height == 0)
|
||||
return NULL;
|
||||
retry:
|
||||
longcpy(key, __key, geo->keylen);
|
||||
dec_key(geo, key);
|
||||
|
||||
node = head->node;
|
||||
for (height = head->height ; height > 1; height--) {
|
||||
for (i = 0; i < geo->no_pairs; i++)
|
||||
if (keycmp(geo, node, i, key) <= 0)
|
||||
break;
|
||||
if (i == geo->no_pairs)
|
||||
goto miss;
|
||||
oldnode = node;
|
||||
node = bval(geo, node, i);
|
||||
if (!node)
|
||||
goto miss;
|
||||
retry_key = bkey(geo, oldnode, i);
|
||||
}
|
||||
|
||||
if (!node)
|
||||
goto miss;
|
||||
|
||||
for (i = 0; i < geo->no_pairs; i++) {
|
||||
if (keycmp(geo, node, i, key) <= 0) {
|
||||
if (bval(geo, node, i)) {
|
||||
longcpy(__key, bkey(geo, node, i), geo->keylen);
|
||||
return bval(geo, node, i);
|
||||
} else
|
||||
goto miss;
|
||||
}
|
||||
}
|
||||
miss:
|
||||
if (retry_key) {
|
||||
__key = retry_key;
|
||||
retry_key = NULL;
|
||||
goto retry;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int getpos(struct btree_geo *geo, unsigned long *node,
|
||||
unsigned long *key)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < geo->no_pairs; i++) {
|
||||
if (keycmp(geo, node, i, key) <= 0)
|
||||
break;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
static int getfill(struct btree_geo *geo, unsigned long *node, int start)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = start; i < geo->no_pairs; i++)
|
||||
if (!bval(geo, node, i))
|
||||
break;
|
||||
return i;
|
||||
}
|
||||
|
||||
/*
|
||||
* locate the correct leaf node in the btree
|
||||
*/
|
||||
static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key, int level)
|
||||
{
|
||||
unsigned long *node = head->node;
|
||||
int i, height;
|
||||
|
||||
for (height = head->height; height > level; height--) {
|
||||
for (i = 0; i < geo->no_pairs; i++)
|
||||
if (keycmp(geo, node, i, key) <= 0)
|
||||
break;
|
||||
|
||||
if ((i == geo->no_pairs) || !bval(geo, node, i)) {
|
||||
/* right-most key is too large, update it */
|
||||
/* FIXME: If the right-most key on higher levels is
|
||||
* always zero, this wouldn't be necessary. */
|
||||
i--;
|
||||
setkey(geo, node, i, key);
|
||||
}
|
||||
BUG_ON(i < 0);
|
||||
node = bval(geo, node, i);
|
||||
}
|
||||
BUG_ON(!node);
|
||||
return node;
|
||||
}
|
||||
|
||||
static int btree_grow(struct btree_head *head, struct btree_geo *geo,
|
||||
gfp_t gfp)
|
||||
{
|
||||
unsigned long *node;
|
||||
int fill;
|
||||
|
||||
node = btree_node_alloc(head, gfp);
|
||||
if (!node)
|
||||
return -ENOMEM;
|
||||
if (head->node) {
|
||||
fill = getfill(geo, head->node, 0);
|
||||
setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
|
||||
setval(geo, node, 0, head->node);
|
||||
}
|
||||
head->node = node;
|
||||
head->height++;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
|
||||
{
|
||||
unsigned long *node;
|
||||
int fill;
|
||||
|
||||
if (head->height <= 1)
|
||||
return;
|
||||
|
||||
node = head->node;
|
||||
fill = getfill(geo, node, 0);
|
||||
BUG_ON(fill > 1);
|
||||
head->node = bval(geo, node, 0);
|
||||
head->height--;
|
||||
mempool_free(node, head->mempool);
|
||||
}
|
||||
|
||||
static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key, void *val, int level,
|
||||
gfp_t gfp)
|
||||
{
|
