spi: Updates for v6.9

This release sees some exciting changes from David Lechner which
 implements some optimisations that have been talked about for a long
 time which allows client drivers to pre-prepare SPI messages for
 repeated or low latency use.  This lets us move work out of latency
 sensitive paths and avoid repeating work for frequently performed
 operations.  As well as being useful in itself this will also be used in
 future to allow controllers to directly trigger SPI operations (eg, from
 interrupts).
 
 Otherwise this release has mostly been focused on cleanups, plus a
 couple of new devices:
 
  - Support for pre-optimising messages.
  - A big set of updates from Uwe Kleine-König moving drivers to use APIs
    with more modern terminology for controllers.
  - Major overhaul of the s3c64xx driver.
  - Support for Google GS101 and Samsung Exynos850.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAmXvHx0ACgkQJNaLcl1U
 h9ATVQf/WafEp7ddJ23bRaHZx/gBCMgv8N6mN7OBnzB2pMIGL56SPf9fGAmCUQKt
 mne6fDg6/RpydG/72TFppUjRFLN9CwoJjJfQIXMgOqYuPaMEnrj1wbcXar3MeeX2
 8hS1u7wKwhOuuwLmoqqMOTKyGUj2mHsBOTOo0vm4WM1s9IHhY5TG2clYv1A+KZbj
 kSHE5m7YnBLwimwu0+hsXnRNHZUGKVksQ/9t7AD7/7L8aPj9jPqu1EjTS1/6IDB0
 QDVyW7Z6hX7YoUx48gp+j/UFJ7ZyxTajy+0wvzPHou3KJARgFfNZWT2XvvYcpA0/
 yqcpbCUwZ1AETXHcmly7YwNpPV9LBg==
 =+Xw/
 -----END PGP SIGNATURE-----

Merge tag 'spi-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi

Pull spi updates from Mark Brown:
 "This release sees some exciting changes from David Lechner which
  implements some optimisations that have been talked about for a long
  time which allows client drivers to pre-prepare SPI messages for
  repeated or low latency use. This lets us move work out of latency
  sensitive paths and avoid repeating work for frequently performed
  operations. As well as being useful in itself this will also be used
  in future to allow controllers to directly trigger SPI operations (eg,
  from interrupts).

  Otherwise this release has mostly been focused on cleanups, plus a
  couple of new devices:

   - Support for pre-optimising messages

   - A big set of updates from Uwe Kleine-König moving drivers to use
     APIs with more modern terminology for controllers

   - Major overhaul of the s3c64xx driver

   - Support for Google GS101 and Samsung Exynos850"

* tag 'spi-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (122 commits)
  spi: Introduce SPI_INVALID_CS and is_valid_cs()
  spi: Fix types of the last chip select storage variables
  spi: Consistently use BIT for cs_index_mask
  spi: Exctract spi_dev_check_cs() helper
  spi: Exctract spi_set_all_cs_unused() helper
  spi: s3c64xx: switch exynos850 to new port config data
  spi: s3c64xx: switch gs101 to new port config data
  spi: s3c64xx: deprecate fifo_lvl_mask, rx_lvl_offset and port_id
  spi: s3c64xx: get rid of the OF alias ID dependency
  spi: s3c64xx: introduce s3c64xx_spi_set_port_id()
  spi: s3c64xx: let the SPI core determine the bus number
  spi: s3c64xx: allow FIFO depth to be determined from the compatible
  spi: s3c64xx: retrieve the FIFO depth from the device tree
  spi: s3c64xx: determine the fifo depth only once
  spi: s3c64xx: allow full FIFO masks
  spi: s3c64xx: define a magic value
  spi: dt-bindings: introduce FIFO depth properties
  spi: axi-spi-engine: use struct_size() macro
  spi: axi-spi-engine: use __counted_by() attribute
  spi: axi-spi-engine: remove p from struct spi_engine_message_state
  ...
This commit is contained in:
Linus Torvalds 2024-03-13 11:07:37 -07:00
commit 6cdebf62a1
72 changed files with 1572 additions and 805 deletions

View File

@ -22,7 +22,6 @@ properties:
- const: atmel,at91rm9200-spi
- items:
- const: microchip,sam9x7-spi
- const: microchip,sam9x60-spi
- const: atmel,at91rm9200-spi
reg:

View File

@ -17,11 +17,13 @@ properties:
compatible:
oneOf:
- enum:
- google,gs101-spi
- samsung,s3c2443-spi # for S3C2443, S3C2416 and S3C2450
- samsung,s3c6410-spi
- samsung,s5pv210-spi # for S5PV210 and S5PC110
- samsung,exynos4210-spi
- samsung,exynos5433-spi
- samsung,exynos850-spi
- samsung,exynosautov9-spi
- tesla,fsd-spi
- const: samsung,exynos7-spi
@ -74,8 +76,6 @@ required:
- compatible
- clocks
- clock-names
- dmas
- dma-names
- interrupts
- reg

View File

@ -69,6 +69,21 @@ properties:
Should be generally avoided and be replaced by
spi-cs-high + ACTIVE_HIGH.
fifo-depth:
$ref: /schemas/types.yaml#/definitions/uint32
description:
Size of the RX and TX data FIFOs in bytes.
rx-fifo-depth:
$ref: /schemas/types.yaml#/definitions/uint32
description:
Size of the RX data FIFO in bytes.
tx-fifo-depth:
$ref: /schemas/types.yaml#/definitions/uint32
description:
Size of the TX data FIFO in bytes.
num-cs:
$ref: /schemas/types.yaml#/definitions/uint32
description:
@ -116,6 +131,10 @@ patternProperties:
- compatible
- reg
dependencies:
rx-fifo-depth: [ tx-fifo-depth ]
tx-fifo-depth: [ rx-fifo-depth ]
allOf:
- if:
not:
@ -129,6 +148,14 @@ allOf:
properties:
"#address-cells":
const: 0
- not:
required:
- fifo-depth
- rx-fifo-depth
- not:
required:
- fifo-depth
- tx-fifo-depth
additionalProperties: true

View File

@ -22,6 +22,7 @@ properties:
- enum:
- fsl,imx8ulp-spi
- fsl,imx93-spi
- fsl,imx95-spi
- const: fsl,imx7ulp-spi
reg:
maxItems: 1

View File

@ -15,12 +15,18 @@ allOf:
properties:
compatible:
enum:
- nxp,imx8dxl-fspi
- nxp,imx8mm-fspi
- nxp,imx8mp-fspi
- nxp,imx8qxp-fspi
- nxp,lx2160a-fspi
oneOf:
- enum:
- nxp,imx8dxl-fspi
- nxp,imx8mm-fspi
- nxp,imx8mp-fspi
- nxp,imx8qxp-fspi
- nxp,lx2160a-fspi
- items:
- enum:
- nxp,imx93-fspi
- nxp,imx95-fspi
- const: nxp,imx8mm-fspi
reg:
items:

View File

@ -463,7 +463,7 @@ SLAVE DMA ENGINE
SPI
devm_spi_alloc_master()
devm_spi_alloc_slave()
devm_spi_register_master()
devm_spi_register_controller()
WATCHDOG
devm_watchdog_register_device()

View File

@ -9,7 +9,7 @@ What is SPI?
The "Serial Peripheral Interface" (SPI) is a synchronous four wire serial
link used to connect microcontrollers to sensors, memory, and peripherals.
It's a simple "de facto" standard, not complicated enough to acquire a
standardization body. SPI uses a master/slave configuration.
standardization body. SPI uses a host/target configuration.
The three signal wires hold a clock (SCK, often on the order of 10 MHz),
and parallel data lines with "Master Out, Slave In" (MOSI) or "Master In,
@ -19,14 +19,14 @@ commonly used. Each clock cycle shifts data out and data in; the clock
doesn't cycle except when there is a data bit to shift. Not all data bits
are used though; not every protocol uses those full duplex capabilities.
SPI masters use a fourth "chip select" line to activate a given SPI slave
SPI hosts use a fourth "chip select" line to activate a given SPI target
device, so those three signal wires may be connected to several chips
in parallel. All SPI slaves support chipselects; they are usually active
low signals, labeled nCSx for slave 'x' (e.g. nCS0). Some devices have
other signals, often including an interrupt to the master.
in parallel. All SPI targets support chipselects; they are usually active
low signals, labeled nCSx for target 'x' (e.g. nCS0). Some devices have
other signals, often including an interrupt to the host.
Unlike serial busses like USB or SMBus, even low level protocols for
SPI slave functions are usually not interoperable between vendors
SPI target functions are usually not interoperable between vendors
(except for commodities like SPI memory chips).
- SPI may be used for request/response style device protocols, as with
@ -43,10 +43,10 @@ SPI slave functions are usually not interoperable between vendors
- Sometimes SPI is used to daisy-chain devices, like shift registers.
In the same way, SPI slaves will only rarely support any kind of automatic
discovery/enumeration protocol. The tree of slave devices accessible from
a given SPI master will normally be set up manually, with configuration
tables.
In the same way, SPI targets will only rarely support any kind of automatic
discovery/enumeration protocol. The tree of target devices accessible from
a given SPI host controller will normally be set up manually, with
configuration tables.
SPI is only one of the names used by such four-wire protocols, and
most controllers have no problem handling "MicroWire" (think of it as
@ -62,8 +62,8 @@ course they won't handle full duplex transfers. You may find such
chips described as using "three wire" signaling: SCK, data, nCSx.
(That data line is sometimes called MOMI or SISO.)
Microcontrollers often support both master and slave sides of the SPI
protocol. This document (and Linux) supports both the master and slave
Microcontrollers often support both host and target sides of the SPI
protocol. This document (and Linux) supports both the host and target
sides of SPI interactions.
@ -75,7 +75,7 @@ protocol supported by every MMC or SD memory card. (The older "DataFlash"
cards, predating MMC cards but using the same connectors and card shape,
support only SPI.) Some PC hardware uses SPI flash for BIOS code.
SPI slave chips range from digital/analog converters used for analog
SPI target chips range from digital/analog converters used for analog
sensors and codecs, to memory, to peripherals like USB controllers
or Ethernet adapters; and more.
@ -118,8 +118,8 @@ starting low (CPOL=0) and data stabilized for sampling during the
trailing clock edge (CPHA=1), that's SPI mode 1.
Note that the clock mode is relevant as soon as the chipselect goes
active. So the master must set the clock to inactive before selecting
a slave, and the slave can tell the chosen polarity by sampling the
active. So the host must set the clock to inactive before selecting
a target, and the target can tell the chosen polarity by sampling the
clock level when its select line goes active. That's why many devices
support for example both modes 0 and 3: they don't care about polarity,
and always clock data in/out on rising clock edges.
@ -142,13 +142,13 @@ There are two types of SPI driver, here called:
Controller drivers ...
controllers may be built into System-On-Chip
processors, and often support both Master and Slave roles.
processors, and often support both Controller and target roles.
These drivers touch hardware registers and may use DMA.
Or they can be PIO bitbangers, needing just GPIO pins.
Protocol drivers ...
these pass messages through the controller
driver to communicate with a Slave or Master device on the
driver to communicate with a target or Controller device on the
other side of an SPI link.
So for example one protocol driver might talk to the MTD layer to export
@ -179,22 +179,22 @@ shows up in sysfs in several locations::
/sys/bus/spi/drivers/D ... driver for one or more spi*.* devices
/sys/class/spi_master/spiB ... symlink to a logical node which could hold
class related state for the SPI master controller managing bus "B".
class related state for the SPI host controller managing bus "B".
All spiB.* devices share one physical SPI bus segment, with SCLK,
MOSI, and MISO.
/sys/devices/.../CTLR/slave ... virtual file for (un)registering the
slave device for an SPI slave controller.
Writing the driver name of an SPI slave handler to this file
registers the slave device; writing "(null)" unregisters the slave
target device for an SPI target controller.
Writing the driver name of an SPI target handler to this file
registers the target device; writing "(null)" unregisters the target
device.
Reading from this file shows the name of the slave device ("(null)"
Reading from this file shows the name of the target device ("(null)"
if not registered).
/sys/class/spi_slave/spiB ... symlink to a logical node which could hold
class related state for the SPI slave controller on bus "B". When
class related state for the SPI target controller on bus "B". When
registered, a single spiB.* device is present here, possible sharing
the physical SPI bus segment with other SPI slave devices.
the physical SPI bus segment with other SPI target devices.
At this time, the only class-specific state is the bus number ("B" in "spiB"),
so those /sys/class entries are only useful to quickly identify busses.
@ -270,10 +270,10 @@ same SOC controller is used. For example, on one board SPI might use
an external clock, where another derives the SPI clock from current
settings of some master clock.
Declare Slave Devices
^^^^^^^^^^^^^^^^^^^^^
Declare target Devices
^^^^^^^^^^^^^^^^^^^^^^
The second kind of information is a list of what SPI slave devices exist
The second kind of information is a list of what SPI target devices exist
on the target board, often with some board-specific data needed for the
driver to work correctly.
@ -316,7 +316,7 @@ sharing a bus with a device that interprets chipselect "backwards" is
not possible until the infrastructure knows how to deselect it.
Then your board initialization code would register that table with the SPI
infrastructure, so that it's available later when the SPI master controller
infrastructure, so that it's available later when the SPI host controller
driver is registered::
spi_register_board_info(spi_board_info, ARRAY_SIZE(spi_board_info));
@ -469,39 +469,39 @@ routines are available to allocate and zero-initialize an spi_message
with several transfers.
How do I write an "SPI Master Controller Driver"?
How do I write an "SPI Controller Driver"?
-------------------------------------------------
An SPI controller will probably be registered on the platform_bus; write
a driver to bind to the device, whichever bus is involved.
The main task of this type of driver is to provide an "spi_master".
Use spi_alloc_master() to allocate the master, and spi_master_get_devdata()
to get the driver-private data allocated for that device.
The main task of this type of driver is to provide an "spi_controller".
Use spi_alloc_host() to allocate the host controller, and
spi_controller_get_devdata() to get the driver-private data allocated for that
device.
::
struct spi_master *master;
struct spi_controller *ctlr;
struct CONTROLLER *c;
master = spi_alloc_master(dev, sizeof *c);
if (!master)
ctlr = spi_alloc_host(dev, sizeof *c);
if (!ctlr)
return -ENODEV;
c = spi_master_get_devdata(master);
c = spi_controller_get_devdata(ctlr);
The driver will initialize the fields of that spi_master, including the
bus number (maybe the same as the platform device ID) and three methods
used to interact with the SPI core and SPI protocol drivers. It will
also initialize its own internal state. (See below about bus numbering
and those methods.)
The driver will initialize the fields of that spi_controller, including the bus
number (maybe the same as the platform device ID) and three methods used to
interact with the SPI core and SPI protocol drivers. It will also initialize
its own internal state. (See below about bus numbering and those methods.)
After you initialize the spi_master, then use spi_register_master() to
After you initialize the spi_controller, then use spi_register_controller() to
publish it to the rest of the system. At that time, device nodes for the
controller and any predeclared spi devices will be made available, and
the driver model core will take care of binding them to drivers.
If you need to remove your SPI controller driver, spi_unregister_master()
will reverse the effect of spi_register_master().
If you need to remove your SPI controller driver, spi_unregister_controller()
will reverse the effect of spi_register_controller().
Bus Numbering
@ -519,49 +519,49 @@ then be replaced by a dynamically assigned number. You'd then need to treat
this as a non-static configuration (see above).
SPI Master Methods
^^^^^^^^^^^^^^^^^^
SPI Host Controller Methods
^^^^^^^^^^^^^^^^^^^^^^^^^^^
``master->setup(struct spi_device *spi)``
``ctlr->setup(struct spi_device *spi)``
This sets up the device clock rate, SPI mode, and word sizes.
Drivers may change the defaults provided by board_info, and then
call spi_setup(spi) to invoke this routine. It may sleep.
Unless each SPI slave has its own configuration registers, don't
Unless each SPI target has its own configuration registers, don't
change them right away ... otherwise drivers could corrupt I/O
that's in progress for other SPI devices.
.. note::
BUG ALERT: for some reason the first version of
many spi_master drivers seems to get this wrong.
many spi_controller drivers seems to get this wrong.
When you code setup(), ASSUME that the controller
is actively processing transfers for another device.
``master->cleanup(struct spi_device *spi)``
``ctlr->cleanup(struct spi_device *spi)``
Your controller driver may use spi_device.controller_state to hold
state it dynamically associates with that device. If you do that,
be sure to provide the cleanup() method to free that state.
``master->prepare_transfer_hardware(struct spi_master *master)``
``ctlr->prepare_transfer_hardware(struct spi_controller *ctlr)``
This will be called by the queue mechanism to signal to the driver
that a message is coming in soon, so the subsystem requests the
driver to prepare the transfer hardware by issuing this call.
This may sleep.
``master->unprepare_transfer_hardware(struct spi_master *master)``
``ctlr->unprepare_transfer_hardware(struct spi_controller *ctlr)``
This will be called by the queue mechanism to signal to the driver
that there are no more messages pending in the queue and it may
relax the hardware (e.g. by power management calls). This may sleep.
``master->transfer_one_message(struct spi_master *master, struct spi_message *mesg)``
``ctlr->transfer_one_message(struct spi_controller *ctlr, struct spi_message *mesg)``
The subsystem calls the driver to transfer a single message while
queuing transfers that arrive in the meantime. When the driver is
finished with this message, it must call
spi_finalize_current_message() so the subsystem can issue the next
message. This may sleep.
``master->transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *transfer)``
``ctrl->transfer_one(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *transfer)``
The subsystem calls the driver to transfer a single transfer while
queuing transfers that arrive in the meantime. When the driver is
finished with this transfer, it must call
@ -576,15 +576,15 @@ SPI Master Methods
* 0: transfer is finished
* 1: transfer is still in progress
``master->set_cs_timing(struct spi_device *spi, u8 setup_clk_cycles, u8 hold_clk_cycles, u8 inactive_clk_cycles)``
This method allows SPI client drivers to request SPI master controller
``ctrl->set_cs_timing(struct spi_device *spi, u8 setup_clk_cycles, u8 hold_clk_cycles, u8 inactive_clk_cycles)``
This method allows SPI client drivers to request SPI host controller
for configuring device specific CS setup, hold and inactive timing
requirements.
Deprecated Methods
^^^^^^^^^^^^^^^^^^
``master->transfer(struct spi_device *spi, struct spi_message *message)``
``ctrl->transfer(struct spi_device *spi, struct spi_message *message)``
This must not sleep. Its responsibility is to arrange that the
transfer happens and its complete() callback is issued. The two
will normally happen later, after other transfers complete, and

View File

@ -146,7 +146,7 @@ static int tpm_tis_spi_transfer_full(struct tpm_tis_data *data, u32 addr,
struct spi_transfer spi_xfer;
u8 transfer_len;
spi_bus_lock(phy->spi_device->master);
spi_bus_lock(phy->spi_device->controller);
while (len) {
transfer_len = min_t(u16, len, MAX_SPI_FRAMESIZE);
@ -210,7 +210,7 @@ static int tpm_tis_spi_transfer_full(struct tpm_tis_data *data, u32 addr,
spi_sync_locked(phy->spi_device, &m);
}
spi_bus_unlock(phy->spi_device->master);
spi_bus_unlock(phy->spi_device->controller);
return ret;
}

View File

@ -66,7 +66,7 @@ static int ice40_fpga_ops_write_init(struct fpga_manager *mgr,
}
/* Lock the bus, assert CRESET_B and SS_B and delay >200ns */
spi_bus_lock(dev->master);
spi_bus_lock(dev->controller);
gpiod_set_value(priv->reset, 1);
@ -94,7 +94,7 @@ static int ice40_fpga_ops_write_init(struct fpga_manager *mgr,
ret = spi_sync_locked(dev, &message);
fail:
spi_bus_unlock(dev->master);
spi_bus_unlock(dev->controller);
return ret;
}

