Merge branch 'kvm-updates/2.6.31' of git://git.kernel.org/pub/scm/virt/kvm/kvm

* 'kvm-updates/2.6.31' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (138 commits)
  KVM: Prevent overflow in largepages calculation
  KVM: Disable large pages on misaligned memory slots
  KVM: Add VT-x machine check support
  KVM: VMX: Rename rmode.active to rmode.vm86_active
  KVM: Move "exit due to NMI" handling into vmx_complete_interrupts()
  KVM: Disable CR8 intercept if tpr patching is active
  KVM: Do not migrate pending software interrupts.
  KVM: inject NMI after IRET from a previous NMI, not before.
  KVM: Always request IRQ/NMI window if an interrupt is pending
  KVM: Do not re-execute INTn instruction.
  KVM: skip_emulated_instruction() decode instruction if size is not known
  KVM: Remove irq_pending bitmap
  KVM: Do not allow interrupt injection from userspace if there is a pending event.
  KVM: Unprotect a page if #PF happens during NMI injection.
  KVM: s390: Verify memory in kvm run
  KVM: s390: Sanity check on validity intercept
  KVM: s390: Unlink vcpu on destroy - v2
  KVM: s390: optimize float int lock: spin_lock_bh --> spin_lock
  KVM: s390: use hrtimer for clock wakeup from idle - v2
  KVM: s390: Fix memory slot versus run - v3
  ...
This commit is contained in:
Linus Torvalds 2009-06-11 10:03:30 -07:00
commit 6cd8e300b4
55 changed files with 2489 additions and 1662 deletions

View File

@ -371,6 +371,7 @@ struct kvm_vcpu_arch {
int last_run_cpu;
int vmm_tr_slot;
int vm_tr_slot;
int sn_rtc_tr_slot;
#define KVM_MP_STATE_RUNNABLE 0
#define KVM_MP_STATE_UNINITIALIZED 1
@ -465,6 +466,7 @@ struct kvm_arch {
unsigned long vmm_init_rr;
int online_vcpus;
int is_sn2;
struct kvm_ioapic *vioapic;
struct kvm_vm_stat stat;
@ -472,6 +474,7 @@ struct kvm_arch {
struct list_head assigned_dev_head;
struct iommu_domain *iommu_domain;
int iommu_flags;
struct hlist_head irq_ack_notifier_list;
unsigned long irq_sources_bitmap;
@ -578,6 +581,8 @@ struct kvm_vmm_info{
kvm_vmm_entry *vmm_entry;
kvm_tramp_entry *tramp_entry;
unsigned long vmm_ivt;
unsigned long patch_mov_ar;
unsigned long patch_mov_ar_sn2;
};
int kvm_highest_pending_irq(struct kvm_vcpu *vcpu);
@ -585,7 +590,6 @@ int kvm_emulate_halt(struct kvm_vcpu *vcpu);
int kvm_pal_emul(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
void kvm_sal_emul(struct kvm_vcpu *vcpu);
static inline void kvm_inject_nmi(struct kvm_vcpu *vcpu) {}
#endif /* __ASSEMBLY__*/
#endif

View File

@ -146,6 +146,8 @@
#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)
#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
#define PAGE_KERNEL_UC __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX | \
_PAGE_MA_UC)
# ifndef __ASSEMBLY__

View File

@ -610,6 +610,9 @@ static struct irqaction ipi_irqaction = {
.name = "IPI"
};
/*
* KVM uses this interrupt to force a cpu out of guest mode
*/
static struct irqaction resched_irqaction = {
.handler = dummy_handler,
.flags = IRQF_DISABLED,

View File

@ -23,7 +23,7 @@ if VIRTUALIZATION
config KVM
tristate "Kernel-based Virtual Machine (KVM) support"
depends on HAVE_KVM && EXPERIMENTAL
depends on HAVE_KVM && MODULES && EXPERIMENTAL
# for device assignment:
depends on PCI
select PREEMPT_NOTIFIERS

View File

@ -41,6 +41,9 @@
#include <asm/div64.h>
#include <asm/tlb.h>
#include <asm/elf.h>
#include <asm/sn/addrs.h>
#include <asm/sn/clksupport.h>
#include <asm/sn/shub_mmr.h>
#include "misc.h"
#include "vti.h"
@ -65,6 +68,16 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ NULL }
};
static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
{
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
if (vcpu->kvm->arch.is_sn2)
return rtc_time();
else
#endif
return ia64_getreg(_IA64_REG_AR_ITC);
}
static void kvm_flush_icache(unsigned long start, unsigned long len)
{
int l;
@ -119,8 +132,7 @@ void kvm_arch_hardware_enable(void *garbage)
unsigned long saved_psr;
int slot;
pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
PAGE_KERNEL));
pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
local_irq_save(saved_psr);
slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
local_irq_restore(saved_psr);
@ -283,6 +295,18 @@ static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
}
static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
{
struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
if (!test_and_set_bit(vector, &vpd->irr[0])) {
vcpu->arch.irq_new_pending = 1;
kvm_vcpu_kick(vcpu);
return 1;
}
return 0;
}
/*
* offset: address offset to IPI space.
* value: deliver value.
@ -292,20 +316,20 @@ static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
{
switch (dm) {
case SAPIC_FIXED:
kvm_apic_set_irq(vcpu, vector, 0);
break;
case SAPIC_NMI:
kvm_apic_set_irq(vcpu, 2, 0);
vector = 2;
break;
case SAPIC_EXTINT:
kvm_apic_set_irq(vcpu, 0, 0);
vector = 0;
break;
case SAPIC_INIT:
case SAPIC_PMI:
default:
printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
break;
return;
}
__apic_accept_irq(vcpu, vector);
}
static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
@ -413,6 +437,23 @@ static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
return 1;
}
static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
{
unsigned long pte, rtc_phys_addr, map_addr;
int slot;
map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
vcpu->arch.sn_rtc_tr_slot = slot;
if (slot < 0) {
printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
slot = 0;
}
return slot;
}
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
@ -426,7 +467,7 @@ int kvm_emulate_halt(struct kvm_vcpu *vcpu)
if (irqchip_in_kernel(vcpu->kvm)) {
vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
if (time_after(vcpu_now_itc, vpd->itm)) {
vcpu->arch.timer_check = 1;
@ -447,10 +488,10 @@ int kvm_emulate_halt(struct kvm_vcpu *vcpu)
hrtimer_cancel(p_ht);
vcpu->arch.ht_active = 0;
if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
kvm_cpu_has_pending_timer(vcpu))
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
vcpu->arch.mp_state =
KVM_MP_STATE_RUNNABLE;
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
return -EINTR;
@ -551,22 +592,35 @@ static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
if (r < 0)
goto out;
vcpu->arch.vm_tr_slot = r;
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
if (kvm->arch.is_sn2) {
r = kvm_sn2_setup_mappings(vcpu);
if (r < 0)
goto out;
}
#endif
r = 0;
out:
return r;
}
static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
if (kvm->arch.is_sn2)
ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
#endif
}
static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
{
unsigned long psr;
int r;
int cpu = smp_processor_id();
if (vcpu->arch.last_run_cpu != cpu ||
@ -578,36 +632,27 @@ static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
vcpu->arch.host_rr6 = ia64_get_rr(RR6);
vti_set_rr6(vcpu->arch.vmm_rr);
return kvm_insert_vmm_mapping(vcpu);
local_irq_save(psr);
r = kvm_insert_vmm_mapping(vcpu);
local_irq_restore(psr);
return r;
}
static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
{
kvm_purge_vmm_mapping(vcpu);
vti_set_rr6(vcpu->arch.host_rr6);
}
static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
union context *host_ctx, *guest_ctx;
int r;
/*Get host and guest context with guest address space.*/
host_ctx = kvm_get_host_context(vcpu);
guest_ctx = kvm_get_guest_context(vcpu);
r = kvm_vcpu_pre_transition(vcpu);
if (r < 0)
goto out;
kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
kvm_vcpu_post_transition(vcpu);
r = 0;
out:
return r;
}
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
/*
* down_read() may sleep and return with interrupts enabled
*/
down_read(&vcpu->kvm->slots_lock);
again:
if (signal_pending(current)) {
@ -616,26 +661,31 @@ static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
goto out;
}
/*
* down_read() may sleep and return with interrupts enabled
*/
down_read(&vcpu->kvm->slots_lock);
preempt_disable();
local_irq_disable();
vcpu->guest_mode = 1;
/*Get host and guest context with guest address space.*/
host_ctx = kvm_get_host_context(vcpu);
guest_ctx = kvm_get_guest_context(vcpu);
clear_bit(KVM_REQ_KICK, &vcpu->requests);
r = kvm_vcpu_pre_transition(vcpu);
if (r < 0)
goto vcpu_run_fail;
up_read(&vcpu->kvm->slots_lock);
kvm_guest_enter();
r = vti_vcpu_run(vcpu, kvm_run);
if (r < 0) {
local_irq_enable();
preempt_enable();
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
goto out;
}
/*
* Transition to the guest
*/
kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
kvm_vcpu_post_transition(vcpu);
vcpu->arch.launched = 1;
vcpu->guest_mode = 0;
set_bit(KVM_REQ_KICK, &vcpu->requests);
local_irq_enable();
/*
@ -646,9 +696,10 @@ static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
*/
barrier();
kvm_guest_exit();
up_read(&vcpu->kvm->slots_lock);
preempt_enable();
down_read(&vcpu->kvm->slots_lock);
r = kvm_handle_exit(kvm_run, vcpu);
if (r > 0) {
@ -657,12 +708,20 @@ static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
}
out:
up_read(&vcpu->kvm->slots_lock);
if (r > 0) {
kvm_resched(vcpu);
down_read(&vcpu->kvm->slots_lock);
goto again;
}
return r;
vcpu_run_fail:
local_irq_enable();
preempt_enable();
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
goto out;
}
static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
@ -788,6 +847,9 @@ struct kvm *kvm_arch_create_vm(void)
if (IS_ERR(kvm))
return ERR_PTR(-ENOMEM);
kvm->arch.is_sn2 = ia64_platform_is("sn2");
kvm_init_vm(kvm);
kvm->arch.online_vcpus = 0;
@ -884,7 +946,7 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
RESTORE_REGS(saved_gp);
vcpu->arch.irq_new_pending = 1;
vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
set_bit(KVM_REQ_RESUME, &vcpu->requests);
vcpu_put(vcpu);
@ -1043,10 +1105,6 @@ static void kvm_free_vmm_area(void)
}
}
static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
}
static int vti_init_vpd(struct kvm_vcpu *vcpu)
{
int i;
@ -1165,7 +1223,7 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
regs->cr_iip = PALE_RESET_ENTRY;
/*Initialize itc offset for vcpus*/
itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
itc_offset = 0UL - kvm_get_itc(vcpu);
for (i = 0; i < kvm->arch.online_vcpus; i++) {
v = (struct kvm_vcpu *)((char *)vcpu +
sizeof(struct kvm_vcpu_data) * i);
@ -1237,6 +1295,7 @@ static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
local_irq_save(psr);
r = kvm_insert_vmm_mapping(vcpu);
local_irq_restore(psr);
if (r)
goto fail;
r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
@ -1254,13 +1313,11 @@ static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
goto uninit;
kvm_purge_vmm_mapping(vcpu);
local_irq_restore(psr);
return 0;
uninit:
kvm_vcpu_uninit(vcpu);
fail:
local_irq_restore(psr);
return r;
}
@ -1291,7 +1348,6 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
vcpu->kvm = kvm;
cpu = get_cpu();
vti_vcpu_load(vcpu, cpu);
r = vti_vcpu_setup(vcpu, id);
put_cpu();
@ -1427,7 +1483,7 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
}
for (i = 0; i < 4; i++)
regs->insvc[i] = vcpu->arch.insvc[i];
regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
SAVE_REGS(xtp);
SAVE_REGS(metaphysical_rr0);
SAVE_REGS(metaphysical_rr4);
@ -1574,6 +1630,7 @@ int kvm_arch_set_memory_region(struct kvm *kvm,
void kvm_arch_flush_shadow(struct kvm *kvm)
{
kvm_flush_remote_tlbs(kvm);
}
long kvm_arch_dev_ioctl(struct file *filp,
@ -1616,8 +1673,37 @@ static int vti_cpu_has_kvm_support(void)
return 0;
}
/*
* On SN2, the ITC isn't stable, so copy in fast path code to use the
* SN2 RTC, replacing the ITC based default verion.
*/
static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
struct module *module)
{
unsigned long new_ar, new_ar_sn2;
unsigned long module_base;
if (!ia64_platform_is("sn2"))
return;
module_base = (unsigned long)module->module_core;
new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
"as source\n");
/*
* Copy the SN2 version of mov_ar into place. They are both
* the same size, so 6 bundles is sufficient (6 * 0x10).
*/
memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
}
static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
struct module *module)
struct module *module)
{
unsigned long module_base;
unsigned long vmm_size;
@ -1639,6 +1725,7 @@ static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
return -EFAULT;
memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
kvm_patch_vmm(vmm_info, module);
kvm_flush_icache(kvm_vmm_base, vmm_size);
/*Recalculate kvm_vmm_info based on new VMM*/
@ -1792,38 +1879,24 @@ void kvm_arch_hardware_unsetup(void)
{
}
static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
#endif
}
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
int ipi_pcpu = vcpu->cpu;
int cpu = get_cpu();
int me;
int cpu = vcpu->cpu;
if (waitqueue_active(&vcpu->wq))
wake_up_interruptible(&vcpu->wq);
if (vcpu->guest_mode && cpu != ipi_pcpu)
smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
me = get_cpu();
if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
smp_send_reschedule(cpu);
put_cpu();
}
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
{
struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
if (!test_and_set_bit(vec, &vpd->irr[0])) {
vcpu->arch.irq_new_pending = 1;
kvm_vcpu_kick(vcpu);
return 1;
}
return 0;
return __apic_accept_irq(vcpu, irq->vector);
}
int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
@ -1836,20 +1909,18 @@ int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
return 0;
}
struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
unsigned long bitmap)
int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
{
struct kvm_vcpu *lvcpu = kvm->vcpus[0];
int i;
return vcpu1->arch.xtp - vcpu2->arch.xtp;
}
for (i = 1; i < kvm->arch.online_vcpus; i++) {
if (!kvm->vcpus[i])
continue;
if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
lvcpu = kvm->vcpus[i];
}
return lvcpu;
int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
int short_hand, int dest, int dest_mode)
{
struct kvm_lapic *target = vcpu->arch.apic;
return (dest_mode == 0) ?
kvm_apic_match_physical_addr(target, dest) :
kvm_apic_match_logical_addr(target, dest);
}
static int find_highest_bits(int *dat)
@ -1888,6 +1959,12 @@ int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
return 0;
}
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
{
/* do real check here */
return 1;
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return vcpu->arch.timer_fired;
@ -1918,6 +1995,7 @@ static int vcpu_reset(struct kvm_vcpu *vcpu)
long psr;
local_irq_save(psr);
r = kvm_insert_vmm_mapping(vcpu);
local_irq_restore(psr);
if (r)
goto fail;
@ -1930,7 +2008,6 @@ static int vcpu_reset(struct kvm_vcpu *vcpu)
kvm_purge_vmm_mapping(vcpu);
r = 0;
fail:
local_irq_restore(psr);
return r;
}

View File

@ -21,6 +21,9 @@
#include <linux/kvm_host.h>
#include <linux/smp.h>
#include <asm/sn/addrs.h>
#include <asm/sn/clksupport.h>
#include <asm/sn/shub_mmr.h>
#include "vti.h"
#include "misc.h"
@ -188,12 +191,35 @@ static struct ia64_pal_retval pal_freq_base(struct kvm_vcpu *vcpu)
return result;
}
/*
* On the SGI SN2, the ITC isn't stable. Emulation backed by the SN2
* RTC is used instead. This function patches the ratios from SAL
* to match the RTC before providing them to the guest.
*/
static void sn2_patch_itc_freq_ratios(struct ia64_pal_retval *result)
{
struct pal_freq_ratio *ratio;
unsigned long sal_freq, sal_drift, factor;
result->status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
&sal_freq, &sal_drift);
ratio = (struct pal_freq_ratio *)&result->v2;
factor = ((sal_freq * 3) + (sn_rtc_cycles_per_second / 2)) /
sn_rtc_cycles_per_second;
ratio->num = 3;
ratio->den = factor;
}
static struct ia64_pal_retval pal_freq_ratios(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result;
PAL_CALL(result, PAL_FREQ_RATIOS, 0, 0, 0);
if (vcpu->kvm->arch.is_sn2)
sn2_patch_itc_freq_ratios(&result);
return result;
}

View File

@ -20,6 +20,10 @@ void kvm_free_lapic(struct kvm_vcpu *vcpu);
int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest);
int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda);
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig);
int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
int short_hand, int dest, int dest_mode);
int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2);
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq);
#define kvm_apic_present(x) (true)
#endif

View File

@ -11,6 +11,7 @@
#include <asm/asmmacro.h>
#include <asm/processor.h>
#include <asm/kvm_host.h>
#include "vti.h"
#include "asm-offsets.h"
@ -140,6 +141,35 @@ GLOBAL_ENTRY(kvm_asm_mov_from_ar)
;;
END(kvm_asm_mov_from_ar)
/*
* Special SGI SN2 optimized version of mov_from_ar using the SN2 RTC
* clock as it's source for emulating the ITC. This version will be
* copied on top of the original version if the host is determined to
* be an SN2.
*/
GLOBAL_ENTRY(kvm_asm_mov_from_ar_sn2)
add r18=VMM_VCPU_ITC_OFS_OFFSET, r21
movl r19 = (KVM_VMM_BASE+(1<<KVM_VMM_SHIFT))
add r16=VMM_VCPU_LAST_ITC_OFFSET,r21
extr.u r17=r25,6,7
mov r24=b0
;;
ld8 r18=[r18]
ld8 r19=[r19]
addl r20=@gprel(asm_mov_to_reg),gp
;;
add r19=r19,r18
shladd r17=r17,4,r20
;;
adds r30=kvm_resume_to_guest-asm_mov_to_reg,r20
st8 [r16] = r19
mov b0=r17
br.sptk.few b0
;;
END(kvm_asm_mov_from_ar_sn2)
// mov r1=rr[r3]
GLOBAL_ENTRY(kvm_asm_mov_from_rr)

View File

@ -652,20 +652,25 @@ void kvm_ia64_handle_break(unsigned long ifa, struct kvm_pt_regs *regs,
unsigned long isr, unsigned long iim)
{
struct kvm_vcpu *v = current_vcpu;
long psr;
if (ia64_psr(regs)->cpl == 0) {
/* Allow hypercalls only when cpl = 0. */
if (iim == DOMN_PAL_REQUEST) {
local_irq_save(psr);
set_pal_call_data(v);
vmm_transition(v);
get_pal_call_result(v);
vcpu_increment_iip(v);
local_irq_restore(psr);
return;
} else if (iim == DOMN_SAL_REQUEST) {
local_irq_save(psr);
set_sal_call_data(v);
vmm_transition(v);
get_sal_call_result(v);
vcpu_increment_iip(v);
local_irq_restore(psr);
return;
}
}

View File

@ -788,13 +788,29 @@ void vcpu_set_fpreg(struct kvm_vcpu *vcpu, unsigned long reg,
setfpreg(reg, val, regs); /* FIXME: handle NATs later*/
}
/*
* The Altix RTC is mapped specially here for the vmm module
*/
#define SN_RTC_BASE (u64 *)(KVM_VMM_BASE+(1UL<<KVM_VMM_SHIFT))
static long kvm_get_itc(struct kvm_vcpu *vcpu)
{
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
struct kvm *kvm = (struct kvm *)KVM_VM_BASE;
if (kvm->arch.is_sn2)
return (*SN_RTC_BASE);
else
#endif
return ia64_getreg(_IA64_REG_AR_ITC);
}
/************************************************************************
* lsapic timer
***********************************************************************/
u64 vcpu_get_itc(struct kvm_vcpu *vcpu)
{
unsigned long guest_itc;
guest_itc = VMX(vcpu, itc_offset) + ia64_getreg(_IA64_REG_AR_ITC);
guest_itc = VMX(vcpu, itc_offset) + kvm_get_itc(vcpu);
if (guest_itc >= VMX(vcpu, last_itc)) {
VMX(vcpu, last_itc) = guest_itc;
@ -809,7 +825,7 @@ static void vcpu_set_itc(struct kvm_vcpu *vcpu, u64 val)
struct kvm_vcpu *v;
struct kvm *kvm;
int i;
long itc_offset = val - ia64_getreg(_IA64_REG_AR_ITC);
long itc_offset = val - kvm_get_itc(vcpu);
unsigned long vitv = VCPU(vcpu, itv);
kvm = (struct kvm *)KVM_VM_BASE;

View File

@ -30,15 +30,19 @@ MODULE_AUTHOR("Intel");
MODULE_LICENSE("GPL");
extern char kvm_ia64_ivt;
extern char kvm_asm_mov_from_ar;
extern char kvm_asm_mov_from_ar_sn2;
extern fpswa_interface_t *vmm_fpswa_interface;
long vmm_sanity = 1;
struct kvm_vmm_info vmm_info = {
.module = THIS_MODULE,
.vmm_entry = vmm_entry,
.tramp_entry = vmm_trampoline,
.vmm_ivt = (unsigned long)&kvm_ia64_ivt,
.module = THIS_MODULE,
.vmm_entry = vmm_entry,
.tramp_entry = vmm_trampoline,
.vmm_ivt = (unsigned long)&kvm_ia64_ivt,
.patch_mov_ar = (unsigned long)&kvm_asm_mov_from_ar,
.patch_mov_ar_sn2 = (unsigned long)&kvm_asm_mov_from_ar_sn2,
};
static int __init kvm_vmm_init(void)

