mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 06:33:34 +00:00
bonding: support for IPv6 transmit hashing
Currently the "bonding" driver does not support load balancing outgoing traffic in LACP mode for IPv6 traffic. IPv4 (and TCP or UDP over IPv4) are currently supported; this patch adds transmit hashing for IPv6 (and TCP or UDP over IPv6), bringing IPv6 up to par with IPv4 support in the bonding driver. In addition, bounds checking has been added to all transmit hashing functions. The algorithm chosen (xor'ing the bottom three quads of the source and destination addresses together, then xor'ing each byte of that result into the bottom byte, finally xor'ing with the last bytes of the MAC addresses) was selected after testing almost 400,000 unique IPv6 addresses harvested from server logs. This algorithm had the most even distribution for both big- and little-endian architectures while still using few instructions. Its behavior also attempts to closely match that of the IPv4 algorithm. The IPv6 flow label was intentionally not included in the hash as it appears to be unset in the vast majority of IPv6 traffic sampled, and the current algorithm not using the flow label already offers a very even distribution. Fragmented IPv6 packets are handled the same way as fragmented IPv4 packets, ie, they are not balanced based on layer 4 information. Additionally, IPv6 packets with intermediate headers are not balanced based on layer 4 information. In practice these intermediate headers are not common and this should not cause any problems, and the alternative (a packet-parsing loop and look-up table) seemed slow and complicated for little gain. Tested-by: John Eaglesham <linux@8192.net> Signed-off-by: John Eaglesham <linux@8192.net> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
b87fb39e39
commit
6b923cb718
@ -752,12 +752,22 @@ xmit_hash_policy
|
||||
protocol information to generate the hash.
|
||||
|
||||
Uses XOR of hardware MAC addresses and IP addresses to
|
||||
generate the hash. The formula is
|
||||
generate the hash. The IPv4 formula is
|
||||
|
||||
(((source IP XOR dest IP) AND 0xffff) XOR
|
||||
( source MAC XOR destination MAC ))
|
||||
modulo slave count
|
||||
|
||||
The IPv6 formula is
|
||||
|
||||
hash = (source ip quad 2 XOR dest IP quad 2) XOR
|
||||
(source ip quad 3 XOR dest IP quad 3) XOR
|
||||
(source ip quad 4 XOR dest IP quad 4)
|
||||
|
||||
(((hash >> 24) XOR (hash >> 16) XOR (hash >> 8) XOR hash)
|
||||
XOR (source MAC XOR destination MAC))
|
||||
modulo slave count
|
||||
|
||||
This algorithm will place all traffic to a particular
|
||||
network peer on the same slave. For non-IP traffic,
|
||||
the formula is the same as for the layer2 transmit
|
||||
@ -778,19 +788,29 @@ xmit_hash_policy
|
||||
slaves, although a single connection will not span
|
||||
multiple slaves.
|
||||
|
||||
The formula for unfragmented TCP and UDP packets is
|
||||
The formula for unfragmented IPv4 TCP and UDP packets is
|
||||
|
||||
((source port XOR dest port) XOR
|
||||
((source IP XOR dest IP) AND 0xffff)
|
||||
modulo slave count
|
||||
|
||||
For fragmented TCP or UDP packets and all other IP
|
||||
protocol traffic, the source and destination port
|
||||
The formula for unfragmented IPv6 TCP and UDP packets is
|
||||
|
||||
hash = (source port XOR dest port) XOR
|
||||
((source ip quad 2 XOR dest IP quad 2) XOR
|
||||
(source ip quad 3 XOR dest IP quad 3) XOR
|
||||
(source ip quad 4 XOR dest IP quad 4))
|
||||
|
||||
((hash >> 24) XOR (hash >> 16) XOR (hash >> 8) XOR hash)
|
||||
modulo slave count
|
||||
|
||||
For fragmented TCP or UDP packets and all other IPv4 and
|
||||
IPv6 protocol traffic, the source and destination port
|
||||
information is omitted. For non-IP traffic, the
|
||||
formula is the same as for the layer2 transmit hash
|
||||
policy.
|
||||
|
||||
This policy is intended to mimic the behavior of
|
||||
The IPv4 policy is intended to mimic the behavior of
|
||||
certain switches, notably Cisco switches with PFC2 as
|
||||
well as some Foundry and IBM products.