View File

@ -212,7 +212,7 @@ int ad_sd_calibrate(struct ad_sigma_delta *sigma_delta,
if (ret)
return ret;
spi_bus_lock(sigma_delta->spi->master);
spi_bus_lock(sigma_delta->spi->controller);
sigma_delta->bus_locked = true;
sigma_delta->keep_cs_asserted = true;
reinit_completion(&sigma_delta->completion);
@ -235,7 +235,7 @@ int ad_sd_calibrate(struct ad_sigma_delta *sigma_delta,
sigma_delta->keep_cs_asserted = false;
ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_IDLE);
sigma_delta->bus_locked = false;
spi_bus_unlock(sigma_delta->spi->master);
spi_bus_unlock(sigma_delta->spi->controller);
return ret;
}
@ -287,7 +287,7 @@ int ad_sigma_delta_single_conversion(struct iio_dev *indio_dev,
ad_sigma_delta_set_channel(sigma_delta, chan->address);
spi_bus_lock(sigma_delta->spi->master);
spi_bus_lock(sigma_delta->spi->controller);
sigma_delta->bus_locked = true;
sigma_delta->keep_cs_asserted = true;
reinit_completion(&sigma_delta->completion);
@ -322,7 +322,7 @@ int ad_sigma_delta_single_conversion(struct iio_dev *indio_dev,
sigma_delta->keep_cs_asserted = false;
ad_sigma_delta_set_mode(sigma_delta, AD_SD_MODE_IDLE);
sigma_delta->bus_locked = false;
spi_bus_unlock(sigma_delta->spi->master);
spi_bus_unlock(sigma_delta->spi->controller);
iio_device_release_direct_mode(indio_dev);
if (ret)
@ -387,7 +387,7 @@ static int ad_sd_buffer_postenable(struct iio_dev *indio_dev)
sigma_delta->samples_buf = samples_buf;
spi_bus_lock(sigma_delta->spi->master);
spi_bus_lock(sigma_delta->spi->controller);
sigma_delta->bus_locked = true;
sigma_delta->keep_cs_asserted = true;
@ -401,7 +401,7 @@ static int ad_sd_buffer_postenable(struct iio_dev *indio_dev)
return 0;
err_unlock:
spi_bus_unlock(sigma_delta->spi->master);
spi_bus_unlock(sigma_delta->spi->controller);
return ret;
}
@ -426,7 +426,7 @@ static int ad_sd_buffer_postdisable(struct iio_dev *indio_dev)
ad_sigma_delta_disable_all(sigma_delta);
sigma_delta->bus_locked = false;
return spi_bus_unlock(sigma_delta->spi->master);
return spi_bus_unlock(sigma_delta->spi->controller);
}
static irqreturn_t ad_sd_trigger_handler(int irq, void *p)

View File

@ -342,8 +342,8 @@ static int psxpad_spi_probe(struct spi_device *spi)
spi->mode = SPI_MODE_3;
spi->bits_per_word = 8;
/* (PlayStation 1/2 joypad might be possible works 250kHz/500kHz) */
spi->master->min_speed_hz = 125000;
spi->master->max_speed_hz = 125000;
spi->controller->min_speed_hz = 125000;
spi->controller->max_speed_hz = 125000;
spi_setup(spi);
/* pad settings */

View File

@ -375,7 +375,7 @@ static int rmi_spi_probe(struct spi_device *spi)
struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
int error;
if (spi->master->flags & SPI_CONTROLLER_HALF_DUPLEX)
if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX)
return -EINVAL;
rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),

View File

@ -144,7 +144,7 @@ static int match_spi_adap(struct device *dev, void *data)
return to_spi_device(dev) ? 1 : 0;
}
static struct spi_master *get_spi_adap(struct platform_device *pdev)
static struct spi_controller *get_spi_adap(struct platform_device *pdev)
{
struct device *dev;
@ -152,7 +152,7 @@ static struct spi_master *get_spi_adap(struct platform_device *pdev)
dev = device_find_child(&pdev->dev, NULL, match_spi_adap);
mutex_unlock(&pdev->dev.mutex);
return dev ? container_of(dev, struct spi_master, dev) : NULL;
return dev ? container_of(dev, struct spi_controller, dev) : NULL;
}
static int init_spi(struct mgb4_dev *mgbdev, u32 devid)
@ -179,7 +179,7 @@ static int init_spi(struct mgb4_dev *mgbdev, u32 devid)
};
struct pci_dev *pdev = mgbdev->pdev;
struct device *dev = &pdev->dev;
struct spi_master *master;
struct spi_controller *ctlr;
struct spi_device *spi_dev;
u32 irq;
int rv, id;
@ -207,8 +207,8 @@ static int init_spi(struct mgb4_dev *mgbdev, u32 devid)
return PTR_ERR(mgbdev->spi_pdev);
}
master = get_spi_adap(mgbdev->spi_pdev);
if (!master) {
ctlr = get_spi_adap(mgbdev->spi_pdev);
if (!ctlr) {
dev_err(dev, "failed to get SPI adapter\n");
rv = -EINVAL;
goto err_pdev;
@ -242,8 +242,8 @@ static int init_spi(struct mgb4_dev *mgbdev, u32 devid)
spi_info.platform_data = &mgbdev->flash_data;
spi_dev = spi_new_device(master, &spi_info);
put_device(&master->dev);
spi_dev = spi_new_device(ctlr, &spi_info);
put_device(&ctlr->dev);
if (!spi_dev) {
dev_err(dev, "failed to create MTD device\n");
rv = -EINVAL;

View File

@ -35,7 +35,7 @@ struct netup_spi_regs {
struct netup_spi {
struct device *dev;
struct spi_master *master;
struct spi_controller *ctlr;
struct netup_spi_regs __iomem *regs;
u8 __iomem *mmio;
spinlock_t lock;
@ -78,7 +78,7 @@ irqreturn_t netup_spi_interrupt(struct netup_spi *spi)
reg = readw(&spi->regs->control_stat);
if (!(reg & NETUP_SPI_CTRL_IRQ)) {
spin_unlock_irqrestore(&spi->lock, flags);
dev_dbg(&spi->master->dev,
dev_dbg(&spi->ctlr->dev,
"%s(): not mine interrupt\n", __func__);
return IRQ_NONE;
}
@ -88,15 +88,15 @@ irqreturn_t netup_spi_interrupt(struct netup_spi *spi)
spi->state = SPI_STATE_DONE;
wake_up(&spi->waitq);
spin_unlock_irqrestore(&spi->lock, flags);
dev_dbg(&spi->master->dev,
dev_dbg(&spi->ctlr->dev,
"%s(): SPI interrupt handled\n", __func__);
return IRQ_HANDLED;
}
static int netup_spi_transfer(struct spi_master *master,
static int netup_spi_transfer(struct spi_controller *ctlr,
struct spi_message *msg)
{
struct netup_spi *spi = spi_master_get_devdata(master);
struct netup_spi *spi = spi_controller_get_devdata(ctlr);
struct spi_transfer *t;
int result = 0;
u32 tr_size;
@ -131,7 +131,7 @@ static int netup_spi_transfer(struct spi_master *master,
NETUP_SPI_CTRL_START |
(frag_last ? NETUP_SPI_CTRL_LAST_CS : 0),
&spi->regs->control_stat);
dev_dbg(&spi->master->dev,
dev_dbg(&spi->ctlr->dev,
"%s(): control_stat 0x%04x\n",
__func__, readw(&spi->regs->control_stat));
wait_event_timeout(spi->waitq,
@ -144,11 +144,11 @@ static int netup_spi_transfer(struct spi_master *master,
}
} else {
if (spi->state == SPI_STATE_START) {
dev_dbg(&spi->master->dev,
dev_dbg(&spi->ctlr->dev,
"%s(): transfer timeout\n",
__func__);
} else {
dev_dbg(&spi->master->dev,
dev_dbg(&spi->ctlr->dev,
"%s(): invalid state %d\n",
__func__, spi->state);
}
@ -161,7 +161,7 @@ static int netup_spi_transfer(struct spi_master *master,
}
done:
msg->status = result;
spi_finalize_current_message(master);
spi_finalize_current_message(ctlr);
return result;
}
@ -172,30 +172,30 @@ static int netup_spi_setup(struct spi_device *spi)
int netup_spi_init(struct netup_unidvb_dev *ndev)
{
struct spi_master *master;
struct spi_controller *ctlr;
struct netup_spi *nspi;
master = devm_spi_alloc_master(&ndev->pci_dev->dev,
sizeof(struct netup_spi));
if (!master) {
ctlr = devm_spi_alloc_master(&ndev->pci_dev->dev,
sizeof(struct netup_spi));
if (!ctlr) {
dev_err(&ndev->pci_dev->dev,
"%s(): unable to alloc SPI master\n", __func__);
return -EINVAL;
}
nspi = spi_master_get_devdata(master);
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
master->bus_num = -1;
master->num_chipselect = 1;
master->transfer_one_message = netup_spi_transfer;
master->setup = netup_spi_setup;
nspi = spi_controller_get_devdata(ctlr);
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
ctlr->bus_num = -1;
ctlr->num_chipselect = 1;
ctlr->transfer_one_message = netup_spi_transfer;
ctlr->setup = netup_spi_setup;
spin_lock_init(&nspi->lock);
init_waitqueue_head(&nspi->waitq);
nspi->master = master;
nspi->ctlr = ctlr;
nspi->regs = (struct netup_spi_regs __iomem *)(ndev->bmmio0 + 0x4000);
writew(2, &nspi->regs->clock_divider);
writew(NETUP_UNIDVB_IRQ_SPI, ndev->bmmio0 + REG_IMASK_SET);
ndev->spi = nspi;
if (spi_register_master(master)) {
if (spi_register_controller(ctlr)) {
ndev->spi = NULL;
dev_err(&ndev->pci_dev->dev,
"%s(): unable to register SPI bus\n", __func__);
@ -207,8 +207,8 @@ int netup_spi_init(struct netup_unidvb_dev *ndev)
ndev->pci_bus,
ndev->pci_slot,
ndev->pci_func);
if (!spi_new_device(master, &netup_spi_board)) {
spi_unregister_master(master);
if (!spi_new_device(ctlr, &netup_spi_board)) {
spi_unregister_controller(ctlr);
ndev->spi = NULL;
dev_err(&ndev->pci_dev->dev,
"%s(): unable to create SPI device\n", __func__);
@ -227,7 +227,7 @@ void netup_spi_release(struct netup_unidvb_dev *ndev)
if (!spi)
return;
spi_unregister_master(spi->master);
spi_unregister_controller(spi->ctlr);
spin_lock_irqsave(&spi->lock, flags);
reg = readw(&spi->regs->control_stat);
writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat);

View File

@ -107,7 +107,7 @@ struct msi2500_dev {
struct video_device vdev;
struct v4l2_device v4l2_dev;
struct v4l2_subdev *v4l2_subdev;
struct spi_master *master;
struct spi_controller *ctlr;
/* videobuf2 queue and queued buffers list */
struct vb2_queue vb_queue;
@ -574,7 +574,7 @@ static void msi2500_disconnect(struct usb_interface *intf)
dev->udev = NULL;
v4l2_device_disconnect(&dev->v4l2_dev);
video_unregister_device(&dev->vdev);
spi_unregister_master(dev->master);
spi_unregister_controller(dev->ctlr);
mutex_unlock(&dev->v4l2_lock);
mutex_unlock(&dev->vb_queue_lock);
@ -1136,10 +1136,10 @@ static void msi2500_video_release(struct v4l2_device *v)
kfree(dev);
}
static int msi2500_transfer_one_message(struct spi_master *master,
static int msi2500_transfer_one_message(struct spi_controller *ctlr,
struct spi_message *m)
{
struct msi2500_dev *dev = spi_master_get_devdata(master);
struct msi2500_dev *dev = spi_controller_get_devdata(ctlr);
struct spi_transfer *t;
int ret = 0;
u32 data;
@ -1154,7 +1154,7 @@ static int msi2500_transfer_one_message(struct spi_master *master,
}
m->status = ret;
spi_finalize_current_message(master);
spi_finalize_current_message(ctlr);
return ret;
}
@ -1163,7 +1163,7 @@ static int msi2500_probe(struct usb_interface *intf,
{
struct msi2500_dev *dev;
struct v4l2_subdev *sd;
struct spi_master *master;
struct spi_controller *ctlr;
int ret;
static struct spi_board_info board_info = {
.modalias = "msi001",
@ -1220,30 +1220,30 @@ static int msi2500_probe(struct usb_interface *intf,
}
/* SPI master adapter */
master = spi_alloc_master(dev->dev, 0);
if (master == NULL) {
ctlr = spi_alloc_master(dev->dev, 0);
if (ctlr == NULL) {
ret = -ENOMEM;
goto err_unregister_v4l2_dev;
}
dev->master = master;
master->bus_num = -1;
master->num_chipselect = 1;
master->transfer_one_message = msi2500_transfer_one_message;
spi_master_set_devdata(master, dev);
ret = spi_register_master(master);
dev->ctlr = ctlr;
ctlr->bus_num = -1;
ctlr->num_chipselect = 1;
ctlr->transfer_one_message = msi2500_transfer_one_message;
spi_controller_set_devdata(ctlr, dev);
ret = spi_register_controller(ctlr);
if (ret) {
spi_master_put(master);
spi_controller_put(ctlr);
goto err_unregister_v4l2_dev;
}
/* load v4l2 subdevice */
sd = v4l2_spi_new_subdev(&dev->v4l2_dev, master, &board_info);
sd = v4l2_spi_new_subdev(&dev->v4l2_dev, ctlr, &board_info);
dev->v4l2_subdev = sd;
if (sd == NULL) {
dev_err(dev->dev, "cannot get v4l2 subdevice\n");
ret = -ENODEV;
goto err_unregister_master;
goto err_unregister_controller;
}
/* Register controls */
@ -1276,8 +1276,8 @@ static int msi2500_probe(struct usb_interface *intf,
return 0;
err_free_controls:
v4l2_ctrl_handler_free(&dev->hdl);
err_unregister_master:
spi_unregister_master(dev->master);
err_unregister_controller:
spi_unregister_controller(dev->ctlr);
err_unregister_v4l2_dev:
v4l2_device_unregister(&dev->v4l2_dev);
err_free_mem:

View File

@ -34,7 +34,7 @@ void v4l2_spi_subdev_init(struct v4l2_subdev *sd, struct spi_device *spi,
EXPORT_SYMBOL_GPL(v4l2_spi_subdev_init);
struct v4l2_subdev *v4l2_spi_new_subdev(struct v4l2_device *v4l2_dev,
struct spi_master *master,
struct spi_controller *ctlr,
struct spi_board_info *info)
{
struct v4l2_subdev *sd = NULL;
@ -45,7 +45,7 @@ struct v4l2_subdev *v4l2_spi_new_subdev(struct v4l2_device *v4l2_dev,
if (info->modalias[0])
request_module(info->modalias);
spi = spi_new_device(master, info);
spi = spi_new_device(ctlr, info);
if (!spi || !spi->dev.driver)
goto error;

View File

@ -65,7 +65,7 @@ static int ezport_start_programming(struct spi_device *spi, struct gpio_desc *re
struct spi_transfer release_cs = { };
int ret;
spi_bus_lock(spi->master);
spi_bus_lock(spi->controller);
/* assert chip select */
spi_message_init(&msg);
@ -85,16 +85,16 @@ static int ezport_start_programming(struct spi_device *spi, struct gpio_desc *re
ret = spi_sync_locked(spi, &msg);
fail:
spi_bus_unlock(spi->master);
spi_bus_unlock(spi->controller);
return ret;
}
static void ezport_stop_programming(struct spi_device *spi, struct gpio_desc *reset)
{
/* reset without asserted chip select to return into normal mode */
spi_bus_lock(spi->master);
spi_bus_lock(spi->controller);
ezport_reset(reset);
spi_bus_unlock(spi->master);
spi_bus_unlock(spi->controller);
}
static int ezport_get_status_register(struct spi_device *spi)

View File

@ -933,7 +933,7 @@ static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
#endif
/* request exclusive bus access */
spi_bus_lock(host->spi->master);
spi_bus_lock(host->spi->controller);
crc_recover:
/* issue command; then optionally data and stop */
@ -965,7 +965,7 @@ static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
}
/* release the bus */
spi_bus_unlock(host->spi->master);
spi_bus_unlock(host->spi->controller);
mmc_request_done(host->mmc, mrq);
}
@ -1155,7 +1155,7 @@ static int mmc_spi_probe(struct spi_device *spi)
/* We rely on full duplex transfers, mostly to reduce
* per-transfer overheads (by making fewer transfers).
*/
if (spi->master->flags & SPI_CONTROLLER_HALF_DUPLEX)
if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX)
return -EINVAL;
/* MMC and SD specs only seem to care that sampling is on the

View File

@ -638,7 +638,7 @@ static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
/* name must be usable with cmdlinepart */
sprintf(priv->name, "spi%d.%d-%s",
spi->master->bus_num, spi_get_chipselect(spi, 0),
spi->controller->bus_num, spi_get_chipselect(spi, 0),
name);
device = &priv->mtd;

View File

@ -156,7 +156,7 @@ static void ks8851_rdreg(struct ks8851_net *ks, unsigned int op,
txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
if (kss->spidev->master->flags & SPI_CONTROLLER_HALF_DUPLEX) {
if (kss->spidev->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
msg = &kss->spi_msg2;
xfer = kss->spi_xfer2;
@ -180,7 +180,7 @@ static void ks8851_rdreg(struct ks8851_net *ks, unsigned int op,
ret = spi_sync(kss->spidev, msg);
if (ret < 0)
netdev_err(ks->netdev, "read: spi_sync() failed\n");
else if (kss->spidev->master->flags & SPI_CONTROLLER_HALF_DUPLEX)
else if (kss->spidev->controller->flags & SPI_CONTROLLER_HALF_DUPLEX)
memcpy(rxb, trx, rxl);
else
memcpy(rxb, trx + 2, rxl);

View File

@ -664,7 +664,7 @@ static int mse102x_probe_spi(struct spi_device *spi)
spi->bits_per_word = 8;
spi->mode |= SPI_MODE_3;
/* enforce minimum speed to ensure device functionality */
spi->master->min_speed_hz = MIN_FREQ_HZ;
spi->controller->min_speed_hz = MIN_FREQ_HZ;
if (!spi->max_speed_hz)
spi->max_speed_hz = MAX_FREQ_HZ;

View File

@ -2950,7 +2950,7 @@ static int ca8210_test_interface_init(struct ca8210_priv *priv)
node_name,
sizeof(node_name),
"ca8210@%d_%d",
priv->spi->master->bus_num,
priv->spi->controller->bus_num,
spi_get_chipselect(priv->spi, 0)
);

View File

@ -1052,7 +1052,7 @@ static int if_spi_init_card(struct if_spi_card *card)
"attached to SPI bus_num %d, chip_select %d. "
"spi->max_speed_hz=%d\n",
card->card_id, card->card_rev,
card->spi->master->bus_num,
card->spi->controller->bus_num,
spi_get_chipselect(card->spi, 0),
card->spi->max_speed_hz);
err = if_spi_prog_helper_firmware(card, helper);