||||
unsigned long *node;
|
||||
int i, pos, fill, err;
|
||||
|
||||
BUG_ON(!val);
|
||||
if (head->height < level) {
|
||||
err = btree_grow(head, geo, gfp);
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
|
||||
retry:
|
||||
node = find_level(head, geo, key, level);
|
||||
pos = getpos(geo, node, key);
|
||||
fill = getfill(geo, node, pos);
|
||||
/* two identical keys are not allowed */
|
||||
BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
|
||||
|
||||
if (fill == geo->no_pairs) {
|
||||
/* need to split node */
|
||||
unsigned long *new;
|
||||
|
||||
new = btree_node_alloc(head, gfp);
|
||||
if (!new)
|
||||
return -ENOMEM;
|
||||
err = btree_insert_level(head, geo,
|
||||
bkey(geo, node, fill / 2 - 1),
|
||||
new, level + 1, gfp);
|
||||
if (err) {
|
||||
mempool_free(new, head->mempool);
|
||||
return err;
|
||||
}
|
||||
for (i = 0; i < fill / 2; i++) {
|
||||
setkey(geo, new, i, bkey(geo, node, i));
|
||||
setval(geo, new, i, bval(geo, node, i));
|
||||
setkey(geo, node, i, bkey(geo, node, i + fill / 2));
|
||||
setval(geo, node, i, bval(geo, node, i + fill / 2));
|
||||
clearpair(geo, node, i + fill / 2);
|
||||
}
|
||||
if (fill & 1) {
|
||||
setkey(geo, node, i, bkey(geo, node, fill - 1));
|
||||
setval(geo, node, i, bval(geo, node, fill - 1));
|
||||
clearpair(geo, node, fill - 1);
|
||||
}
|
||||
goto retry;
|
||||
}
|
||||
BUG_ON(fill >= geo->no_pairs);
|
||||
|
||||
/* shift and insert */
|
||||
for (i = fill; i > pos; i--) {
|
||||
setkey(geo, node, i, bkey(geo, node, i - 1));
|
||||
setval(geo, node, i, bval(geo, node, i - 1));
|
||||
}
|
||||
setkey(geo, node, pos, key);
|
||||
setval(geo, node, pos, val);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int btree_insert(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key, void *val, gfp_t gfp)
|
||||
{
|
||||
return btree_insert_level(head, geo, key, val, 1, gfp);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_insert);
|
||||
|
||||
static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key, int level);
|
||||
static void merge(struct btree_head *head, struct btree_geo *geo, int level,
|
||||
unsigned long *left, int lfill,
|
||||
unsigned long *right, int rfill,
|
||||
unsigned long *parent, int lpos)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < rfill; i++) {
|
||||
/* Move all keys to the left */
|
||||
setkey(geo, left, lfill + i, bkey(geo, right, i));
|
||||
setval(geo, left, lfill + i, bval(geo, right, i));
|
||||
}
|
||||
/* Exchange left and right child in parent */
|
||||
setval(geo, parent, lpos, right);
|
||||
setval(geo, parent, lpos + 1, left);
|
||||
/* Remove left (formerly right) child from parent */
|
||||
btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
|
||||
mempool_free(right, head->mempool);
|
||||
}
|
||||
|
||||
static void rebalance(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key, int level, unsigned long *child, int fill)
|
||||
{
|
||||
unsigned long *parent, *left = NULL, *right = NULL;
|
||||
int i, no_left, no_right;
|
||||
|
||||
if (fill == 0) {
|
||||
/* Because we don't steal entries from a neigbour, this case
|
||||
* can happen. Parent node contains a single child, this
|
||||
* node, so merging with a sibling never happens.