View File

@ -95,7 +95,7 @@ GLOBAL_ENTRY(kvm_vmm_panic)
;;
srlz.i // guarantee that interruption collection is on
;;
//(p15) ssm psr.i // restore psr.i
(p15) ssm psr.i // restore psr.
addl r14=@gprel(ia64_leave_hypervisor),gp
;;
KVM_SAVE_REST
@ -249,7 +249,7 @@ ENTRY(kvm_break_fault)
;;
srlz.i // guarantee that interruption collection is on
;;
//(p15)ssm psr.i // restore psr.i
(p15)ssm psr.i // restore psr.i
addl r14=@gprel(ia64_leave_hypervisor),gp
;;
KVM_SAVE_REST
@ -439,7 +439,7 @@ kvm_dispatch_vexirq:
;;
srlz.i // guarantee that interruption collection is on
;;
//(p15) ssm psr.i // restore psr.i
(p15) ssm psr.i // restore psr.i
adds r3=8,r2 // set up second base pointer
;;
KVM_SAVE_REST
@ -819,7 +819,7 @@ ENTRY(kvm_dtlb_miss_dispatch)
;;
srlz.i // guarantee that interruption collection is on
;;
//(p15) ssm psr.i // restore psr.i
(p15) ssm psr.i // restore psr.i
addl r14=@gprel(ia64_leave_hypervisor_prepare),gp
;;
KVM_SAVE_REST
@ -842,7 +842,7 @@ ENTRY(kvm_itlb_miss_dispatch)
;;
srlz.i // guarantee that interruption collection is on
;;
//(p15) ssm psr.i // restore psr.i
(p15) ssm psr.i // restore psr.i
addl r14=@gprel(ia64_leave_hypervisor),gp
;;
KVM_SAVE_REST
@ -871,7 +871,7 @@ ENTRY(kvm_dispatch_reflection)
;;
srlz.i // guarantee that interruption collection is on
;;
//(p15) ssm psr.i // restore psr.i
(p15) ssm psr.i // restore psr.i
addl r14=@gprel(ia64_leave_hypervisor),gp
;;
KVM_SAVE_REST
@ -898,7 +898,7 @@ ENTRY(kvm_dispatch_virtualization_fault)
;;
srlz.i // guarantee that interruption collection is on
;;
//(p15) ssm psr.i // restore psr.i
(p15) ssm psr.i // restore psr.i
addl r14=@gprel(ia64_leave_hypervisor_prepare),gp
;;
KVM_SAVE_REST
@ -920,7 +920,7 @@ ENTRY(kvm_dispatch_interrupt)
;;
srlz.i
;;
//(p15) ssm psr.i
(p15) ssm psr.i
addl r14=@gprel(ia64_leave_hypervisor),gp
;;
KVM_SAVE_REST
@ -1333,7 +1333,7 @@ hostret = r24
;;
(p7) srlz.i
;;
//(p6) ssm psr.i
(p6) ssm psr.i
;;
mov rp=rpsave
mov ar.pfs=pfssave

View File

@ -254,7 +254,8 @@ u64 guest_vhpt_lookup(u64 iha, u64 *pte)
"(p7) st8 [%2]=r9;;"
"ssm psr.ic;;"
"srlz.d;;"
/* "ssm psr.i;;" Once interrupts in vmm open, need fix*/
"ssm psr.i;;"
"srlz.d;;"
: "=r"(ret) : "r"(iha), "r"(pte):"memory");
return ret;

View File

@ -41,6 +41,12 @@ int kvm_cpu_has_interrupt(struct kvm_vcpu *v)
return !!(v->arch.pending_exceptions);
}
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
{
/* do real check here */
return 1;
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
return !(v->arch.msr & MSR_WE);

View File

@ -13,6 +13,8 @@
#ifndef ASM_KVM_HOST_H
#define ASM_KVM_HOST_H
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kvm_host.h>
#include <asm/debug.h>
#include <asm/cpuid.h>
@ -210,7 +212,8 @@ struct kvm_vcpu_arch {
s390_fp_regs guest_fpregs;
unsigned int guest_acrs[NUM_ACRS];
struct kvm_s390_local_interrupt local_int;
struct timer_list ckc_timer;
struct hrtimer ckc_timer;
struct tasklet_struct tasklet;
union {
cpuid_t cpu_id;
u64 stidp_data;

View File

@ -154,17 +154,25 @@ static int handle_stop(struct kvm_vcpu *vcpu)
static int handle_validity(struct kvm_vcpu *vcpu)
{
int viwhy = vcpu->arch.sie_block->ipb >> 16;
int rc;
vcpu->stat.exit_validity++;
if (viwhy == 0x37) {
fault_in_pages_writeable((char __user *)
vcpu->kvm->arch.guest_origin +
vcpu->arch.sie_block->prefix,
PAGE_SIZE);
return 0;
}
VCPU_EVENT(vcpu, 2, "unhandled validity intercept code %d",
viwhy);
return -ENOTSUPP;
if ((viwhy == 0x37) && (vcpu->arch.sie_block->prefix
<= vcpu->kvm->arch.guest_memsize - 2*PAGE_SIZE)){
rc = fault_in_pages_writeable((char __user *)
vcpu->kvm->arch.guest_origin +
vcpu->arch.sie_block->prefix,
2*PAGE_SIZE);
if (rc)
/* user will receive sigsegv, exit to user */
rc = -ENOTSUPP;
} else
rc = -ENOTSUPP;
if (rc)
VCPU_EVENT(vcpu, 2, "unhandled validity intercept code %d",
viwhy);
return rc;
}
static int handle_instruction(struct kvm_vcpu *vcpu)

View File

@ -12,6 +12,8 @@
#include <asm/lowcore.h>
#include <asm/uaccess.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kvm_host.h>
#include <linux/signal.h>
#include "kvm-s390.h"
@ -299,13 +301,13 @@ int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
}
if ((!rc) && atomic_read(&fi->active)) {
spin_lock_bh(&fi->lock);
spin_lock(&fi->lock);
list_for_each_entry(inti, &fi->list, list)
if (__interrupt_is_deliverable(vcpu, inti)) {
rc = 1;
break;
}
spin_unlock_bh(&fi->lock);
spin_unlock(&fi->lock);
}
if ((!rc) && (vcpu->arch.sie_block->ckc <
@ -318,6 +320,12 @@ int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
return rc;
}
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
{
/* do real check here */
return 1;
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return 0;
@ -355,14 +363,12 @@ int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
return 0;
}
sltime = (vcpu->arch.sie_block->ckc - now) / (0xf4240000ul / HZ) + 1;
sltime = ((vcpu->arch.sie_block->ckc - now)*125)>>9;
vcpu->arch.ckc_timer.expires = jiffies + sltime;
add_timer(&vcpu->arch.ckc_timer);
VCPU_EVENT(vcpu, 5, "enabled wait timer:%llx jiffies", sltime);
hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
VCPU_EVENT(vcpu, 5, "enabled wait via clock comparator: %llx ns", sltime);
no_timer:
spin_lock_bh(&vcpu->arch.local_int.float_int->lock);
spin_lock(&vcpu->arch.local_int.float_int->lock);
spin_lock_bh(&vcpu->arch.local_int.lock);
add_wait_queue(&vcpu->arch.local_int.wq, &wait);
while (list_empty(&vcpu->arch.local_int.list) &&
@ -371,33 +377,46 @@ int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
!signal_pending(current)) {
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_bh(&vcpu->arch.local_int.lock);
spin_unlock_bh(&vcpu->arch.local_int.float_int->lock);
spin_unlock(&vcpu->arch.local_int.float_int->lock);
vcpu_put(vcpu);
schedule();
vcpu_load(vcpu);
spin_lock_bh(&vcpu->arch.local_int.float_int->lock);
spin_lock(&vcpu->arch.local_int.float_int->lock);
spin_lock_bh(&vcpu->arch.local_int.lock);
}
__unset_cpu_idle(vcpu);
__set_current_state(TASK_RUNNING);
remove_wait_queue(&vcpu->wq, &wait);
spin_unlock_bh(&vcpu->arch.local_int.lock);
spin_unlock_bh(&vcpu->arch.local_int.float_int->lock);
del_timer(&vcpu->arch.ckc_timer);
spin_unlock(&vcpu->arch.local_int.float_int->lock);
hrtimer_try_to_cancel(&vcpu->arch.ckc_timer);
return 0;
}
void kvm_s390_idle_wakeup(unsigned long data)
void kvm_s390_tasklet(unsigned long parm)
{
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
struct kvm_vcpu *vcpu = (struct kvm_vcpu *) parm;
spin_lock_bh(&vcpu->arch.local_int.lock);
spin_lock(&vcpu->arch.local_int.lock);
vcpu->arch.local_int.timer_due = 1;
if (waitqueue_active(&vcpu->arch.local_int.wq))
wake_up_interruptible(&vcpu->arch.local_int.wq);
spin_unlock_bh(&vcpu->arch.local_int.lock);
spin_unlock(&vcpu->arch.local_int.lock);
}
/*
* low level hrtimer wake routine. Because this runs in hardirq context
* we schedule a tasklet to do the real work.
*/
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
tasklet_schedule(&vcpu->arch.tasklet);
return HRTIMER_NORESTART;
}
void kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
{
@ -436,7 +455,7 @@ void kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
if (atomic_read(&fi->active)) {
do {
deliver = 0;
spin_lock_bh(&fi->lock);
spin_lock(&fi->lock);
list_for_each_entry_safe(inti, n, &fi->list, list) {
if (__interrupt_is_deliverable(vcpu, inti)) {
list_del(&inti->list);
@ -447,7 +466,7 @@ void kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
}
if (list_empty(&fi->list))
atomic_set(&fi->active, 0);
spin_unlock_bh(&fi->lock);
spin_unlock(&fi->lock);
if (deliver) {
__do_deliver_interrupt(vcpu, inti);
kfree(inti);
@ -512,7 +531,7 @@ int kvm_s390_inject_vm(struct kvm *kvm,
mutex_lock(&kvm->lock);
fi = &kvm->arch.float_int;
spin_lock_bh(&fi->lock);
spin_lock(&fi->lock);
list_add_tail(&inti->list, &fi->list);
atomic_set(&fi->active, 1);
sigcpu = find_first_bit(fi->idle_mask, KVM_MAX_VCPUS);
@ -529,7 +548,7 @@ int kvm_s390_inject_vm(struct kvm *kvm,
if (waitqueue_active(&li->wq))
wake_up_interruptible(&li->wq);
spin_unlock_bh(&li->lock);
spin_unlock_bh(&fi->lock);
spin_unlock(&fi->lock);
mutex_unlock(&kvm->lock);
return 0;
}

View File

@ -15,6 +15,7 @@
#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/hrtimer.h>
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
@ -195,6 +196,10 @@ struct kvm *kvm_arch_create_vm(void)
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
VCPU_EVENT(vcpu, 3, "%s", "free cpu");
if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
(__u64) vcpu->arch.sie_block)
vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
smp_mb();
free_page((unsigned long)(vcpu->arch.sie_block));
kvm_vcpu_uninit(vcpu);
kfree(vcpu);
@ -283,8 +288,10 @@ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
vcpu->arch.sie_block->gmsor = vcpu->kvm->arch.guest_origin;
vcpu->arch.sie_block->ecb = 2;
vcpu->arch.sie_block->eca = 0xC1002001U;
setup_timer(&vcpu->arch.ckc_timer, kvm_s390_idle_wakeup,
(unsigned long) vcpu);
hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
tasklet_init(&vcpu->arch.tasklet, kvm_s390_tasklet,
(unsigned long) vcpu);
vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
get_cpu_id(&vcpu->arch.cpu_id);
vcpu->arch.cpu_id.version = 0xff;
return 0;
@ -307,19 +314,21 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
vcpu->arch.sie_block->icpua = id;
BUG_ON(!kvm->arch.sca);
BUG_ON(kvm->arch.sca->cpu[id].sda);
kvm->arch.sca->cpu[id].sda = (__u64) vcpu->arch.sie_block;
if (!kvm->arch.sca->cpu[id].sda)
kvm->arch.sca->cpu[id].sda = (__u64) vcpu->arch.sie_block;
else
BUG_ON(!kvm->vcpus[id]); /* vcpu does already exist */
vcpu->arch.sie_block->scaoh = (__u32)(((__u64)kvm->arch.sca) >> 32);
vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
spin_lock_init(&vcpu->arch.local_int.lock);
INIT_LIST_HEAD(&vcpu->arch.local_int.list);
vcpu->arch.local_int.float_int = &kvm->arch.float_int;
spin_lock_bh(&kvm->arch.float_int.lock);
spin_lock(&kvm->arch.float_int.lock);
kvm->arch.float_int.local_int[id] = &vcpu->arch.local_int;
init_waitqueue_head(&vcpu->arch.local_int.wq);
vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
spin_unlock_bh(&kvm->arch.float_int.lock);
spin_unlock(&kvm->arch.float_int.lock);
rc = kvm_vcpu_init(vcpu, kvm, id);
if (rc)
@ -478,6 +487,12 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
vcpu_load(vcpu);
/* verify, that memory has been registered */
if (!vcpu->kvm->arch.guest_memsize) {
vcpu_put(vcpu);
return -EINVAL;
}
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
@ -657,6 +672,8 @@ int kvm_arch_set_memory_region(struct kvm *kvm,
struct kvm_memory_slot old,
int user_alloc)
{
int i;
/* A few sanity checks. We can have exactly one memory slot which has
to start at guest virtual zero and which has to be located at a
page boundary in userland and which has to end at a page boundary.
@ -664,7 +681,7 @@ int kvm_arch_set_memory_region(struct kvm *kvm,
vmas. It is okay to mmap() and munmap() stuff in this slot after
doing this call at any time */
if (mem->slot)
if (mem->slot || kvm->arch.guest_memsize)
return -EINVAL;
if (mem->guest_phys_addr)
@ -676,15 +693,39 @@ int kvm_arch_set_memory_region(struct kvm *kvm,
if (mem->memory_size & (PAGE_SIZE - 1))
return -EINVAL;
if (!user_alloc)
return -EINVAL;
/* lock all vcpus */
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
if (!kvm->vcpus[i])
continue;
if (!mutex_trylock(&kvm->vcpus[i]->mutex))
goto fail_out;
}
kvm->arch.guest_origin = mem->userspace_addr;
kvm->arch.guest_memsize = mem->memory_size;
/* FIXME: we do want to interrupt running CPUs and update their memory
configuration now to avoid race conditions. But hey, changing the
memory layout while virtual CPUs are running is usually bad
programming practice. */
/* update sie control blocks, and unlock all vcpus */
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
if (kvm->vcpus[i]) {
kvm->vcpus[i]->arch.sie_block->gmsor =
kvm->arch.guest_origin;
kvm->vcpus[i]->arch.sie_block->gmslm =
kvm->arch.guest_memsize +
kvm->arch.guest_origin +
VIRTIODESCSPACE - 1ul;
mutex_unlock(&kvm->vcpus[i]->mutex);
}
}
return 0;
fail_out:
for (; i >= 0; i--)
mutex_unlock(&kvm->vcpus[i]->mutex);
return -EINVAL;
}
void kvm_arch_flush_shadow(struct kvm *kvm)

View File

@ -14,6 +14,7 @@
#ifndef ARCH_S390_KVM_S390_H
#define ARCH_S390_KVM_S390_H
#include <linux/hrtimer.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
@ -41,7 +42,8 @@ static inline int __cpu_is_stopped(struct kvm_vcpu *vcpu)
}
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu);
void kvm_s390_idle_wakeup(unsigned long data);
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer);
void kvm_s390_tasklet(unsigned long parm);
void kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu);
int kvm_s390_inject_vm(struct kvm *kvm,
struct kvm_s390_interrupt *s390int);

View File

@ -204,11 +204,11 @@ static void handle_stsi_3_2_2(struct kvm_vcpu *vcpu, struct sysinfo_3_2_2 *mem)
int cpus = 0;
int n;
spin_lock_bh(&fi->lock);
spin_lock(&fi->lock);
for (n = 0; n < KVM_MAX_VCPUS; n++)
if (fi->local_int[n])
cpus++;
spin_unlock_bh(&fi->lock);
spin_unlock(&fi->lock);
/* deal with other level 3 hypervisors */
if (stsi(mem, 3, 2, 2) == -ENOSYS)

View File

@ -52,7 +52,7 @@ static int __sigp_sense(struct kvm_vcpu *vcpu, u16 cpu_addr,
if (cpu_addr >= KVM_MAX_VCPUS)
return 3; /* not operational */
spin_lock_bh(&fi->lock);
spin_lock(&fi->lock);
if (fi->local_int[cpu_addr] == NULL)
rc = 3; /* not operational */
else if (atomic_read(fi->local_int[cpu_addr]->cpuflags)
@ -64,7 +64,7 @@ static int __sigp_sense(struct kvm_vcpu *vcpu, u16 cpu_addr,
*reg |= SIGP_STAT_STOPPED;
rc = 1; /* status stored */
}
spin_unlock_bh(&fi->lock);
spin_unlock(&fi->lock);
VCPU_EVENT(vcpu, 4, "sensed status of cpu %x rc %x", cpu_addr, rc);
return rc;
@ -86,7 +86,7 @@ static int __sigp_emergency(struct kvm_vcpu *vcpu, u16 cpu_addr)
inti->type = KVM_S390_INT_EMERGENCY;
spin_lock_bh(&fi->lock);
spin_lock(&fi->lock);
li = fi->local_int[cpu_addr];
if (li == NULL) {
rc = 3; /* not operational */
@ -102,7 +102,7 @@ static int __sigp_emergency(struct kvm_vcpu *vcpu, u16 cpu_addr)
spin_unlock_bh(&li->lock);
rc = 0; /* order accepted */
unlock:
spin_unlock_bh(&fi->lock);
spin_unlock(&fi->lock);
VCPU_EVENT(vcpu, 4, "sent sigp emerg to cpu %x", cpu_addr);
return rc;
}
@ -123,7 +123,7 @@ static int __sigp_stop(struct kvm_vcpu *vcpu, u16 cpu_addr, int store)
inti->type = KVM_S390_SIGP_STOP;
spin_lock_bh(&fi->lock);
spin_lock(&fi->lock);
li = fi->local_int[cpu_addr];
if (li == NULL) {
rc = 3; /* not operational */
@ -142,7 +142,7 @@ static int __sigp_stop(struct kvm_vcpu *vcpu, u16 cpu_addr, int store)
spin_unlock_bh(&li->lock);
rc = 0; /* order accepted */
unlock:
spin_unlock_bh(&fi->lock);
spin_unlock(&fi->lock);
VCPU_EVENT(vcpu, 4, "sent sigp stop to cpu %x", cpu_addr);
return rc;
}
@ -188,7 +188,7 @@ static int __sigp_set_prefix(struct kvm_vcpu *vcpu, u16 cpu_addr, u32 address,
if (!inti)
return 2; /* busy */
spin_lock_bh(&fi->lock);
spin_lock(&fi->lock);
li = fi->local_int[cpu_addr];
if ((cpu_addr >= KVM_MAX_VCPUS) || (li == NULL)) {
@ -220,7 +220,7 @@ static int __sigp_set_prefix(struct kvm_vcpu *vcpu, u16 cpu_addr, u32 address,
out_li:
spin_unlock_bh(&li->lock);
out_fi:
spin_unlock_bh(&fi->lock);
spin_unlock(&fi->lock);
return rc;
}

View File

@ -116,6 +116,8 @@
#define X86_FEATURE_XMM4_1 (4*32+19) /* "sse4_1" SSE-4.1 */
#define X86_FEATURE_XMM4_2 (4*32+20) /* "sse4_2" SSE-4.2 */
#define X86_FEATURE_X2APIC (4*32+21) /* x2APIC */
#define X86_FEATURE_MOVBE (4*32+22) /* MOVBE instruction */
#define X86_FEATURE_POPCNT (4*32+23) /* POPCNT instruction */
#define X86_FEATURE_AES (4*32+25) /* AES instructions */
#define X86_FEATURE_XSAVE (4*32+26) /* XSAVE/XRSTOR/XSETBV/XGETBV */
#define X86_FEATURE_OSXSAVE (4*32+27) /* "" XSAVE enabled in the OS */

View File

@ -16,6 +16,7 @@
#define __KVM_HAVE_MSI
#define __KVM_HAVE_USER_NMI
#define __KVM_HAVE_GUEST_DEBUG
#define __KVM_HAVE_MSIX
/* Architectural interrupt line count. */
#define KVM_NR_INTERRUPTS 256

View File

@ -185,6 +185,7 @@ union kvm_mmu_page_role {
unsigned access:3;
unsigned invalid:1;
unsigned cr4_pge:1;
unsigned nxe:1;
};
};
@ -212,7 +213,6 @@ struct kvm_mmu_page {
int multimapped; /* More than one parent_pte? */
int root_count; /* Currently serving as active root */
bool unsync;
bool global;
unsigned int unsync_children;
union {
u64 *parent_pte; /* !multimapped */
@ -261,13 +261,11 @@ struct kvm_mmu {
union kvm_mmu_page_role base_role;
u64 *pae_root;
u64 rsvd_bits_mask[2][4];
};
struct kvm_vcpu_arch {
u64 host_tsc;
int interrupt_window_open;
unsigned long irq_summary; /* bit vector: 1 per word in irq_pending */
DECLARE_BITMAP(irq_pending, KVM_NR_INTERRUPTS);
/*
* rip and regs accesses must go through
* kvm_{register,rip}_{read,write} functions.
@ -286,6 +284,7 @@ struct kvm_vcpu_arch {
u64 shadow_efer;
u64 apic_base;
struct kvm_lapic *apic; /* kernel irqchip context */
int32_t apic_arb_prio;
int mp_state;
int sipi_vector;
u64 ia32_misc_enable_msr;
@ -320,6 +319,8 @@ struct kvm_vcpu_arch {
struct kvm_pio_request pio;
void *pio_data;
u8 event_exit_inst_len;
struct kvm_queued_exception {
bool pending;
bool has_error_code;
@ -329,11 +330,12 @@ struct kvm_vcpu_arch {
struct kvm_queued_interrupt {
bool pending;
bool soft;
u8 nr;
} interrupt;
struct {
int active;
int vm86_active;
u8 save_iopl;
struct kvm_save_segment {
u16 selector;
@ -356,9 +358,9 @@ struct kvm_vcpu_arch {
unsigned int time_offset;
struct page *time_page;
bool singlestep; /* guest is single stepped by KVM */
bool nmi_pending;
bool nmi_injected;
bool nmi_window_open;
struct mtrr_state_type mtrr_state;
u32 pat;
@ -392,15 +394,14 @@ struct kvm_arch{
*/
struct list_head active_mmu_pages;
struct list_head assigned_dev_head;
struct list_head oos_global_pages;
struct iommu_domain *iommu_domain;
int iommu_flags;
struct kvm_pic *vpic;
struct kvm_ioapic *vioapic;
struct kvm_pit *vpit;
struct hlist_head irq_ack_notifier_list;
int vapics_in_nmi_mode;
int round_robin_prev_vcpu;
unsigned int tss_addr;
struct page *apic_access_page;
@ -423,7 +424,6 @@ struct kvm_vm_stat {
u32 mmu_recycled;
u32 mmu_cache_miss;
u32 mmu_unsync;
u32 mmu_unsync_global;
u32 remote_tlb_flush;
u32 lpages;
};
@ -443,7 +443,6 @@ struct kvm_vcpu_stat {
u32 halt_exits;
u32 halt_wakeup;
u32 request_irq_exits;
u32 request_nmi_exits;
u32 irq_exits;
u32 host_state_reload;
u32 efer_reload;
@ -511,20 +510,22 @@ struct kvm_x86_ops {
void (*run)(struct kvm_vcpu *vcpu, struct kvm_run *run);
int (*handle_exit)(struct kvm_run *run, struct kvm_vcpu *vcpu);
void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
void (*patch_hypercall)(struct kvm_vcpu *vcpu,
unsigned char *hypercall_addr);
int (*get_irq)(struct kvm_vcpu *vcpu);
void (*set_irq)(struct kvm_vcpu *vcpu, int vec);
void (*set_irq)(struct kvm_vcpu *vcpu);
void (*set_nmi)(struct kvm_vcpu *vcpu);
void (*queue_exception)(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code);
bool (*exception_injected)(struct kvm_vcpu *vcpu);
void (*inject_pending_irq)(struct kvm_vcpu *vcpu);
void (*inject_pending_vectors)(struct kvm_vcpu *vcpu,
struct kvm_run *run);
int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
int (*nmi_allowed)(struct kvm_vcpu *vcpu);
void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
void (*enable_irq_window)(struct kvm_vcpu *vcpu);
void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
int (*get_tdp_level)(void);
int (*get_mt_mask_shift)(void);
u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
};
extern struct kvm_x86_ops *kvm_x86_ops;
@ -538,7 +539,7 @@ int kvm_mmu_setup(struct kvm_vcpu *vcpu);
void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte);
void kvm_mmu_set_base_ptes(u64 base_pte);
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask);
u64 dirty_mask, u64 nx_mask, u64 x_mask);
int kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot);
@ -552,6 +553,7 @@ int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes);
int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
gpa_t addr, unsigned long *ret);
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);
extern bool tdp_enabled;
@ -563,6 +565,7 @@ enum emulation_result {
#define EMULTYPE_NO_DECODE (1 << 0)
#define EMULTYPE_TRAP_UD (1 << 1)
#define EMULTYPE_SKIP (1 << 2)
int emulate_instruction(struct kvm_vcpu *vcpu, struct kvm_run *run,
unsigned long cr2, u16 error_code, int emulation_type);
void kvm_report_emulation_failure(struct kvm_vcpu *cvpu, const char *context);
@ -638,7 +641,6 @@ void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
int kvm_mmu_load(struct kvm_vcpu *vcpu);
void kvm_mmu_unload(struct kvm_vcpu *vcpu);
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
void kvm_mmu_sync_global(struct kvm_vcpu *vcpu);
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
@ -769,6 +771,8 @@ enum {
#define HF_GIF_MASK (1 << 0)
#define HF_HIF_MASK (1 << 1)
#define HF_VINTR_MASK (1 << 2)
#define HF_NMI_MASK (1 << 3)
#define HF_IRET_MASK (1 << 4)
/*
* Hardware virtualization extension instructions may fault if a
@ -791,5 +795,6 @@ asmlinkage void kvm_handle_fault_on_reboot(void);
#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
int kvm_age_hva(struct kvm *kvm, unsigned long hva);
int cpuid_maxphyaddr(struct kvm_vcpu *vcpu);
#endif /* _ASM_X86_KVM_HOST_H */