View File

@ -409,7 +409,7 @@ static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
if (!rx_buf)
return -ENOMEM;
spi_bus_lock(ec_spi->spi->master);
spi_bus_lock(ec_spi->spi->controller);
/*
* Leave a gap between CS assertion and clocking of data to allow the
@ -469,7 +469,7 @@ static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
final_ret = terminate_request(ec_dev);
spi_bus_unlock(ec_spi->spi->master);
spi_bus_unlock(ec_spi->spi->controller);
if (!ret)
ret = final_ret;
@ -554,7 +554,7 @@ static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
if (!rx_buf)
return -ENOMEM;
spi_bus_lock(ec_spi->spi->master);
spi_bus_lock(ec_spi->spi->controller);
/* Transmit phase - send our message */
debug_packet(ec_dev->dev, "out", ec_dev->dout, len);
@ -590,7 +590,7 @@ static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
final_ret = terminate_request(ec_dev);
spi_bus_unlock(ec_spi->spi->master);
spi_bus_unlock(ec_spi->spi->controller);
if (!ret)
ret = final_ret;

View File

@ -694,7 +694,7 @@ config SPI_MTK_SNFI
This enables support for SPI-NAND mode on the MediaTek NAND
Flash Interface found on MediaTek ARM SoCs. This controller
is implemented as a SPI-MEM controller with pipelined ECC
capcability.
capability.
config SPI_WPCM_FIU
tristate "Nuvoton WPCM450 Flash Interface Unit"

View File

@ -189,7 +189,7 @@ static int ath79_spi_probe(struct platform_device *pdev)
host->num_chipselect = 3;
host->mem_ops = &ath79_mem_ops;
sp->bitbang.master = host;
sp->bitbang.ctlr = host;
sp->bitbang.chipselect = ath79_spi_chipselect;
sp->bitbang.txrx_word[SPI_MODE_0] = ath79_spi_txrx_mode0;
sp->bitbang.flags = SPI_CS_HIGH;
@ -237,7 +237,7 @@ static void ath79_spi_remove(struct platform_device *pdev)
spi_bitbang_stop(&sp->bitbang);
ath79_spi_disable(sp);
spi_controller_put(sp->bitbang.master);
spi_controller_put(sp->bitbang.ctlr);
}
static void ath79_spi_shutdown(struct platform_device *pdev)

View File

@ -800,7 +800,7 @@ static int au1550_spi_probe(struct platform_device *pdev)
init_completion(&hw->host_done);
hw->bitbang.master = hw->host;
hw->bitbang.ctlr = hw->host;
hw->bitbang.setup_transfer = au1550_spi_setupxfer;
hw->bitbang.chipselect = au1550_spi_chipsel;
hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs;

View File

@ -6,20 +6,15 @@
*/
#include <linux/clk.h>
#include <linux/idr.h>
#include <linux/completion.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/overflow.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/timer.h>
#define SPI_ENGINE_VERSION_MAJOR(x) ((x >> 16) & 0xff)
#define SPI_ENGINE_VERSION_MINOR(x) ((x >> 8) & 0xff)
#define SPI_ENGINE_VERSION_PATCH(x) (x & 0xff)
#define SPI_ENGINE_REG_VERSION 0x00
#define SPI_ENGINE_REG_RESET 0x40
@ -62,6 +57,9 @@
#define SPI_ENGINE_TRANSFER_WRITE 0x1
#define SPI_ENGINE_TRANSFER_READ 0x2
/* Arbitrary sync ID for use by host->cur_msg */
#define AXI_SPI_ENGINE_CUR_MSG_SYNC_ID 0x1
#define SPI_ENGINE_CMD(inst, arg1, arg2) \
(((inst) << 12) | ((arg1) << 8) | (arg2))
@ -78,15 +76,13 @@
struct spi_engine_program {
unsigned int length;
uint16_t instructions[];
uint16_t instructions[] __counted_by(length);
};
/**
* struct spi_engine_message_state - SPI engine per-message state
*/
struct spi_engine_message_state {
/** @p: Instructions for executing this message. */
struct spi_engine_program *p;
/** @cmd_length: Number of elements in cmd_buf array. */
unsigned cmd_length;
/** @cmd_buf: Array of commands not yet written to CMD FIFO. */
@ -103,8 +99,6 @@ struct spi_engine_message_state {
unsigned int rx_length;
/** @rx_buf: Bytes not yet written to the RX FIFO. */
uint8_t *rx_buf;
/** @sync_id: ID to correlate SYNC interrupts with this message. */
u8 sync_id;
};
struct spi_engine {
@ -114,19 +108,18 @@ struct spi_engine {
spinlock_t lock;
void __iomem *base;
struct ida sync_ida;
struct timer_list watchdog_timer;
struct spi_controller *controller;
struct spi_engine_message_state msg_state;
struct completion msg_complete;
unsigned int int_enable;
};
static void spi_engine_program_add_cmd(struct spi_engine_program *p,
bool dry, uint16_t cmd)
{
if (!dry)
p->instructions[p->length] = cmd;
p->length++;
if (!dry)
p->instructions[p->length - 1] = cmd;
}
static unsigned int spi_engine_get_config(struct spi_device *spi)
@ -488,14 +481,10 @@ static irqreturn_t spi_engine_irq(int irq, void *devid)
}
if (pending & SPI_ENGINE_INT_SYNC && msg) {
struct spi_engine_message_state *st = msg->state;
if (completed_id == st->sync_id) {
if (timer_delete_sync(&spi_engine->watchdog_timer)) {
msg->status = 0;
msg->actual_length = msg->frame_length;
spi_finalize_current_message(host);
}
if (completed_id == AXI_SPI_ENGINE_CUR_MSG_SYNC_ID) {
msg->status = 0;
msg->actual_length = msg->frame_length;
complete(&spi_engine->msg_complete);
disable_int |= SPI_ENGINE_INT_SYNC;
}
}
@ -511,61 +500,32 @@ static irqreturn_t spi_engine_irq(int irq, void *devid)
return IRQ_HANDLED;
}
static int spi_engine_prepare_message(struct spi_controller *host,
struct spi_message *msg)
static int spi_engine_optimize_message(struct spi_message *msg)
{
struct spi_engine_program p_dry, *p;
struct spi_engine *spi_engine = spi_controller_get_devdata(host);
struct spi_engine_message_state *st;
size_t size;
int ret;
st = kzalloc(sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
spi_engine_precompile_message(msg);
p_dry.length = 0;
spi_engine_compile_message(msg, true, &p_dry);
size = sizeof(*p->instructions) * (p_dry.length + 1);
p = kzalloc(sizeof(*p) + size, GFP_KERNEL);
if (!p) {
kfree(st);
p = kzalloc(struct_size(p, instructions, p_dry.length + 1), GFP_KERNEL);
if (!p)
return -ENOMEM;
}
ret = ida_alloc_range(&spi_engine->sync_ida, 0, U8_MAX, GFP_KERNEL);
if (ret < 0) {
kfree(p);
kfree(st);
return ret;
}
st->sync_id = ret;
spi_engine_compile_message(msg, false, p);
spi_engine_program_add_cmd(p, false, SPI_ENGINE_CMD_SYNC(st->sync_id));
spi_engine_program_add_cmd(p, false, SPI_ENGINE_CMD_SYNC(
AXI_SPI_ENGINE_CUR_MSG_SYNC_ID));
st->p = p;
st->cmd_buf = p->instructions;
st->cmd_length = p->length;
msg->state = st;
msg->opt_state = p;
return 0;
}
static int spi_engine_unprepare_message(struct spi_controller *host,
struct spi_message *msg)
static int spi_engine_unoptimize_message(struct spi_message *msg)
{
struct spi_engine *spi_engine = spi_controller_get_devdata(host);
struct spi_engine_message_state *st = msg->state;
ida_free(&spi_engine->sync_ida, st->sync_id);
kfree(st->p);
kfree(st);
kfree(msg->opt_state);
return 0;
}
@ -574,11 +534,18 @@ static int spi_engine_transfer_one_message(struct spi_controller *host,
struct spi_message *msg)
{
struct spi_engine *spi_engine = spi_controller_get_devdata(host);
struct spi_engine_message_state *st = msg->state;
struct spi_engine_message_state *st = &spi_engine->msg_state;
struct spi_engine_program *p = msg->opt_state;
unsigned int int_enable = 0;
unsigned long flags;
mod_timer(&spi_engine->watchdog_timer, jiffies + msecs_to_jiffies(5000));
/* reinitialize message state for this transfer */
memset(st, 0, sizeof(*st));
st->cmd_buf = p->instructions;
st->cmd_length = p->length;
msg->state = st;
reinit_completion(&spi_engine->msg_complete);
spin_lock_irqsave(&spi_engine->lock, flags);
@ -600,21 +567,16 @@ static int spi_engine_transfer_one_message(struct spi_controller *host,
spi_engine->int_enable = int_enable;
spin_unlock_irqrestore(&spi_engine->lock, flags);
return 0;
}
if (!wait_for_completion_timeout(&spi_engine->msg_complete,
msecs_to_jiffies(5000))) {
dev_err(&host->dev,
"Timeout occurred while waiting for transfer to complete. Hardware is probably broken.\n");
msg->status = -ETIMEDOUT;
}
static void spi_engine_timeout(struct timer_list *timer)
{
struct spi_engine *spi_engine = from_timer(spi_engine, timer, watchdog_timer);
struct spi_controller *host = spi_engine->controller;
if (WARN_ON(!host->cur_msg))
return;
dev_err(&host->dev,
"Timeout occurred while waiting for transfer to complete. Hardware is probably broken.\n");
host->cur_msg->status = -ETIMEDOUT;
spi_finalize_current_message(host);
return msg->status;
}
static void spi_engine_release_hw(void *p)
@ -645,9 +607,7 @@ static int spi_engine_probe(struct platform_device *pdev)
spi_engine = spi_controller_get_devdata(host);
spin_lock_init(&spi_engine->lock);
ida_init(&spi_engine->sync_ida);
timer_setup(&spi_engine->watchdog_timer, spi_engine_timeout, TIMER_IRQSAFE);
spi_engine->controller = host;
init_completion(&spi_engine->msg_complete);
spi_engine->clk = devm_clk_get_enabled(&pdev->dev, "s_axi_aclk");
if (IS_ERR(spi_engine->clk))
@ -661,12 +621,12 @@ static int spi_engine_probe(struct platform_device *pdev)
if (IS_ERR(spi_engine->base))
return PTR_ERR(spi_engine->base);
version = readl(spi_engine->base + SPI_ENGINE_REG_VERSION);
if (SPI_ENGINE_VERSION_MAJOR(version) != 1) {
version = readl(spi_engine->base + ADI_AXI_REG_VERSION);
if (ADI_AXI_PCORE_VER_MAJOR(version) != 1) {
dev_err(&pdev->dev, "Unsupported peripheral version %u.%u.%c\n",
SPI_ENGINE_VERSION_MAJOR(version),
SPI_ENGINE_VERSION_MINOR(version),
SPI_ENGINE_VERSION_PATCH(version));
ADI_AXI_PCORE_VER_MAJOR(version),
ADI_AXI_PCORE_VER_MINOR(version),
ADI_AXI_PCORE_VER_PATCH(version));
return -ENODEV;
}
@ -689,8 +649,8 @@ static int spi_engine_probe(struct platform_device *pdev)
host->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
host->max_speed_hz = clk_get_rate(spi_engine->ref_clk) / 2;
host->transfer_one_message = spi_engine_transfer_one_message;
host->prepare_message = spi_engine_prepare_message;
host->unprepare_message = spi_engine_unprepare_message;
host->optimize_message = spi_engine_optimize_message;
host->unoptimize_message = spi_engine_unoptimize_message;
host->num_chipselect = 8;
if (host->max_speed_hz == 0)

View File

@ -1117,19 +1117,6 @@ static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
struct spi_device *spi = msg->spi;
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
struct bcm2835_spidev *target = spi_get_ctldata(spi);
int ret;
if (ctlr->can_dma) {
/*
* DMA transfers are limited to 16 bit (0 to 65535 bytes) by
* the SPI HW due to DLEN. Split up transfers (32-bit FIFO
* aligned) if the limit is exceeded.
*/
ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
GFP_KERNEL | GFP_DMA);
if (ret)
return ret;
}
/*
* Set up clock polarity before spi_transfer_one_message() asserts
@ -1219,6 +1206,19 @@ static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
return 0;
}
static size_t bcm2835_spi_max_transfer_size(struct spi_device *spi)
{
/*
* DMA transfers are limited to 16 bit (0 to 65535 bytes) by
* the SPI HW due to DLEN. Split up transfers (32-bit FIFO
* aligned) if the limit is exceeded.
*/
if (spi->controller->can_dma)
return 65532;
return SIZE_MAX;
}
static int bcm2835_spi_setup(struct spi_device *spi)
{
struct spi_controller *ctlr = spi->controller;
@ -1348,6 +1348,7 @@ static int bcm2835_spi_probe(struct platform_device *pdev)
ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
ctlr->num_chipselect = 3;
ctlr->max_transfer_size = bcm2835_spi_max_transfer_size;
ctlr->setup = bcm2835_spi_setup;
ctlr->cleanup = bcm2835_spi_cleanup;
ctlr->transfer_one = bcm2835_spi_transfer_one;

View File

@ -187,7 +187,7 @@ int spi_bitbang_setup(struct spi_device *spi)
bool initial_setup = false;
int retval;
bitbang = spi_master_get_devdata(spi->master);
bitbang = spi_controller_get_devdata(spi->controller);
if (!cs) {
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
@ -236,7 +236,7 @@ static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
unsigned nsecs = cs->nsecs;
struct spi_bitbang *bitbang;
bitbang = spi_master_get_devdata(spi->master);
bitbang = spi_controller_get_devdata(spi->controller);
if (bitbang->set_line_direction) {
int err;
@ -268,11 +268,11 @@ static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
* transfer-at-a-time ones to leverage dma or fifo hardware.
*/
static int spi_bitbang_prepare_hardware(struct spi_master *spi)
static int spi_bitbang_prepare_hardware(struct spi_controller *spi)
{
struct spi_bitbang *bitbang;
bitbang = spi_master_get_devdata(spi);
bitbang = spi_controller_get_devdata(spi);
mutex_lock(&bitbang->lock);
bitbang->busy = 1;
@ -281,11 +281,11 @@ static int spi_bitbang_prepare_hardware(struct spi_master *spi)
return 0;
}
static int spi_bitbang_transfer_one(struct spi_master *master,
static int spi_bitbang_transfer_one(struct spi_controller *ctlr,
struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_bitbang *bitbang = spi_master_get_devdata(master);
struct spi_bitbang *bitbang = spi_controller_get_devdata(ctlr);
int status = 0;
if (bitbang->setup_transfer) {
@ -303,16 +303,16 @@ static int spi_bitbang_transfer_one(struct spi_master *master,
status = -EREMOTEIO;
out:
spi_finalize_current_transfer(master);
spi_finalize_current_transfer(ctlr);
return status;
}
static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
static int spi_bitbang_unprepare_hardware(struct spi_controller *spi)
{
struct spi_bitbang *bitbang;
bitbang = spi_master_get_devdata(spi);
bitbang = spi_controller_get_devdata(spi);
mutex_lock(&bitbang->lock);
bitbang->busy = 0;
@ -323,7 +323,7 @@ static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
{
struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
struct spi_bitbang *bitbang = spi_controller_get_devdata(spi->controller);
/* SPI core provides CS high / low, but bitbang driver
* expects CS active
@ -341,10 +341,10 @@ static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
int spi_bitbang_init(struct spi_bitbang *bitbang)
{
struct spi_master *master = bitbang->master;
struct spi_controller *ctlr = bitbang->ctlr;
bool custom_cs;
if (!master)
if (!ctlr)
return -EINVAL;
/*
* We only need the chipselect callback if we are actually using it.
@ -352,39 +352,39 @@ int spi_bitbang_init(struct spi_bitbang *bitbang)
* SPI_CONTROLLER_GPIO_SS flag is set, we always need to call the
* driver-specific chipselect routine.
*/
custom_cs = (!master->use_gpio_descriptors ||
(master->flags & SPI_CONTROLLER_GPIO_SS));
custom_cs = (!ctlr->use_gpio_descriptors ||
(ctlr->flags & SPI_CONTROLLER_GPIO_SS));
if (custom_cs && !bitbang->chipselect)
return -EINVAL;
mutex_init(&bitbang->lock);
if (!master->mode_bits)
master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
if (!ctlr->mode_bits)
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
if (master->transfer || master->transfer_one_message)
if (ctlr->transfer || ctlr->transfer_one_message)
return -EINVAL;
master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
master->transfer_one = spi_bitbang_transfer_one;
ctlr->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
ctlr->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
ctlr->transfer_one = spi_bitbang_transfer_one;
/*
* When using GPIO descriptors, the ->set_cs() callback doesn't even
* get called unless SPI_CONTROLLER_GPIO_SS is set.
*/
if (custom_cs)
master->set_cs = spi_bitbang_set_cs;
ctlr->set_cs = spi_bitbang_set_cs;
if (!bitbang->txrx_bufs) {
bitbang->use_dma = 0;
bitbang->txrx_bufs = spi_bitbang_bufs;
if (!master->setup) {
if (!ctlr->setup) {
if (!bitbang->setup_transfer)
bitbang->setup_transfer =
spi_bitbang_setup_transfer;
master->setup = spi_bitbang_setup;
master->cleanup = spi_bitbang_cleanup;
ctlr->setup = spi_bitbang_setup;
ctlr->cleanup = spi_bitbang_cleanup;
}
}
@ -411,18 +411,18 @@ EXPORT_SYMBOL_GPL(spi_bitbang_init);
* master methods. Those methods are the defaults if the bitbang->txrx_bufs
* routine isn't initialized.
*
* This routine registers the spi_master, which will process requests in a
* This routine registers the spi_controller, which will process requests in a
* dedicated task, keeping IRQs unblocked most of the time. To stop
* processing those requests, call spi_bitbang_stop().
*
* On success, this routine will take a reference to master. The caller is
* responsible for calling spi_bitbang_stop() to decrement the reference and
* spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
* On success, this routine will take a reference to the controller. The caller
* is responsible for calling spi_bitbang_stop() to decrement the reference and
* spi_controller_put() as counterpart of spi_alloc_master() to prevent a memory
* leak.
*/
int spi_bitbang_start(struct spi_bitbang *bitbang)
{
struct spi_master *master = bitbang->master;
struct spi_controller *ctlr = bitbang->ctlr;
int ret;
ret = spi_bitbang_init(bitbang);
@ -432,9 +432,9 @@ int spi_bitbang_start(struct spi_bitbang *bitbang)
/* driver may get busy before register() returns, especially
* if someone registered boardinfo for devices
*/
ret = spi_register_master(spi_master_get(master));
ret = spi_register_controller(spi_controller_get(ctlr));
if (ret)
spi_master_put(master);
spi_controller_put(ctlr);
return ret;
}
@ -445,7 +445,7 @@ EXPORT_SYMBOL_GPL(spi_bitbang_start);
*/
void spi_bitbang_stop(struct spi_bitbang *bitbang)
{
spi_unregister_master(bitbang->master);
spi_unregister_controller(bitbang->ctlr);
}
EXPORT_SYMBOL_GPL(spi_bitbang_stop);

View File

@ -205,7 +205,7 @@ static void butterfly_attach(struct parport *p)
host->bus_num = 42;
host->num_chipselect = 2;
pp->bitbang.master = host;
pp->bitbang.ctlr = host;
pp->bitbang.chipselect = butterfly_chipselect;
pp->bitbang.txrx_word[SPI_MODE_0] = butterfly_txrx_word_mode0;
@ -263,7 +263,7 @@ static void butterfly_attach(struct parport *p)
pp->info[0].platform_data = &flash;
pp->info[0].chip_select = 1;
pp->info[0].controller_data = pp;
pp->dataflash = spi_new_device(pp->bitbang.master, &pp->info[0]);
pp->dataflash = spi_new_device(pp->bitbang.ctlr, &pp->info[0]);
if (pp->dataflash)
pr_debug("%s: dataflash at %s\n", p->name,
dev_name(&pp->dataflash->dev));
@ -308,7 +308,7 @@ static void butterfly_detach(struct parport *p)
parport_release(pp->pd);
parport_unregister_device(pp->pd);
spi_controller_put(pp->bitbang.master);
spi_controller_put(pp->bitbang.ctlr);
}
static struct parport_driver butterfly_driver = {