|
||||
*/
|
||||
btree_remove_level(head, geo, key, level + 1);
|
||||
mempool_free(child, head->mempool);
|
||||
return;
|
||||
}
|
||||
|
||||
parent = find_level(head, geo, key, level + 1);
|
||||
i = getpos(geo, parent, key);
|
||||
BUG_ON(bval(geo, parent, i) != child);
|
||||
|
||||
if (i > 0) {
|
||||
left = bval(geo, parent, i - 1);
|
||||
no_left = getfill(geo, left, 0);
|
||||
if (fill + no_left <= geo->no_pairs) {
|
||||
merge(head, geo, level,
|
||||
left, no_left,
|
||||
child, fill,
|
||||
parent, i - 1);
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (i + 1 < getfill(geo, parent, i)) {
|
||||
right = bval(geo, parent, i + 1);
|
||||
no_right = getfill(geo, right, 0);
|
||||
if (fill + no_right <= geo->no_pairs) {
|
||||
merge(head, geo, level,
|
||||
child, fill,
|
||||
right, no_right,
|
||||
parent, i);
|
||||
return;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* We could also try to steal one entry from the left or right
|
||||
* neighbor. By not doing so we changed the invariant from
|
||||
* "all nodes are at least half full" to "no two neighboring
|
||||
* nodes can be merged". Which means that the average fill of
|
||||
* all nodes is still half or better.
|
||||
*/
|
||||
}
|
||||
|
||||
static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key, int level)
|
||||
{
|
||||
unsigned long *node;
|
||||
int i, pos, fill;
|
||||
void *ret;
|
||||
|
||||
if (level > head->height) {
|
||||
/* we recursed all the way up */
|
||||
head->height = 0;
|
||||
head->node = NULL;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
node = find_level(head, geo, key, level);
|
||||
pos = getpos(geo, node, key);
|
||||
fill = getfill(geo, node, pos);
|
||||
if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
|
||||
return NULL;
|
||||
ret = bval(geo, node, pos);
|
||||
|
||||
/* remove and shift */
|
||||
for (i = pos; i < fill - 1; i++) {
|
||||
setkey(geo, node, i, bkey(geo, node, i + 1));
|
||||
setval(geo, node, i, bval(geo, node, i + 1));
|
||||
}
|
||||
clearpair(geo, node, fill - 1);
|
||||
|
||||
if (fill - 1 < geo->no_pairs / 2) {
|
||||
if (level < head->height)
|
||||
rebalance(head, geo, key, level, node, fill - 1);
|
||||
else if (fill - 1 == 1)
|
||||
btree_shrink(head, geo);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void *btree_remove(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *key)
|
||||
{
|
||||
if (head->height == 0)
|
||||
return NULL;
|
||||
|
||||
return btree_remove_level(head, geo, key, 1);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_remove);
|
||||
|
||||
int btree_merge(struct btree_head *target, struct btree_head *victim,
|
||||
struct btree_geo *geo, gfp_t gfp)
|
||||
{
|
||||
unsigned long key[geo->keylen];
|
||||
unsigned long dup[geo->keylen];
|
||||
void *val;
|
||||
int err;
|
||||
|
||||
BUG_ON(target == victim);
|
||||
|
||||
if (!(target->node)) {
|
||||
/* target is empty, just copy fields over */
|
||||
target->node = victim->node;
|
||||
target->height = victim->height;
|
||||
__btree_init(victim);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* TODO: This needs some optimizations. Currently we do three tree
|
||||
* walks to remove a single object from the victim.