View File

@ -143,6 +143,9 @@ struct decode_cache {
struct fetch_cache fetch;
};
#define X86_SHADOW_INT_MOV_SS 1
#define X86_SHADOW_INT_STI 2
struct x86_emulate_ctxt {
/* Register state before/after emulation. */
struct kvm_vcpu *vcpu;
@ -152,6 +155,9 @@ struct x86_emulate_ctxt {
int mode;
u32 cs_base;
/* interruptibility state, as a result of execution of STI or MOV SS */
int interruptibility;
/* decode cache */
struct decode_cache decode;
};

View File

@ -225,6 +225,7 @@ struct __attribute__ ((__packed__)) vmcb {
#define SVM_EVTINJ_VALID_ERR (1 << 11)
#define SVM_EXITINTINFO_VEC_MASK SVM_EVTINJ_VEC_MASK
#define SVM_EXITINTINFO_TYPE_MASK SVM_EVTINJ_TYPE_MASK
#define SVM_EXITINTINFO_TYPE_INTR SVM_EVTINJ_TYPE_INTR
#define SVM_EXITINTINFO_TYPE_NMI SVM_EVTINJ_TYPE_NMI

View File

@ -247,6 +247,7 @@ enum vmcs_field {
#define EXIT_REASON_MSR_READ 31
#define EXIT_REASON_MSR_WRITE 32
#define EXIT_REASON_MWAIT_INSTRUCTION 36
#define EXIT_REASON_MCE_DURING_VMENTRY 41
#define EXIT_REASON_TPR_BELOW_THRESHOLD 43
#define EXIT_REASON_APIC_ACCESS 44
#define EXIT_REASON_EPT_VIOLATION 48

View File

@ -420,6 +420,7 @@ void do_machine_check(struct pt_regs * regs, long error_code)
out2:
atomic_dec(&mce_entry);
}
EXPORT_SYMBOL_GPL(do_machine_check);
#ifdef CONFIG_X86_MCE_INTEL
/***

View File

@ -27,6 +27,7 @@
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/hardirq.h>
#include <asm/timer.h>
#define MMU_QUEUE_SIZE 1024
@ -230,6 +231,9 @@ static void paravirt_ops_setup(void)
pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
}
#ifdef CONFIG_X86_IO_APIC
no_timer_check = 1;
#endif
}
void __init kvm_guest_init(void)

View File

@ -172,6 +172,9 @@ void smp_reschedule_interrupt(struct pt_regs *regs)
{
ack_APIC_irq();
inc_irq_stat(irq_resched_count);
/*
* KVM uses this interrupt to force a cpu out of guest mode
*/
}
void smp_call_function_interrupt(struct pt_regs *regs)

View File

@ -50,6 +50,9 @@ config KVM_INTEL
Provides support for KVM on Intel processors equipped with the VT
extensions.
To compile this as a module, choose M here: the module
will be called kvm-intel.
config KVM_AMD
tristate "KVM for AMD processors support"
depends on KVM
@ -57,6 +60,9 @@ config KVM_AMD
Provides support for KVM on AMD processors equipped with the AMD-V
(SVM) extensions.
To compile this as a module, choose M here: the module
will be called kvm-amd.
config KVM_TRACE
bool "KVM trace support"
depends on KVM && SYSFS

View File

@ -14,7 +14,7 @@ endif
EXTRA_CFLAGS += -Ivirt/kvm -Iarch/x86/kvm
kvm-objs := $(common-objs) x86.o mmu.o x86_emulate.o i8259.o irq.o lapic.o \
i8254.o
i8254.o timer.o
obj-$(CONFIG_KVM) += kvm.o
kvm-intel-objs = vmx.o
obj-$(CONFIG_KVM_INTEL) += kvm-intel.o

View File

@ -98,6 +98,37 @@ static int pit_get_gate(struct kvm *kvm, int channel)
return kvm->arch.vpit->pit_state.channels[channel].gate;
}
static s64 __kpit_elapsed(struct kvm *kvm)
{
s64 elapsed;
ktime_t remaining;
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
/*
* The Counter does not stop when it reaches zero. In
* Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
* the highest count, either FFFF hex for binary counting
* or 9999 for BCD counting, and continues counting.
* Modes 2 and 3 are periodic; the Counter reloads
* itself with the initial count and continues counting
* from there.
*/
remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
elapsed = mod_64(elapsed, ps->pit_timer.period);
return elapsed;
}
static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
int channel)
{
if (channel == 0)
return __kpit_elapsed(kvm);
return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
}
static int pit_get_count(struct kvm *kvm, int channel)
{
struct kvm_kpit_channel_state *c =
@ -107,7 +138,7 @@ static int pit_get_count(struct kvm *kvm, int channel)
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
t = kpit_elapsed(kvm, c, channel);
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
switch (c->mode) {
@ -137,7 +168,7 @@ static int pit_get_out(struct kvm *kvm, int channel)
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
t = kpit_elapsed(kvm, c, channel);
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
switch (c->mode) {
@ -193,28 +224,6 @@ static void pit_latch_status(struct kvm *kvm, int channel)
}
}
static int __pit_timer_fn(struct kvm_kpit_state *ps)
{
struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
struct kvm_kpit_timer *pt = &ps->pit_timer;
if (!atomic_inc_and_test(&pt->pending))
set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
if (!pt->reinject)
atomic_set(&pt->pending, 1);
if (vcpu0 && waitqueue_active(&vcpu0->wq))
wake_up_interruptible(&vcpu0->wq);
hrtimer_add_expires_ns(&pt->timer, pt->period);
pt->scheduled = hrtimer_get_expires_ns(&pt->timer);
if (pt->period)
ps->channels[0].count_load_time = ktime_get();
return (pt->period == 0 ? 0 : 1);
}
int pit_has_pending_timer(struct kvm_vcpu *vcpu)
{
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
@ -235,21 +244,6 @@ static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
spin_unlock(&ps->inject_lock);
}
static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
{
struct kvm_kpit_state *ps;
int restart_timer = 0;
ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
restart_timer = __pit_timer_fn(ps);
if (restart_timer)
return HRTIMER_RESTART;
else
return HRTIMER_NORESTART;
}
void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
{
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
@ -263,15 +257,26 @@ void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}
static void destroy_pit_timer(struct kvm_kpit_timer *pt)
static void destroy_pit_timer(struct kvm_timer *pt)
{
pr_debug("pit: execute del timer!\n");
hrtimer_cancel(&pt->timer);
}
static bool kpit_is_periodic(struct kvm_timer *ktimer)
{
struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
pit_timer);
return ps->is_periodic;
}
static struct kvm_timer_ops kpit_ops = {
.is_periodic = kpit_is_periodic,
};
static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
{
struct kvm_kpit_timer *pt = &ps->pit_timer;
struct kvm_timer *pt = &ps->pit_timer;
s64 interval;
interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
@ -280,8 +285,14 @@ static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
/* TODO The new value only affected after the retriggered */
hrtimer_cancel(&pt->timer);
pt->period = (is_period == 0) ? 0 : interval;
pt->timer.function = pit_timer_fn;
pt->period = interval;
ps->is_periodic = is_period;
pt->timer.function = kvm_timer_fn;
pt->t_ops = &kpit_ops;
pt->kvm = ps->pit->kvm;
pt->vcpu_id = 0;
atomic_set(&pt->pending, 0);
ps->irq_ack = 1;
@ -298,23 +309,23 @@ static void pit_load_count(struct kvm *kvm, int channel, u32 val)
pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
/*
* Though spec said the state of 8254 is undefined after power-up,
* seems some tricky OS like Windows XP depends on IRQ0 interrupt
* when booting up.
* So here setting initialize rate for it, and not a specific number
* The largest possible initial count is 0; this is equivalent
* to 216 for binary counting and 104 for BCD counting.
*/
if (val == 0)
val = 0x10000;
ps->channels[channel].count_load_time = ktime_get();
ps->channels[channel].count = val;
if (channel != 0)
if (channel != 0) {
ps->channels[channel].count_load_time = ktime_get();
return;
}
/* Two types of timer
* mode 1 is one shot, mode 2 is period, otherwise del timer */
switch (ps->channels[0].mode) {
case 0:
case 1:
/* FIXME: enhance mode 4 precision */
case 4:

View File

@ -3,15 +3,6 @@
#include "iodev.h"
struct kvm_kpit_timer {
struct hrtimer timer;
int irq;
s64 period; /* unit: ns */
s64 scheduled;
atomic_t pending;
bool reinject;
};
struct kvm_kpit_channel_state {
u32 count; /* can be 65536 */
u16 latched_count;
@ -30,7 +21,8 @@ struct kvm_kpit_channel_state {
struct kvm_kpit_state {
struct kvm_kpit_channel_state channels[3];
struct kvm_kpit_timer pit_timer;
struct kvm_timer pit_timer;
bool is_periodic;
u32 speaker_data_on;
struct mutex lock;
struct kvm_pit *pit;

View File

@ -24,6 +24,7 @@
#include "irq.h"
#include "i8254.h"
#include "x86.h"
/*
* check if there are pending timer events
@ -48,6 +49,9 @@ int kvm_cpu_has_interrupt(struct kvm_vcpu *v)
{
struct kvm_pic *s;
if (!irqchip_in_kernel(v->kvm))
return v->arch.interrupt.pending;
if (kvm_apic_has_interrupt(v) == -1) { /* LAPIC */
if (kvm_apic_accept_pic_intr(v)) {
s = pic_irqchip(v->kvm); /* PIC */
@ -67,6 +71,9 @@ int kvm_cpu_get_interrupt(struct kvm_vcpu *v)
struct kvm_pic *s;
int vector;
if (!irqchip_in_kernel(v->kvm))
return v->arch.interrupt.nr;
vector = kvm_get_apic_interrupt(v); /* APIC */
if (vector == -1) {
if (kvm_apic_accept_pic_intr(v)) {

18
arch/x86/kvm/kvm_timer.h Normal file
View File

@ -0,0 +1,18 @@
struct kvm_timer {
struct hrtimer timer;
s64 period; /* unit: ns */
atomic_t pending; /* accumulated triggered timers */
bool reinject;
struct kvm_timer_ops *t_ops;
struct kvm *kvm;
int vcpu_id;
};
struct kvm_timer_ops {
bool (*is_periodic)(struct kvm_timer *);
};
enum hrtimer_restart kvm_timer_fn(struct hrtimer *data);

View File

@ -196,20 +196,15 @@ int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
}
EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
int vector, int level, int trig_mode);
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (!apic_test_and_set_irr(vec, apic)) {
/* a new pending irq is set in IRR */
if (trig)
apic_set_vector(vec, apic->regs + APIC_TMR);
else
apic_clear_vector(vec, apic->regs + APIC_TMR);
kvm_vcpu_kick(apic->vcpu);
return 1;
}
return 0;
return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
irq->level, irq->trig_mode);
}
static inline int apic_find_highest_isr(struct kvm_lapic *apic)
@ -250,7 +245,7 @@ static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
{
return kvm_apic_id(apic) == dest;
return dest == 0xff || kvm_apic_id(apic) == dest;
}
int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
@ -279,37 +274,34 @@ int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
return result;
}
static int apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
int short_hand, int dest, int dest_mode)
{
int result = 0;
struct kvm_lapic *target = vcpu->arch.apic;
apic_debug("target %p, source %p, dest 0x%x, "
"dest_mode 0x%x, short_hand 0x%x",
"dest_mode 0x%x, short_hand 0x%x\n",
target, source, dest, dest_mode, short_hand);
ASSERT(!target);
switch (short_hand) {
case APIC_DEST_NOSHORT:
if (dest_mode == 0) {
if (dest_mode == 0)
/* Physical mode. */
if ((dest == 0xFF) || (dest == kvm_apic_id(target)))
result = 1;
} else
result = kvm_apic_match_physical_addr(target, dest);
else
/* Logical mode. */
result = kvm_apic_match_logical_addr(target, dest);
break;
case APIC_DEST_SELF:
if (target == source)
result = 1;
result = (target == source);
break;
case APIC_DEST_ALLINC:
result = 1;
break;
case APIC_DEST_ALLBUT:
if (target != source)
result = 1;
result = (target != source);
break;
default:
printk(KERN_WARNING "Bad dest shorthand value %x\n",
@ -327,20 +319,22 @@ static int apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
int vector, int level, int trig_mode)
{
int orig_irr, result = 0;
int result = 0;
struct kvm_vcpu *vcpu = apic->vcpu;
switch (delivery_mode) {
case APIC_DM_FIXED:
case APIC_DM_LOWEST:
vcpu->arch.apic_arb_prio++;
case APIC_DM_FIXED:
/* FIXME add logic for vcpu on reset */
if (unlikely(!apic_enabled(apic)))
break;
orig_irr = apic_test_and_set_irr(vector, apic);
if (orig_irr && trig_mode) {
apic_debug("level trig mode repeatedly for vector %d",
vector);
result = !apic_test_and_set_irr(vector, apic);
if (!result) {
if (trig_mode)
apic_debug("level trig mode repeatedly for "
"vector %d", vector);
break;
}
@ -349,10 +343,7 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
apic_set_vector(vector, apic->regs + APIC_TMR);
} else
apic_clear_vector(vector, apic->regs + APIC_TMR);
kvm_vcpu_kick(vcpu);
result = (orig_irr == 0);
break;
case APIC_DM_REMRD:
@ -364,12 +355,14 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
break;
case APIC_DM_NMI:
result = 1;
kvm_inject_nmi(vcpu);
kvm_vcpu_kick(vcpu);
break;
case APIC_DM_INIT:
if (level) {
result = 1;
if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
printk(KERN_DEBUG
"INIT on a runnable vcpu %d\n",
@ -386,6 +379,7 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
apic_debug("SIPI to vcpu %d vector 0x%02x\n",
vcpu->vcpu_id, vector);
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
result = 1;
vcpu->arch.sipi_vector = vector;
vcpu->arch.mp_state = KVM_MP_STATE_SIPI_RECEIVED;
kvm_vcpu_kick(vcpu);
@ -408,43 +402,9 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
return result;
}
static struct kvm_lapic *kvm_apic_round_robin(struct kvm *kvm, u8 vector,
unsigned long bitmap)
int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
{
int last;
int next;
struct kvm_lapic *apic = NULL;
last = kvm->arch.round_robin_prev_vcpu;
next = last;
do {
if (++next == KVM_MAX_VCPUS)
next = 0;
if (kvm->vcpus[next] == NULL || !test_bit(next, &bitmap))
continue;
apic = kvm->vcpus[next]->arch.apic;
if (apic && apic_enabled(apic))
break;
apic = NULL;
} while (next != last);
kvm->arch.round_robin_prev_vcpu = next;
if (!apic)
printk(KERN_DEBUG "vcpu not ready for apic_round_robin\n");
return apic;
}
struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
unsigned long bitmap)
{
struct kvm_lapic *apic;
apic = kvm_apic_round_robin(kvm, vector, bitmap);
if (apic)
return apic->vcpu;
return NULL;
return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
}
static void apic_set_eoi(struct kvm_lapic *apic)
@ -472,47 +432,24 @@ static void apic_send_ipi(struct kvm_lapic *apic)
{
u32 icr_low = apic_get_reg(apic, APIC_ICR);
u32 icr_high = apic_get_reg(apic, APIC_ICR2);
struct kvm_lapic_irq irq;
unsigned int dest = GET_APIC_DEST_FIELD(icr_high);
unsigned int short_hand = icr_low & APIC_SHORT_MASK;
unsigned int trig_mode = icr_low & APIC_INT_LEVELTRIG;
unsigned int level = icr_low & APIC_INT_ASSERT;
unsigned int dest_mode = icr_low & APIC_DEST_MASK;
unsigned int delivery_mode = icr_low & APIC_MODE_MASK;
unsigned int vector = icr_low & APIC_VECTOR_MASK;
struct kvm_vcpu *target;
struct kvm_vcpu *vcpu;
unsigned long lpr_map = 0;
int i;
irq.vector = icr_low & APIC_VECTOR_MASK;
irq.delivery_mode = icr_low & APIC_MODE_MASK;
irq.dest_mode = icr_low & APIC_DEST_MASK;
irq.level = icr_low & APIC_INT_ASSERT;
irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
irq.shorthand = icr_low & APIC_SHORT_MASK;
irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
apic_debug("icr_high 0x%x, icr_low 0x%x, "
"short_hand 0x%x, dest 0x%x, trig_mode 0x%x, level 0x%x, "
"dest_mode 0x%x, delivery_mode 0x%x, vector 0x%x\n",
icr_high, icr_low, short_hand, dest,
trig_mode, level, dest_mode, delivery_mode, vector);
icr_high, icr_low, irq.shorthand, irq.dest_id,
irq.trig_mode, irq.level, irq.dest_mode, irq.delivery_mode,
irq.vector);
for (i = 0; i < KVM_MAX_VCPUS; i++) {
vcpu = apic->vcpu->kvm->vcpus[i];
if (!vcpu)
continue;
if (vcpu->arch.apic &&
apic_match_dest(vcpu, apic, short_hand, dest, dest_mode)) {
if (delivery_mode == APIC_DM_LOWEST)
set_bit(vcpu->vcpu_id, &lpr_map);
else
__apic_accept_irq(vcpu->arch.apic, delivery_mode,
vector, level, trig_mode);
}
}
if (delivery_mode == APIC_DM_LOWEST) {
target = kvm_get_lowest_prio_vcpu(vcpu->kvm, vector, lpr_map);
if (target != NULL)
__apic_accept_irq(target->arch.apic, delivery_mode,
vector, level, trig_mode);
}
kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq);
}
static u32 apic_get_tmcct(struct kvm_lapic *apic)
@ -527,12 +464,13 @@ static u32 apic_get_tmcct(struct kvm_lapic *apic)
if (apic_get_reg(apic, APIC_TMICT) == 0)
return 0;
remaining = hrtimer_expires_remaining(&apic->timer.dev);
remaining = hrtimer_expires_remaining(&apic->lapic_timer.timer);
if (ktime_to_ns(remaining) < 0)
remaining = ktime_set(0, 0);
ns = mod_64(ktime_to_ns(remaining), apic->timer.period);
tmcct = div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->timer.divide_count));
ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
tmcct = div64_u64(ns,
(APIC_BUS_CYCLE_NS * apic->divide_count));
return tmcct;
}
@ -619,25 +557,25 @@ static void update_divide_count(struct kvm_lapic *apic)
tdcr = apic_get_reg(apic, APIC_TDCR);
tmp1 = tdcr & 0xf;
tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
apic->timer.divide_count = 0x1 << (tmp2 & 0x7);
apic->divide_count = 0x1 << (tmp2 & 0x7);
apic_debug("timer divide count is 0x%x\n",
apic->timer.divide_count);
apic->divide_count);
}
static void start_apic_timer(struct kvm_lapic *apic)
{
ktime_t now = apic->timer.dev.base->get_time();
ktime_t now = apic->lapic_timer.timer.base->get_time();
apic->timer.period = apic_get_reg(apic, APIC_TMICT) *
APIC_BUS_CYCLE_NS * apic->timer.divide_count;
atomic_set(&apic->timer.pending, 0);
apic->lapic_timer.period = apic_get_reg(apic, APIC_TMICT) *
APIC_BUS_CYCLE_NS * apic->divide_count;
atomic_set(&apic->lapic_timer.pending, 0);
if (!apic->timer.period)
if (!apic->lapic_timer.period)
return;
hrtimer_start(&apic->timer.dev,
ktime_add_ns(now, apic->timer.period),
hrtimer_start(&apic->lapic_timer.timer,
ktime_add_ns(now, apic->lapic_timer.period),
HRTIMER_MODE_ABS);
apic_debug("%s: bus cycle is %" PRId64 "ns, now 0x%016"
@ -646,9 +584,9 @@ static void start_apic_timer(struct kvm_lapic *apic)
"expire @ 0x%016" PRIx64 ".\n", __func__,
APIC_BUS_CYCLE_NS, ktime_to_ns(now),
apic_get_reg(apic, APIC_TMICT),
apic->timer.period,
apic->lapic_timer.period,
ktime_to_ns(ktime_add_ns(now,
apic->timer.period)));
apic->lapic_timer.period)));
}
static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
@ -730,7 +668,7 @@ static void apic_mmio_write(struct kvm_io_device *this,
apic_set_reg(apic, APIC_LVTT + 0x10 * i,
lvt_val | APIC_LVT_MASKED);
}
atomic_set(&apic->timer.pending, 0);
atomic_set(&apic->lapic_timer.pending, 0);
}
break;
@ -762,7 +700,7 @@ static void apic_mmio_write(struct kvm_io_device *this,
break;
case APIC_TMICT:
hrtimer_cancel(&apic->timer.dev);
hrtimer_cancel(&apic->lapic_timer.timer);
apic_set_reg(apic, APIC_TMICT, val);
start_apic_timer(apic);
return;
@ -802,7 +740,7 @@ void kvm_free_lapic(struct kvm_vcpu *vcpu)
if (!vcpu->arch.apic)
return;
hrtimer_cancel(&vcpu->arch.apic->timer.dev);
hrtimer_cancel(&vcpu->arch.apic->lapic_timer.timer);
if (vcpu->arch.apic->regs_page)
__free_page(vcpu->arch.apic->regs_page);
@ -880,7 +818,7 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu)
ASSERT(apic != NULL);
/* Stop the timer in case it's a reset to an active apic */
hrtimer_cancel(&apic->timer.dev);
hrtimer_cancel(&apic->lapic_timer.timer);
apic_set_reg(apic, APIC_ID, vcpu->vcpu_id << 24);
apic_set_reg(apic, APIC_LVR, APIC_VERSION);
@ -905,11 +843,13 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu)
apic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
}
update_divide_count(apic);
atomic_set(&apic->timer.pending, 0);
atomic_set(&apic->lapic_timer.pending, 0);
if (vcpu->vcpu_id == 0)
vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP;
apic_update_ppr(apic);
vcpu->arch.apic_arb_prio = 0;
apic_debug(KERN_INFO "%s: vcpu=%p, id=%d, base_msr="
"0x%016" PRIx64 ", base_address=0x%0lx.\n", __func__,
vcpu, kvm_apic_id(apic),
@ -917,16 +857,14 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu)
}
EXPORT_SYMBOL_GPL(kvm_lapic_reset);
bool kvm_apic_present(struct kvm_vcpu *vcpu)
{
return vcpu->arch.apic && apic_hw_enabled(vcpu->arch.apic);
}
int kvm_lapic_enabled(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
int ret = 0;
if (!apic)
return 0;
ret = apic_enabled(apic);
return ret;
return kvm_apic_present(vcpu) && apic_sw_enabled(vcpu->arch.apic);
}
EXPORT_SYMBOL_GPL(kvm_lapic_enabled);
@ -936,22 +874,11 @@ EXPORT_SYMBOL_GPL(kvm_lapic_enabled);
*----------------------------------------------------------------------
*/
/* TODO: make sure __apic_timer_fn runs in current pCPU */
static int __apic_timer_fn(struct kvm_lapic *apic)
static bool lapic_is_periodic(struct kvm_timer *ktimer)
{
int result = 0;
wait_queue_head_t *q = &apic->vcpu->wq;
if(!atomic_inc_and_test(&apic->timer.pending))
set_bit(KVM_REQ_PENDING_TIMER, &apic->vcpu->requests);
if (waitqueue_active(q))
wake_up_interruptible(q);
if (apic_lvtt_period(apic)) {
result = 1;
hrtimer_add_expires_ns(&apic->timer.dev, apic->timer.period);
}
return result;
struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic,
lapic_timer);
return apic_lvtt_period(apic);
}
int apic_has_pending_timer(struct kvm_vcpu *vcpu)
@ -959,7 +886,7 @@ int apic_has_pending_timer(struct kvm_vcpu *vcpu)
struct kvm_lapic *lapic = vcpu->arch.apic;
if (lapic && apic_enabled(lapic) && apic_lvt_enabled(lapic, APIC_LVTT))
return atomic_read(&lapic->timer.pending);
return atomic_read(&lapic->lapic_timer.pending);
return 0;
}
@ -986,20 +913,9 @@ void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
kvm_apic_local_deliver(apic, APIC_LVT0);
}
static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
{
struct kvm_lapic *apic;
int restart_timer = 0;
apic = container_of(data, struct kvm_lapic, timer.dev);
restart_timer = __apic_timer_fn(apic);
if (restart_timer)
return HRTIMER_RESTART;
else
return HRTIMER_NORESTART;
}
static struct kvm_timer_ops lapic_timer_ops = {
.is_periodic = lapic_is_periodic,
};
int kvm_create_lapic(struct kvm_vcpu *vcpu)
{
@ -1024,8 +940,13 @@ int kvm_create_lapic(struct kvm_vcpu *vcpu)
memset(apic->regs, 0, PAGE_SIZE);
apic->vcpu = vcpu;
hrtimer_init(&apic->timer.dev, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
apic->timer.dev.function = apic_timer_fn;
hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
HRTIMER_MODE_ABS);
apic->lapic_timer.timer.function = kvm_timer_fn;
apic->lapic_timer.t_ops = &lapic_timer_ops;
apic->lapic_timer.kvm = vcpu->kvm;
apic->lapic_timer.vcpu_id = vcpu->vcpu_id;
apic->base_address = APIC_DEFAULT_PHYS_BASE;
vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE;
@ -1078,9 +999,9 @@ void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
if (apic && atomic_read(&apic->timer.pending) > 0) {
if (apic && atomic_read(&apic->lapic_timer.pending) > 0) {
if (kvm_apic_local_deliver(apic, APIC_LVTT))
atomic_dec(&apic->timer.pending);
atomic_dec(&apic->lapic_timer.pending);
}
}
@ -1106,7 +1027,7 @@ void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu)
MSR_IA32_APICBASE_BASE;
apic_set_reg(apic, APIC_LVR, APIC_VERSION);
apic_update_ppr(apic);
hrtimer_cancel(&apic->timer.dev);
hrtimer_cancel(&apic->lapic_timer.timer);
update_divide_count(apic);
start_apic_timer(apic);
}
@ -1119,7 +1040,7 @@ void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
if (!apic)
return;
timer = &apic->timer.dev;
timer = &apic->lapic_timer.timer;
if (hrtimer_cancel(timer))
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}