View File

@ -31,7 +31,9 @@
#include <linux/timer.h>
#define CQSPI_NAME "cadence-qspi"
#define CQSPI_MAX_CHIPSELECT 16
#define CQSPI_MAX_CHIPSELECT 4
static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
/* Quirks */
#define CQSPI_NEEDS_WR_DELAY BIT(0)
@ -1410,7 +1412,7 @@ static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
int ret;
struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
struct device *dev = &cqspi->pdev->dev;
ret = pm_runtime_resume_and_get(dev);
@ -1619,6 +1621,7 @@ static const struct spi_controller_mem_caps cqspi_mem_caps = {
static int cqspi_setup_flash(struct cqspi_st *cqspi)
{
unsigned int max_cs = cqspi->num_chipselect - 1;
struct platform_device *pdev = cqspi->pdev;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
@ -1635,10 +1638,12 @@ static int cqspi_setup_flash(struct cqspi_st *cqspi)
return ret;
}
if (cs >= CQSPI_MAX_CHIPSELECT) {
if (cs >= cqspi->num_chipselect) {
dev_err(dev, "Chip select %d out of range.\n", cs);
of_node_put(np);
return -EINVAL;
} else if (cs < max_cs) {
max_cs = cs;
}
f_pdata = &cqspi->f_pdata[cs];
@ -1652,6 +1657,7 @@ static int cqspi_setup_flash(struct cqspi_st *cqspi)
}
}
cqspi->num_chipselect = max_cs + 1;
return 0;
}
@ -1712,10 +1718,9 @@ static int cqspi_probe(struct platform_device *pdev)
int irq;
host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
if (!host) {
dev_err(&pdev->dev, "devm_spi_alloc_host failed\n");
if (!host)
return -ENOMEM;
}
host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
host->mem_ops = &cqspi_mem_ops;
host->mem_caps = &cqspi_mem_caps;
@ -1863,14 +1868,14 @@ static int cqspi_probe(struct platform_device *pdev)
cqspi->current_cs = -1;
cqspi->sclk = 0;
host->num_chipselect = cqspi->num_chipselect;
ret = cqspi_setup_flash(cqspi);
if (ret) {
dev_err(dev, "failed to setup flash parameters %d\n", ret);
goto probe_setup_failed;
}
host->num_chipselect = cqspi->num_chipselect;
if (cqspi->use_direct_mode) {
ret = cqspi_request_mmap_dma(cqspi);
if (ret == -EPROBE_DEFER)

View File

@ -124,10 +124,10 @@ static int octeon_spi_do_transfer(struct octeon_spi *p,
return xfer->len;
}
int octeon_spi_transfer_one_message(struct spi_master *master,
int octeon_spi_transfer_one_message(struct spi_controller *ctlr,
struct spi_message *msg)
{
struct octeon_spi *p = spi_master_get_devdata(master);
struct octeon_spi *p = spi_controller_get_devdata(ctlr);
unsigned int total_len = 0;
int status = 0;
struct spi_transfer *xfer;
@ -145,6 +145,6 @@ int octeon_spi_transfer_one_message(struct spi_master *master,
err:
msg->status = status;
msg->actual_length = total_len;
spi_finalize_current_message(master);
spi_finalize_current_message(ctlr);
return status;
}

View File

@ -28,7 +28,7 @@ struct octeon_spi {
#define OCTEON_SPI_TX(x) (x->regs.tx)
#define OCTEON_SPI_DAT0(x) (x->regs.data)
int octeon_spi_transfer_one_message(struct spi_master *master,
int octeon_spi_transfer_one_message(struct spi_controller *ctlr,
struct spi_message *msg);
/* MPI register descriptions */

View File

@ -201,6 +201,11 @@ static size_t cs42l43_spi_max_length(struct spi_device *spi)
return CS42L43_SPI_MAX_LENGTH;
}
static void cs42l43_release_of_node(void *data)
{
fwnode_handle_put(data);
}
static int cs42l43_spi_probe(struct platform_device *pdev)
{
struct cs42l43 *cs42l43 = dev_get_drvdata(pdev->dev.parent);
@ -227,12 +232,6 @@ static int cs42l43_spi_probe(struct platform_device *pdev)
priv->ctlr->transfer_one = cs42l43_transfer_one;
priv->ctlr->set_cs = cs42l43_set_cs;
priv->ctlr->max_transfer_size = cs42l43_spi_max_length;
if (is_of_node(fwnode))
fwnode = fwnode_get_named_child_node(fwnode, "spi");
device_set_node(&priv->ctlr->dev, fwnode);
priv->ctlr->mode_bits = SPI_3WIRE | SPI_MODE_X_MASK;
priv->ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
priv->ctlr->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
@ -256,6 +255,17 @@ static int cs42l43_spi_probe(struct platform_device *pdev)
regmap_write(priv->regmap, CS42L43_SPI_CONFIG3, 0);
regmap_write(priv->regmap, CS42L43_SPI_CONFIG4, CS42L43_SPI_STALL_ENA_MASK);
if (is_of_node(fwnode)) {
fwnode = fwnode_get_named_child_node(fwnode, "spi");
ret = devm_add_action(priv->dev, cs42l43_release_of_node, fwnode);
if (ret) {
fwnode_handle_put(fwnode);
return ret;
}
}
device_set_node(&priv->ctlr->dev, fwnode);
ret = devm_spi_register_controller(priv->dev, priv->ctlr);
if (ret) {
dev_err(priv->dev, "Failed to register SPI controller: %d\n", ret);

View File

@ -459,7 +459,7 @@ static bool davinci_spi_can_dma(struct spi_controller *host,
static int davinci_spi_check_error(struct davinci_spi *dspi, int int_status)
{
struct device *sdev = dspi->bitbang.master->dev.parent;
struct device *sdev = dspi->bitbang.ctlr->dev.parent;
if (int_status & SPIFLG_TIMEOUT_MASK) {
dev_err(sdev, "SPI Time-out Error\n");
@ -742,7 +742,7 @@ static irqreturn_t davinci_spi_irq(s32 irq, void *data)
static int davinci_spi_request_dma(struct davinci_spi *dspi)
{
struct device *sdev = dspi->bitbang.master->dev.parent;
struct device *sdev = dspi->bitbang.ctlr->dev.parent;
dspi->dma_rx = dma_request_chan(sdev, "rx");
if (IS_ERR(dspi->dma_rx))
@ -913,7 +913,7 @@ static int davinci_spi_probe(struct platform_device *pdev)
if (ret)
goto free_host;
dspi->bitbang.master = host;
dspi->bitbang.ctlr = host;
dspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(dspi->clk)) {

View File

@ -577,7 +577,7 @@ static int dw_spi_dma_transfer_one(struct dw_spi *dws,
sg_init_table(&tx_tmp, 1);
sg_init_table(&rx_tmp, 1);
for (base = 0, len = 0; base < xfer->len; base += len) {
for (base = 0; base < xfer->len; base += len) {
/* Fetch next Tx DMA data chunk */
if (!tx_len) {
tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);

View File

@ -502,15 +502,12 @@ static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
return -ENOMEM;
dma->chan_rx = dma_request_chan(dev, "rx");
if (IS_ERR(dma->chan_rx)) {
return dev_err_probe(dev, PTR_ERR(dma->chan_rx),
"rx dma channel not available\n");
}
if (IS_ERR(dma->chan_rx))
return dev_err_probe(dev, PTR_ERR(dma->chan_rx), "rx dma channel not available\n");
dma->chan_tx = dma_request_chan(dev, "tx");
if (IS_ERR(dma->chan_tx)) {
ret = PTR_ERR(dma->chan_tx);
dev_err_probe(dev, ret, "tx dma channel not available\n");
ret = dev_err_probe(dev, PTR_ERR(dma->chan_tx), "tx dma channel not available\n");
goto err_tx_channel;
}
@ -541,16 +538,14 @@ static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(dma->chan_rx, &cfg);
if (ret) {
dev_err(dev, "can't configure rx dma channel\n");
ret = -EINVAL;
dev_err_probe(dev, ret, "can't configure rx dma channel\n");
goto err_slave_config;
}
cfg.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(dma->chan_tx, &cfg);
if (ret) {
dev_err(dev, "can't configure tx dma channel\n");
ret = -EINVAL;
dev_err_probe(dev, ret, "can't configure tx dma channel\n");
goto err_slave_config;
}

View File

@ -82,18 +82,18 @@ void mpc8xxx_spi_probe(struct device *dev, struct resource *mem,
unsigned int irq)
{
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
struct spi_master *master;
struct spi_controller *ctlr;
struct mpc8xxx_spi *mpc8xxx_spi;
master = dev_get_drvdata(dev);
ctlr = dev_get_drvdata(dev);
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH
| SPI_LSB_FIRST | SPI_LOOP;
master->dev.of_node = dev->of_node;
ctlr->dev.of_node = dev->of_node;
mpc8xxx_spi = spi_master_get_devdata(master);
mpc8xxx_spi = spi_controller_get_devdata(ctlr);
mpc8xxx_spi->dev = dev;
mpc8xxx_spi->get_rx = mpc8xxx_spi_rx_buf_u8;
mpc8xxx_spi->get_tx = mpc8xxx_spi_tx_buf_u8;
@ -104,8 +104,8 @@ void mpc8xxx_spi_probe(struct device *dev, struct resource *mem,
mpc8xxx_spi->rx_shift = 0;
mpc8xxx_spi->tx_shift = 0;
master->bus_num = pdata->bus_num;
master->num_chipselect = pdata->max_chipselect;
ctlr->bus_num = pdata->bus_num;
ctlr->num_chipselect = pdata->max_chipselect;
init_completion(&mpc8xxx_spi->done);
}

View File

@ -647,7 +647,7 @@ static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
static int spi_geni_init(struct spi_geni_master *mas)
{
struct spi_master *spi = dev_get_drvdata(mas->dev);
struct spi_controller *spi = dev_get_drvdata(mas->dev);
struct geni_se *se = &mas->se;
unsigned int proto, major, minor, ver;
u32 spi_tx_cfg, fifo_disable;

View File

@ -427,7 +427,7 @@ static int spi_gpio_probe(struct platform_device *pdev)
host->cleanup = spi_gpio_cleanup;
bb = &spi_gpio->bitbang;
bb->master = host;
bb->ctlr = host;
/*
* There is some additional business, apart from driving the CS GPIO
* line, that we need to do on selection. This makes the local

View File

@ -1254,6 +1254,13 @@ static void intel_spi_fill_partition(struct intel_spi *ispi,
if (end > part->size)
part->size = end;
}
/*
* Regions can refer to the second chip too so in this case we
* just make the BIOS partition to occupy the whole chip.
*/
if (ispi->chip0_size && part->size > ispi->chip0_size)
part->size = MTDPART_SIZ_FULL;
}
static int intel_spi_read_desc(struct intel_spi *ispi)
@ -1346,9 +1353,14 @@ static int intel_spi_read_desc(struct intel_spi *ispi)
static int intel_spi_populate_chip(struct intel_spi *ispi)
{
struct flash_platform_data *pdata;
struct mtd_partition *parts;
struct spi_board_info chip;
int ret;
ret = intel_spi_read_desc(ispi);
if (ret)
return ret;
pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
@ -1368,15 +1380,27 @@ static int intel_spi_populate_chip(struct intel_spi *ispi)
if (!spi_new_device(ispi->host, &chip))
return -ENODEV;
ret = intel_spi_read_desc(ispi);
if (ret)
return ret;
/* Add the second chip if present */
if (ispi->host->num_chipselect < 2)
return 0;
chip.platform_data = NULL;
pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
pdata->name = devm_kasprintf(ispi->dev, GFP_KERNEL, "%s-chip1",
dev_name(ispi->dev));
pdata->nr_parts = 1;
parts = devm_kcalloc(ispi->dev, pdata->nr_parts, sizeof(*parts),
GFP_KERNEL);
if (!parts)
return -ENOMEM;
parts[0].size = MTDPART_SIZ_FULL;
parts[0].name = "BIOS1";
pdata->parts = parts;
chip.platform_data = pdata;
chip.chip_select = 1;
if (!spi_new_device(ispi->host, &chip))

View File

@ -212,7 +212,7 @@ static void spi_lm70llp_attach(struct parport *p)
/*
* SPI and bitbang hookup.
*/
pp->bitbang.master = host;
pp->bitbang.ctlr = host;
pp->bitbang.chipselect = lm70_chipselect;
pp->bitbang.txrx_word[SPI_MODE_0] = lm70_txrx;
pp->bitbang.flags = SPI_3WIRE;
@ -264,7 +264,7 @@ static void spi_lm70llp_attach(struct parport *p)
* the board info's (void *)controller_data.
*/
pp->info.controller_data = pp;
pp->spidev_lm70 = spi_new_device(pp->bitbang.master, &pp->info);
pp->spidev_lm70 = spi_new_device(pp->bitbang.ctlr, &pp->info);
if (pp->spidev_lm70)
dev_dbg(&pp->spidev_lm70->dev, "spidev_lm70 at %s\n",
dev_name(&pp->spidev_lm70->dev));
@ -309,7 +309,7 @@ static void spi_lm70llp_detach(struct parport *p)
parport_release(pp->pd);
parport_unregister_device(pp->pd);
spi_controller_put(pp->bitbang.master);
spi_controller_put(pp->bitbang.ctlr);
lm70llp = NULL;
}

View File

@ -1031,8 +1031,8 @@ int spi_test_run_test(struct spi_device *spi, const struct spi_test *test,
#define FOR_EACH_ALIGNMENT(var) \
for (var = 0; \
var < (test->iterate_##var ? \
(spi->master->dma_alignment ? \
spi->master->dma_alignment : \
(spi->controller->dma_alignment ? \
spi->controller->dma_alignment : \
test->iterate_##var) : \
1); \
var++)

View File

@ -297,6 +297,49 @@ static void spi_mem_access_end(struct spi_mem *mem)
pm_runtime_put(ctlr->dev.parent);
}
static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats,
const struct spi_mem_op *op, int exec_op_ret)
{
struct spi_statistics *stats;
u64 len, l2len;
get_cpu();
stats = this_cpu_ptr(pcpu_stats);
u64_stats_update_begin(&stats->syncp);
/*
* We do not have the concept of messages or transfers. Let's consider
* that one operation is equivalent to one message and one transfer.
*/
u64_stats_inc(&stats->messages);
u64_stats_inc(&stats->transfers);
/* Use the sum of all lengths as bytes count and histogram value. */
len = op->cmd.nbytes + op->addr.nbytes;
len += op->dummy.nbytes + op->data.nbytes;
u64_stats_add(&stats->bytes, len);
l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1;
u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
/* Only account for data bytes as transferred bytes. */
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
u64_stats_add(&stats->bytes_tx, op->data.nbytes);
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
u64_stats_add(&stats->bytes_rx, op->data.nbytes);
/*
* A timeout is not an error, following the same behavior as
* spi_transfer_one_message().
*/
if (exec_op_ret == -ETIMEDOUT)
u64_stats_inc(&stats->timedout);
else if (exec_op_ret)
u64_stats_inc(&stats->errors);
u64_stats_update_end(&stats->syncp);
put_cpu();
}
/**
* spi_mem_exec_op() - Execute a memory operation
* @mem: the SPI memory
@ -339,8 +382,12 @@ int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
* read path) and expect the core to use the regular SPI
* interface in other cases.
*/
if (!ret || ret != -ENOTSUPP || ret != -EOPNOTSUPP)
if (!ret || ret != -ENOTSUPP || ret != -EOPNOTSUPP) {
spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret);
spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret);
return ret;
}
}
tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;

View File

@ -13,6 +13,7 @@
#include <linux/module.h>
#include <linux/of.h>
#include <linux/gpio/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/platform_data/spi-mt65xx.h>
#include <linux/pm_runtime.h>
@ -1316,6 +1317,8 @@ static int mtk_spi_suspend(struct device *dev)
clk_disable_unprepare(mdata->spi_hclk);
}
pinctrl_pm_select_sleep_state(dev);
return 0;
}
@ -1325,6 +1328,8 @@ static int mtk_spi_resume(struct device *dev)
struct spi_controller *host = dev_get_drvdata(dev);
struct mtk_spi *mdata = spi_controller_get_devdata(host);
pinctrl_pm_select_default_state(dev);
if (!pm_runtime_suspended(dev)) {
ret = clk_prepare_enable(mdata->spi_clk);
if (ret < 0) {

View File

@ -591,7 +591,7 @@ static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
for (i = 0; i < ARRAY_SIZE(lutval); i++)
fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
/* lock LUT */

View File

@ -194,7 +194,7 @@ static int tiny_spi_of_probe(struct platform_device *pdev)
if (!np)
return 0;
hw->bitbang.master->dev.of_node = pdev->dev.of_node;
hw->bitbang.ctlr->dev.of_node = pdev->dev.of_node;
if (!of_property_read_u32(np, "clock-frequency", &val))
hw->freq = val;
if (!of_property_read_u32(np, "baud-width", &val))
@ -229,7 +229,7 @@ static int tiny_spi_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, hw);
/* setup the state for the bitbang driver */
hw->bitbang.master = host;
hw->bitbang.ctlr = host;
hw->bitbang.setup_transfer = tiny_spi_setup_transfer;
hw->bitbang.txrx_bufs = tiny_spi_txrx_bufs;
@ -274,7 +274,7 @@ static int tiny_spi_probe(struct platform_device *pdev)
static void tiny_spi_remove(struct platform_device *pdev)
{
struct tiny_spi *hw = platform_get_drvdata(pdev);
struct spi_controller *host = hw->bitbang.master;
struct spi_controller *host = hw->bitbang.ctlr;
spi_bitbang_stop(&hw->bitbang);
spi_controller_put(host);

View File

@ -448,7 +448,7 @@ static void uwire_off(struct uwire_spi *uwire)
{
uwire_write_reg(UWIRE_SR3, 0);
clk_disable_unprepare(uwire->ck);
spi_controller_put(uwire->bitbang.master);
spi_controller_put(uwire->bitbang.ctlr);
}
static int uwire_probe(struct platform_device *pdev)
@ -493,7 +493,7 @@ static int uwire_probe(struct platform_device *pdev)
host->setup = uwire_setup;
host->cleanup = uwire_cleanup;
uwire->bitbang.master = host;
uwire->bitbang.ctlr = host;
uwire->bitbang.chipselect = uwire_chipselect;
uwire->bitbang.setup_transfer = uwire_setup_transfer;
uwire->bitbang.txrx_bufs = uwire_txrx;