|
||||
*/
|
||||
for (;;) {
|
||||
if (!btree_last(victim, geo, key))
|
||||
break;
|
||||
val = btree_lookup(victim, geo, key);
|
||||
err = btree_insert(target, geo, key, val, gfp);
|
||||
if (err)
|
||||
return err;
|
||||
/* We must make a copy of the key, as the original will get
|
||||
* mangled inside btree_remove. */
|
||||
longcpy(dup, key, geo->keylen);
|
||||
btree_remove(victim, geo, dup);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_merge);
|
||||
|
||||
static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long *node, unsigned long opaque,
|
||||
void (*func)(void *elem, unsigned long opaque,
|
||||
unsigned long *key, size_t index,
|
||||
void *func2),
|
||||
void *func2, int reap, int height, size_t count)
|
||||
{
|
||||
int i;
|
||||
unsigned long *child;
|
||||
|
||||
for (i = 0; i < geo->no_pairs; i++) {
|
||||
child = bval(geo, node, i);
|
||||
if (!child)
|
||||
break;
|
||||
if (height > 1)
|
||||
count = __btree_for_each(head, geo, child, opaque,
|
||||
func, func2, reap, height - 1, count);
|
||||
else
|
||||
func(child, opaque, bkey(geo, node, i), count++,
|
||||
func2);
|
||||
}
|
||||
if (reap)
|
||||
mempool_free(node, head->mempool);
|
||||
return count;
|
||||
}
|
||||
|
||||
static void empty(void *elem, unsigned long opaque, unsigned long *key,
|
||||
size_t index, void *func2)
|
||||
{
|
||||
}
|
||||
|
||||
void visitorl(void *elem, unsigned long opaque, unsigned long *key,
|
||||
size_t index, void *__func)
|
||||
{
|
||||
visitorl_t func = __func;
|
||||
|
||||
func(elem, opaque, *key, index);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(visitorl);
|
||||
|
||||
void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
|
||||
size_t index, void *__func)
|
||||
{
|
||||
visitor32_t func = __func;
|
||||
u32 *key = (void *)__key;
|
||||
|
||||
func(elem, opaque, *key, index);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(visitor32);
|
||||
|
||||
void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
|
||||
size_t index, void *__func)
|
||||
{
|
||||
visitor64_t func = __func;
|
||||
u64 *key = (void *)__key;
|
||||
|
||||
func(elem, opaque, *key, index);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(visitor64);
|
||||
|
||||
void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
|
||||
size_t index, void *__func)
|
||||
{
|
||||
visitor128_t func = __func;
|
||||
u64 *key = (void *)__key;
|
||||
|
||||
func(elem, opaque, key[0], key[1], index);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(visitor128);
|
||||
|
||||
size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long opaque,
|
||||
void (*func)(void *elem, unsigned long opaque,
|
||||
unsigned long *key,
|
||||
size_t index, void *func2),
|
||||
void *func2)
|
||||
{
|
||||
size_t count = 0;
|
||||
|
||||
if (!func2)
|
||||
func = empty;
|
||||
if (head->node)
|
||||
count = __btree_for_each(head, geo, head->node, opaque, func,
|
||||
func2, 0, head->height, 0);
|
||||
return count;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_visitor);
|
||||
|
||||
size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
|
||||
unsigned long opaque,
|
||||
void (*func)(void *elem, unsigned long opaque,
|
||||
unsigned long *key,
|
||||
size_t index, void *func2),
|
||||
void *func2)
|
||||
{
|
||||
size_t count = 0;
|
||||
|
||||
if (!func2)
|
||||
func = empty;
|
||||
if (head->node)
|
||||
count = __btree_for_each(head, geo, head->node, opaque, func,
|
||||
func2, 1, head->height, 0);
|
||||
__btree_init(head);
|
||||
return count;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(btree_grim_visitor);
|
||||
|
||||
static int __init btree_module_init(void)
|
||||
{
|
||||
btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
|
||||
SLAB_HWCACHE_ALIGN, NULL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit btree_module_exit(void)
|
||||
{
|
||||
kmem_cache_destroy(btree_cachep);
|
||||
}
|
||||
|
||||
/* If core code starts using btree, initialization should happen even earlier */
|
||||
module_init(btree_module_init);
|
||||
module_exit(btree_module_exit);
|
||||
|
||||
MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
|
||||
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
|
||||
MODULE_LICENSE("GPL");
|
Loading…
Reference in New Issue
Block a user