View File

@ -2,18 +2,15 @@
#define __KVM_X86_LAPIC_H
#include "iodev.h"
#include "kvm_timer.h"
#include <linux/kvm_host.h>
struct kvm_lapic {
unsigned long base_address;
struct kvm_io_device dev;
struct {
atomic_t pending;
s64 period; /* unit: ns */
u32 divide_count;
struct hrtimer dev;
} timer;
struct kvm_timer lapic_timer;
u32 divide_count;
struct kvm_vcpu *vcpu;
struct page *regs_page;
void *regs;
@ -34,12 +31,13 @@ u64 kvm_lapic_get_base(struct kvm_vcpu *vcpu);
int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest);
int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda);
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig);
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq);
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu);
void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data);
void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu);
int kvm_lapic_enabled(struct kvm_vcpu *vcpu);
bool kvm_apic_present(struct kvm_vcpu *vcpu);
int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu);
void kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr);

View File

@ -126,6 +126,7 @@ module_param(oos_shadow, bool, 0644);
#define PFERR_PRESENT_MASK (1U << 0)
#define PFERR_WRITE_MASK (1U << 1)
#define PFERR_USER_MASK (1U << 2)
#define PFERR_RSVD_MASK (1U << 3)
#define PFERR_FETCH_MASK (1U << 4)
#define PT_DIRECTORY_LEVEL 2
@ -177,7 +178,11 @@ static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
static u64 __read_mostly shadow_mt_mask;
static inline u64 rsvd_bits(int s, int e)
{
return ((1ULL << (e - s + 1)) - 1) << s;
}
void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
{
@ -193,14 +198,13 @@ void kvm_mmu_set_base_ptes(u64 base_pte)
EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
u64 dirty_mask, u64 nx_mask, u64 x_mask)
{
shadow_user_mask = user_mask;
shadow_accessed_mask = accessed_mask;
shadow_dirty_mask = dirty_mask;
shadow_nx_mask = nx_mask;
shadow_x_mask = x_mask;
shadow_mt_mask = mt_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
@ -219,11 +223,6 @@ static int is_nx(struct kvm_vcpu *vcpu)
return vcpu->arch.shadow_efer & EFER_NX;
}
static int is_present_pte(unsigned long pte)
{
return pte & PT_PRESENT_MASK;
}
static int is_shadow_present_pte(u64 pte)
{
return pte != shadow_trap_nonpresent_pte
@ -1074,18 +1073,10 @@ static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
return NULL;
}
static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
{
list_del(&sp->oos_link);
--kvm->stat.mmu_unsync_global;
}
static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
WARN_ON(!sp->unsync);
sp->unsync = 0;
if (sp->global)
kvm_unlink_unsync_global(kvm, sp);
--kvm->stat.mmu_unsync;
}
@ -1248,7 +1239,6 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
sp->gfn = gfn;
sp->role = role;
sp->global = 0;
hlist_add_head(&sp->hash_link, bucket);
if (!direct) {
if (rmap_write_protect(vcpu->kvm, gfn))
@ -1616,7 +1606,7 @@ static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
return mtrr_state->def_type;
}
static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
{
u8 mtrr;
@ -1626,6 +1616,7 @@ static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
mtrr = MTRR_TYPE_WRBACK;
return mtrr;
}
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
@ -1646,11 +1637,7 @@ static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
++vcpu->kvm->stat.mmu_unsync;
sp->unsync = 1;
if (sp->global) {
list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
++vcpu->kvm->stat.mmu_unsync_global;
} else
kvm_mmu_mark_parents_unsync(vcpu, sp);
kvm_mmu_mark_parents_unsync(vcpu, sp);
mmu_convert_notrap(sp);
return 0;
@ -1677,21 +1664,11 @@ static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
unsigned pte_access, int user_fault,
int write_fault, int dirty, int largepage,
int global, gfn_t gfn, pfn_t pfn, bool speculative,
gfn_t gfn, pfn_t pfn, bool speculative,
bool can_unsync)
{
u64 spte;
int ret = 0;
u64 mt_mask = shadow_mt_mask;
struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
if (!global && sp->global) {
sp->global = 0;
if (sp->unsync) {
kvm_unlink_unsync_global(vcpu->kvm, sp);
kvm_mmu_mark_parents_unsync(vcpu, sp);
}
}
/*
* We don't set the accessed bit, since we sometimes want to see
@ -1711,16 +1688,9 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
spte |= shadow_user_mask;
if (largepage)
spte |= PT_PAGE_SIZE_MASK;
if (mt_mask) {
if (!kvm_is_mmio_pfn(pfn)) {
mt_mask = get_memory_type(vcpu, gfn) <<
kvm_x86_ops->get_mt_mask_shift();
mt_mask |= VMX_EPT_IGMT_BIT;
} else
mt_mask = MTRR_TYPE_UNCACHABLE <<
kvm_x86_ops->get_mt_mask_shift();
spte |= mt_mask;
}
if (tdp_enabled)
spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
kvm_is_mmio_pfn(pfn));
spte |= (u64)pfn << PAGE_SHIFT;
@ -1765,8 +1735,8 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
unsigned pt_access, unsigned pte_access,
int user_fault, int write_fault, int dirty,
int *ptwrite, int largepage, int global,
gfn_t gfn, pfn_t pfn, bool speculative)
int *ptwrite, int largepage, gfn_t gfn,
pfn_t pfn, bool speculative)
{
int was_rmapped = 0;
int was_writeble = is_writeble_pte(*shadow_pte);
@ -1795,7 +1765,7 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
was_rmapped = 1;
}
if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
dirty, largepage, global, gfn, pfn, speculative, true)) {
dirty, largepage, gfn, pfn, speculative, true)) {
if (write_fault)
*ptwrite = 1;
kvm_x86_ops->tlb_flush(vcpu);
@ -1843,7 +1813,7 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
|| (largepage && iterator.level == PT_DIRECTORY_LEVEL)) {
mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
0, write, 1, &pt_write,
largepage, 0, gfn, pfn, false);
largepage, gfn, pfn, false);
++vcpu->stat.pf_fixed;
break;
}
@ -1942,7 +1912,19 @@ static void mmu_free_roots(struct kvm_vcpu *vcpu)
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
}
static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
int ret = 0;
if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
ret = 1;
}
return ret;
}
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
int i;
gfn_t root_gfn;
@ -1957,13 +1939,15 @@ static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
ASSERT(!VALID_PAGE(root));
if (tdp_enabled)
direct = 1;
if (mmu_check_root(vcpu, root_gfn))
return 1;
sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
PT64_ROOT_LEVEL, direct,
ACC_ALL, NULL);
root = __pa(sp->spt);
++sp->root_count;
vcpu->arch.mmu.root_hpa = root;
return;
return 0;
}
direct = !is_paging(vcpu);
if (tdp_enabled)
@ -1980,6 +1964,8 @@ static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
} else if (vcpu->arch.mmu.root_level == 0)
root_gfn = 0;
if (mmu_check_root(vcpu, root_gfn))
return 1;
sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
PT32_ROOT_LEVEL, direct,
ACC_ALL, NULL);
@ -1988,6 +1974,7 @@ static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
}
vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
return 0;
}
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
@ -2006,7 +1993,7 @@ static void mmu_sync_roots(struct kvm_vcpu *vcpu)
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu.pae_root[i];
if (root) {
if (root && VALID_PAGE(root)) {
root &= PT64_BASE_ADDR_MASK;
sp = page_header(root);
mmu_sync_children(vcpu, sp);
@ -2014,15 +2001,6 @@ static void mmu_sync_roots(struct kvm_vcpu *vcpu)
}
}
static void mmu_sync_global(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_page *sp, *n;
list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
kvm_sync_page(vcpu, sp);
}
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
spin_lock(&vcpu->kvm->mmu_lock);
@ -2030,13 +2008,6 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
spin_unlock(&vcpu->kvm->mmu_lock);
}
void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
{
spin_lock(&vcpu->kvm->mmu_lock);
mmu_sync_global(vcpu);
spin_unlock(&vcpu->kvm->mmu_lock);
}
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
{
return vaddr;
@ -2151,6 +2122,14 @@ static void paging_free(struct kvm_vcpu *vcpu)
nonpaging_free(vcpu);
}
static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
{
int bit7;
bit7 = (gpte >> 7) & 1;
return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
}
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE
@ -2159,6 +2138,59 @@ static void paging_free(struct kvm_vcpu *vcpu)
#include "paging_tmpl.h"
#undef PTTYPE
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
int maxphyaddr = cpuid_maxphyaddr(vcpu);
u64 exb_bit_rsvd = 0;
if (!is_nx(vcpu))
exb_bit_rsvd = rsvd_bits(63, 63);
switch (level) {
case PT32_ROOT_LEVEL:
/* no rsvd bits for 2 level 4K page table entries */
context->rsvd_bits_mask[0][1] = 0;
context->rsvd_bits_mask[0][0] = 0;
if (is_cpuid_PSE36())
/* 36bits PSE 4MB page */
context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
else
/* 32 bits PSE 4MB page */
context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
context->rsvd_bits_mask[1][0] = ~0ull;
break;
case PT32E_ROOT_LEVEL:
context->rsvd_bits_mask[0][2] =
rsvd_bits(maxphyaddr, 63) |
rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 62); /* PDE */
context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 62); /* PTE */
context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 62) |
rsvd_bits(13, 20); /* large page */
context->rsvd_bits_mask[1][0] = ~0ull;
break;
case PT64_ROOT_LEVEL:
context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 51);
context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 51);
context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
context->rsvd_bits_mask[1][2] = context->rsvd_bits_mask[0][2];
context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 51) |
rsvd_bits(13, 20); /* large page */
context->rsvd_bits_mask[1][0] = ~0ull;
break;
}
}
static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
@ -2179,6 +2211,7 @@ static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
static int paging64_init_context(struct kvm_vcpu *vcpu)
{
reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
}
@ -2186,6 +2219,7 @@ static int paging32_init_context(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
context->new_cr3 = paging_new_cr3;
context->page_fault = paging32_page_fault;
context->gva_to_gpa = paging32_gva_to_gpa;
@ -2201,6 +2235,7 @@ static int paging32_init_context(struct kvm_vcpu *vcpu)
static int paging32E_init_context(struct kvm_vcpu *vcpu)
{
reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
}
@ -2221,12 +2256,15 @@ static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
context->gva_to_gpa = nonpaging_gva_to_gpa;
context->root_level = 0;
} else if (is_long_mode(vcpu)) {
reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
context->gva_to_gpa = paging64_gva_to_gpa;
context->root_level = PT64_ROOT_LEVEL;
} else if (is_pae(vcpu)) {
reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
context->gva_to_gpa = paging64_gva_to_gpa;
context->root_level = PT32E_ROOT_LEVEL;
} else {
reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
context->gva_to_gpa = paging32_gva_to_gpa;
context->root_level = PT32_ROOT_LEVEL;
}
@ -2290,9 +2328,11 @@ int kvm_mmu_load(struct kvm_vcpu *vcpu)
goto out;
spin_lock(&vcpu->kvm->mmu_lock);
kvm_mmu_free_some_pages(vcpu);
mmu_alloc_roots(vcpu);
r = mmu_alloc_roots(vcpu);
mmu_sync_roots(vcpu);
spin_unlock(&vcpu->kvm->mmu_lock);
if (r)
goto out;
kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
kvm_mmu_flush_tlb(vcpu);
out:
@ -2638,14 +2678,6 @@ EXPORT_SYMBOL_GPL(kvm_disable_tdp);
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
struct kvm_mmu_page *sp;
while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
struct kvm_mmu_page, link);
kvm_mmu_zap_page(vcpu->kvm, sp);
cond_resched();
}
free_page((unsigned long)vcpu->arch.mmu.pae_root);
}
@ -2710,7 +2742,6 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
{
struct kvm_mmu_page *sp;
spin_lock(&kvm->mmu_lock);
list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
int i;
u64 *pt;
@ -2725,7 +2756,6 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
pt[i] &= ~PT_WRITABLE_MASK;
}
kvm_flush_remote_tlbs(kvm);
spin_unlock(&kvm->mmu_lock);
}
void kvm_mmu_zap_all(struct kvm *kvm)
@ -3007,11 +3037,13 @@ static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
" in nonleaf level: levels %d gva %lx"
" level %d pte %llx\n", audit_msg,
vcpu->arch.mmu.root_level, va, level, ent);
audit_mappings_page(vcpu, ent, va, level - 1);
else
audit_mappings_page(vcpu, ent, va, level - 1);
} else {
gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
gfn_t gfn = gpa >> PAGE_SHIFT;
pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
if (is_shadow_present_pte(ent)
&& (ent & PT64_BASE_ADDR_MASK) != hpa)

View File

@ -75,4 +75,9 @@ static inline int is_paging(struct kvm_vcpu *vcpu)
return vcpu->arch.cr0 & X86_CR0_PG;
}
static inline int is_present_pte(unsigned long pte)
{
return pte & PT_PRESENT_MASK;
}
#endif

View File

@ -123,6 +123,7 @@ static int FNAME(walk_addr)(struct guest_walker *walker,
gfn_t table_gfn;
unsigned index, pt_access, pte_access;
gpa_t pte_gpa;
int rsvd_fault = 0;
pgprintk("%s: addr %lx\n", __func__, addr);
walk:
@ -157,6 +158,10 @@ static int FNAME(walk_addr)(struct guest_walker *walker,
if (!is_present_pte(pte))
goto not_present;
rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level);
if (rsvd_fault)
goto access_error;
if (write_fault && !is_writeble_pte(pte))
if (user_fault || is_write_protection(vcpu))
goto access_error;
@ -209,7 +214,6 @@ static int FNAME(walk_addr)(struct guest_walker *walker,
if (ret)
goto walk;
pte |= PT_DIRTY_MASK;
kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte), 0);
walker->ptes[walker->level - 1] = pte;
}
@ -233,6 +237,8 @@ static int FNAME(walk_addr)(struct guest_walker *walker,
walker->error_code |= PFERR_USER_MASK;
if (fetch_fault)
walker->error_code |= PFERR_FETCH_MASK;
if (rsvd_fault)
walker->error_code |= PFERR_RSVD_MASK;
return 0;
}
@ -262,8 +268,7 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
kvm_get_pfn(pfn);
mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
gpte & PT_DIRTY_MASK, NULL, largepage,
gpte & PT_GLOBAL_MASK, gpte_to_gfn(gpte),
pfn, true);
gpte_to_gfn(gpte), pfn, true);
}
/*
@ -297,7 +302,6 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
user_fault, write_fault,
gw->ptes[gw->level-1] & PT_DIRTY_MASK,
ptwrite, largepage,
gw->ptes[gw->level-1] & PT_GLOBAL_MASK,
gw->gfn, pfn, false);
break;
}
@ -380,7 +384,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
return r;
/*
* Look up the shadow pte for the faulting address.
* Look up the guest pte for the faulting address.
*/
r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
fetch_fault);
@ -586,7 +590,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
nr_present++;
pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
is_dirty_pte(gpte), 0, gpte & PT_GLOBAL_MASK, gfn,
is_dirty_pte(gpte), 0, gfn,
spte_to_pfn(sp->spt[i]), true, false);
}