View File

@ -5,8 +5,15 @@
// Kumaravel Thiagarajan <Kumaravel.Thiagarajan@microchip.com>
#include <linux/bitfield.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/pci_regs.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/spi/spi.h>
#include <linux/delay.h>
@ -32,8 +39,68 @@
#define SPI_MST_CTL_MODE_SEL (BIT(2))
#define SPI_MST_CTL_GO (BIT(0))
#define SPI_PERI_ADDR_BASE (0x160000)
#define SPI_SYSTEM_ADDR_BASE (0x2000)
#define SPI_MST1_ADDR_BASE (0x800)
#define DEV_REV_REG (SPI_SYSTEM_ADDR_BASE + 0x00)
#define SPI_SYSLOCK_REG (SPI_SYSTEM_ADDR_BASE + 0xA0)
#define SPI_CONFIG_PERI_ENABLE_REG (SPI_SYSTEM_ADDR_BASE + 0x108)
#define SPI_PERI_ENBLE_PF_MASK (GENMASK(17, 16))
#define DEV_REV_MASK (GENMASK(7, 0))
#define SPI_SYSLOCK BIT(4)
#define SPI0 (0)
#define SPI1 (1)
/* DMA Related Registers */
#define SPI_DMA_ADDR_BASE (0x1000)
#define SPI_DMA_GLOBAL_WR_ENGINE_EN (SPI_DMA_ADDR_BASE + 0x0C)
#define SPI_DMA_WR_DOORBELL_REG (SPI_DMA_ADDR_BASE + 0x10)
#define SPI_DMA_GLOBAL_RD_ENGINE_EN (SPI_DMA_ADDR_BASE + 0x2C)
#define SPI_DMA_RD_DOORBELL_REG (SPI_DMA_ADDR_BASE + 0x30)
#define SPI_DMA_INTR_WR_STS (SPI_DMA_ADDR_BASE + 0x4C)
#define SPI_DMA_WR_INT_MASK (SPI_DMA_ADDR_BASE + 0x54)
#define SPI_DMA_INTR_WR_CLR (SPI_DMA_ADDR_BASE + 0x58)
#define SPI_DMA_ERR_WR_STS (SPI_DMA_ADDR_BASE + 0x5C)
#define SPI_DMA_INTR_IMWR_WDONE_LOW (SPI_DMA_ADDR_BASE + 0x60)
#define SPI_DMA_INTR_IMWR_WDONE_HIGH (SPI_DMA_ADDR_BASE + 0x64)
#define SPI_DMA_INTR_IMWR_WABORT_LOW (SPI_DMA_ADDR_BASE + 0x68)
#define SPI_DMA_INTR_IMWR_WABORT_HIGH (SPI_DMA_ADDR_BASE + 0x6C)
#define SPI_DMA_INTR_WR_IMWR_DATA (SPI_DMA_ADDR_BASE + 0x70)
#define SPI_DMA_INTR_RD_STS (SPI_DMA_ADDR_BASE + 0xA0)
#define SPI_DMA_RD_INT_MASK (SPI_DMA_ADDR_BASE + 0xA8)
#define SPI_DMA_INTR_RD_CLR (SPI_DMA_ADDR_BASE + 0xAC)
#define SPI_DMA_ERR_RD_STS (SPI_DMA_ADDR_BASE + 0xB8)
#define SPI_DMA_INTR_IMWR_RDONE_LOW (SPI_DMA_ADDR_BASE + 0xCC)
#define SPI_DMA_INTR_IMWR_RDONE_HIGH (SPI_DMA_ADDR_BASE + 0xD0)
#define SPI_DMA_INTR_IMWR_RABORT_LOW (SPI_DMA_ADDR_BASE + 0xD4)
#define SPI_DMA_INTR_IMWR_RABORT_HIGH (SPI_DMA_ADDR_BASE + 0xD8)
#define SPI_DMA_INTR_RD_IMWR_DATA (SPI_DMA_ADDR_BASE + 0xDC)
#define SPI_DMA_CH0_WR_BASE (SPI_DMA_ADDR_BASE + 0x200)
#define SPI_DMA_CH0_RD_BASE (SPI_DMA_ADDR_BASE + 0x300)
#define SPI_DMA_CH1_WR_BASE (SPI_DMA_ADDR_BASE + 0x400)
#define SPI_DMA_CH1_RD_BASE (SPI_DMA_ADDR_BASE + 0x500)
#define SPI_DMA_CH_CTL1_OFFSET (0x00)
#define SPI_DMA_CH_XFER_LEN_OFFSET (0x08)
#define SPI_DMA_CH_SAR_LO_OFFSET (0x0C)
#define SPI_DMA_CH_SAR_HI_OFFSET (0x10)
#define SPI_DMA_CH_DAR_LO_OFFSET (0x14)
#define SPI_DMA_CH_DAR_HI_OFFSET (0x18)
#define SPI_DMA_CH0_DONE_INT BIT(0)
#define SPI_DMA_CH1_DONE_INT BIT(1)
#define SPI_DMA_CH0_ABORT_INT BIT(16)
#define SPI_DMA_CH1_ABORT_INT BIT(17)
#define SPI_DMA_DONE_INT_MASK (SPI_DMA_CH0_DONE_INT | SPI_DMA_CH1_DONE_INT)
#define SPI_DMA_ABORT_INT_MASK (SPI_DMA_CH0_ABORT_INT | SPI_DMA_CH1_ABORT_INT)
#define DMA_CH_CONTROL_LIE BIT(3)
#define DMA_CH_CONTROL_RIE BIT(4)
#define DMA_INTR_EN (DMA_CH_CONTROL_RIE | DMA_CH_CONTROL_LIE)
/* x refers to SPI Host Controller HW instance id in the below macros - 0 or 1 */
#define SPI_MST_CMD_BUF_OFFSET(x) (((x) * SPI_MST1_ADDR_BASE) + 0x00)
@ -50,6 +117,9 @@
#define SPI_MAX_DATA_LEN 320
#define PCI1XXXX_SPI_TIMEOUT (msecs_to_jiffies(100))
#define SYSLOCK_RETRY_CNT (1000)
#define SPI_DMA_ENGINE_EN (0x1)
#define SPI_DMA_ENGINE_DIS (0x0)
#define SPI_INTR BIT(8)
#define SPI_FORCE_CE BIT(4)
@ -62,11 +132,21 @@
struct pci1xxxx_spi_internal {
u8 hw_inst;
bool spi_xfer_in_progress;
u8 clkdiv;
int irq;
int mode;
bool spi_xfer_in_progress;
void *rx_buf;
bool dma_aborted_rd;
u32 bytes_recvd;
u32 tx_sgl_len;
u32 rx_sgl_len;
struct scatterlist *tx_sgl, *rx_sgl;
bool dma_aborted_wr;
struct completion spi_xfer_done;
struct spi_controller *spi_host;
struct pci1xxxx_spi *parent;
struct spi_transfer *xfer;
struct {
unsigned int dev_sel : 3;
unsigned int msi_vector_sel : 1;
@ -76,7 +156,12 @@ struct pci1xxxx_spi_internal {
struct pci1xxxx_spi {
struct pci_dev *dev;
u8 total_hw_instances;
u8 dev_rev;
void __iomem *reg_base;
void __iomem *dma_offset_bar;
/* lock to safely access the DMA registers in isr */
spinlock_t dma_reg_lock;
bool can_dma;
struct pci1xxxx_spi_internal *spi_int[] __counted_by(total_hw_instances);
};
@ -106,6 +191,114 @@ static const struct pci_device_id pci1xxxx_spi_pci_id_table[] = {
MODULE_DEVICE_TABLE(pci, pci1xxxx_spi_pci_id_table);
static int pci1xxxx_set_sys_lock(struct pci1xxxx_spi *par)
{
writel(SPI_SYSLOCK, par->reg_base + SPI_SYSLOCK_REG);
return readl(par->reg_base + SPI_SYSLOCK_REG);
}
static int pci1xxxx_acquire_sys_lock(struct pci1xxxx_spi *par)
{
u32 regval;
return readx_poll_timeout(pci1xxxx_set_sys_lock, par, regval,
(regval & SPI_SYSLOCK), 100,
SYSLOCK_RETRY_CNT * 100);
}
static void pci1xxxx_release_sys_lock(struct pci1xxxx_spi *par)
{
writel(0x0, par->reg_base + SPI_SYSLOCK_REG);
}
static int pci1xxxx_check_spi_can_dma(struct pci1xxxx_spi *spi_bus, int irq)
{
struct pci_dev *pdev = spi_bus->dev;
u32 pf_num;
u32 regval;
int ret;
/*
* DEV REV Registers is a system register, HW Syslock bit
* should be acquired before accessing the register
*/
ret = pci1xxxx_acquire_sys_lock(spi_bus);
if (ret) {
dev_err(&pdev->dev, "Error failed to acquire syslock\n");
return ret;
}
regval = readl(spi_bus->reg_base + DEV_REV_REG);
spi_bus->dev_rev = regval & DEV_REV_MASK;
if (spi_bus->dev_rev >= 0xC0) {
regval = readl(spi_bus->reg_base +
SPI_CONFIG_PERI_ENABLE_REG);
pf_num = regval & SPI_PERI_ENBLE_PF_MASK;
}
pci1xxxx_release_sys_lock(spi_bus);
/*
* DMA is supported only from C0 and SPI can use DMA only if
* it is mapped to PF0
*/
if (spi_bus->dev_rev < 0xC0 || pf_num)
return -EOPNOTSUPP;
/*
* DMA Supported only with MSI Interrupts
* One of the SPI instance's MSI vector address and data
* is used for DMA Interrupt
*/
if (!irq_get_msi_desc(irq)) {
dev_warn(&pdev->dev, "Error MSI Interrupt not supported, will operate in PIO mode\n");
return -EOPNOTSUPP;
}
spi_bus->dma_offset_bar = pcim_iomap(pdev, 2, pci_resource_len(pdev, 2));
if (!spi_bus->dma_offset_bar) {
dev_warn(&pdev->dev, "Error failed to map dma bar, will operate in PIO mode\n");
return -EOPNOTSUPP;
}
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
dev_warn(&pdev->dev, "Error failed to set DMA mask, will operate in PIO mode\n");
pcim_iounmap(pdev, spi_bus->dma_offset_bar);
spi_bus->dma_offset_bar = NULL;
return -EOPNOTSUPP;
}
return 0;
}
static int pci1xxxx_spi_dma_init(struct pci1xxxx_spi *spi_bus, int irq)
{
struct msi_msg msi;
int ret;
ret = pci1xxxx_check_spi_can_dma(spi_bus, irq);
if (ret)
return ret;
spin_lock_init(&spi_bus->dma_reg_lock);
get_cached_msi_msg(irq, &msi);
writel(SPI_DMA_ENGINE_EN, spi_bus->dma_offset_bar + SPI_DMA_GLOBAL_WR_ENGINE_EN);
writel(SPI_DMA_ENGINE_EN, spi_bus->dma_offset_bar + SPI_DMA_GLOBAL_RD_ENGINE_EN);
writel(msi.address_hi, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_WDONE_HIGH);
writel(msi.address_hi, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_WABORT_HIGH);
writel(msi.address_hi, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_RDONE_HIGH);
writel(msi.address_hi, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_RABORT_HIGH);
writel(msi.address_lo, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_WDONE_LOW);
writel(msi.address_lo, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_WABORT_LOW);
writel(msi.address_lo, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_RDONE_LOW);
writel(msi.address_lo, spi_bus->dma_offset_bar + SPI_DMA_INTR_IMWR_RABORT_LOW);
writel(msi.data, spi_bus->dma_offset_bar + SPI_DMA_INTR_WR_IMWR_DATA);
writel(msi.data, spi_bus->dma_offset_bar + SPI_DMA_INTR_RD_IMWR_DATA);
dma_set_max_seg_size(&spi_bus->dev->dev, PCI1XXXX_SPI_BUFFER_SIZE);
spi_bus->can_dma = true;
return 0;
}
static void pci1xxxx_spi_set_cs(struct spi_device *spi, bool enable)
{
struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(spi->controller);
@ -146,12 +339,79 @@ static u8 pci1xxxx_get_clock_div(u32 hz)
return val;
}
static int pci1xxxx_spi_transfer_one(struct spi_controller *spi_ctlr,
struct spi_device *spi, struct spi_transfer *xfer)
static void pci1xxxx_spi_setup_dma_to_io(struct pci1xxxx_spi_internal *p,
dma_addr_t dma_addr, u32 len)
{
void __iomem *base;
if (!p->hw_inst)
base = p->parent->dma_offset_bar + SPI_DMA_CH0_RD_BASE;
else
base = p->parent->dma_offset_bar + SPI_DMA_CH1_RD_BASE;
writel(DMA_INTR_EN, base + SPI_DMA_CH_CTL1_OFFSET);
writel(len, base + SPI_DMA_CH_XFER_LEN_OFFSET);
writel(lower_32_bits(dma_addr), base + SPI_DMA_CH_SAR_LO_OFFSET);
writel(upper_32_bits(dma_addr), base + SPI_DMA_CH_SAR_HI_OFFSET);
/* Updated SPI Command Registers */
writel(lower_32_bits(SPI_PERI_ADDR_BASE + SPI_MST_CMD_BUF_OFFSET(p->hw_inst)),
base + SPI_DMA_CH_DAR_LO_OFFSET);
writel(upper_32_bits(SPI_PERI_ADDR_BASE + SPI_MST_CMD_BUF_OFFSET(p->hw_inst)),
base + SPI_DMA_CH_DAR_HI_OFFSET);
}
static void pci1xxxx_spi_setup_dma_from_io(struct pci1xxxx_spi_internal *p,
dma_addr_t dma_addr, u32 len)
{
void *base;
if (!p->hw_inst)
base = p->parent->dma_offset_bar + SPI_DMA_CH0_WR_BASE;
else
base = p->parent->dma_offset_bar + SPI_DMA_CH1_WR_BASE;
writel(DMA_INTR_EN, base + SPI_DMA_CH_CTL1_OFFSET);
writel(len, base + SPI_DMA_CH_XFER_LEN_OFFSET);
writel(lower_32_bits(dma_addr), base + SPI_DMA_CH_DAR_LO_OFFSET);
writel(upper_32_bits(dma_addr), base + SPI_DMA_CH_DAR_HI_OFFSET);
writel(lower_32_bits(SPI_PERI_ADDR_BASE + SPI_MST_RSP_BUF_OFFSET(p->hw_inst)),
base + SPI_DMA_CH_SAR_LO_OFFSET);
writel(upper_32_bits(SPI_PERI_ADDR_BASE + SPI_MST_RSP_BUF_OFFSET(p->hw_inst)),
base + SPI_DMA_CH_SAR_HI_OFFSET);
}
static void pci1xxxx_spi_setup(struct pci1xxxx_spi *par, u8 hw_inst, u32 mode,
u8 clkdiv, u32 len)
{
u32 regval;
regval = readl(par->reg_base + SPI_MST_CTL_REG_OFFSET(hw_inst));
regval &= ~(SPI_MST_CTL_MODE_SEL | SPI_MST_CTL_CMD_LEN_MASK |
SPI_MST_CTL_SPEED_MASK);
if (mode == SPI_MODE_3)
regval |= SPI_MST_CTL_MODE_SEL;
regval |= FIELD_PREP(SPI_MST_CTL_CMD_LEN_MASK, len);
regval |= FIELD_PREP(SPI_MST_CTL_SPEED_MASK, clkdiv);
writel(regval, par->reg_base + SPI_MST_CTL_REG_OFFSET(hw_inst));
}
static void pci1xxxx_start_spi_xfer(struct pci1xxxx_spi_internal *p, u8 hw_inst)
{
u32 regval;
regval = readl(p->parent->reg_base + SPI_MST_CTL_REG_OFFSET(hw_inst));
regval |= SPI_MST_CTL_GO;
writel(regval, p->parent->reg_base + SPI_MST_CTL_REG_OFFSET(hw_inst));
}
static int pci1xxxx_spi_transfer_with_io(struct spi_controller *spi_ctlr,
struct spi_device *spi, struct spi_transfer *xfer)
{
struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(spi_ctlr);
int mode, len, loop_iter, transfer_len;
struct pci1xxxx_spi *par = p->parent;
int len, loop_iter, transfer_len;
unsigned long bytes_transfered;
unsigned long bytes_recvd;
unsigned long loop_count;
@ -161,7 +421,7 @@ static int pci1xxxx_spi_transfer_one(struct spi_controller *spi_ctlr,
u8 clkdiv;
p->spi_xfer_in_progress = true;
mode = spi->mode;
p->bytes_recvd = 0;
clkdiv = pci1xxxx_get_clock_div(xfer->speed_hz);
tx_buf = xfer->tx_buf;
rx_buf = xfer->rx_buf;
@ -186,26 +446,8 @@ static int pci1xxxx_spi_transfer_one(struct spi_controller *spi_ctlr,
memcpy_toio(par->reg_base + SPI_MST_CMD_BUF_OFFSET(p->hw_inst),
&tx_buf[bytes_transfered], len);
bytes_transfered += len;
regval = readl(par->reg_base +
SPI_MST_CTL_REG_OFFSET(p->hw_inst));
regval &= ~(SPI_MST_CTL_MODE_SEL | SPI_MST_CTL_CMD_LEN_MASK |
SPI_MST_CTL_SPEED_MASK);
if (mode == SPI_MODE_3)
regval |= SPI_MST_CTL_MODE_SEL;
else
regval &= ~SPI_MST_CTL_MODE_SEL;
regval |= (clkdiv << 5);
regval &= ~SPI_MST_CTL_CMD_LEN_MASK;
regval |= (len << 8);
writel(regval, par->reg_base +
SPI_MST_CTL_REG_OFFSET(p->hw_inst));
regval = readl(par->reg_base +
SPI_MST_CTL_REG_OFFSET(p->hw_inst));
regval |= SPI_MST_CTL_GO;
writel(regval, par->reg_base +
SPI_MST_CTL_REG_OFFSET(p->hw_inst));
pci1xxxx_spi_setup(par, p->hw_inst, spi->mode, clkdiv, len);
pci1xxxx_start_spi_xfer(p, p->hw_inst);
/* Wait for DMA_TERM interrupt */
result = wait_for_completion_timeout(&p->spi_xfer_done,
@ -225,7 +467,113 @@ static int pci1xxxx_spi_transfer_one(struct spi_controller *spi_ctlr,
return 0;
}
static irqreturn_t pci1xxxx_spi_isr(int irq, void *dev)
static int pci1xxxx_spi_transfer_with_dma(struct spi_controller *spi_ctlr,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(spi_ctlr);
struct pci1xxxx_spi *par = p->parent;
dma_addr_t rx_dma_addr = 0;
dma_addr_t tx_dma_addr = 0;
int ret = 0;
u32 regval;
p->spi_xfer_in_progress = true;
p->tx_sgl = xfer->tx_sg.sgl;
p->rx_sgl = xfer->rx_sg.sgl;
p->rx_buf = xfer->rx_buf;
regval = readl(par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst));
writel(regval, par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst));
if (!xfer->tx_buf || !p->tx_sgl) {
ret = -EINVAL;
goto error;
}
p->xfer = xfer;
p->mode = spi->mode;
p->clkdiv = pci1xxxx_get_clock_div(xfer->speed_hz);
p->bytes_recvd = 0;
p->rx_buf = xfer->rx_buf;
regval = readl(par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst));
writel(regval, par->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst));
tx_dma_addr = sg_dma_address(p->tx_sgl);
rx_dma_addr = sg_dma_address(p->rx_sgl);
p->tx_sgl_len = sg_dma_len(p->tx_sgl);
p->rx_sgl_len = sg_dma_len(p->rx_sgl);
pci1xxxx_spi_setup(par, p->hw_inst, p->mode, p->clkdiv, p->tx_sgl_len);
pci1xxxx_spi_setup_dma_to_io(p, (tx_dma_addr), p->tx_sgl_len);
if (rx_dma_addr)
pci1xxxx_spi_setup_dma_from_io(p, rx_dma_addr, p->rx_sgl_len);
writel(p->hw_inst, par->dma_offset_bar + SPI_DMA_RD_DOORBELL_REG);
reinit_completion(&p->spi_xfer_done);
/* Wait for DMA_TERM interrupt */
ret = wait_for_completion_timeout(&p->spi_xfer_done, PCI1XXXX_SPI_TIMEOUT);
if (!ret) {
ret = -ETIMEDOUT;
if (p->dma_aborted_rd) {
writel(SPI_DMA_ENGINE_DIS,
par->dma_offset_bar + SPI_DMA_GLOBAL_RD_ENGINE_EN);
/*
* DMA ENGINE reset takes time if any TLP
* completeion in progress, should wait
* till DMA Engine reset is completed.
*/
ret = readl_poll_timeout(par->dma_offset_bar +
SPI_DMA_GLOBAL_RD_ENGINE_EN, regval,
(regval == 0x0), 0, USEC_PER_MSEC);
if (ret) {
ret = -ECANCELED;
goto error;
}
writel(SPI_DMA_ENGINE_EN,
par->dma_offset_bar + SPI_DMA_GLOBAL_RD_ENGINE_EN);
p->dma_aborted_rd = false;
ret = -ECANCELED;
}
if (p->dma_aborted_wr) {
writel(SPI_DMA_ENGINE_DIS,
par->dma_offset_bar + SPI_DMA_GLOBAL_WR_ENGINE_EN);
/*
* DMA ENGINE reset takes time if any TLP
* completeion in progress, should wait
* till DMA Engine reset is completed.
*/
ret = readl_poll_timeout(par->dma_offset_bar +
SPI_DMA_GLOBAL_WR_ENGINE_EN, regval,
(regval == 0x0), 0, USEC_PER_MSEC);
if (ret) {
ret = -ECANCELED;
goto error;
}
writel(SPI_DMA_ENGINE_EN,
par->dma_offset_bar + SPI_DMA_GLOBAL_WR_ENGINE_EN);
p->dma_aborted_wr = false;
ret = -ECANCELED;
}
goto error;
}
ret = 0;
error:
p->spi_xfer_in_progress = false;
return ret;
}
static int pci1xxxx_spi_transfer_one(struct spi_controller *spi_ctlr,
struct spi_device *spi, struct spi_transfer *xfer)
{
if (spi_ctlr->can_dma(spi_ctlr, spi, xfer) && spi_ctlr->cur_msg_mapped)
return pci1xxxx_spi_transfer_with_dma(spi_ctlr, spi, xfer);
else
return pci1xxxx_spi_transfer_with_io(spi_ctlr, spi, xfer);
}
static irqreturn_t pci1xxxx_spi_isr_io(int irq, void *dev)
{
struct pci1xxxx_spi_internal *p = dev;
irqreturn_t spi_int_fired = IRQ_NONE;
@ -235,15 +583,117 @@ static irqreturn_t pci1xxxx_spi_isr(int irq, void *dev)
regval = readl(p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst));
if (regval & SPI_INTR) {
/* Clear xfer_done */
complete(&p->spi_xfer_done);
if (p->parent->can_dma && p->rx_buf)
writel(p->hw_inst, p->parent->dma_offset_bar +
SPI_DMA_WR_DOORBELL_REG);
else
complete(&p->parent->spi_int[p->hw_inst]->spi_xfer_done);
spi_int_fired = IRQ_HANDLED;
}
writel(regval, p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst));
return spi_int_fired;
}
static void pci1xxxx_spi_setup_next_dma_transfer(struct pci1xxxx_spi_internal *p)
{
dma_addr_t tx_dma_addr = 0;
dma_addr_t rx_dma_addr = 0;
u32 prev_len;
p->tx_sgl = sg_next(p->tx_sgl);
if (p->rx_sgl)
p->rx_sgl = sg_next(p->rx_sgl);
if (!p->tx_sgl) {
/* Clear xfer_done */
complete(&p->spi_xfer_done);
} else {
tx_dma_addr = sg_dma_address(p->tx_sgl);
prev_len = p->tx_sgl_len;
p->tx_sgl_len = sg_dma_len(p->tx_sgl);
if (prev_len != p->tx_sgl_len)
pci1xxxx_spi_setup(p->parent,
p->hw_inst, p->mode, p->clkdiv, p->tx_sgl_len);
pci1xxxx_spi_setup_dma_to_io(p, tx_dma_addr, p->tx_sgl_len);
if (p->rx_sgl) {
rx_dma_addr = sg_dma_address(p->rx_sgl);
p->rx_sgl_len = sg_dma_len(p->rx_sgl);
pci1xxxx_spi_setup_dma_from_io(p, rx_dma_addr, p->rx_sgl_len);
}
writel(p->hw_inst, p->parent->dma_offset_bar + SPI_DMA_RD_DOORBELL_REG);
}
}
static irqreturn_t pci1xxxx_spi_isr_dma(int irq, void *dev)
{
struct pci1xxxx_spi_internal *p = dev;
irqreturn_t spi_int_fired = IRQ_NONE;
unsigned long flags;
u32 regval;
spin_lock_irqsave(&p->parent->dma_reg_lock, flags);
/* Clear the DMA RD INT and start spi xfer*/
regval = readl(p->parent->dma_offset_bar + SPI_DMA_INTR_RD_STS);
if (regval & SPI_DMA_DONE_INT_MASK) {
if (regval & SPI_DMA_CH0_DONE_INT)
pci1xxxx_start_spi_xfer(p, SPI0);
if (regval & SPI_DMA_CH1_DONE_INT)
pci1xxxx_start_spi_xfer(p, SPI1);
spi_int_fired = IRQ_HANDLED;
}
if (regval & SPI_DMA_ABORT_INT_MASK) {
p->dma_aborted_rd = true;
spi_int_fired = IRQ_HANDLED;
}
writel(regval, p->parent->dma_offset_bar + SPI_DMA_INTR_RD_CLR);
/* Clear the DMA WR INT */
regval = readl(p->parent->dma_offset_bar + SPI_DMA_INTR_WR_STS);
if (regval & SPI_DMA_DONE_INT_MASK) {
if (regval & SPI_DMA_CH0_DONE_INT)
pci1xxxx_spi_setup_next_dma_transfer(p->parent->spi_int[SPI0]);
if (regval & SPI_DMA_CH1_DONE_INT)
pci1xxxx_spi_setup_next_dma_transfer(p->parent->spi_int[SPI1]);
spi_int_fired = IRQ_HANDLED;
}
if (regval & SPI_DMA_ABORT_INT_MASK) {
p->dma_aborted_wr = true;
spi_int_fired = IRQ_HANDLED;
}
writel(regval, p->parent->dma_offset_bar + SPI_DMA_INTR_WR_CLR);
spin_unlock_irqrestore(&p->parent->dma_reg_lock, flags);
/* Clear the SPI GO_BIT Interrupt */
regval = readl(p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst));
if (regval & SPI_INTR) {
writel(p->hw_inst, p->parent->dma_offset_bar + SPI_DMA_WR_DOORBELL_REG);
spi_int_fired = IRQ_HANDLED;
}
writel(regval, p->parent->reg_base + SPI_MST_EVENT_REG_OFFSET(p->hw_inst));
return spi_int_fired;
}
static irqreturn_t pci1xxxx_spi_isr(int irq, void *dev)
{
struct pci1xxxx_spi_internal *p = dev;
if (p->spi_host->can_dma(p->spi_host, NULL, p->xfer))
return pci1xxxx_spi_isr_dma(irq, dev);
else
return pci1xxxx_spi_isr_io(irq, dev);
}
static bool pci1xxxx_spi_can_dma(struct spi_controller *host,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct pci1xxxx_spi_internal *p = spi_controller_get_devdata(host);
struct pci1xxxx_spi *par = p->parent;
return par->can_dma;
}
static int pci1xxxx_spi_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
u8 hw_inst_cnt, iter, start, only_sec_inst;
@ -324,6 +774,10 @@ static int pci1xxxx_spi_probe(struct pci_dev *pdev, const struct pci_device_id *
goto error;
}
ret = pci1xxxx_spi_dma_init(spi_bus, spi_sub_ptr->irq);
if (ret && ret != -EOPNOTSUPP)
goto error;
/* This register is only applicable for 1st instance */
regval = readl(spi_bus->reg_base + SPI_PCI_CTRL_REG_OFFSET(0));
if (!only_sec_inst)
@ -360,7 +814,9 @@ static int pci1xxxx_spi_probe(struct pci_dev *pdev, const struct pci_device_id *
spi_host->num_chipselect = SPI_CHIP_SEL_COUNT;
spi_host->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_RX_DUAL |
SPI_TX_DUAL | SPI_LOOP;
spi_host->can_dma = pci1xxxx_spi_can_dma;
spi_host->transfer_one = pci1xxxx_spi_transfer_one;
spi_host->set_cs = pci1xxxx_spi_set_cs;
spi_host->bits_per_word_mask = SPI_BPW_MASK(8);
spi_host->max_speed_hz = PCI1XXXX_SPI_MAX_CLOCK_HZ;