|
||||
|
||||
|
@ -3351,49 +3351,6 @@ static struct notifier_block bond_netdev_notifier = {
|
||||
|
||||
/*---------------------------- Hashing Policies -----------------------------*/
|
||||
|
||||
/*
|
||||
* Hash for the output device based upon layer 2 and layer 3 data. If
|
||||
* the packet is not IP mimic bond_xmit_hash_policy_l2()
|
||||
*/
|
||||
static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count)
|
||||
{
|
||||
struct ethhdr *data = (struct ethhdr *)skb->data;
|
||||
struct iphdr *iph = ip_hdr(skb);
|
||||
|
||||
if (skb->protocol == htons(ETH_P_IP)) {
|
||||
return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
|
||||
(data->h_dest[5] ^ data->h_source[5])) % count;
|
||||
}
|
||||
|
||||
return (data->h_dest[5] ^ data->h_source[5]) % count;
|
||||
}
|
||||
|
||||
/*
|
||||
* Hash for the output device based upon layer 3 and layer 4 data. If
|
||||
* the packet is a frag or not TCP or UDP, just use layer 3 data. If it is
|
||||
* altogether not IP, mimic bond_xmit_hash_policy_l2()
|
||||
*/
|
||||
static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count)
|
||||
{
|
||||
struct ethhdr *data = (struct ethhdr *)skb->data;
|
||||
struct iphdr *iph = ip_hdr(skb);
|
||||
__be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
|
||||
int layer4_xor = 0;
|
||||
|
||||
if (skb->protocol == htons(ETH_P_IP)) {
|
||||
if (!ip_is_fragment(iph) &&
|
||||
(iph->protocol == IPPROTO_TCP ||
|
||||
iph->protocol == IPPROTO_UDP)) {
|
||||
layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
|
||||
}
|
||||
return (layer4_xor ^
|
||||
((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
|
||||
|
||||
}
|
||||
|
||||
return (data->h_dest[5] ^ data->h_source[5]) % count;
|
||||
}
|
||||
|
||||
/*
|
||||
* Hash for the output device based upon layer 2 data
|
||||
*/
|
||||
@ -3401,7 +3358,87 @@ static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count)
|
||||
{
|
||||
struct ethhdr *data = (struct ethhdr *)skb->data;
|
||||
|
||||
return (data->h_dest[5] ^ data->h_source[5]) % count;
|
||||
if (skb_headlen(skb) >= offsetof(struct ethhdr, h_proto))
|
||||
return (data->h_dest[5] ^ data->h_source[5]) % count;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Hash for the output device based upon layer 2 and layer 3 data. If
|
||||
* the packet is not IP, fall back on bond_xmit_hash_policy_l2()
|
||||
*/
|
||||
static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count)
|
||||
{
|
||||
struct ethhdr *data = (struct ethhdr *)skb->data;
|
||||
struct iphdr *iph;
|
||||
struct ipv6hdr *ipv6h;
|
||||
u32 v6hash;
|
||||
__be32 *s, *d;
|
||||
|
||||
if (skb->protocol == htons(ETH_P_IP) &&
|
||||
skb_network_header_len(skb) >= sizeof(*iph)) {
|
||||
iph = ip_hdr(skb);
|
||||
return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
|
||||
(data->h_dest[5] ^ data->h_source[5])) % count;
|
||||
} else if (skb->protocol == htons(ETH_P_IPV6) &&
|
||||
skb_network_header_len(skb) >= sizeof(*ipv6h)) {
|
||||
ipv6h = ipv6_hdr(skb);
|
||||
s = &ipv6h->saddr.s6_addr32[0];
|
||||
d = &ipv6h->daddr.s6_addr32[0];
|
||||
v6hash = (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]);
|
||||
v6hash ^= (v6hash >> 24) ^ (v6hash >> 16) ^ (v6hash >> 8);
|
||||
return (v6hash ^ data->h_dest[5] ^ data->h_source[5]) % count;
|
||||
}
|
||||
|
||||
return bond_xmit_hash_policy_l2(skb, count);
|
||||
}
|
||||
|
||||
/*
|
||||
* Hash for the output device based upon layer 3 and layer 4 data. If
|
||||
* the packet is a frag or not TCP or UDP, just use layer 3 data. If it is
|
||||
* altogether not IP, fall back on bond_xmit_hash_policy_l2()
|
||||
*/
|
||||
static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count)
|
||||
{
|
||||
u32 layer4_xor = 0;
|
||||
struct iphdr *iph;
|
||||
struct ipv6hdr *ipv6h;
|
||||
__be32 *s, *d;
|
||||
__be16 *layer4hdr;
|
||||
|
||||
if (skb->protocol == htons(ETH_P_IP) &&
|
||||
skb_network_header_len(skb) >= sizeof(*iph)) {
|
||||
iph = ip_hdr(skb);
|
||||
if (!ip_is_fragment(iph) &&
|
||||
(iph->protocol == IPPROTO_TCP ||
|
||||
iph->protocol == IPPROTO_UDP) &&
|
||||
(skb_headlen(skb) - skb_network_offset(skb) >=
|
||||
iph->ihl * sizeof(u32) + sizeof(*layer4hdr) * 2)) {
|
||||
layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
|
||||
layer4_xor = ntohs(*layer4hdr ^ *(layer4hdr + 1));
|
||||
}
|
||||
return (layer4_xor ^
|
||||
((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
|
||||
} else if (skb->protocol == htons(ETH_P_IPV6) &&
|
||||
skb_network_header_len(skb) >= sizeof(*ipv6h)) {
|
||||
ipv6h = ipv6_hdr(skb);
|
||||
if ((ipv6h->nexthdr == IPPROTO_TCP ||
|
||||
ipv6h->nexthdr == IPPROTO_UDP) &&
|
||||
(skb_headlen(skb) - skb_network_offset(skb) >=
|
||||
sizeof(*ipv6h) + sizeof(*layer4hdr) * 2)) {
|
||||
layer4hdr = (__be16 *)(ipv6h + 1);
|
||||
layer4_xor = ntohs(*layer4hdr ^ *(layer4hdr + 1));
|
||||
}
|
||||
s = &ipv6h->saddr.s6_addr32[0];
|
||||
d = &ipv6h->daddr.s6_addr32[0];
|
||||
layer4_xor ^= (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]);
|
||||
layer4_xor ^= (layer4_xor >> 24) ^ (layer4_xor >> 16) ^
|
||||
(layer4_xor >> 8);
|
||||
return layer4_xor % count;
|
||||
}
|
||||
|
||||
return bond_xmit_hash_policy_l2(skb, count);
|
||||
}
|
||||
|
||||
/*-------------------------- Device entry points ----------------------------*/
|
||||
|
Loading…
Reference in New Issue
Block a user