View File

@ -19,6 +19,7 @@
#include "irq.h"
#include "mmu.h"
#include "kvm_cache_regs.h"
#include "x86.h"
#include <linux/module.h>
#include <linux/kernel.h>
@ -69,7 +70,6 @@ module_param(npt, int, S_IRUGO);
static int nested = 0;
module_param(nested, int, S_IRUGO);
static void kvm_reput_irq(struct vcpu_svm *svm);
static void svm_flush_tlb(struct kvm_vcpu *vcpu);
static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override);
@ -132,24 +132,6 @@ static inline u32 svm_has(u32 feat)
return svm_features & feat;
}
static inline u8 pop_irq(struct kvm_vcpu *vcpu)
{
int word_index = __ffs(vcpu->arch.irq_summary);
int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
int irq = word_index * BITS_PER_LONG + bit_index;
clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
if (!vcpu->arch.irq_pending[word_index])
clear_bit(word_index, &vcpu->arch.irq_summary);
return irq;
}
static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
{
set_bit(irq, vcpu->arch.irq_pending);
set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
}
static inline void clgi(void)
{
asm volatile (__ex(SVM_CLGI));
@ -214,25 +196,41 @@ static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
svm->vmcb->control.event_inj_err = error_code;
}
static bool svm_exception_injected(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
}
static int is_external_interrupt(u32 info)
{
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 ret = 0;
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
return ret & mask;
}
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (mask == 0)
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
else
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!svm->next_rip) {
printk(KERN_DEBUG "%s: NOP\n", __func__);
if (emulate_instruction(vcpu, vcpu->run, 0, 0, EMULTYPE_SKIP) !=
EMULATE_DONE)
printk(KERN_DEBUG "%s: NOP\n", __func__);
return;
}
if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
@ -240,9 +238,7 @@ static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
__func__, kvm_rip_read(vcpu), svm->next_rip);
kvm_rip_write(vcpu, svm->next_rip);
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
vcpu->arch.interrupt_window_open = (svm->vcpu.arch.hflags & HF_GIF_MASK);
svm_set_interrupt_shadow(vcpu, 0);
}
static int has_svm(void)
@ -830,6 +826,15 @@ static void svm_get_segment(struct kvm_vcpu *vcpu,
if (!var->unusable)
var->type |= 0x1;
break;
case VCPU_SREG_SS:
/* On AMD CPUs sometimes the DB bit in the segment
* descriptor is left as 1, although the whole segment has
* been made unusable. Clear it here to pass an Intel VMX
* entry check when cross vendor migrating.
*/
if (var->unusable)
var->db = 0;
break;
}
}
@ -960,15 +965,16 @@ static void svm_set_segment(struct kvm_vcpu *vcpu,
}
static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
static void update_db_intercept(struct kvm_vcpu *vcpu)
{
int old_debug = vcpu->guest_debug;
struct vcpu_svm *svm = to_svm(vcpu);
vcpu->guest_debug = dbg->control;
svm->vmcb->control.intercept_exceptions &=
~((1 << DB_VECTOR) | (1 << BP_VECTOR));
if (vcpu->arch.singlestep)
svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
if (vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
@ -979,6 +985,16 @@ static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1 << BP_VECTOR;
} else
vcpu->guest_debug = 0;
}
static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
{
int old_debug = vcpu->guest_debug;
struct vcpu_svm *svm = to_svm(vcpu);
vcpu->guest_debug = dbg->control;
update_db_intercept(vcpu);
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
@ -993,16 +1009,6 @@ static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
return 0;
}
static int svm_get_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
u32 exit_int_info = svm->vmcb->control.exit_int_info;
if (is_external_interrupt(exit_int_info))
return exit_int_info & SVM_EVTINJ_VEC_MASK;
return -1;
}
static void load_host_msrs(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
@ -1107,17 +1113,8 @@ static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
u32 exit_int_info = svm->vmcb->control.exit_int_info;
struct kvm *kvm = svm->vcpu.kvm;
u64 fault_address;
u32 error_code;
bool event_injection = false;
if (!irqchip_in_kernel(kvm) &&
is_external_interrupt(exit_int_info)) {
event_injection = true;
push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
}
fault_address = svm->vmcb->control.exit_info_2;
error_code = svm->vmcb->control.exit_info_1;
@ -1137,23 +1134,40 @@ static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
*/
if (npt_enabled)
svm_flush_tlb(&svm->vcpu);
if (!npt_enabled && event_injection)
kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
else {
if (kvm_event_needs_reinjection(&svm->vcpu))
kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
}
return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
}
static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
if (!(svm->vcpu.guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
!svm->vcpu.arch.singlestep) {
kvm_queue_exception(&svm->vcpu, DB_VECTOR);
return 1;
}
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = DB_VECTOR;
return 0;
if (svm->vcpu.arch.singlestep) {
svm->vcpu.arch.singlestep = false;
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
svm->vmcb->save.rflags &=
~(X86_EFLAGS_TF | X86_EFLAGS_RF);
update_db_intercept(&svm->vcpu);
}
if (svm->vcpu.guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
kvm_run->exit_reason = KVM_EXIT_DEBUG;
kvm_run->debug.arch.pc =
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
kvm_run->debug.arch.exception = DB_VECTOR;
return 0;
}
return 1;
}
static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
@ -1842,17 +1856,51 @@ static int task_switch_interception(struct vcpu_svm *svm,
struct kvm_run *kvm_run)
{
u16 tss_selector;
int reason;
int int_type = svm->vmcb->control.exit_int_info &
SVM_EXITINTINFO_TYPE_MASK;
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
uint32_t type =
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
uint32_t idt_v =
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
tss_selector = (u16)svm->vmcb->control.exit_info_1;
if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
return kvm_task_switch(&svm->vcpu, tss_selector,
TASK_SWITCH_IRET);
if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
return kvm_task_switch(&svm->vcpu, tss_selector,
TASK_SWITCH_JMP);
return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
reason = TASK_SWITCH_IRET;
else if (svm->vmcb->control.exit_info_2 &
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
reason = TASK_SWITCH_JMP;
else if (idt_v)
reason = TASK_SWITCH_GATE;
else
reason = TASK_SWITCH_CALL;
if (reason == TASK_SWITCH_GATE) {
switch (type) {
case SVM_EXITINTINFO_TYPE_NMI:
svm->vcpu.arch.nmi_injected = false;
break;
case SVM_EXITINTINFO_TYPE_EXEPT:
kvm_clear_exception_queue(&svm->vcpu);
break;
case SVM_EXITINTINFO_TYPE_INTR:
kvm_clear_interrupt_queue(&svm->vcpu);
break;
default:
break;
}
}
if (reason != TASK_SWITCH_GATE ||
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
(int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
skip_emulated_instruction(&svm->vcpu);
return kvm_task_switch(&svm->vcpu, tss_selector, reason);
}
static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
@ -1862,6 +1910,14 @@ static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
return 1;
}
static int iret_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
++svm->vcpu.stat.nmi_window_exits;
svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
svm->vcpu.arch.hflags |= HF_IRET_MASK;
return 1;
}
static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
@ -1879,8 +1935,14 @@ static int emulate_on_interception(struct vcpu_svm *svm,
static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
/* instruction emulation calls kvm_set_cr8() */
emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
if (irqchip_in_kernel(svm->vcpu.kvm))
if (irqchip_in_kernel(svm->vcpu.kvm)) {
svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
return 1;
}
if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
return 1;
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
@ -2090,8 +2152,9 @@ static int interrupt_window_interception(struct vcpu_svm *svm,
* If the user space waits to inject interrupts, exit as soon as
* possible
*/
if (kvm_run->request_interrupt_window &&
!svm->vcpu.arch.irq_summary) {
if (!irqchip_in_kernel(svm->vcpu.kvm) &&
kvm_run->request_interrupt_window &&
!kvm_cpu_has_interrupt(&svm->vcpu)) {
++svm->vcpu.stat.irq_window_exits;
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
return 0;
@ -2134,6 +2197,7 @@ static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
[SVM_EXIT_VINTR] = interrupt_window_interception,
/* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
[SVM_EXIT_CPUID] = cpuid_interception,
[SVM_EXIT_IRET] = iret_interception,
[SVM_EXIT_INVD] = emulate_on_interception,
[SVM_EXIT_HLT] = halt_interception,
[SVM_EXIT_INVLPG] = invlpg_interception,
@ -2194,7 +2258,6 @@ static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
}
}
kvm_reput_irq(svm);
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
@ -2205,7 +2268,7 @@ static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
exit_code != SVM_EXIT_NPF)
exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
"exit_code 0x%x\n",
__func__, svm->vmcb->control.exit_int_info,
@ -2242,6 +2305,15 @@ static void pre_svm_run(struct vcpu_svm *svm)
new_asid(svm, svm_data);
}
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
vcpu->arch.hflags |= HF_NMI_MASK;
svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
++vcpu->stat.nmi_injections;
}
static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
{
@ -2257,134 +2329,71 @@ static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
}
static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
static void svm_queue_irq(struct kvm_vcpu *vcpu, unsigned nr)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->control.event_inj = nr |
SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
}
static void svm_set_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
nested_svm_intr(svm);
svm_inject_irq(svm, irq);
svm_queue_irq(vcpu, vcpu->arch.interrupt.nr);
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (irr == -1)
return;
if (tpr >= irr)
svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
}
static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
int max_irr, tpr;
if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
return;
vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
max_irr = kvm_lapic_find_highest_irr(vcpu);
if (max_irr == -1)
return;
tpr = kvm_lapic_get_cr8(vcpu) << 4;
if (tpr >= (max_irr & 0xf0))
vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
!(svm->vcpu.arch.hflags & HF_NMI_MASK);
}
static void svm_intr_assist(struct kvm_vcpu *vcpu)
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *vmcb = svm->vmcb;
int intr_vector = -1;
if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
intr_vector = vmcb->control.exit_int_info &
SVM_EVTINJ_VEC_MASK;
vmcb->control.exit_int_info = 0;
svm_inject_irq(svm, intr_vector);
goto out;
}
if (vmcb->control.int_ctl & V_IRQ_MASK)
goto out;
if (!kvm_cpu_has_interrupt(vcpu))
goto out;
if (nested_svm_intr(svm))
goto out;
if (!(svm->vcpu.arch.hflags & HF_GIF_MASK))
goto out;
if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
(vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
/* unable to deliver irq, set pending irq */
svm_set_vintr(svm);
svm_inject_irq(svm, 0x0);
goto out;
}
/* Okay, we can deliver the interrupt: grab it and update PIC state. */
intr_vector = kvm_cpu_get_interrupt(vcpu);
svm_inject_irq(svm, intr_vector);
out:
update_cr8_intercept(vcpu);
return (vmcb->save.rflags & X86_EFLAGS_IF) &&
!(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
(svm->vcpu.arch.hflags & HF_GIF_MASK);
}
static void kvm_reput_irq(struct vcpu_svm *svm)
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
struct vmcb_control_area *control = &svm->vmcb->control;
if ((control->int_ctl & V_IRQ_MASK)
&& !irqchip_in_kernel(svm->vcpu.kvm)) {
control->int_ctl &= ~V_IRQ_MASK;
push_irq(&svm->vcpu, control->int_vector);
}
svm->vcpu.arch.interrupt_window_open =
!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
(svm->vcpu.arch.hflags & HF_GIF_MASK);
svm_set_vintr(to_svm(vcpu));
svm_inject_irq(to_svm(vcpu), 0x0);
}
static void svm_do_inject_vector(struct vcpu_svm *svm)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
int word_index = __ffs(vcpu->arch.irq_summary);
int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
int irq = word_index * BITS_PER_LONG + bit_index;
clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
if (!vcpu->arch.irq_pending[word_index])
clear_bit(word_index, &vcpu->arch.irq_summary);
svm_inject_irq(svm, irq);
}
static void do_interrupt_requests(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
static void enable_nmi_window(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb_control_area *control = &svm->vmcb->control;
if (nested_svm_intr(svm))
return;
if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
== HF_NMI_MASK)
return; /* IRET will cause a vm exit */
svm->vcpu.arch.interrupt_window_open =
(!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
(svm->vmcb->save.rflags & X86_EFLAGS_IF) &&
(svm->vcpu.arch.hflags & HF_GIF_MASK));
if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
/*
* If interrupts enabled, and not blocked by sti or mov ss. Good.
*/
svm_do_inject_vector(svm);
/*
* Interrupts blocked. Wait for unblock.
*/
if (!svm->vcpu.arch.interrupt_window_open &&
(svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
svm_set_vintr(svm);
else
svm_clear_vintr(svm);
/* Something prevents NMI from been injected. Single step over
possible problem (IRET or exception injection or interrupt
shadow) */
vcpu->arch.singlestep = true;
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
update_db_intercept(vcpu);
}
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
@ -2407,7 +2416,7 @@ static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
kvm_lapic_set_tpr(vcpu, cr8);
kvm_set_cr8(vcpu, cr8);
}
}
@ -2416,14 +2425,54 @@ static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
struct vcpu_svm *svm = to_svm(vcpu);
u64 cr8;
if (!irqchip_in_kernel(vcpu->kvm))
return;
cr8 = kvm_get_cr8(vcpu);
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
}
static void svm_complete_interrupts(struct vcpu_svm *svm)
{
u8 vector;
int type;
u32 exitintinfo = svm->vmcb->control.exit_int_info;
if (svm->vcpu.arch.hflags & HF_IRET_MASK)
svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
svm->vcpu.arch.nmi_injected = false;
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
return;
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
switch (type) {
case SVM_EXITINTINFO_TYPE_NMI:
svm->vcpu.arch.nmi_injected = true;
break;
case SVM_EXITINTINFO_TYPE_EXEPT:
/* In case of software exception do not reinject an exception
vector, but re-execute and instruction instead */
if (kvm_exception_is_soft(vector))
break;
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
u32 err = svm->vmcb->control.exit_int_info_err;
kvm_queue_exception_e(&svm->vcpu, vector, err);
} else
kvm_queue_exception(&svm->vcpu, vector);
break;
case SVM_EXITINTINFO_TYPE_INTR:
kvm_queue_interrupt(&svm->vcpu, vector, false);
break;
default:
break;
}
}
#ifdef CONFIG_X86_64
#define R "r"
#else
@ -2552,6 +2601,8 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
sync_cr8_to_lapic(vcpu);
svm->next_rip = 0;
svm_complete_interrupts(svm);
}
#undef R
@ -2617,7 +2668,7 @@ static int get_npt_level(void)
#endif
}
static int svm_get_mt_mask_shift(void)
static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
{
return 0;
}
@ -2667,17 +2718,21 @@ static struct kvm_x86_ops svm_x86_ops = {
.run = svm_vcpu_run,
.handle_exit = handle_exit,
.skip_emulated_instruction = skip_emulated_instruction,
.set_interrupt_shadow = svm_set_interrupt_shadow,
.get_interrupt_shadow = svm_get_interrupt_shadow,
.patch_hypercall = svm_patch_hypercall,
.get_irq = svm_get_irq,
.set_irq = svm_set_irq,
.set_nmi = svm_inject_nmi,
.queue_exception = svm_queue_exception,
.exception_injected = svm_exception_injected,
.inject_pending_irq = svm_intr_assist,
.inject_pending_vectors = do_interrupt_requests,
.interrupt_allowed = svm_interrupt_allowed,
.nmi_allowed = svm_nmi_allowed,
.enable_nmi_window = enable_nmi_window,
.enable_irq_window = enable_irq_window,
.update_cr8_intercept = update_cr8_intercept,
.set_tss_addr = svm_set_tss_addr,
.get_tdp_level = get_npt_level,
.get_mt_mask_shift = svm_get_mt_mask_shift,
.get_mt_mask = svm_get_mt_mask,
};
static int __init svm_init(void)

46
arch/x86/kvm/timer.c Normal file
View File

@ -0,0 +1,46 @@
#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/hrtimer.h>
#include <asm/atomic.h>
#include "kvm_timer.h"
static int __kvm_timer_fn(struct kvm_vcpu *vcpu, struct kvm_timer *ktimer)
{
int restart_timer = 0;
wait_queue_head_t *q = &vcpu->wq;
/* FIXME: this code should not know anything about vcpus */
if (!atomic_inc_and_test(&ktimer->pending))
set_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
if (!ktimer->reinject)
atomic_set(&ktimer->pending, 1);
if (waitqueue_active(q))
wake_up_interruptible(q);
if (ktimer->t_ops->is_periodic(ktimer)) {
hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
restart_timer = 1;
}
return restart_timer;
}
enum hrtimer_restart kvm_timer_fn(struct hrtimer *data)
{
int restart_timer;
struct kvm_vcpu *vcpu;
struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
vcpu = ktimer->kvm->vcpus[ktimer->vcpu_id];
if (!vcpu)
return HRTIMER_NORESTART;
restart_timer = __kvm_timer_fn(vcpu, ktimer);
if (restart_timer)
return HRTIMER_RESTART;
else
return HRTIMER_NORESTART;
}