View File

@ -11,13 +11,13 @@
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/gpio/consumer.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>

View File

@ -359,22 +359,22 @@ static int spi_ppc4xx_of_probe(struct platform_device *op)
/* Setup the state for the bitbang driver */
bbp = &hw->bitbang;
bbp->master = hw->host;
bbp->ctlr = hw->host;
bbp->setup_transfer = spi_ppc4xx_setupxfer;
bbp->txrx_bufs = spi_ppc4xx_txrx;
bbp->use_dma = 0;
bbp->master->setup = spi_ppc4xx_setup;
bbp->master->cleanup = spi_ppc4xx_cleanup;
bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
bbp->master->use_gpio_descriptors = true;
bbp->ctlr->setup = spi_ppc4xx_setup;
bbp->ctlr->cleanup = spi_ppc4xx_cleanup;
bbp->ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
bbp->ctlr->use_gpio_descriptors = true;
/*
* The SPI core will count the number of GPIO descriptors to figure
* out the number of chip selects available on the platform.
*/
bbp->master->num_chipselect = 0;
bbp->ctlr->num_chipselect = 0;
/* the spi->mode bits understood by this driver: */
bbp->master->mode_bits =
bbp->ctlr->mode_bits =
SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
/* Get the clock for the OPB */

View File

@ -160,8 +160,7 @@
*/
#define ROCKCHIP_SPI_MAX_TRANLEN 0xffff
/* 2 for native cs, 2 for cs-gpio */
#define ROCKCHIP_SPI_MAX_CS_NUM 4
#define ROCKCHIP_SPI_MAX_NATIVE_CS_NUM 2
#define ROCKCHIP_SPI_VER2_TYPE1 0x05EC0002
#define ROCKCHIP_SPI_VER2_TYPE2 0x00110002
@ -192,8 +191,6 @@ struct rockchip_spi {
u8 n_bytes;
u8 rsd;
bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM];
bool target_abort;
bool cs_inactive; /* spi target tansmition stop when cs inactive */
bool cs_high_supported; /* native CS supports active-high polarity */
@ -245,10 +242,6 @@ static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
bool cs_asserted = spi->mode & SPI_CS_HIGH ? enable : !enable;
/* Return immediately for no-op */
if (cs_asserted == rs->cs_asserted[spi_get_chipselect(spi, 0)])
return;
if (cs_asserted) {
/* Keep things powered as long as CS is asserted */
pm_runtime_get_sync(rs->dev);
@ -268,8 +261,6 @@ static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
/* Drop reference from when we first asserted CS */
pm_runtime_put(rs->dev);
}
rs->cs_asserted[spi_get_chipselect(spi, 0)] = cs_asserted;
}
static void rockchip_spi_handle_err(struct spi_controller *ctlr,
@ -847,7 +838,7 @@ static int rockchip_spi_probe(struct platform_device *pdev)
ctlr->target_abort = rockchip_spi_target_abort;
} else {
ctlr->flags = SPI_CONTROLLER_GPIO_SS;
ctlr->max_native_cs = ROCKCHIP_SPI_MAX_CS_NUM;
ctlr->max_native_cs = ROCKCHIP_SPI_MAX_NATIVE_CS_NUM;
/*
* rk spi0 has two native cs, spi1..5 one cs only
* if num-cs is missing in the dts, default to 1