File diff suppressed because it is too large Load Diff

View File

@ -91,7 +91,6 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "hypercalls", VCPU_STAT(hypercalls) },
{ "request_irq", VCPU_STAT(request_irq_exits) },
{ "request_nmi", VCPU_STAT(request_nmi_exits) },
{ "irq_exits", VCPU_STAT(irq_exits) },
{ "host_state_reload", VCPU_STAT(host_state_reload) },
{ "efer_reload", VCPU_STAT(efer_reload) },
@ -108,7 +107,6 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "mmu_recycled", VM_STAT(mmu_recycled) },
{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
{ "mmu_unsync", VM_STAT(mmu_unsync) },
{ "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ "largepages", VM_STAT(lpages) },
{ NULL }
@ -234,7 +232,8 @@ int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
goto out;
}
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
if (is_present_pte(pdpte[i]) &&
(pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
ret = 0;
goto out;
}
@ -321,7 +320,6 @@ void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
kvm_x86_ops->set_cr0(vcpu, cr0);
vcpu->arch.cr0 = cr0;
kvm_mmu_sync_global(vcpu);
kvm_mmu_reset_context(vcpu);
return;
}
@ -370,7 +368,6 @@ void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
kvm_x86_ops->set_cr4(vcpu, cr4);
vcpu->arch.cr4 = cr4;
vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
kvm_mmu_sync_global(vcpu);
kvm_mmu_reset_context(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_set_cr4);
@ -523,6 +520,9 @@ static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
efer |= vcpu->arch.shadow_efer & EFER_LMA;
vcpu->arch.shadow_efer = efer;
vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
kvm_mmu_reset_context(vcpu);
}
void kvm_enable_efer_bits(u64 mask)
@ -630,14 +630,17 @@ static void kvm_write_guest_time(struct kvm_vcpu *v)
unsigned long flags;
struct kvm_vcpu_arch *vcpu = &v->arch;
void *shared_kaddr;
unsigned long this_tsc_khz;
if ((!vcpu->time_page))
return;
if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
this_tsc_khz = get_cpu_var(cpu_tsc_khz);
if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
vcpu->hv_clock_tsc_khz = this_tsc_khz;
}
put_cpu_var(cpu_tsc_khz);
/* Keep irq disabled to prevent changes to the clock */
local_irq_save(flags);
@ -893,6 +896,8 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
case MSR_IA32_LASTINTFROMIP:
case MSR_IA32_LASTINTTOIP:
case MSR_VM_HSAVE_PA:
case MSR_P6_EVNTSEL0:
case MSR_P6_EVNTSEL1:
data = 0;
break;
case MSR_MTRRcap:
@ -1024,6 +1029,7 @@ int kvm_dev_ioctl_check_extension(long ext)
case KVM_CAP_SYNC_MMU:
case KVM_CAP_REINJECT_CONTROL:
case KVM_CAP_IRQ_INJECT_STATUS:
case KVM_CAP_ASSIGN_DEV_IRQ:
r = 1;
break;
case KVM_CAP_COALESCED_MMIO:
@ -1241,41 +1247,53 @@ static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
entry->flags = 0;
}
#define F(x) bit(X86_FEATURE_##x)
static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
u32 index, int *nent, int maxnent)
{
const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
bit(X86_FEATURE_PGE) |
bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
bit(X86_FEATURE_SYSCALL) |
(is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
unsigned f_nx = is_efer_nx() ? F(NX) : 0;
#ifdef CONFIG_X86_64
bit(X86_FEATURE_LM) |
unsigned f_lm = F(LM);
#else
unsigned f_lm = 0;
#endif
bit(X86_FEATURE_FXSR_OPT) |
bit(X86_FEATURE_MMXEXT) |
bit(X86_FEATURE_3DNOWEXT) |
bit(X86_FEATURE_3DNOW);
const u32 kvm_supported_word3_x86_features =
bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
/* cpuid 1.edx */
const u32 kvm_supported_word0_x86_features =
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
0 /* Reserved, DS, ACPI */ | F(MMX) |
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
0 /* HTT, TM, Reserved, PBE */;
/* cpuid 0x80000001.edx */
const u32 kvm_supported_word1_x86_features =
F(FPU) | F(VME) | F(DE) | F(PSE) |
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
F(PAT) | F(PSE36) | 0 /* Reserved */ |
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
/* cpuid 1.ecx */
const u32 kvm_supported_word4_x86_features =
F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
0 /* DS-CPL, VMX, SMX, EST */ |
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
0 /* Reserved, DCA */ | F(XMM4_1) |
F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
0 /* Reserved, XSAVE, OSXSAVE */;
/* cpuid 0x80000001.ecx */
const u32 kvm_supported_word6_x86_features =
bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
bit(X86_FEATURE_SVM);
F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
0 /* SKINIT */ | 0 /* WDT */;
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
@ -1288,7 +1306,7 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
break;
case 1:
entry->edx &= kvm_supported_word0_x86_features;
entry->ecx &= kvm_supported_word3_x86_features;
entry->ecx &= kvm_supported_word4_x86_features;
break;
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
* may return different values. This forces us to get_cpu() before
@ -1350,6 +1368,8 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
put_cpu();
}
#undef F
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries)
{
@ -1421,8 +1441,7 @@ static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
return -ENXIO;
vcpu_load(vcpu);
set_bit(irq->irq, vcpu->arch.irq_pending);
set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
kvm_queue_interrupt(vcpu, irq->irq, false);
vcpu_put(vcpu);
@ -1584,8 +1603,7 @@ long kvm_arch_vcpu_ioctl(struct file *filp,
r = -EINVAL;
}
out:
if (lapic)
kfree(lapic);
kfree(lapic);
return r;
}
@ -1606,10 +1624,12 @@ static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
return -EINVAL;
down_write(&kvm->slots_lock);
spin_lock(&kvm->mmu_lock);
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
spin_unlock(&kvm->mmu_lock);
up_write(&kvm->slots_lock);
return 0;
}
@ -1785,7 +1805,9 @@ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
spin_lock(&kvm->mmu_lock);
kvm_mmu_slot_remove_write_access(kvm, log->slot);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs(kvm);
memslot = &kvm->memslots[log->slot];
n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
@ -2360,7 +2382,7 @@ int emulate_instruction(struct kvm_vcpu *vcpu,
u16 error_code,
int emulation_type)
{
int r;
int r, shadow_mask;
struct decode_cache *c;
kvm_clear_exception_queue(vcpu);
@ -2408,7 +2430,16 @@ int emulate_instruction(struct kvm_vcpu *vcpu,
}
}
if (emulation_type & EMULTYPE_SKIP) {
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
return EMULATE_DONE;
}
r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
if (r == 0)
kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
if (vcpu->arch.pio.string)
return EMULATE_DO_MMIO;
@ -2761,7 +2792,7 @@ int kvm_arch_init(void *opaque)
kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
PT_DIRTY_MASK, PT64_NX_MASK, 0);
for_each_possible_cpu(cpu)
per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
@ -3012,6 +3043,16 @@ struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
return best;
}
int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
if (best)
return best->eax & 0xff;
return 36;
}
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
u32 function, index;
@ -3048,10 +3089,9 @@ EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
return (!vcpu->arch.irq_summary &&
return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
kvm_run->request_interrupt_window &&
vcpu->arch.interrupt_window_open &&
(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
kvm_arch_interrupt_allowed(vcpu));
}
static void post_kvm_run_save(struct kvm_vcpu *vcpu,
@ -3064,8 +3104,9 @@ static void post_kvm_run_save(struct kvm_vcpu *vcpu,
kvm_run->ready_for_interrupt_injection = 1;
else
kvm_run->ready_for_interrupt_injection =
(vcpu->arch.interrupt_window_open &&
vcpu->arch.irq_summary == 0);
kvm_arch_interrupt_allowed(vcpu) &&
!kvm_cpu_has_interrupt(vcpu) &&
!kvm_event_needs_reinjection(vcpu);
}
static void vapic_enter(struct kvm_vcpu *vcpu)
@ -3094,9 +3135,63 @@ static void vapic_exit(struct kvm_vcpu *vcpu)
up_read(&vcpu->kvm->slots_lock);
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
{
int max_irr, tpr;
if (!kvm_x86_ops->update_cr8_intercept)
return;
if (!vcpu->arch.apic->vapic_addr)
max_irr = kvm_lapic_find_highest_irr(vcpu);
else
max_irr = -1;
if (max_irr != -1)
max_irr >>= 4;
tpr = kvm_lapic_get_cr8(vcpu);
kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
}
static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
/* try to reinject previous events if any */
if (vcpu->arch.nmi_injected) {
kvm_x86_ops->set_nmi(vcpu);
return;
}
if (vcpu->arch.interrupt.pending) {
kvm_x86_ops->set_irq(vcpu);
return;
}
/* try to inject new event if pending */
if (vcpu->arch.nmi_pending) {
if (kvm_x86_ops->nmi_allowed(vcpu)) {
vcpu->arch.nmi_pending = false;
vcpu->arch.nmi_injected = true;
kvm_x86_ops->set_nmi(vcpu);
}
} else if (kvm_cpu_has_interrupt(vcpu)) {
if (kvm_x86_ops->interrupt_allowed(vcpu)) {
kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
false);
kvm_x86_ops->set_irq(vcpu);
}
}
}
static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
kvm_run->request_interrupt_window;
if (vcpu->requests)
if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
@ -3128,9 +3223,6 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
}
}
clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
kvm_inject_pending_timer_irqs(vcpu);
preempt_disable();
kvm_x86_ops->prepare_guest_switch(vcpu);
@ -3138,6 +3230,9 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
local_irq_disable();
clear_bit(KVM_REQ_KICK, &vcpu->requests);
smp_mb__after_clear_bit();
if (vcpu->requests || need_resched() || signal_pending(current)) {
local_irq_enable();
preempt_enable();
@ -3145,21 +3240,21 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
goto out;
}
vcpu->guest_mode = 1;
/*
* Make sure that guest_mode assignment won't happen after
* testing the pending IRQ vector bitmap.
*/
smp_wmb();
if (vcpu->arch.exception.pending)
__queue_exception(vcpu);
else if (irqchip_in_kernel(vcpu->kvm))
kvm_x86_ops->inject_pending_irq(vcpu);
else
kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
inject_pending_irq(vcpu, kvm_run);
kvm_lapic_sync_to_vapic(vcpu);
/* enable NMI/IRQ window open exits if needed */
if (vcpu->arch.nmi_pending)
kvm_x86_ops->enable_nmi_window(vcpu);
else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
kvm_x86_ops->enable_irq_window(vcpu);
if (kvm_lapic_enabled(vcpu)) {
update_cr8_intercept(vcpu);
kvm_lapic_sync_to_vapic(vcpu);
}
up_read(&vcpu->kvm->slots_lock);
@ -3193,7 +3288,7 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
set_debugreg(vcpu->arch.host_dr6, 6);
set_debugreg(vcpu->arch.host_dr7, 7);
vcpu->guest_mode = 0;
set_bit(KVM_REQ_KICK, &vcpu->requests);
local_irq_enable();
++vcpu->stat.exits;
@ -3220,8 +3315,6 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
profile_hit(KVM_PROFILING, (void *)rip);
}
if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
vcpu->arch.exception.pending = false;
kvm_lapic_sync_from_vapic(vcpu);
@ -3230,6 +3323,7 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
return r;
}
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
@ -3256,29 +3350,42 @@ static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
kvm_vcpu_block(vcpu);
down_read(&vcpu->kvm->slots_lock);
if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
{
switch(vcpu->arch.mp_state) {
case KVM_MP_STATE_HALTED:
vcpu->arch.mp_state =
KVM_MP_STATE_RUNNABLE;
if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
r = -EINTR;
KVM_MP_STATE_RUNNABLE;
case KVM_MP_STATE_RUNNABLE:
break;
case KVM_MP_STATE_SIPI_RECEIVED:
default:
r = -EINTR;
break;
}
}
}
if (r > 0) {
if (dm_request_for_irq_injection(vcpu, kvm_run)) {
r = -EINTR;
kvm_run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.request_irq_exits;
}
if (signal_pending(current)) {
r = -EINTR;
kvm_run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.signal_exits;
}
if (need_resched()) {
up_read(&vcpu->kvm->slots_lock);
kvm_resched(vcpu);
down_read(&vcpu->kvm->slots_lock);
}
if (r <= 0)
break;
clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
if (kvm_cpu_has_pending_timer(vcpu))
kvm_inject_pending_timer_irqs(vcpu);
if (dm_request_for_irq_injection(vcpu, kvm_run)) {
r = -EINTR;
kvm_run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.request_irq_exits;
}
if (signal_pending(current)) {
r = -EINTR;
kvm_run->exit_reason = KVM_EXIT_INTR;
++vcpu->stat.signal_exits;
}
if (need_resched()) {
up_read(&vcpu->kvm->slots_lock);
kvm_resched(vcpu);
down_read(&vcpu->kvm->slots_lock);
}
}
@ -3442,7 +3549,6 @@ int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct descriptor_table dt;
int pending_vec;
vcpu_load(vcpu);
@ -3472,16 +3578,11 @@ int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
sregs->efer = vcpu->arch.shadow_efer;
sregs->apic_base = kvm_get_apic_base(vcpu);
if (irqchip_in_kernel(vcpu->kvm)) {
memset(sregs->interrupt_bitmap, 0,
sizeof sregs->interrupt_bitmap);
pending_vec = kvm_x86_ops->get_irq(vcpu);
if (pending_vec >= 0)
set_bit(pending_vec,
(unsigned long *)sregs->interrupt_bitmap);
} else
memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
sizeof sregs->interrupt_bitmap);
memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
set_bit(vcpu->arch.interrupt.nr,
(unsigned long *)sregs->interrupt_bitmap);
vcpu_put(vcpu);
@ -3688,7 +3789,6 @@ static void save_state_to_tss32(struct kvm_vcpu *vcpu,
tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}
static int load_state_from_tss32(struct kvm_vcpu *vcpu,
@ -3785,8 +3885,8 @@ static int load_state_from_tss16(struct kvm_vcpu *vcpu,
}
static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
u32 old_tss_base,
struct desc_struct *nseg_desc)
u16 old_tss_sel, u32 old_tss_base,
struct desc_struct *nseg_desc)
{
struct tss_segment_16 tss_segment_16;
int ret = 0;
@ -3805,6 +3905,16 @@ static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
&tss_segment_16, sizeof tss_segment_16))
goto out;
if (old_tss_sel != 0xffff) {
tss_segment_16.prev_task_link = old_tss_sel;
if (kvm_write_guest(vcpu->kvm,
get_tss_base_addr(vcpu, nseg_desc),
&tss_segment_16.prev_task_link,
sizeof tss_segment_16.prev_task_link))
goto out;
}
if (load_state_from_tss16(vcpu, &tss_segment_16))
goto out;
@ -3814,7 +3924,7 @@ static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
}
static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
u32 old_tss_base,
u16 old_tss_sel, u32 old_tss_base,
struct desc_struct *nseg_desc)
{
struct tss_segment_32 tss_segment_32;
@ -3834,6 +3944,16 @@ static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
&tss_segment_32, sizeof tss_segment_32))
goto out;
if (old_tss_sel != 0xffff) {
tss_segment_32.prev_task_link = old_tss_sel;
if (kvm_write_guest(vcpu->kvm,
get_tss_base_addr(vcpu, nseg_desc),
&tss_segment_32.prev_task_link,
sizeof tss_segment_32.prev_task_link))
goto out;
}
if (load_state_from_tss32(vcpu, &tss_segment_32))
goto out;
@ -3887,14 +4007,22 @@ int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
}
kvm_x86_ops->skip_emulated_instruction(vcpu);
/* set back link to prev task only if NT bit is set in eflags
note that old_tss_sel is not used afetr this point */
if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
old_tss_sel = 0xffff;
/* set back link to prev task only if NT bit is set in eflags
note that old_tss_sel is not used afetr this point */
if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
old_tss_sel = 0xffff;
if (nseg_desc.type & 8)
ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
&nseg_desc);
ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
old_tss_base, &nseg_desc);
else
ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
&nseg_desc);
ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
old_tss_base, &nseg_desc);
if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
u32 eflags = kvm_x86_ops->get_rflags(vcpu);
@ -3920,7 +4048,7 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int mmu_reset_needed = 0;
int i, pending_vec, max_bits;
int pending_vec, max_bits;
struct descriptor_table dt;
vcpu_load(vcpu);
@ -3934,7 +4062,13 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
vcpu->arch.cr2 = sregs->cr2;
mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
vcpu->arch.cr3 = sregs->cr3;
down_read(&vcpu->kvm->slots_lock);
if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
vcpu->arch.cr3 = sregs->cr3;
else
set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
up_read(&vcpu->kvm->slots_lock);
kvm_set_cr8(vcpu, sregs->cr8);
@ -3956,25 +4090,14 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
if (mmu_reset_needed)
kvm_mmu_reset_context(vcpu);
if (!irqchip_in_kernel(vcpu->kvm)) {
memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
sizeof vcpu->arch.irq_pending);
vcpu->arch.irq_summary = 0;
for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
if (vcpu->arch.irq_pending[i])
__set_bit(i, &vcpu->arch.irq_summary);
} else {
max_bits = (sizeof sregs->interrupt_bitmap) << 3;
pending_vec = find_first_bit(
(const unsigned long *)sregs->interrupt_bitmap,
max_bits);
/* Only pending external irq is handled here */
if (pending_vec < max_bits) {
kvm_x86_ops->set_irq(vcpu, pending_vec);
pr_debug("Set back pending irq %d\n",
pending_vec);
}
kvm_pic_clear_isr_ack(vcpu->kvm);
max_bits = (sizeof sregs->interrupt_bitmap) << 3;
pending_vec = find_first_bit(
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
if (pending_vec < max_bits) {
kvm_queue_interrupt(vcpu, pending_vec, false);
pr_debug("Set back pending irq %d\n", pending_vec);
if (irqchip_in_kernel(vcpu->kvm))
kvm_pic_clear_isr_ack(vcpu->kvm);
}
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
@ -4308,7 +4431,6 @@ struct kvm *kvm_arch_create_vm(void)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
@ -4411,12 +4533,14 @@ int kvm_arch_set_memory_region(struct kvm *kvm,
}
}
spin_lock(&kvm->mmu_lock);
if (!kvm->arch.n_requested_mmu_pages) {
unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
}
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs(kvm);
return 0;
@ -4425,6 +4549,7 @@ int kvm_arch_set_memory_region(struct kvm *kvm,
void kvm_arch_flush_shadow(struct kvm *kvm)
{
kvm_mmu_zap_all(kvm);
kvm_reload_remote_mmus(kvm);
}
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
@ -4434,28 +4559,24 @@ int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
|| vcpu->arch.nmi_pending;
}
static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
int ipi_pcpu = vcpu->cpu;
int cpu = get_cpu();
int me;
int cpu = vcpu->cpu;
if (waitqueue_active(&vcpu->wq)) {
wake_up_interruptible(&vcpu->wq);
++vcpu->stat.halt_wakeup;
}
/*
* We may be called synchronously with irqs disabled in guest mode,
* So need not to call smp_call_function_single() in that case.
*/
if (vcpu->guest_mode && vcpu->cpu != cpu)
smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
me = get_cpu();
if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
smp_send_reschedule(cpu);
put_cpu();
}
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
{
return kvm_x86_ops->interrupt_allowed(vcpu);
}

View File

@ -8,9 +8,11 @@ static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
vcpu->arch.exception.pending = false;
}
static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector)
static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
bool soft)
{
vcpu->arch.interrupt.pending = true;
vcpu->arch.interrupt.soft = soft;
vcpu->arch.interrupt.nr = vector;
}
@ -19,4 +21,14 @@ static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
vcpu->arch.interrupt.pending = false;
}
static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
{
return vcpu->arch.exception.pending || vcpu->arch.interrupt.pending ||
vcpu->arch.nmi_injected;
}
static inline bool kvm_exception_is_soft(unsigned int nr)
{
return (nr == BP_VECTOR) || (nr == OF_VECTOR);
}
#endif

View File

@ -59,13 +59,14 @@
#define SrcImm (5<<4) /* Immediate operand. */
#define SrcImmByte (6<<4) /* 8-bit sign-extended immediate operand. */
#define SrcOne (7<<4) /* Implied '1' */
#define SrcMask (7<<4)
#define SrcImmUByte (8<<4) /* 8-bit unsigned immediate operand. */
#define SrcMask (0xf<<4)
/* Generic ModRM decode. */
#define ModRM (1<<7)
#define ModRM (1<<8)
/* Destination is only written; never read. */
#define Mov (1<<8)
#define BitOp (1<<9)
#define MemAbs (1<<10) /* Memory operand is absolute displacement */
#define Mov (1<<9)
#define BitOp (1<<10)
#define MemAbs (1<<11) /* Memory operand is absolute displacement */
#define String (1<<12) /* String instruction (rep capable) */
#define Stack (1<<13) /* Stack instruction (push/pop) */
#define Group (1<<14) /* Bits 3:5 of modrm byte extend opcode */
@ -76,6 +77,7 @@
#define Src2CL (1<<29)
#define Src2ImmByte (2<<29)
#define Src2One (3<<29)
#define Src2Imm16 (4<<29)
#define Src2Mask (7<<29)
enum {
@ -135,11 +137,11 @@ static u32 opcode_table[256] = {
SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps, /* insb, insw/insd */
SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps, /* outsb, outsw/outsd */
/* 0x70 - 0x77 */
ImplicitOps, ImplicitOps, ImplicitOps, ImplicitOps,
ImplicitOps, ImplicitOps, ImplicitOps, ImplicitOps,
SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
/* 0x78 - 0x7F */
ImplicitOps, ImplicitOps, ImplicitOps, ImplicitOps,
ImplicitOps, ImplicitOps, ImplicitOps, ImplicitOps,
SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte,
/* 0x80 - 0x87 */
Group | Group1_80, Group | Group1_81,
Group | Group1_82, Group | Group1_83,
@ -153,7 +155,8 @@ static u32 opcode_table[256] = {
/* 0x90 - 0x97 */
DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg,
/* 0x98 - 0x9F */
0, 0, 0, 0, ImplicitOps | Stack, ImplicitOps | Stack, 0, 0,
0, 0, SrcImm | Src2Imm16, 0,
ImplicitOps | Stack, ImplicitOps | Stack, 0, 0,
/* 0xA0 - 0xA7 */
ByteOp | DstReg | SrcMem | Mov | MemAbs, DstReg | SrcMem | Mov | MemAbs,
ByteOp | DstMem | SrcReg | Mov | MemAbs, DstMem | SrcReg | Mov | MemAbs,
@ -178,7 +181,8 @@ static u32 opcode_table[256] = {
0, ImplicitOps | Stack, 0, 0,
ByteOp | DstMem | SrcImm | ModRM | Mov, DstMem | SrcImm | ModRM | Mov,
/* 0xC8 - 0xCF */
0, 0, 0, ImplicitOps | Stack, 0, 0, 0, 0,
0, 0, 0, ImplicitOps | Stack,
ImplicitOps, SrcImmByte, ImplicitOps, ImplicitOps,
/* 0xD0 - 0xD7 */
ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM,
ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM,
@ -187,11 +191,11 @@ static u32 opcode_table[256] = {
0, 0, 0, 0, 0, 0, 0, 0,
/* 0xE0 - 0xE7 */
0, 0, 0, 0,
SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps,
SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps,
ByteOp | SrcImmUByte, SrcImmUByte,
ByteOp | SrcImmUByte, SrcImmUByte,
/* 0xE8 - 0xEF */
ImplicitOps | Stack, SrcImm | ImplicitOps,
ImplicitOps, SrcImmByte | ImplicitOps,
SrcImm | Stack, SrcImm | ImplicitOps,
SrcImm | Src2Imm16, SrcImmByte | ImplicitOps,
SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps,
SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps,
/* 0xF0 - 0xF7 */
@ -230,10 +234,8 @@ static u32 twobyte_table[256] = {
/* 0x70 - 0x7F */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0x80 - 0x8F */
ImplicitOps, ImplicitOps, ImplicitOps, ImplicitOps,
ImplicitOps, ImplicitOps, ImplicitOps, ImplicitOps,
ImplicitOps, ImplicitOps, ImplicitOps, ImplicitOps,
ImplicitOps, ImplicitOps, ImplicitOps, ImplicitOps,
SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm,
SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm,
/* 0x90 - 0x9F */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 0xA0 - 0xA7 */
@ -1044,10 +1046,14 @@ x86_decode_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
}
break;
case SrcImmByte:
case SrcImmUByte:
c->src.type = OP_IMM;
c->src.ptr = (unsigned long *)c->eip;
c->src.bytes = 1;
c->src.val = insn_fetch(s8, 1, c->eip);
if ((c->d & SrcMask) == SrcImmByte)
c->src.val = insn_fetch(s8, 1, c->eip);
else
c->src.val = insn_fetch(u8, 1, c->eip);
break;
case SrcOne:
c->src.bytes = 1;
@ -1072,6 +1078,12 @@ x86_decode_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
c->src2.bytes = 1;
c->src2.val = insn_fetch(u8, 1, c->eip);
break;
case Src2Imm16:
c->src2.type = OP_IMM;
c->src2.ptr = (unsigned long *)c->eip;
c->src2.bytes = 2;
c->src2.val = insn_fetch(u16, 2, c->eip);
break;
case Src2One:
c->src2.bytes = 1;
c->src2.val = 1;
@ -1349,6 +1361,20 @@ static inline int writeback(struct x86_emulate_ctxt *ctxt,
return 0;
}
void toggle_interruptibility(struct x86_emulate_ctxt *ctxt, u32 mask)
{
u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(ctxt->vcpu, mask);
/*
* an sti; sti; sequence only disable interrupts for the first
* instruction. So, if the last instruction, be it emulated or
* not, left the system with the INT_STI flag enabled, it
* means that the last instruction is an sti. We should not
* leave the flag on in this case. The same goes for mov ss
*/
if (!(int_shadow & mask))
ctxt->interruptibility = mask;
}
int
x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
{
@ -1360,6 +1386,8 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
int io_dir_in;
int rc = 0;
ctxt->interruptibility = 0;
/* Shadow copy of register state. Committed on successful emulation.
* NOTE: we can copy them from vcpu as x86_decode_insn() doesn't
* modify them.
@ -1531,13 +1559,10 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
return -1;
}
return 0;
case 0x70 ... 0x7f: /* jcc (short) */ {
int rel = insn_fetch(s8, 1, c->eip);
case 0x70 ... 0x7f: /* jcc (short) */
if (test_cc(c->b, ctxt->eflags))
jmp_rel(c, rel);
jmp_rel(c, c->src.val);
break;
}
case 0x80 ... 0x83: /* Grp1 */
switch (c->modrm_reg) {
case 0:
@ -1609,6 +1634,9 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
int err;
sel = c->src.val;
if (c->modrm_reg == VCPU_SREG_SS)
toggle_interruptibility(ctxt, X86_SHADOW_INT_MOV_SS);
if (c->modrm_reg <= 5) {
type_bits = (c->modrm_reg == 1) ? 9 : 1;
err = kvm_load_segment_descriptor(ctxt->vcpu, sel,
@ -1769,59 +1797,32 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
break;
case 0xe4: /* inb */
case 0xe5: /* in */
port = insn_fetch(u8, 1, c->eip);
port = c->src.val;
io_dir_in = 1;
goto do_io;
case 0xe6: /* outb */
case 0xe7: /* out */
port = insn_fetch(u8, 1, c->eip);
port = c->src.val;
io_dir_in = 0;
goto do_io;
case 0xe8: /* call (near) */ {
long int rel;
switch (c->op_bytes) {
case 2:
rel = insn_fetch(s16, 2, c->eip);
break;
case 4:
rel = insn_fetch(s32, 4, c->eip);
break;
default:
DPRINTF("Call: Invalid op_bytes\n");
goto cannot_emulate;
}
long int rel = c->src.val;
c->src.val = (unsigned long) c->eip;
jmp_rel(c, rel);
c->op_bytes = c->ad_bytes;
emulate_push(ctxt);
break;
}
case 0xe9: /* jmp rel */
goto jmp;
case 0xea: /* jmp far */ {
uint32_t eip;
uint16_t sel;
switch (c->op_bytes) {
case 2:
eip = insn_fetch(u16, 2, c->eip);
break;
case 4:
eip = insn_fetch(u32, 4, c->eip);
break;
default:
DPRINTF("jmp far: Invalid op_bytes\n");
goto cannot_emulate;
}
sel = insn_fetch(u16, 2, c->eip);
if (kvm_load_segment_descriptor(ctxt->vcpu, sel, 9, VCPU_SREG_CS) < 0) {
case 0xea: /* jmp far */
if (kvm_load_segment_descriptor(ctxt->vcpu, c->src2.val, 9,
VCPU_SREG_CS) < 0) {
DPRINTF("jmp far: Failed to load CS descriptor\n");
goto cannot_emulate;
}
c->eip = eip;
c->eip = c->src.val;
break;
}
case 0xeb:
jmp: /* jmp rel short */
jmp_rel(c, c->src.val);
@ -1865,6 +1866,7 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
c->dst.type = OP_NONE; /* Disable writeback. */
break;
case 0xfb: /* sti */
toggle_interruptibility(ctxt, X86_SHADOW_INT_STI);
ctxt->eflags |= X86_EFLAGS_IF;
c->dst.type = OP_NONE; /* Disable writeback. */
break;
@ -2039,28 +2041,11 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
if (!test_cc(c->b, ctxt->eflags))
c->dst.type = OP_NONE; /* no writeback */
break;
case 0x80 ... 0x8f: /* jnz rel, etc*/ {
long int rel;
switch (c->op_bytes) {
case 2:
rel = insn_fetch(s16, 2, c->eip);
break;
case 4:
rel = insn_fetch(s32, 4, c->eip);
break;
case 8:
rel = insn_fetch(s64, 8, c->eip);
break;
default:
DPRINTF("jnz: Invalid op_bytes\n");
goto cannot_emulate;
}
case 0x80 ... 0x8f: /* jnz rel, etc*/
if (test_cc(c->b, ctxt->eflags))
jmp_rel(c, rel);
jmp_rel(c, c->src.val);
c->dst.type = OP_NONE;
break;
}
case 0xa3:
bt: /* bt */
c->dst.type = OP_NONE;