View File

@ -3,19 +3,22 @@
// Copyright (c) 2009 Samsung Electronics Co., Ltd.
// Jaswinder Singh <jassi.brar@samsung.com>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_data/spi-s3c64xx.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/of.h>
#include <linux/platform_data/spi-s3c64xx.h>
#include <linux/types.h>
#define MAX_SPI_PORTS 12
#define S3C64XX_SPI_QUIRK_CS_AUTO (1 << 1)
@ -76,6 +79,9 @@
#define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
#define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
#define S3C64XX_SPI_ST_RX_FIFO_RDY_V2 GENMASK(23, 15)
#define S3C64XX_SPI_ST_TX_FIFO_RDY_V2 GENMASK(14, 6)
#define S3C64XX_SPI_ST_TX_FIFO_LVL_SHIFT 6
#define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
#define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
#define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
@ -106,15 +112,15 @@
#define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
#define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
#define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
#define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
FIFO_LVL_MASK(i))
#define TX_FIFO_LVL(v, sdd) (((v) & (sdd)->tx_fifomask) >> \
__ffs((sdd)->tx_fifomask))
#define RX_FIFO_LVL(v, sdd) (((v) & (sdd)->rx_fifomask) >> \
__ffs((sdd)->rx_fifomask))
#define FIFO_DEPTH(i) ((FIFO_LVL_MASK(i) >> 1) + 1)
#define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
#define S3C64XX_SPI_TRAILCNT_OFF 19
#define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
#define S3C64XX_SPI_POLLING_SIZE 32
#define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
@ -131,8 +137,13 @@ struct s3c64xx_spi_dma_data {
/**
* struct s3c64xx_spi_port_config - SPI Controller hardware info
* @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
* @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
* @fifo_lvl_mask: [DEPRECATED] use @{rx, tx}_fifomask instead.
* @rx_lvl_offset: [DEPRECATED] use @{rx,tx}_fifomask instead.
* @fifo_depth: depth of the FIFO.
* @rx_fifomask: SPI_STATUS.RX_FIFO_LVL mask. Shifted mask defining the field's
* length and position.
* @tx_fifomask: SPI_STATUS.TX_FIFO_LVL mask. Shifted mask defining the field's
* length and position.
* @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
* @clk_div: Internal clock divider
* @quirks: Bitmask of known quirks
@ -141,6 +152,7 @@ struct s3c64xx_spi_dma_data {
* prescaler unit.
* @clk_ioclk: True if clock is present on this device
* @has_loopback: True if loopback mode can be supported
* @use_32bit_io: True if the SoC allows only 32-bit register accesses.
*
* The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
* differ in some aspects such as the size of the fifo and spi bus clock
@ -150,6 +162,9 @@ struct s3c64xx_spi_dma_data {
struct s3c64xx_spi_port_config {
int fifo_lvl_mask[MAX_SPI_PORTS];
int rx_lvl_offset;
unsigned int fifo_depth;
u32 rx_fifomask;
u32 tx_fifomask;
int tx_st_done;
int quirks;
int clk_div;
@ -157,6 +172,7 @@ struct s3c64xx_spi_port_config {
bool clk_from_cmu;
bool clk_ioclk;
bool has_loopback;
bool use_32bit_io;
};
/**
@ -177,8 +193,13 @@ struct s3c64xx_spi_port_config {
* @cur_speed: Current clock speed
* @rx_dma: Local receive DMA data (e.g. chan and direction)
* @tx_dma: Local transmit DMA data (e.g. chan and direction)
* @port_conf: Local SPI port configuartion data
* @port_id: Port identification number
* @port_conf: Local SPI port configuration data
* @port_id: [DEPRECATED] use @{rx,tx}_fifomask instead.
* @fifo_depth: depth of the FIFO.
* @rx_fifomask: SPI_STATUS.RX_FIFO_LVL mask. Shifted mask defining the field's
* length and position.
* @tx_fifomask: SPI_STATUS.TX_FIFO_LVL mask. Shifted mask defining the field's
* length and position.
*/
struct s3c64xx_spi_driver_data {
void __iomem *regs;
@ -198,6 +219,9 @@ struct s3c64xx_spi_driver_data {
struct s3c64xx_spi_dma_data tx_dma;
const struct s3c64xx_spi_port_config *port_conf;
unsigned int port_id;
unsigned int fifo_depth;
u32 rx_fifomask;
u32 tx_fifomask;
};
static void s3c64xx_flush_fifo(struct s3c64xx_spi_driver_data *sdd)
@ -276,8 +300,8 @@ static void s3c64xx_spi_dmacb(void *data)
spin_unlock_irqrestore(&sdd->lock, flags);
}
static int prepare_dma(struct s3c64xx_spi_dma_data *dma,
struct sg_table *sgt)
static int s3c64xx_prepare_dma(struct s3c64xx_spi_dma_data *dma,
struct sg_table *sgt)
{
struct s3c64xx_spi_driver_data *sdd;
struct dma_slave_config config;
@ -289,20 +313,20 @@ static int prepare_dma(struct s3c64xx_spi_dma_data *dma,
if (dma->direction == DMA_DEV_TO_MEM) {
sdd = container_of((void *)dma,
struct s3c64xx_spi_driver_data, rx_dma);
config.direction = dma->direction;
config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
config.src_addr_width = sdd->cur_bpw / 8;
config.src_maxburst = 1;
dmaengine_slave_config(dma->ch, &config);
} else {
sdd = container_of((void *)dma,
struct s3c64xx_spi_driver_data, tx_dma);
config.direction = dma->direction;
config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
config.dst_addr_width = sdd->cur_bpw / 8;
config.dst_maxburst = 1;
dmaengine_slave_config(dma->ch, &config);
}
config.direction = dma->direction;
ret = dmaengine_slave_config(dma->ch, &config);
if (ret)
return ret;
desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
dma->direction, DMA_PREP_INTERRUPT);
@ -319,7 +343,7 @@ static int prepare_dma(struct s3c64xx_spi_dma_data *dma,
ret = dma_submit_error(dma->cookie);
if (ret) {
dev_err(&sdd->pdev->dev, "DMA submission failed");
return -EIO;
return ret;
}
dma_async_issue_pending(dma->ch);
@ -405,12 +429,60 @@ static bool s3c64xx_spi_can_dma(struct spi_controller *host,
{
struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
if (sdd->rx_dma.ch && sdd->tx_dma.ch) {
return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
} else {
return false;
}
if (sdd->rx_dma.ch && sdd->tx_dma.ch)
return xfer->len > sdd->fifo_depth;
return false;
}
static void s3c64xx_iowrite8_32_rep(volatile void __iomem *addr,
const void *buffer, unsigned int count)
{
if (count) {
const u8 *buf = buffer;
do {
__raw_writel(*buf++, addr);
} while (--count);
}
}
static void s3c64xx_iowrite16_32_rep(volatile void __iomem *addr,
const void *buffer, unsigned int count)
{
if (count) {
const u16 *buf = buffer;
do {
__raw_writel(*buf++, addr);
} while (--count);
}
}
static void s3c64xx_iowrite_rep(const struct s3c64xx_spi_driver_data *sdd,
struct spi_transfer *xfer)
{
void __iomem *addr = sdd->regs + S3C64XX_SPI_TX_DATA;
const void *buf = xfer->tx_buf;
unsigned int len = xfer->len;
switch (sdd->cur_bpw) {
case 32:
iowrite32_rep(addr, buf, len / 4);
break;
case 16:
if (sdd->port_conf->use_32bit_io)
s3c64xx_iowrite16_32_rep(addr, buf, len / 2);
else
iowrite16_rep(addr, buf, len / 2);
break;
default:
if (sdd->port_conf->use_32bit_io)
s3c64xx_iowrite8_32_rep(addr, buf, len);
else
iowrite8_rep(addr, buf, len);
break;
}
}
static int s3c64xx_enable_datapath(struct s3c64xx_spi_driver_data *sdd,
@ -444,22 +516,9 @@ static int s3c64xx_enable_datapath(struct s3c64xx_spi_driver_data *sdd,
chcfg |= S3C64XX_SPI_CH_TXCH_ON;
if (dma_mode) {
modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
ret = prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
ret = s3c64xx_prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
} else {
switch (sdd->cur_bpw) {
case 32:
iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
xfer->tx_buf, xfer->len / 4);
break;
case 16:
iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
xfer->tx_buf, xfer->len / 2);
break;
default:
iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
xfer->tx_buf, xfer->len);
break;
}
s3c64xx_iowrite_rep(sdd, xfer);
}
}
@ -476,7 +535,7 @@ static int s3c64xx_enable_datapath(struct s3c64xx_spi_driver_data *sdd,
writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
| S3C64XX_SPI_PACKET_CNT_EN,
regs + S3C64XX_SPI_PACKET_CNT);
ret = prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
ret = s3c64xx_prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
}
}
@ -495,9 +554,7 @@ static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
void __iomem *regs = sdd->regs;
unsigned long val = 1;
u32 status;
/* max fifo depth available */
u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
u32 max_fifo = sdd->fifo_depth;
if (timeout_ms)
val = msecs_to_loops(timeout_ms);
@ -528,7 +585,7 @@ static int s3c64xx_wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
/*
* If the previous xfer was completed within timeout, then
* proceed further else return -EIO.
* proceed further else return -ETIMEDOUT.
* DmaTx returns after simply writing data in the FIFO,
* w/o waiting for real transmission on the bus to finish.
* DmaRx returns only after Dma read data from FIFO which
@ -549,7 +606,7 @@ static int s3c64xx_wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
/* If timed out while checking rx/tx status return error */
if (!val)
return -EIO;
return -ETIMEDOUT;
return 0;
}
@ -579,7 +636,7 @@ static int s3c64xx_wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
if (use_irq) {
val = msecs_to_jiffies(ms);
if (!wait_for_completion_timeout(&sdd->xfer_completion, val))
return -EIO;
return -ETIMEDOUT;
}
val = msecs_to_loops(ms);
@ -604,7 +661,7 @@ static int s3c64xx_wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
* For any size less than the fifo size the below code is
* executed atleast once.
*/
loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
loops = xfer->len / sdd->fifo_depth;
buf = xfer->rx_buf;
do {
/* wait for data to be received in the fifo */
@ -741,7 +798,7 @@ static int s3c64xx_spi_transfer_one(struct spi_controller *host,
struct spi_transfer *xfer)
{
struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
const unsigned int fifo_len = (FIFO_LVL_MASK(sdd) >> 1) + 1;
const unsigned int fifo_len = sdd->fifo_depth;
const void *tx_buf = NULL;
void *rx_buf = NULL;
int target_len = 0, origin_len = 0;
@ -1093,8 +1150,7 @@ static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd)
val = readl(regs + S3C64XX_SPI_MODE_CFG);
val &= ~S3C64XX_SPI_MODE_4BURST;
val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
val |= (S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
writel(val, regs + S3C64XX_SPI_MODE_CFG);
s3c64xx_flush_fifo(sdd);
@ -1111,14 +1167,14 @@ static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
return ERR_PTR(-ENOMEM);
if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
dev_dbg(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
sci->src_clk_nr = 0;
} else {
sci->src_clk_nr = temp;
}
if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
dev_dbg(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
sci->num_cs = 1;
} else {
sci->num_cs = temp;
@ -1146,6 +1202,48 @@ static inline const struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
return (const struct s3c64xx_spi_port_config *)platform_get_device_id(pdev)->driver_data;
}
static int s3c64xx_spi_set_port_id(struct platform_device *pdev,
struct s3c64xx_spi_driver_data *sdd)
{
const struct s3c64xx_spi_port_config *port_conf = sdd->port_conf;
int ret;
if (port_conf->rx_fifomask && port_conf->tx_fifomask)
return 0;
if (pdev->dev.of_node) {
ret = of_alias_get_id(pdev->dev.of_node, "spi");
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"Failed to get alias id\n");
sdd->port_id = ret;
} else {
if (pdev->id < 0)
return dev_err_probe(&pdev->dev, -EINVAL,
"Negative platform ID is not allowed\n");
sdd->port_id = pdev->id;
}
return 0;
}
static void s3c64xx_spi_set_fifomask(struct s3c64xx_spi_driver_data *sdd)
{
const struct s3c64xx_spi_port_config *port_conf = sdd->port_conf;
if (port_conf->rx_fifomask)
sdd->rx_fifomask = port_conf->rx_fifomask;
else
sdd->rx_fifomask = FIFO_LVL_MASK(sdd) <<
port_conf->rx_lvl_offset;
if (port_conf->tx_fifomask)
sdd->tx_fifomask = port_conf->tx_fifomask;
else
sdd->tx_fifomask = FIFO_LVL_MASK(sdd) <<
S3C64XX_SPI_ST_TX_FIFO_LVL_SHIFT;
}
static int s3c64xx_spi_probe(struct platform_device *pdev)
{
struct resource *mem_res;
@ -1181,15 +1279,18 @@ static int s3c64xx_spi_probe(struct platform_device *pdev)
sdd->host = host;
sdd->cntrlr_info = sci;
sdd->pdev = pdev;
if (pdev->dev.of_node) {
ret = of_alias_get_id(pdev->dev.of_node, "spi");
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"Failed to get alias id\n");
sdd->port_id = ret;
} else {
sdd->port_id = pdev->id;
}
ret = s3c64xx_spi_set_port_id(pdev, sdd);
if (ret)
return ret;
if (sdd->port_conf->fifo_depth)
sdd->fifo_depth = sdd->port_conf->fifo_depth;
else if (of_property_read_u32(pdev->dev.of_node, "fifo-depth",
&sdd->fifo_depth))
sdd->fifo_depth = FIFO_DEPTH(sdd);
s3c64xx_spi_set_fifomask(sdd);
sdd->cur_bpw = 8;
@ -1197,7 +1298,7 @@ static int s3c64xx_spi_probe(struct platform_device *pdev)
sdd->rx_dma.direction = DMA_DEV_TO_MEM;
host->dev.of_node = pdev->dev.of_node;
host->bus_num = sdd->port_id;
host->bus_num = -1;
host->setup = s3c64xx_spi_setup;
host->cleanup = s3c64xx_spi_cleanup;
host->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
@ -1278,9 +1379,9 @@ static int s3c64xx_spi_probe(struct platform_device *pdev)
}
dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Targets attached\n",
sdd->port_id, host->num_chipselect);
host->bus_num, host->num_chipselect);
dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\n",
mem_res, (FIFO_LVL_MASK(sdd) >> 1) + 1);
mem_res, sdd->fifo_depth);
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
@ -1319,8 +1420,9 @@ static int s3c64xx_spi_suspend(struct device *dev)
{
struct spi_controller *host = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
int ret;
int ret = spi_controller_suspend(host);
ret = spi_controller_suspend(host);
if (ret)
return ret;
@ -1408,7 +1510,9 @@ static const struct dev_pm_ops s3c64xx_spi_pm = {
};
static const struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
.fifo_lvl_mask = { 0x7f },
/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
.rx_lvl_offset = 13,
.tx_st_done = 21,
.clk_div = 2,
@ -1416,14 +1520,18 @@ static const struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
};
static const struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
.fifo_lvl_mask = { 0x7f, 0x7F },
/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
.rx_lvl_offset = 13,
.tx_st_done = 21,
.clk_div = 2,
};
static const struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
.fifo_lvl_mask = { 0x1ff, 0x7F },
/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
.rx_lvl_offset = 15,
.tx_st_done = 25,
.clk_div = 2,
@ -1431,7 +1539,9 @@ static const struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
};
static const struct s3c64xx_spi_port_config exynos4_spi_port_config = {
/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
.fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
.rx_lvl_offset = 15,
.tx_st_done = 25,
.clk_div = 2,
@ -1441,7 +1551,9 @@ static const struct s3c64xx_spi_port_config exynos4_spi_port_config = {
};
static const struct s3c64xx_spi_port_config exynos7_spi_port_config = {
/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
.fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff},
/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
.rx_lvl_offset = 15,
.tx_st_done = 25,
.clk_div = 2,
@ -1451,7 +1563,9 @@ static const struct s3c64xx_spi_port_config exynos7_spi_port_config = {
};
static const struct s3c64xx_spi_port_config exynos5433_spi_port_config = {
/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
.fifo_lvl_mask = { 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff},
/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
.rx_lvl_offset = 15,
.tx_st_done = 25,
.clk_div = 2,
@ -1461,9 +1575,23 @@ static const struct s3c64xx_spi_port_config exynos5433_spi_port_config = {
.quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
};
static const struct s3c64xx_spi_port_config exynos850_spi_port_config = {
.fifo_depth = 64,
.rx_fifomask = S3C64XX_SPI_ST_RX_FIFO_RDY_V2,
.tx_fifomask = S3C64XX_SPI_ST_TX_FIFO_RDY_V2,
.tx_st_done = 25,
.clk_div = 4,
.high_speed = true,
.clk_from_cmu = true,
.has_loopback = true,
.quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
};
static const struct s3c64xx_spi_port_config exynosautov9_spi_port_config = {
/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
.fifo_lvl_mask = { 0x1ff, 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff, 0x7f,
0x7f, 0x7f, 0x7f, 0x7f},
/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
.rx_lvl_offset = 15,
.tx_st_done = 25,
.clk_div = 4,
@ -1475,7 +1603,9 @@ static const struct s3c64xx_spi_port_config exynosautov9_spi_port_config = {
};
static const struct s3c64xx_spi_port_config fsd_spi_port_config = {
/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
.fifo_lvl_mask = { 0x7f, 0x7f, 0x7f, 0x7f, 0x7f},
/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
.rx_lvl_offset = 15,
.tx_st_done = 25,
.clk_div = 2,
@ -1485,6 +1615,19 @@ static const struct s3c64xx_spi_port_config fsd_spi_port_config = {
.quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
};
static const struct s3c64xx_spi_port_config gs101_spi_port_config = {
.fifo_depth = 64,
.rx_fifomask = S3C64XX_SPI_ST_RX_FIFO_RDY_V2,
.tx_fifomask = S3C64XX_SPI_ST_TX_FIFO_RDY_V2,
.tx_st_done = 25,
.clk_div = 4,
.high_speed = true,
.clk_from_cmu = true,
.has_loopback = true,
.use_32bit_io = true,
.quirks = S3C64XX_SPI_QUIRK_CS_AUTO,
};
static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
{
.name = "s3c2443-spi",
@ -1497,29 +1640,35 @@ static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
};
static const struct of_device_id s3c64xx_spi_dt_match[] = {
{ .compatible = "google,gs101-spi",
.data = &gs101_spi_port_config,
},
{ .compatible = "samsung,s3c2443-spi",
.data = (void *)&s3c2443_spi_port_config,
.data = &s3c2443_spi_port_config,
},
{ .compatible = "samsung,s3c6410-spi",
.data = (void *)&s3c6410_spi_port_config,
.data = &s3c6410_spi_port_config,
},
{ .compatible = "samsung,s5pv210-spi",
.data = (void *)&s5pv210_spi_port_config,
.data = &s5pv210_spi_port_config,
},
{ .compatible = "samsung,exynos4210-spi",
.data = (void *)&exynos4_spi_port_config,
.data = &exynos4_spi_port_config,
},
{ .compatible = "samsung,exynos7-spi",
.data = (void *)&exynos7_spi_port_config,
.data = &exynos7_spi_port_config,
},
{ .compatible = "samsung,exynos5433-spi",
.data = (void *)&exynos5433_spi_port_config,
.data = &exynos5433_spi_port_config,
},
{ .compatible = "samsung,exynos850-spi",
.data = &exynos850_spi_port_config,
},
{ .compatible = "samsung,exynosautov9-spi",
.data = (void *)&exynosautov9_spi_port_config,
.data = &exynosautov9_spi_port_config,
},
{ .compatible = "tesla,fsd-spi",
.data = (void *)&fsd_spi_port_config,
.data = &fsd_spi_port_config,
},
{ },
};

View File

@ -136,9 +136,9 @@ static int sh_sci_spi_probe(struct platform_device *dev)
}
/* setup spi bitbang adaptor */
sp->bitbang.master = host;
sp->bitbang.master->bus_num = sp->info->bus_num;
sp->bitbang.master->num_chipselect = sp->info->num_chipselect;
sp->bitbang.ctlr = host;
sp->bitbang.ctlr->bus_num = sp->info->bus_num;
sp->bitbang.ctlr->num_chipselect = sp->info->num_chipselect;
sp->bitbang.chipselect = sh_sci_spi_chipselect;
sp->bitbang.txrx_word[SPI_MODE_0] = sh_sci_spi_txrx_mode0;
@ -166,7 +166,7 @@ static int sh_sci_spi_probe(struct platform_device *dev)
setbits(sp, PIN_INIT, 0);
iounmap(sp->membase);
err1:
spi_controller_put(sp->bitbang.master);
spi_controller_put(sp->bitbang.ctlr);
err0:
return ret;
}
@ -178,7 +178,7 @@ static void sh_sci_spi_remove(struct platform_device *dev)
spi_bitbang_stop(&sp->bitbang);
setbits(sp, PIN_INIT, 0);
iounmap(sp->membase);
spi_controller_put(sp->bitbang.master);
spi_controller_put(sp->bitbang.ctlr);
}
static struct platform_driver sh_sci_spi_drv = {

View File

@ -297,7 +297,7 @@ static int mtk_spi_slave_transfer_one(struct spi_controller *ctlr,
static int mtk_spi_slave_setup(struct spi_device *spi)
{
struct mtk_spi_slave *mdata = spi_controller_get_devdata(spi->master);
struct mtk_spi_slave *mdata = spi_controller_get_devdata(spi->controller);
u32 reg_val;
reg_val = DMA_DONE_EN | DATA_DONE_EN |

View File

@ -8,13 +8,13 @@
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/gpio/consumer.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/platform_device.h>

View File

@ -1118,6 +1118,21 @@ static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
return IRQ_HANDLED;
}
static int stm32_spi_optimize_message(struct spi_message *msg)
{
struct spi_controller *ctrl = msg->spi->controller;
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
/* On STM32H7, messages should not exceed a maximum size set
* later via the set_number_of_data function. In order to
* ensure that, split large messages into several messages
*/
if (spi->cfg->set_number_of_data)
return spi_split_transfers_maxwords(ctrl, msg, spi->t_size_max);
return 0;
}
/**
* stm32_spi_prepare_msg - set up the controller to transfer a single message
* @ctrl: controller interface
@ -1163,20 +1178,6 @@ static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
!!(spi_dev->mode & SPI_LSB_FIRST),
!!(spi_dev->mode & SPI_CS_HIGH));
/* On STM32H7, messages should not exceed a maximum size setted
* afterward via the set_number_of_data function. In order to
* ensure that, split large messages into several messages
*/
if (spi->cfg->set_number_of_data) {
int ret;
ret = spi_split_transfers_maxwords(ctrl, msg,
spi->t_size_max,
GFP_KERNEL | GFP_DMA);
if (ret)
return ret;
}
spin_lock_irqsave(&spi->lock, flags);
/* CPOL, CPHA and LSB FIRST bits have common register */
@ -2182,6 +2183,7 @@ static int stm32_spi_probe(struct platform_device *pdev)
ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
ctrl->use_gpio_descriptors = true;
ctrl->optimize_message = stm32_spi_optimize_message;
ctrl->prepare_message = stm32_spi_prepare_msg;
ctrl->transfer_one = stm32_spi_transfer_one;
ctrl->unprepare_message = stm32_spi_unprepare_msg;

View File

@ -434,7 +434,7 @@ static int xilinx_spi_probe(struct platform_device *pdev)
xspi = spi_controller_get_devdata(host);
xspi->cs_inactive = 0xffffffff;
xspi->bitbang.master = host;
xspi->bitbang.ctlr = host;
xspi->bitbang.chipselect = xilinx_spi_chipselect;
xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
@ -516,7 +516,7 @@ static void xilinx_spi_remove(struct platform_device *pdev)
/* Disable the global IPIF interrupt */
xspi->write_fn(0, regs_base + XIPIF_V123B_DGIER_OFFSET);
spi_controller_put(xspi->bitbang.master);
spi_controller_put(xspi->bitbang.ctlr);
}
/* work with hotplug and coldplug */

View File

@ -93,7 +93,7 @@ static int xtfpga_spi_probe(struct platform_device *pdev)
host->dev.of_node = pdev->dev.of_node;
xspi = spi_controller_get_devdata(host);
xspi->bitbang.master = host;
xspi->bitbang.ctlr = host;
xspi->bitbang.chipselect = xtfpga_spi_chipselect;
xspi->bitbang.txrx_word[SPI_MODE_0] = xtfpga_spi_txrx_word;
xspi->regs = devm_platform_ioremap_resource(pdev, 0);