View File

@ -119,7 +119,7 @@ struct kvm_run {
__u32 error_code;
} ex;
/* KVM_EXIT_IO */
struct kvm_io {
struct {
#define KVM_EXIT_IO_IN 0
#define KVM_EXIT_IO_OUT 1
__u8 direction;
@ -224,10 +224,10 @@ struct kvm_interrupt {
/* for KVM_GET_DIRTY_LOG */
struct kvm_dirty_log {
__u32 slot;
__u32 padding;
__u32 padding1;
union {
void __user *dirty_bitmap; /* one bit per page */
__u64 padding;
__u64 padding2;
};
};
@ -409,6 +409,10 @@ struct kvm_trace_rec {
#ifdef __KVM_HAVE_DEVICE_ASSIGNMENT
#define KVM_CAP_DEVICE_DEASSIGNMENT 27
#endif
#ifdef __KVM_HAVE_MSIX
#define KVM_CAP_DEVICE_MSIX 28
#endif
#define KVM_CAP_ASSIGN_DEV_IRQ 29
/* Another bug in KVM_SET_USER_MEMORY_REGION fixed: */
#define KVM_CAP_JOIN_MEMORY_REGIONS_WORKS 30
@ -482,11 +486,18 @@ struct kvm_irq_routing {
#define KVM_ASSIGN_PCI_DEVICE _IOR(KVMIO, 0x69, \
struct kvm_assigned_pci_dev)
#define KVM_SET_GSI_ROUTING _IOW(KVMIO, 0x6a, struct kvm_irq_routing)
/* deprecated, replaced by KVM_ASSIGN_DEV_IRQ */
#define KVM_ASSIGN_IRQ _IOR(KVMIO, 0x70, \
struct kvm_assigned_irq)
#define KVM_ASSIGN_DEV_IRQ _IOW(KVMIO, 0x70, struct kvm_assigned_irq)
#define KVM_REINJECT_CONTROL _IO(KVMIO, 0x71)
#define KVM_DEASSIGN_PCI_DEVICE _IOW(KVMIO, 0x72, \
struct kvm_assigned_pci_dev)
#define KVM_ASSIGN_SET_MSIX_NR \
_IOW(KVMIO, 0x73, struct kvm_assigned_msix_nr)
#define KVM_ASSIGN_SET_MSIX_ENTRY \
_IOW(KVMIO, 0x74, struct kvm_assigned_msix_entry)
#define KVM_DEASSIGN_DEV_IRQ _IOW(KVMIO, 0x75, struct kvm_assigned_irq)
/*
* ioctls for vcpu fds
@ -577,6 +588,8 @@ struct kvm_debug_guest {
#define KVM_TRC_STLB_INVAL (KVM_TRC_HANDLER + 0x18)
#define KVM_TRC_PPC_INSTR (KVM_TRC_HANDLER + 0x19)
#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
struct kvm_assigned_pci_dev {
__u32 assigned_dev_id;
__u32 busnr;
@ -587,6 +600,17 @@ struct kvm_assigned_pci_dev {
};
};
#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
#define KVM_DEV_IRQ_HOST_MASK 0x00ff
#define KVM_DEV_IRQ_GUEST_MASK 0xff00
struct kvm_assigned_irq {
__u32 assigned_dev_id;
__u32 host_irq;
@ -602,9 +626,19 @@ struct kvm_assigned_irq {
};
};
#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
#define KVM_DEV_IRQ_ASSIGN_MSI_ACTION KVM_DEV_IRQ_ASSIGN_ENABLE_MSI
#define KVM_DEV_IRQ_ASSIGN_ENABLE_MSI (1 << 0)
struct kvm_assigned_msix_nr {
__u32 assigned_dev_id;
__u16 entry_nr;
__u16 padding;
};
#define KVM_MAX_MSIX_PER_DEV 512
struct kvm_assigned_msix_entry {
__u32 assigned_dev_id;
__u32 gsi;
__u16 entry; /* The index of entry in the MSI-X table */
__u16 padding[3];
};
#endif

View File

@ -38,6 +38,7 @@
#define KVM_REQ_UNHALT 6
#define KVM_REQ_MMU_SYNC 7
#define KVM_REQ_KVMCLOCK_UPDATE 8
#define KVM_REQ_KICK 9
#define KVM_USERSPACE_IRQ_SOURCE_ID 0
@ -72,7 +73,6 @@ struct kvm_vcpu {
struct mutex mutex;
int cpu;
struct kvm_run *run;
int guest_mode;
unsigned long requests;
unsigned long guest_debug;
int fpu_active;
@ -298,6 +298,7 @@ int kvm_arch_hardware_setup(void);
void kvm_arch_hardware_unsetup(void);
void kvm_arch_check_processor_compat(void *rtn);
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
void kvm_free_physmem(struct kvm *kvm);
@ -319,6 +320,13 @@ struct kvm_irq_ack_notifier {
void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
};
#define KVM_ASSIGNED_MSIX_PENDING 0x1
struct kvm_guest_msix_entry {
u32 vector;
u16 entry;
u16 flags;
};
struct kvm_assigned_dev_kernel {
struct kvm_irq_ack_notifier ack_notifier;
struct work_struct interrupt_work;
@ -326,18 +334,18 @@ struct kvm_assigned_dev_kernel {
int assigned_dev_id;
int host_busnr;
int host_devfn;
unsigned int entries_nr;
int host_irq;
bool host_irq_disabled;
struct msix_entry *host_msix_entries;
int guest_irq;
#define KVM_ASSIGNED_DEV_GUEST_INTX (1 << 0)
#define KVM_ASSIGNED_DEV_GUEST_MSI (1 << 1)
#define KVM_ASSIGNED_DEV_HOST_INTX (1 << 8)
#define KVM_ASSIGNED_DEV_HOST_MSI (1 << 9)
struct kvm_guest_msix_entry *guest_msix_entries;
unsigned long irq_requested_type;
int irq_source_id;
int flags;
struct pci_dev *dev;
struct kvm *kvm;
spinlock_t assigned_dev_lock;
};
struct kvm_irq_mask_notifier {
@ -360,6 +368,9 @@ void kvm_unregister_irq_ack_notifier(struct kvm_irq_ack_notifier *kian);
int kvm_request_irq_source_id(struct kvm *kvm);
void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
/* For vcpu->arch.iommu_flags */
#define KVM_IOMMU_CACHE_COHERENCY 0x1
#ifdef CONFIG_IOMMU_API
int kvm_iommu_map_pages(struct kvm *kvm, gfn_t base_gfn,
unsigned long npages);

View File

@ -40,4 +40,31 @@ typedef unsigned long hfn_t;
typedef hfn_t pfn_t;
union kvm_ioapic_redirect_entry {
u64 bits;
struct {
u8 vector;
u8 delivery_mode:3;
u8 dest_mode:1;
u8 delivery_status:1;
u8 polarity:1;
u8 remote_irr:1;
u8 trig_mode:1;
u8 mask:1;
u8 reserve:7;
u8 reserved[4];
u8 dest_id;
} fields;
};
struct kvm_lapic_irq {
u32 vector;
u32 delivery_mode;
u32 dest_mode;
u32 level;
u32 trig_mode;
u32 shorthand;
u32 dest_id;
};
#endif /* __KVM_TYPES_H__ */

View File

@ -85,7 +85,7 @@ static unsigned long ioapic_read_indirect(struct kvm_ioapic *ioapic,
static int ioapic_service(struct kvm_ioapic *ioapic, unsigned int idx)
{
union ioapic_redir_entry *pent;
union kvm_ioapic_redirect_entry *pent;
int injected = -1;
pent = &ioapic->redirtbl[idx];
@ -142,149 +142,40 @@ static void ioapic_write_indirect(struct kvm_ioapic *ioapic, u32 val)
}
}
static int ioapic_inj_irq(struct kvm_ioapic *ioapic,
struct kvm_vcpu *vcpu,
u8 vector, u8 trig_mode, u8 delivery_mode)
{
ioapic_debug("irq %d trig %d deliv %d\n", vector, trig_mode,
delivery_mode);
ASSERT((delivery_mode == IOAPIC_FIXED) ||
(delivery_mode == IOAPIC_LOWEST_PRIORITY));
return kvm_apic_set_irq(vcpu, vector, trig_mode);
}
static void ioapic_inj_nmi(struct kvm_vcpu *vcpu)
{
kvm_inject_nmi(vcpu);
kvm_vcpu_kick(vcpu);
}
u32 kvm_ioapic_get_delivery_bitmask(struct kvm_ioapic *ioapic, u8 dest,
u8 dest_mode)
{
u32 mask = 0;
int i;
struct kvm *kvm = ioapic->kvm;
struct kvm_vcpu *vcpu;
ioapic_debug("dest %d dest_mode %d\n", dest, dest_mode);
if (dest_mode == 0) { /* Physical mode. */
if (dest == 0xFF) { /* Broadcast. */
for (i = 0; i < KVM_MAX_VCPUS; ++i)
if (kvm->vcpus[i] && kvm->vcpus[i]->arch.apic)
mask |= 1 << i;
return mask;
}
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
vcpu = kvm->vcpus[i];
if (!vcpu)
continue;
if (kvm_apic_match_physical_addr(vcpu->arch.apic, dest)) {
if (vcpu->arch.apic)
mask = 1 << i;
break;
}
}
} else if (dest != 0) /* Logical mode, MDA non-zero. */
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
vcpu = kvm->vcpus[i];
if (!vcpu)
continue;
if (vcpu->arch.apic &&
kvm_apic_match_logical_addr(vcpu->arch.apic, dest))
mask |= 1 << vcpu->vcpu_id;
}
ioapic_debug("mask %x\n", mask);
return mask;
}
static int ioapic_deliver(struct kvm_ioapic *ioapic, int irq)
{
u8 dest = ioapic->redirtbl[irq].fields.dest_id;
u8 dest_mode = ioapic->redirtbl[irq].fields.dest_mode;
u8 delivery_mode = ioapic->redirtbl[irq].fields.delivery_mode;
u8 vector = ioapic->redirtbl[irq].fields.vector;
u8 trig_mode = ioapic->redirtbl[irq].fields.trig_mode;
u32 deliver_bitmask;
struct kvm_vcpu *vcpu;
int vcpu_id, r = -1;
union kvm_ioapic_redirect_entry *entry = &ioapic->redirtbl[irq];
struct kvm_lapic_irq irqe;
ioapic_debug("dest=%x dest_mode=%x delivery_mode=%x "
"vector=%x trig_mode=%x\n",
dest, dest_mode, delivery_mode, vector, trig_mode);
entry->fields.dest, entry->fields.dest_mode,
entry->fields.delivery_mode, entry->fields.vector,
entry->fields.trig_mode);
deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic, dest,
dest_mode);
if (!deliver_bitmask) {
ioapic_debug("no target on destination\n");
return 0;
}
irqe.dest_id = entry->fields.dest_id;
irqe.vector = entry->fields.vector;
irqe.dest_mode = entry->fields.dest_mode;
irqe.trig_mode = entry->fields.trig_mode;
irqe.delivery_mode = entry->fields.delivery_mode << 8;
irqe.level = 1;
irqe.shorthand = 0;
switch (delivery_mode) {
case IOAPIC_LOWEST_PRIORITY:
vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
deliver_bitmask);
#ifdef CONFIG_X86
if (irq == 0)
vcpu = ioapic->kvm->vcpus[0];
#endif
if (vcpu != NULL)
r = ioapic_inj_irq(ioapic, vcpu, vector,
trig_mode, delivery_mode);
else
ioapic_debug("null lowest prio vcpu: "
"mask=%x vector=%x delivery_mode=%x\n",
deliver_bitmask, vector, IOAPIC_LOWEST_PRIORITY);
break;
case IOAPIC_FIXED:
#ifdef CONFIG_X86
if (irq == 0)
deliver_bitmask = 1;
#endif
for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
if (!(deliver_bitmask & (1 << vcpu_id)))
continue;
deliver_bitmask &= ~(1 << vcpu_id);
vcpu = ioapic->kvm->vcpus[vcpu_id];
if (vcpu) {
if (r < 0)
r = 0;
r += ioapic_inj_irq(ioapic, vcpu, vector,
trig_mode, delivery_mode);
}
}
break;
case IOAPIC_NMI:
for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
if (!(deliver_bitmask & (1 << vcpu_id)))
continue;
deliver_bitmask &= ~(1 << vcpu_id);
vcpu = ioapic->kvm->vcpus[vcpu_id];
if (vcpu) {
ioapic_inj_nmi(vcpu);
r = 1;
}
else
ioapic_debug("NMI to vcpu %d failed\n",
vcpu->vcpu_id);
}
break;
default:
printk(KERN_WARNING "Unsupported delivery mode %d\n",
delivery_mode);
break;
/* Always delivery PIT interrupt to vcpu 0 */
if (irq == 0) {
irqe.dest_mode = 0; /* Physical mode. */
irqe.dest_id = ioapic->kvm->vcpus[0]->vcpu_id;
}
return r;
#endif
return kvm_irq_delivery_to_apic(ioapic->kvm, NULL, &irqe);
}
int kvm_ioapic_set_irq(struct kvm_ioapic *ioapic, int irq, int level)
{
u32 old_irr = ioapic->irr;
u32 mask = 1 << irq;
union ioapic_redir_entry entry;
union kvm_ioapic_redirect_entry entry;
int ret = 1;
if (irq >= 0 && irq < IOAPIC_NUM_PINS) {
@ -305,7 +196,7 @@ int kvm_ioapic_set_irq(struct kvm_ioapic *ioapic, int irq, int level)
static void __kvm_ioapic_update_eoi(struct kvm_ioapic *ioapic, int pin,
int trigger_mode)
{
union ioapic_redir_entry *ent;
union kvm_ioapic_redirect_entry *ent;
ent = &ioapic->redirtbl[pin];

View File

@ -40,22 +40,7 @@ struct kvm_ioapic {
u32 id;
u32 irr;
u32 pad;
union ioapic_redir_entry {
u64 bits;
struct {
u8 vector;
u8 delivery_mode:3;
u8 dest_mode:1;
u8 delivery_status:1;
u8 polarity:1;
u8 remote_irr:1;
u8 trig_mode:1;
u8 mask:1;
u8 reserve:7;
u8 reserved[4];
u8 dest_id;
} fields;
} redirtbl[IOAPIC_NUM_PINS];
union kvm_ioapic_redirect_entry redirtbl[IOAPIC_NUM_PINS];
struct kvm_io_device dev;
struct kvm *kvm;
void (*ack_notifier)(void *opaque, int irq);
@ -79,13 +64,13 @@ static inline struct kvm_ioapic *ioapic_irqchip(struct kvm *kvm)
return kvm->arch.vioapic;
}
struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
unsigned long bitmap);
int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
int short_hand, int dest, int dest_mode);
int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2);
void kvm_ioapic_update_eoi(struct kvm *kvm, int vector, int trigger_mode);
int kvm_ioapic_init(struct kvm *kvm);
int kvm_ioapic_set_irq(struct kvm_ioapic *ioapic, int irq, int level);
void kvm_ioapic_reset(struct kvm_ioapic *ioapic);
u32 kvm_ioapic_get_delivery_bitmask(struct kvm_ioapic *ioapic, u8 dest,
u8 dest_mode);
int kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src,
struct kvm_lapic_irq *irq);
#endif

View File

@ -39,11 +39,16 @@ int kvm_iommu_map_pages(struct kvm *kvm,
pfn_t pfn;
int i, r = 0;
struct iommu_domain *domain = kvm->arch.iommu_domain;
int flags;
/* check if iommu exists and in use */
if (!domain)
return 0;
flags = IOMMU_READ | IOMMU_WRITE;
if (kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY)
flags |= IOMMU_CACHE;
for (i = 0; i < npages; i++) {
/* check if already mapped */
if (iommu_iova_to_phys(domain, gfn_to_gpa(gfn)))
@ -53,8 +58,7 @@ int kvm_iommu_map_pages(struct kvm *kvm,
r = iommu_map_range(domain,
gfn_to_gpa(gfn),
pfn_to_hpa(pfn),
PAGE_SIZE,
IOMMU_READ | IOMMU_WRITE);
PAGE_SIZE, flags);
if (r) {
printk(KERN_ERR "kvm_iommu_map_address:"
"iommu failed to map pfn=%lx\n", pfn);
@ -88,7 +92,7 @@ int kvm_assign_device(struct kvm *kvm,
{
struct pci_dev *pdev = NULL;
struct iommu_domain *domain = kvm->arch.iommu_domain;
int r;
int r, last_flags;
/* check if iommu exists and in use */
if (!domain)
@ -107,12 +111,29 @@ int kvm_assign_device(struct kvm *kvm,
return r;
}
last_flags = kvm->arch.iommu_flags;
if (iommu_domain_has_cap(kvm->arch.iommu_domain,
IOMMU_CAP_CACHE_COHERENCY))
kvm->arch.iommu_flags |= KVM_IOMMU_CACHE_COHERENCY;
/* Check if need to update IOMMU page table for guest memory */
if ((last_flags ^ kvm->arch.iommu_flags) ==
KVM_IOMMU_CACHE_COHERENCY) {
kvm_iommu_unmap_memslots(kvm);
r = kvm_iommu_map_memslots(kvm);
if (r)
goto out_unmap;
}
printk(KERN_DEBUG "assign device: host bdf = %x:%x:%x\n",
assigned_dev->host_busnr,
PCI_SLOT(assigned_dev->host_devfn),
PCI_FUNC(assigned_dev->host_devfn));
return 0;
out_unmap:
kvm_iommu_unmap_memslots(kvm);
return r;
}
int kvm_deassign_device(struct kvm *kvm,

View File

@ -22,6 +22,9 @@
#include <linux/kvm_host.h>
#include <asm/msidef.h>
#ifdef CONFIG_IA64
#include <asm/iosapic.h>
#endif
#include "irq.h"
@ -43,55 +46,71 @@ static int kvm_set_ioapic_irq(struct kvm_kernel_irq_routing_entry *e,
return kvm_ioapic_set_irq(kvm->arch.vioapic, e->irqchip.pin, level);
}
inline static bool kvm_is_dm_lowest_prio(struct kvm_lapic_irq *irq)
{
#ifdef CONFIG_IA64
return irq->delivery_mode ==
(IOSAPIC_LOWEST_PRIORITY << IOSAPIC_DELIVERY_SHIFT);
#else
return irq->delivery_mode == APIC_DM_LOWEST;
#endif
}
int kvm_irq_delivery_to_apic(struct kvm *kvm, struct kvm_lapic *src,
struct kvm_lapic_irq *irq)
{
int i, r = -1;
struct kvm_vcpu *vcpu, *lowest = NULL;
if (irq->dest_mode == 0 && irq->dest_id == 0xff &&
kvm_is_dm_lowest_prio(irq))
printk(KERN_INFO "kvm: apic: phys broadcast and lowest prio\n");
for (i = 0; i < KVM_MAX_VCPUS; i++) {
vcpu = kvm->vcpus[i];
if (!vcpu || !kvm_apic_present(vcpu))
continue;
if (!kvm_apic_match_dest(vcpu, src, irq->shorthand,
irq->dest_id, irq->dest_mode))
continue;
if (!kvm_is_dm_lowest_prio(irq)) {
if (r < 0)
r = 0;
r += kvm_apic_set_irq(vcpu, irq);
} else {
if (!lowest)
lowest = vcpu;
else if (kvm_apic_compare_prio(vcpu, lowest) < 0)
lowest = vcpu;
}
}
if (lowest)
r = kvm_apic_set_irq(lowest, irq);
return r;
}
static int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int level)
{
int vcpu_id, r = -1;
struct kvm_vcpu *vcpu;
struct kvm_ioapic *ioapic = ioapic_irqchip(kvm);
int dest_id = (e->msi.address_lo & MSI_ADDR_DEST_ID_MASK)
>> MSI_ADDR_DEST_ID_SHIFT;
int vector = (e->msi.data & MSI_DATA_VECTOR_MASK)
>> MSI_DATA_VECTOR_SHIFT;
int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
(unsigned long *)&e->msi.address_lo);
int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
(unsigned long *)&e->msi.data);
int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
(unsigned long *)&e->msi.data);
u32 deliver_bitmask;
struct kvm_lapic_irq irq;
BUG_ON(!ioapic);
irq.dest_id = (e->msi.address_lo &
MSI_ADDR_DEST_ID_MASK) >> MSI_ADDR_DEST_ID_SHIFT;
irq.vector = (e->msi.data &
MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT;
irq.dest_mode = (1 << MSI_ADDR_DEST_MODE_SHIFT) & e->msi.address_lo;
irq.trig_mode = (1 << MSI_DATA_TRIGGER_SHIFT) & e->msi.data;
irq.delivery_mode = e->msi.data & 0x700;
irq.level = 1;
irq.shorthand = 0;
deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
dest_id, dest_mode);
/* IOAPIC delivery mode value is the same as MSI here */
switch (delivery_mode) {
case IOAPIC_LOWEST_PRIORITY:
vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
deliver_bitmask);
if (vcpu != NULL)
r = kvm_apic_set_irq(vcpu, vector, trig_mode);
else
printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
break;
case IOAPIC_FIXED:
for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
if (!(deliver_bitmask & (1 << vcpu_id)))
continue;
deliver_bitmask &= ~(1 << vcpu_id);
vcpu = ioapic->kvm->vcpus[vcpu_id];
if (vcpu) {
if (r < 0)
r = 0;
r += kvm_apic_set_irq(vcpu, vector, trig_mode);
}
}
break;
default:
break;
}
return r;
/* TODO Deal with RH bit of MSI message address */
return kvm_irq_delivery_to_apic(kvm, NULL, &irq);
}
/* This should be called with the kvm->lock mutex held
@ -252,7 +271,7 @@ static int setup_routing_entry(struct kvm_kernel_irq_routing_entry *e,
delta = 8;
break;
case KVM_IRQCHIP_IOAPIC:
e->set = kvm_set_ioapic_irq;
e->set = kvm_set_ioapic_irq;
break;
default:
goto out;

View File

@ -41,6 +41,8 @@
#include <linux/pagemap.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <asm/processor.h>
#include <asm/io.h>
@ -60,9 +62,6 @@
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static int msi2intx = 1;
module_param(msi2intx, bool, 0);
DEFINE_SPINLOCK(kvm_lock);
LIST_HEAD(vm_list);
@ -95,38 +94,96 @@ static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *h
return NULL;
}
static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
*assigned_dev, int irq)
{
int i, index;
struct msix_entry *host_msix_entries;
host_msix_entries = assigned_dev->host_msix_entries;
index = -1;
for (i = 0; i < assigned_dev->entries_nr; i++)
if (irq == host_msix_entries[i].vector) {
index = i;
break;
}
if (index < 0) {
printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
return 0;
}
return index;
}
static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
{
struct kvm_assigned_dev_kernel *assigned_dev;
struct kvm *kvm;
int irq, i;
assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
interrupt_work);
kvm = assigned_dev->kvm;
/* This is taken to safely inject irq inside the guest. When
* the interrupt injection (or the ioapic code) uses a
* finer-grained lock, update this
*/
mutex_lock(&assigned_dev->kvm->lock);
kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
assigned_dev->guest_irq, 1);
if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_MSI) {
enable_irq(assigned_dev->host_irq);
assigned_dev->host_irq_disabled = false;
mutex_lock(&kvm->lock);
spin_lock_irq(&assigned_dev->assigned_dev_lock);
if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
struct kvm_guest_msix_entry *guest_entries =
assigned_dev->guest_msix_entries;
for (i = 0; i < assigned_dev->entries_nr; i++) {
if (!(guest_entries[i].flags &
KVM_ASSIGNED_MSIX_PENDING))
continue;
guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
kvm_set_irq(assigned_dev->kvm,
assigned_dev->irq_source_id,
guest_entries[i].vector, 1);
irq = assigned_dev->host_msix_entries[i].vector;
if (irq != 0)
enable_irq(irq);
assigned_dev->host_irq_disabled = false;
}
} else {
kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
assigned_dev->guest_irq, 1);
if (assigned_dev->irq_requested_type &
KVM_DEV_IRQ_GUEST_MSI) {
enable_irq(assigned_dev->host_irq);
assigned_dev->host_irq_disabled = false;
}
}
spin_unlock_irq(&assigned_dev->assigned_dev_lock);
mutex_unlock(&assigned_dev->kvm->lock);
}
static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
{
unsigned long flags;
struct kvm_assigned_dev_kernel *assigned_dev =
(struct kvm_assigned_dev_kernel *) dev_id;
spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
int index = find_index_from_host_irq(assigned_dev, irq);
if (index < 0)
goto out;
assigned_dev->guest_msix_entries[index].flags |=
KVM_ASSIGNED_MSIX_PENDING;
}
schedule_work(&assigned_dev->interrupt_work);
disable_irq_nosync(irq);
assigned_dev->host_irq_disabled = true;
out:
spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
return IRQ_HANDLED;
}
@ -134,6 +191,7 @@ static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
{
struct kvm_assigned_dev_kernel *dev;
unsigned long flags;
if (kian->gsi == -1)
return;
@ -146,28 +204,30 @@ static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
/* The guest irq may be shared so this ack may be
* from another device.
*/
spin_lock_irqsave(&dev->assigned_dev_lock, flags);
if (dev->host_irq_disabled) {
enable_irq(dev->host_irq);
dev->host_irq_disabled = false;
}
spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
}
/* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
static void kvm_free_assigned_irq(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev)
static void deassign_guest_irq(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev)
{
if (!irqchip_in_kernel(kvm))
return;
kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
assigned_dev->ack_notifier.gsi = -1;
if (assigned_dev->irq_source_id != -1)
kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
assigned_dev->irq_source_id = -1;
assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
}
if (!assigned_dev->irq_requested_type)
return;
/* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
static void deassign_host_irq(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev)
{
/*
* In kvm_free_device_irq, cancel_work_sync return true if:
* 1. work is scheduled, and then cancelled.
@ -184,17 +244,64 @@ static void kvm_free_assigned_irq(struct kvm *kvm,
* now, the kvm state is still legal for probably we also have to wait
* interrupt_work done.
*/
disable_irq_nosync(assigned_dev->host_irq);
cancel_work_sync(&assigned_dev->interrupt_work);
if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
int i;
for (i = 0; i < assigned_dev->entries_nr; i++)
disable_irq_nosync(assigned_dev->
host_msix_entries[i].vector);
free_irq(assigned_dev->host_irq, (void *)assigned_dev);
cancel_work_sync(&assigned_dev->interrupt_work);
if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
pci_disable_msi(assigned_dev->dev);
for (i = 0; i < assigned_dev->entries_nr; i++)
free_irq(assigned_dev->host_msix_entries[i].vector,
(void *)assigned_dev);
assigned_dev->irq_requested_type = 0;
assigned_dev->entries_nr = 0;
kfree(assigned_dev->host_msix_entries);
kfree(assigned_dev->guest_msix_entries);
pci_disable_msix(assigned_dev->dev);
} else {
/* Deal with MSI and INTx */
disable_irq_nosync(assigned_dev->host_irq);
cancel_work_sync(&assigned_dev->interrupt_work);
free_irq(assigned_dev->host_irq, (void *)assigned_dev);
if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
pci_disable_msi(assigned_dev->dev);
}
assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
}
static int kvm_deassign_irq(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev,
unsigned long irq_requested_type)
{
unsigned long guest_irq_type, host_irq_type;
if (!irqchip_in_kernel(kvm))
return -EINVAL;
/* no irq assignment to deassign */
if (!assigned_dev->irq_requested_type)
return -ENXIO;
host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
if (host_irq_type)
deassign_host_irq(kvm, assigned_dev);
if (guest_irq_type)
deassign_guest_irq(kvm, assigned_dev);
return 0;
}
static void kvm_free_assigned_irq(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev)
{
kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
}
static void kvm_free_assigned_device(struct kvm *kvm,
struct kvm_assigned_dev_kernel
@ -226,191 +333,245 @@ void kvm_free_all_assigned_devices(struct kvm *kvm)
}
}
static int assigned_device_update_intx(struct kvm *kvm,
struct kvm_assigned_dev_kernel *adev,
struct kvm_assigned_irq *airq)
static int assigned_device_enable_host_intx(struct kvm *kvm,
struct kvm_assigned_dev_kernel *dev)
{
adev->guest_irq = airq->guest_irq;
adev->ack_notifier.gsi = airq->guest_irq;
if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
return 0;
if (irqchip_in_kernel(kvm)) {
if (!msi2intx &&
(adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)) {
free_irq(adev->host_irq, (void *)adev);
pci_disable_msi(adev->dev);
}
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (airq->host_irq)
adev->host_irq = airq->host_irq;
else
adev->host_irq = adev->dev->irq;
/* Even though this is PCI, we don't want to use shared
* interrupts. Sharing host devices with guest-assigned devices
* on the same interrupt line is not a happy situation: there
* are going to be long delays in accepting, acking, etc.
*/
if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
0, "kvm_assigned_intx_device", (void *)adev))
return -EIO;
}
adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
KVM_ASSIGNED_DEV_HOST_INTX;
dev->host_irq = dev->dev->irq;
/* Even though this is PCI, we don't want to use shared
* interrupts. Sharing host devices with guest-assigned devices
* on the same interrupt line is not a happy situation: there
* are going to be long delays in accepting, acking, etc.
*/
if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
0, "kvm_assigned_intx_device", (void *)dev))
return -EIO;
return 0;
}
#ifdef CONFIG_X86
static int assigned_device_update_msi(struct kvm *kvm,
struct kvm_assigned_dev_kernel *adev,
struct kvm_assigned_irq *airq)
#ifdef __KVM_HAVE_MSI
static int assigned_device_enable_host_msi(struct kvm *kvm,
struct kvm_assigned_dev_kernel *dev)
{
int r;
adev->guest_irq = airq->guest_irq;
if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
/* x86 don't care upper address of guest msi message addr */
adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
adev->ack_notifier.gsi = -1;
} else if (msi2intx) {
adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
adev->ack_notifier.gsi = airq->guest_irq;
} else {
/*
* Guest require to disable device MSI, we disable MSI and
* re-enable INTx by default again. Notice it's only for
* non-msi2intx.
*/
assigned_device_update_intx(kvm, adev, airq);
return 0;
if (!dev->dev->msi_enabled) {
r = pci_enable_msi(dev->dev);
if (r)
return r;
}
if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
return 0;
if (irqchip_in_kernel(kvm)) {
if (!msi2intx) {
if (adev->irq_requested_type &
KVM_ASSIGNED_DEV_HOST_INTX)
free_irq(adev->host_irq, (void *)adev);
r = pci_enable_msi(adev->dev);
if (r)
return r;
}
adev->host_irq = adev->dev->irq;
if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
"kvm_assigned_msi_device", (void *)adev))
return -EIO;
dev->host_irq = dev->dev->irq;
if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
"kvm_assigned_msi_device", (void *)dev)) {
pci_disable_msi(dev->dev);
return -EIO;
}
if (!msi2intx)
adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
return 0;
}
#endif
static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
struct kvm_assigned_irq
*assigned_irq)
#ifdef __KVM_HAVE_MSIX
static int assigned_device_enable_host_msix(struct kvm *kvm,
struct kvm_assigned_dev_kernel *dev)
{
int r = 0;
int i, r = -EINVAL;
/* host_msix_entries and guest_msix_entries should have been
* initialized */
if (dev->entries_nr == 0)
return r;
r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
if (r)
return r;
for (i = 0; i < dev->entries_nr; i++) {
r = request_irq(dev->host_msix_entries[i].vector,
kvm_assigned_dev_intr, 0,
"kvm_assigned_msix_device",
(void *)dev);
/* FIXME: free requested_irq's on failure */
if (r)
return r;
}
return 0;
}
#endif
static int assigned_device_enable_guest_intx(struct kvm *kvm,
struct kvm_assigned_dev_kernel *dev,
struct kvm_assigned_irq *irq)
{
dev->guest_irq = irq->guest_irq;
dev->ack_notifier.gsi = irq->guest_irq;
return 0;
}
#ifdef __KVM_HAVE_MSI
static int assigned_device_enable_guest_msi(struct kvm *kvm,
struct kvm_assigned_dev_kernel *dev,
struct kvm_assigned_irq *irq)
{
dev->guest_irq = irq->guest_irq;
dev->ack_notifier.gsi = -1;
return 0;
}
#endif
#ifdef __KVM_HAVE_MSIX
static int assigned_device_enable_guest_msix(struct kvm *kvm,
struct kvm_assigned_dev_kernel *dev,
struct kvm_assigned_irq *irq)
{
dev->guest_irq = irq->guest_irq;
dev->ack_notifier.gsi = -1;
return 0;
}
#endif
static int assign_host_irq(struct kvm *kvm,
struct kvm_assigned_dev_kernel *dev,
__u32 host_irq_type)
{
int r = -EEXIST;
if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
return r;
switch (host_irq_type) {
case KVM_DEV_IRQ_HOST_INTX:
r = assigned_device_enable_host_intx(kvm, dev);
break;
#ifdef __KVM_HAVE_MSI
case KVM_DEV_IRQ_HOST_MSI:
r = assigned_device_enable_host_msi(kvm, dev);
break;
#endif
#ifdef __KVM_HAVE_MSIX
case KVM_DEV_IRQ_HOST_MSIX:
r = assigned_device_enable_host_msix(kvm, dev);
break;
#endif
default:
r = -EINVAL;
}
if (!r)
dev->irq_requested_type |= host_irq_type;
return r;
}
static int assign_guest_irq(struct kvm *kvm,
struct kvm_assigned_dev_kernel *dev,
struct kvm_assigned_irq *irq,
unsigned long guest_irq_type)
{
int id;
int r = -EEXIST;
if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
return r;
id = kvm_request_irq_source_id(kvm);
if (id < 0)
return id;
dev->irq_source_id = id;
switch (guest_irq_type) {
case KVM_DEV_IRQ_GUEST_INTX:
r = assigned_device_enable_guest_intx(kvm, dev, irq);
break;
#ifdef __KVM_HAVE_MSI
case KVM_DEV_IRQ_GUEST_MSI:
r = assigned_device_enable_guest_msi(kvm, dev, irq);
break;
#endif
#ifdef __KVM_HAVE_MSIX
case KVM_DEV_IRQ_GUEST_MSIX:
r = assigned_device_enable_guest_msix(kvm, dev, irq);
break;
#endif
default:
r = -EINVAL;
}
if (!r) {
dev->irq_requested_type |= guest_irq_type;
kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
} else
kvm_free_irq_source_id(kvm, dev->irq_source_id);
return r;
}
/* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
struct kvm_assigned_irq *assigned_irq)
{
int r = -EINVAL;
struct kvm_assigned_dev_kernel *match;
unsigned long host_irq_type, guest_irq_type;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (!irqchip_in_kernel(kvm))
return r;
mutex_lock(&kvm->lock);
r = -ENODEV;
match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
assigned_irq->assigned_dev_id);
if (!match)
goto out;
host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
r = -EINVAL;
/* can only assign one type at a time */
if (hweight_long(host_irq_type) > 1)
goto out;
if (hweight_long(guest_irq_type) > 1)
goto out;
if (host_irq_type == 0 && guest_irq_type == 0)
goto out;
r = 0;
if (host_irq_type)
r = assign_host_irq(kvm, match, host_irq_type);
if (r)
goto out;
if (guest_irq_type)
r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
out:
mutex_unlock(&kvm->lock);
return r;
}
static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
struct kvm_assigned_irq
*assigned_irq)
{
int r = -ENODEV;
struct kvm_assigned_dev_kernel *match;
u32 current_flags = 0, changed_flags;
mutex_lock(&kvm->lock);
match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
assigned_irq->assigned_dev_id);
if (!match) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
if (!match->irq_requested_type) {
INIT_WORK(&match->interrupt_work,
kvm_assigned_dev_interrupt_work_handler);
if (irqchip_in_kernel(kvm)) {
/* Register ack nofitier */
match->ack_notifier.gsi = -1;
match->ack_notifier.irq_acked =
kvm_assigned_dev_ack_irq;
kvm_register_irq_ack_notifier(kvm,
&match->ack_notifier);
/* Request IRQ source ID */
r = kvm_request_irq_source_id(kvm);
if (r < 0)
goto out_release;
else
match->irq_source_id = r;
#ifdef CONFIG_X86
/* Determine host device irq type, we can know the
* result from dev->msi_enabled */
if (msi2intx)
pci_enable_msi(match->dev);
#endif
}
}
if ((match->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) &&
(match->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_MSI))
current_flags |= KVM_DEV_IRQ_ASSIGN_ENABLE_MSI;
changed_flags = assigned_irq->flags ^ current_flags;
if ((changed_flags & KVM_DEV_IRQ_ASSIGN_MSI_ACTION) ||
(msi2intx && match->dev->msi_enabled)) {
#ifdef CONFIG_X86
r = assigned_device_update_msi(kvm, match, assigned_irq);
if (r) {
printk(KERN_WARNING "kvm: failed to enable "
"MSI device!\n");
goto out_release;
}
#else
r = -ENOTTY;
#endif
} else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
/* Host device IRQ 0 means don't support INTx */
if (!msi2intx) {
printk(KERN_WARNING
"kvm: wait device to enable MSI!\n");
r = 0;
} else {
printk(KERN_WARNING
"kvm: failed to enable MSI device!\n");
r = -ENOTTY;
goto out_release;
}
} else {
/* Non-sharing INTx mode */
r = assigned_device_update_intx(kvm, match, assigned_irq);
if (r) {
printk(KERN_WARNING "kvm: failed to enable "
"INTx device!\n");
goto out_release;
}
}
if (!match)
goto out;
r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
out:
mutex_unlock(&kvm->lock);
return r;
out_release:
mutex_unlock(&kvm->lock);
kvm_free_assigned_device(kvm, match);
return r;
}
static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
@ -427,7 +588,7 @@ static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
assigned_dev->assigned_dev_id);
if (match) {
/* device already assigned */
r = -EINVAL;
r = -EEXIST;
goto out;
}
@ -464,8 +625,12 @@ static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
match->host_devfn = assigned_dev->devfn;
match->flags = assigned_dev->flags;
match->dev = dev;
spin_lock_init(&match->assigned_dev_lock);
match->irq_source_id = -1;
match->kvm = kvm;
match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
INIT_WORK(&match->interrupt_work,
kvm_assigned_dev_interrupt_work_handler);
list_add(&match->list, &kvm->arch.assigned_dev_head);
@ -878,6 +1043,8 @@ static void kvm_destroy_vm(struct kvm *kvm)
#endif
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
#else
kvm_arch_flush_shadow(kvm);
#endif
kvm_arch_destroy_vm(kvm);
mmdrop(mm);
@ -919,9 +1086,8 @@ int __kvm_set_memory_region(struct kvm *kvm,
{
int r;
gfn_t base_gfn;
unsigned long npages;
int largepages;
unsigned long i;
unsigned long npages, ugfn;
unsigned long largepages, i;
struct kvm_memory_slot *memslot;
struct kvm_memory_slot old, new;
@ -1010,6 +1176,14 @@ int __kvm_set_memory_region(struct kvm *kvm,
new.lpage_info[0].write_count = 1;
if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
new.lpage_info[largepages-1].write_count = 1;
ugfn = new.userspace_addr >> PAGE_SHIFT;
/*
* If the gfn and userspace address are not aligned wrt each
* other, disable large page support for this slot
*/
if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
for (i = 0; i < largepages; ++i)
new.lpage_info[i].write_count = 1;
}
/* Allocate page dirty bitmap if needed */
@ -1043,8 +1217,10 @@ int __kvm_set_memory_region(struct kvm *kvm,
kvm_free_physmem_slot(&old, npages ? &new : NULL);
/* Slot deletion case: we have to update the current slot */
spin_lock(&kvm->mmu_lock);
if (!npages)
*memslot = old;
spin_unlock(&kvm->mmu_lock);
#ifdef CONFIG_DMAR
/* map the pages in iommu page table */
r = kvm_iommu_map_pages(kvm, base_gfn, npages);
@ -1454,12 +1630,14 @@ void kvm_vcpu_block(struct kvm_vcpu *vcpu)
for (;;) {
prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
if (kvm_cpu_has_interrupt(vcpu) ||
kvm_cpu_has_pending_timer(vcpu) ||
kvm_arch_vcpu_runnable(vcpu)) {
if ((kvm_arch_interrupt_allowed(vcpu) &&
kvm_cpu_has_interrupt(vcpu)) ||
kvm_arch_vcpu_runnable(vcpu)) {
set_bit(KVM_REQ_UNHALT, &vcpu->requests);
break;
}
if (kvm_cpu_has_pending_timer(vcpu))
break;
if (signal_pending(current))
break;
@ -1593,6 +1771,88 @@ static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
return 0;
}
#ifdef __KVM_HAVE_MSIX
static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
struct kvm_assigned_msix_nr *entry_nr)
{
int r = 0;
struct kvm_assigned_dev_kernel *adev;
mutex_lock(&kvm->lock);
adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
entry_nr->assigned_dev_id);
if (!adev) {
r = -EINVAL;
goto msix_nr_out;
}
if (adev->entries_nr == 0) {
adev->entries_nr = entry_nr->entry_nr;
if (adev->entries_nr == 0 ||
adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
r = -EINVAL;
goto msix_nr_out;
}
adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
entry_nr->entry_nr,
GFP_KERNEL);
if (!adev->host_msix_entries) {
r = -ENOMEM;
goto msix_nr_out;
}
adev->guest_msix_entries = kzalloc(
sizeof(struct kvm_guest_msix_entry) *
entry_nr->entry_nr, GFP_KERNEL);
if (!adev->guest_msix_entries) {
kfree(adev->host_msix_entries);
r = -ENOMEM;
goto msix_nr_out;
}
} else /* Not allowed set MSI-X number twice */
r = -EINVAL;
msix_nr_out:
mutex_unlock(&kvm->lock);
return r;
}
static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
struct kvm_assigned_msix_entry *entry)
{
int r = 0, i;
struct kvm_assigned_dev_kernel *adev;
mutex_lock(&kvm->lock);
adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
entry->assigned_dev_id);
if (!adev) {
r = -EINVAL;
goto msix_entry_out;
}
for (i = 0; i < adev->entries_nr; i++)
if (adev->guest_msix_entries[i].vector == 0 ||
adev->guest_msix_entries[i].entry == entry->entry) {
adev->guest_msix_entries[i].entry = entry->entry;
adev->guest_msix_entries[i].vector = entry->gsi;
adev->host_msix_entries[i].entry = entry->entry;
break;
}
if (i == adev->entries_nr) {
r = -ENOSPC;
goto msix_entry_out;
}
msix_entry_out:
mutex_unlock(&kvm->lock);
return r;
}
#endif
static long kvm_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
@ -1864,6 +2124,11 @@ static long kvm_vm_ioctl(struct file *filp,
break;
}
case KVM_ASSIGN_IRQ: {
r = -EOPNOTSUPP;
break;
}
#ifdef KVM_CAP_ASSIGN_DEV_IRQ
case KVM_ASSIGN_DEV_IRQ: {
struct kvm_assigned_irq assigned_irq;
r = -EFAULT;
@ -1874,6 +2139,18 @@ static long kvm_vm_ioctl(struct file *filp,
goto out;
break;
}
case KVM_DEASSIGN_DEV_IRQ: {
struct kvm_assigned_irq assigned_irq;
r = -EFAULT;
if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
goto out;
r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
if (r)
goto out;
break;
}
#endif
#endif
#ifdef KVM_CAP_DEVICE_DEASSIGNMENT
case KVM_DEASSIGN_PCI_DEVICE: {
@ -1917,7 +2194,29 @@ static long kvm_vm_ioctl(struct file *filp,
vfree(entries);
break;
}
#ifdef __KVM_HAVE_MSIX
case KVM_ASSIGN_SET_MSIX_NR: {
struct kvm_assigned_msix_nr entry_nr;
r = -EFAULT;
if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
goto out;
r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
if (r)
goto out;
break;
}
case KVM_ASSIGN_SET_MSIX_ENTRY: {
struct kvm_assigned_msix_entry entry;
r = -EFAULT;
if (copy_from_user(&entry, argp, sizeof entry))
goto out;
r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
if (r)
goto out;
break;
}
#endif
#endif /* KVM_CAP_IRQ_ROUTING */
default:
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
}
@ -2112,15 +2411,15 @@ EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
void *v)
{
if (val == SYS_RESTART) {
/*
* Some (well, at least mine) BIOSes hang on reboot if
* in vmx root mode.
*/
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
kvm_rebooting = true;
on_each_cpu(hardware_disable, NULL, 1);
}
/*
* Some (well, at least mine) BIOSes hang on reboot if
* in vmx root mode.
*
* And Intel TXT required VMX off for all cpu when system shutdown.
*/
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
kvm_rebooting = true;
on_each_cpu(hardware_disable, NULL, 1);
return NOTIFY_OK;
}
@ -2354,9 +2653,6 @@ int kvm_init(void *opaque, unsigned int vcpu_size,
kvm_preempt_ops.sched_in = kvm_sched_in;
kvm_preempt_ops.sched_out = kvm_sched_out;
#ifndef CONFIG_X86
msi2intx = 0;
#endif
return 0;