View File

@ -459,7 +459,7 @@ static void spi_shutdown(struct device *dev)
}
}
struct bus_type spi_bus_type = {
const struct bus_type spi_bus_type = {
.name = "spi",
.dev_groups = spi_dev_groups,
.match = spi_match_device,
@ -584,7 +584,7 @@ struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
return NULL;
}
spi->master = spi->controller = ctlr;
spi->controller = ctlr;
spi->dev.parent = &ctlr->dev;
spi->dev.bus = &spi_bus_type;
spi->dev.release = spidev_release;
@ -608,23 +608,51 @@ static void spi_dev_set_name(struct spi_device *spi)
spi_get_chipselect(spi, 0));
}
/*
* Zero(0) is a valid physical CS value and can be located at any
* logical CS in the spi->chip_select[]. If all the physical CS
* are initialized to 0 then It would be difficult to differentiate
* between a valid physical CS 0 & an unused logical CS whose physical
* CS can be 0. As a solution to this issue initialize all the CS to -1.
* Now all the unused logical CS will have -1 physical CS value & can be
* ignored while performing physical CS validity checks.
*/
#define SPI_INVALID_CS ((s8)-1)
static inline bool is_valid_cs(s8 chip_select)
{
return chip_select != SPI_INVALID_CS;
}
static inline int spi_dev_check_cs(struct device *dev,
struct spi_device *spi, u8 idx,
struct spi_device *new_spi, u8 new_idx)
{
u8 cs, cs_new;
u8 idx_new;
cs = spi_get_chipselect(spi, idx);
for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
cs_new = spi_get_chipselect(new_spi, idx_new);
if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
dev_err(dev, "chipselect %u already in use\n", cs_new);
return -EBUSY;
}
}
return 0;
}
static int spi_dev_check(struct device *dev, void *data)
{
struct spi_device *spi = to_spi_device(dev);
struct spi_device *new_spi = data;
int idx, nw_idx;
u8 cs, cs_nw;
int status, idx;
if (spi->controller == new_spi->controller) {
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
cs = spi_get_chipselect(spi, idx);
for (nw_idx = 0; nw_idx < SPI_CS_CNT_MAX; nw_idx++) {
cs_nw = spi_get_chipselect(new_spi, nw_idx);
if (cs != 0xFF && cs_nw != 0xFF && cs == cs_nw) {
dev_err(dev, "chipselect %d already in use\n", cs_nw);
return -EBUSY;
}
}
status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
if (status)
return status;
}
}
return 0;
@ -640,13 +668,13 @@ static int __spi_add_device(struct spi_device *spi)
{
struct spi_controller *ctlr = spi->controller;
struct device *dev = ctlr->dev.parent;
int status, idx, nw_idx;
u8 cs, nw_cs;
int status, idx;
u8 cs;
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
/* Chipselects are numbered 0..max; validate. */
cs = spi_get_chipselect(spi, idx);
if (cs != 0xFF && cs >= ctlr->num_chipselect) {
if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
ctlr->num_chipselect);
return -EINVAL;
@ -658,14 +686,9 @@ static int __spi_add_device(struct spi_device *spi)
* For example, spi->chip_select[0] != spi->chip_select[1] and so on.
*/
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
cs = spi_get_chipselect(spi, idx);
for (nw_idx = idx + 1; nw_idx < SPI_CS_CNT_MAX; nw_idx++) {
nw_cs = spi_get_chipselect(spi, nw_idx);
if (cs != 0xFF && nw_cs != 0xFF && cs == nw_cs) {
dev_err(dev, "chipselect %d already in use\n", nw_cs);
return -EBUSY;
}
}
status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
if (status)
return status;
}
/* Set the bus ID string */
@ -691,7 +714,7 @@ static int __spi_add_device(struct spi_device *spi)
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
cs = spi_get_chipselect(spi, idx);
if (cs != 0xFF)
if (is_valid_cs(cs))
spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
}
}
@ -745,6 +768,14 @@ int spi_add_device(struct spi_device *spi)
}
EXPORT_SYMBOL_GPL(spi_add_device);
static void spi_set_all_cs_unused(struct spi_device *spi)
{
u8 idx;
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
spi_set_chipselect(spi, idx, SPI_INVALID_CS);
}
/**
* spi_new_device - instantiate one new SPI device
* @ctlr: Controller to which device is connected
@ -764,7 +795,6 @@ struct spi_device *spi_new_device(struct spi_controller *ctlr,
{
struct spi_device *proxy;
int status;
u8 idx;
/*
* NOTE: caller did any chip->bus_num checks necessary.
@ -780,19 +810,10 @@ struct spi_device *spi_new_device(struct spi_controller *ctlr,
WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
/*
* Zero(0) is a valid physical CS value and can be located at any
* logical CS in the spi->chip_select[]. If all the physical CS
* are initialized to 0 then It would be difficult to differentiate
* between a valid physical CS 0 & an unused logical CS whose physical
* CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
* Now all the unused logical CS will have 0xFF physical CS value & can be
* ignore while performing physical CS validity checks.
*/
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
spi_set_chipselect(proxy, idx, 0xFF);
/* Use provided chip-select for proxy device */
spi_set_all_cs_unused(proxy);
spi_set_chipselect(proxy, 0, chip->chip_select);
proxy->max_speed_hz = chip->max_speed_hz;
proxy->mode = chip->mode;
proxy->irq = chip->irq;
@ -1007,7 +1028,7 @@ static inline bool spi_is_last_cs(struct spi_device *spi)
bool last = false;
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
if ((spi->cs_index_mask >> idx) & 0x01) {
if (spi->cs_index_mask & BIT(idx)) {
if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
last = true;
}
@ -1036,7 +1057,7 @@ static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
spi->controller->last_cs_index_mask = spi->cs_index_mask;
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : -1;
spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
if (spi->mode & SPI_CS_HIGH)
@ -1058,8 +1079,7 @@ static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
* into account.
*/
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
if (((spi->cs_index_mask >> idx) & 0x01) &&
spi_get_csgpiod(spi, idx)) {
if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
if (has_acpi_companion(&spi->dev))
gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
!enable);
@ -1747,15 +1767,6 @@ static int __spi_pump_transfer_message(struct spi_controller *ctlr,
trace_spi_message_start(msg);
ret = spi_split_transfers_maxsize(ctlr, msg,
spi_max_transfer_size(msg->spi),
GFP_KERNEL | GFP_DMA);
if (ret) {
msg->status = ret;
spi_finalize_current_message(ctlr);
return ret;
}
if (ctlr->prepare_message) {
ret = ctlr->prepare_message(ctlr, msg);
if (ret) {
@ -2083,6 +2094,43 @@ struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
/*
* __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
* and spi_maybe_unoptimize_message()
* @msg: the message to unoptimize
*
* Peripheral drivers should use spi_unoptimize_message() and callers inside
* core should use spi_maybe_unoptimize_message() rather than calling this
* function directly.
*
* It is not valid to call this on a message that is not currently optimized.
*/
static void __spi_unoptimize_message(struct spi_message *msg)
{
struct spi_controller *ctlr = msg->spi->controller;
if (ctlr->unoptimize_message)
ctlr->unoptimize_message(msg);
spi_res_release(ctlr, msg);
msg->optimized = false;
msg->opt_state = NULL;
}
/*
* spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
* @msg: the message to unoptimize
*
* This function is used to unoptimize a message if and only if it was
* optimized by the core (via spi_maybe_optimize_message()).
*/
static void spi_maybe_unoptimize_message(struct spi_message *msg)
{
if (!msg->pre_optimized && msg->optimized)
__spi_unoptimize_message(msg);
}
/**
* spi_finalize_current_message() - the current message is complete
* @ctlr: the controller to return the message to
@ -2111,15 +2159,6 @@ void spi_finalize_current_message(struct spi_controller *ctlr)
spi_unmap_msg(ctlr, mesg);
/*
* In the prepare_messages callback the SPI bus has the opportunity
* to split a transfer to smaller chunks.
*
* Release the split transfers here since spi_map_msg() is done on
* the split transfers.
*/
spi_res_release(ctlr, mesg);
if (mesg->prepared && ctlr->unprepare_message) {
ret = ctlr->unprepare_message(ctlr, mesg);
if (ret) {
@ -2130,6 +2169,8 @@ void spi_finalize_current_message(struct spi_controller *ctlr)
mesg->prepared = false;
spi_maybe_unoptimize_message(mesg);
WRITE_ONCE(ctlr->cur_msg_incomplete, false);
smp_mb(); /* See __spi_pump_transfer_message()... */
if (READ_ONCE(ctlr->cur_msg_need_completion))
@ -2397,17 +2438,7 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
return -EINVAL;
}
/*
* Zero(0) is a valid physical CS value and can be located at any
* logical CS in the spi->chip_select[]. If all the physical CS
* are initialized to 0 then It would be difficult to differentiate
* between a valid physical CS 0 & an unused logical CS whose physical
* CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
* Now all the unused logical CS will have 0xFF physical CS value & can be
* ignore while performing physical CS validity checks.
*/
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
spi_set_chipselect(spi, idx, 0xFF);
spi_set_all_cs_unused(spi);
/* Device address */
rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
@ -2431,14 +2462,10 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
spi_set_chipselect(spi, idx, cs[idx]);
/*
* spi->chip_select[i] gives the corresponding physical CS for logical CS i
* logical CS number is represented by setting the ith bit in spi->cs_index_mask
* So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
* spi->chip_select[0] will give the physical CS.
* By default spi->chip_select[0] will hold the physical CS number so, set
* spi->cs_index_mask as 0x01.
* By default spi->chip_select[0] will hold the physical CS number,
* so set bit 0 in spi->cs_index_mask.
*/
spi->cs_index_mask = 0x01;
spi->cs_index_mask = BIT(0);
/* Device speed */
if (!of_property_read_u32(nc, "spi-max-frequency", &value))
@ -2544,7 +2571,6 @@ struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
struct spi_controller *ctlr = spi->controller;
struct spi_device *ancillary;
int rc = 0;
u8 idx;
/* Alloc an spi_device */
ancillary = spi_alloc_device(ctlr);
@ -2555,33 +2581,18 @@ struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
/*
* Zero(0) is a valid physical CS value and can be located at any
* logical CS in the spi->chip_select[]. If all the physical CS
* are initialized to 0 then It would be difficult to differentiate
* between a valid physical CS 0 & an unused logical CS whose physical
* CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
* Now all the unused logical CS will have 0xFF physical CS value & can be
* ignore while performing physical CS validity checks.
*/
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
spi_set_chipselect(ancillary, idx, 0xFF);
/* Use provided chip-select for ancillary device */
spi_set_all_cs_unused(ancillary);
spi_set_chipselect(ancillary, 0, chip_select);
/* Take over SPI mode/speed from SPI main device */
ancillary->max_speed_hz = spi->max_speed_hz;
ancillary->mode = spi->mode;
/*
* spi->chip_select[i] gives the corresponding physical CS for logical CS i
* logical CS number is represented by setting the ith bit in spi->cs_index_mask
* So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
* spi->chip_select[0] will give the physical CS.
* By default spi->chip_select[0] will hold the physical CS number so, set
* spi->cs_index_mask as 0x01.
* By default spi->chip_select[0] will hold the physical CS number,
* so set bit 0 in spi->cs_index_mask.
*/
ancillary->cs_index_mask = 0x01;
ancillary->cs_index_mask = BIT(0);
WARN_ON(!mutex_is_locked(&ctlr->add_lock));
@ -2784,7 +2795,6 @@ struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
struct acpi_spi_lookup lookup = {};
struct spi_device *spi;
int ret;
u8 idx;
if (!ctlr && index == -1)
return ERR_PTR(-EINVAL);
@ -2820,33 +2830,19 @@ struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
return ERR_PTR(-ENOMEM);
}
/*
* Zero(0) is a valid physical CS value and can be located at any
* logical CS in the spi->chip_select[]. If all the physical CS
* are initialized to 0 then It would be difficult to differentiate
* between a valid physical CS 0 & an unused logical CS whose physical
* CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
* Now all the unused logical CS will have 0xFF physical CS value & can be
* ignore while performing physical CS validity checks.
*/
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
spi_set_chipselect(spi, idx, 0xFF);
spi_set_all_cs_unused(spi);
spi_set_chipselect(spi, 0, lookup.chip_select);
ACPI_COMPANION_SET(&spi->dev, adev);
spi->max_speed_hz = lookup.max_speed_hz;
spi->mode |= lookup.mode;
spi->irq = lookup.irq;
spi->bits_per_word = lookup.bits_per_word;
spi_set_chipselect(spi, 0, lookup.chip_select);
/*
* spi->chip_select[i] gives the corresponding physical CS for logical CS i
* logical CS number is represented by setting the ith bit in spi->cs_index_mask
* So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
* spi->chip_select[0] will give the physical CS.
* By default spi->chip_select[0] will hold the physical CS number so, set
* spi->cs_index_mask as 0x01.
* By default spi->chip_select[0] will hold the physical CS number,
* so set bit 0 in spi->cs_index_mask.
*/
spi->cs_index_mask = 0x01;
spi->cs_index_mask = BIT(0);
return spi;
}
@ -3344,9 +3340,9 @@ int spi_register_controller(struct spi_controller *ctlr)
goto free_bus_id;
}
/* Setting last_cs to -1 means no chip selected */
/* Setting last_cs to SPI_INVALID_CS means no chip selected */
for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
ctlr->last_cs[idx] = -1;
ctlr->last_cs[idx] = SPI_INVALID_CS;
status = device_add(&ctlr->dev);
if (status < 0)
@ -3687,8 +3683,7 @@ static struct spi_replaced_transfers *spi_replace_transfers(
static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
struct spi_message *msg,
struct spi_transfer **xferp,
size_t maxsize,
gfp_t gfp)
size_t maxsize)
{
struct spi_transfer *xfer = *xferp, *xfers;
struct spi_replaced_transfers *srt;
@ -3699,7 +3694,7 @@ static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
count = DIV_ROUND_UP(xfer->len, maxsize);
/* Create replacement */
srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
if (IS_ERR(srt))
return PTR_ERR(srt);
xfers = srt->inserted_transfers;
@ -3759,14 +3754,16 @@ static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
* @ctlr: the @spi_controller for this transfer
* @msg: the @spi_message to transform
* @maxsize: the maximum when to apply this
* @gfp: GFP allocation flags
*
* This function allocates resources that are automatically freed during the
* spi message unoptimize phase so this function should only be called from
* optimize_message callbacks.
*
* Return: status of transformation
*/
int spi_split_transfers_maxsize(struct spi_controller *ctlr,
struct spi_message *msg,
size_t maxsize,
gfp_t gfp)
size_t maxsize)
{
struct spi_transfer *xfer;
int ret;
@ -3781,7 +3778,7 @@ int spi_split_transfers_maxsize(struct spi_controller *ctlr,
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
if (xfer->len > maxsize) {
ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
maxsize, gfp);
maxsize);
if (ret)
return ret;
}
@ -3799,14 +3796,16 @@ EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
* @ctlr: the @spi_controller for this transfer
* @msg: the @spi_message to transform
* @maxwords: the number of words to limit each transfer to
* @gfp: GFP allocation flags
*
* This function allocates resources that are automatically freed during the
* spi message unoptimize phase so this function should only be called from
* optimize_message callbacks.
*
* Return: status of transformation
*/
int spi_split_transfers_maxwords(struct spi_controller *ctlr,
struct spi_message *msg,
size_t maxwords,
gfp_t gfp)
size_t maxwords)
{
struct spi_transfer *xfer;
@ -3824,7 +3823,7 @@ int spi_split_transfers_maxwords(struct spi_controller *ctlr,
maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
if (xfer->len > maxsize) {
ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
maxsize, gfp);
maxsize);
if (ret)
return ret;
}
@ -4063,33 +4062,7 @@ static int __spi_validate(struct spi_device *spi, struct spi_message *message)
if (list_empty(&message->transfers))
return -EINVAL;
/*
* If an SPI controller does not support toggling the CS line on each
* transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
* for the CS line, we can emulate the CS-per-word hardware function by
* splitting transfers into one-word transfers and ensuring that
* cs_change is set for each transfer.
*/
if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
spi_is_csgpiod(spi))) {
size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
int ret;
/* spi_split_transfers_maxsize() requires message->spi */
message->spi = spi;
ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
GFP_KERNEL);
if (ret)
return ret;
list_for_each_entry(xfer, &message->transfers, transfer_list) {
/* Don't change cs_change on the last entry in the list */
if (list_is_last(&xfer->transfer_list, &message->transfers))
break;
xfer->cs_change = 1;
}
}
message->spi = spi;
/*
* Half-duplex links include original MicroWire, and ones with
@ -4202,6 +4175,167 @@ static int __spi_validate(struct spi_device *spi, struct spi_message *message)
return 0;
}
/*
* spi_split_transfers - generic handling of transfer splitting
* @msg: the message to split
*
* Under certain conditions, a SPI controller may not support arbitrary
* transfer sizes or other features required by a peripheral. This function
* will split the transfers in the message into smaller transfers that are
* supported by the controller.
*
* Controllers with special requirements not covered here can also split
* transfers in the optimize_message() callback.
*
* Context: can sleep
* Return: zero on success, else a negative error code
*/
static int spi_split_transfers(struct spi_message *msg)
{
struct spi_controller *ctlr = msg->spi->controller;
struct spi_transfer *xfer;
int ret;
/*
* If an SPI controller does not support toggling the CS line on each
* transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
* for the CS line, we can emulate the CS-per-word hardware function by
* splitting transfers into one-word transfers and ensuring that
* cs_change is set for each transfer.
*/
if ((msg->spi->mode & SPI_CS_WORD) &&
(!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
ret = spi_split_transfers_maxwords(ctlr, msg, 1);
if (ret)
return ret;
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
/* Don't change cs_change on the last entry in the list */
if (list_is_last(&xfer->transfer_list, &msg->transfers))
break;
xfer->cs_change = 1;
}
} else {
ret = spi_split_transfers_maxsize(ctlr, msg,
spi_max_transfer_size(msg->spi));
if (ret)
return ret;
}
return 0;
}
/*
* __spi_optimize_message - shared implementation for spi_optimize_message()
* and spi_maybe_optimize_message()
* @spi: the device that will be used for the message
* @msg: the message to optimize
*
* Peripheral drivers will call spi_optimize_message() and the spi core will
* call spi_maybe_optimize_message() instead of calling this directly.
*
* It is not valid to call this on a message that has already been optimized.
*
* Return: zero on success, else a negative error code
*/
static int __spi_optimize_message(struct spi_device *spi,
struct spi_message *msg)
{
struct spi_controller *ctlr = spi->controller;
int ret;
ret = __spi_validate(spi, msg);
if (ret)
return ret;
ret = spi_split_transfers(msg);
if (ret)
return ret;
if (ctlr->optimize_message) {
ret = ctlr->optimize_message(msg);
if (ret) {
spi_res_release(ctlr, msg);
return ret;
}
}
msg->optimized = true;
return 0;
}
/*
* spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
* @spi: the device that will be used for the message
* @msg: the message to optimize
* Return: zero on success, else a negative error code
*/
static int spi_maybe_optimize_message(struct spi_device *spi,
struct spi_message *msg)
{
if (msg->pre_optimized)
return 0;
return __spi_optimize_message(spi, msg);
}
/**
* spi_optimize_message - do any one-time validation and setup for a SPI message
* @spi: the device that will be used for the message
* @msg: the message to optimize
*
* Peripheral drivers that reuse the same message repeatedly may call this to
* perform as much message prep as possible once, rather than repeating it each
* time a message transfer is performed to improve throughput and reduce CPU
* usage.
*
* Once a message has been optimized, it cannot be modified with the exception
* of updating the contents of any xfer->tx_buf (the pointer can't be changed,
* only the data in the memory it points to).
*
* Calls to this function must be balanced with calls to spi_unoptimize_message()
* to avoid leaking resources.
*
* Context: can sleep
* Return: zero on success, else a negative error code
*/
int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
{
int ret;
ret = __spi_optimize_message(spi, msg);
if (ret)
return ret;
/*
* This flag indicates that the peripheral driver called spi_optimize_message()
* and therefore we shouldn't unoptimize message automatically when finalizing
* the message but rather wait until spi_unoptimize_message() is called
* by the peripheral driver.
*/
msg->pre_optimized = true;
return 0;
}
EXPORT_SYMBOL_GPL(spi_optimize_message);
/**
* spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
* @msg: the message to unoptimize
*
* Calls to this function must be balanced with calls to spi_optimize_message().
*
* Context: can sleep
*/
void spi_unoptimize_message(struct spi_message *msg)
{
__spi_unoptimize_message(msg);
msg->pre_optimized = false;
}
EXPORT_SYMBOL_GPL(spi_unoptimize_message);
static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
struct spi_controller *ctlr = spi->controller;
@ -4214,8 +4348,6 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
if (!ctlr->transfer)
return -ENOTSUPP;
message->spi = spi;
SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
@ -4268,8 +4400,8 @@ int spi_async(struct spi_device *spi, struct spi_message *message)
int ret;
unsigned long flags;
ret = __spi_validate(spi, message);
if (ret != 0)
ret = spi_maybe_optimize_message(spi, message);
if (ret)
return ret;
spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
@ -4281,61 +4413,12 @@ int spi_async(struct spi_device *spi, struct spi_message *message)
spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
spi_maybe_unoptimize_message(message);
return ret;
}
EXPORT_SYMBOL_GPL(spi_async);
/**
* spi_async_locked - version of spi_async with exclusive bus usage
* @spi: device with which data will be exchanged
* @message: describes the data transfers, including completion callback
* Context: any (IRQs may be blocked, etc)
*
* This call may be used in_irq and other contexts which can't sleep,
* as well as from task contexts which can sleep.
*
* The completion callback is invoked in a context which can't sleep.
* Before that invocation, the value of message->status is undefined.
* When the callback is issued, message->status holds either zero (to
* indicate complete success) or a negative error code. After that
* callback returns, the driver which issued the transfer request may
* deallocate the associated memory; it's no longer in use by any SPI
* core or controller driver code.
*
* Note that although all messages to a spi_device are handled in
* FIFO order, messages may go to different devices in other orders.
* Some device might be higher priority, or have various "hard" access
* time requirements, for example.
*
* On detection of any fault during the transfer, processing of
* the entire message is aborted, and the device is deselected.
* Until returning from the associated message completion callback,
* no other spi_message queued to that device will be processed.
* (This rule applies equally to all the synchronous transfer calls,
* which are wrappers around this core asynchronous primitive.)
*
* Return: zero on success, else a negative error code.
*/
static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
struct spi_controller *ctlr = spi->controller;
int ret;
unsigned long flags;
ret = __spi_validate(spi, message);
if (ret != 0)
return ret;
spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
ret = __spi_async(spi, message);
spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
return ret;
}
static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
{
bool was_busy;
@ -4383,6 +4466,7 @@ static void spi_complete(void *arg)
static int __spi_sync(struct spi_device *spi, struct spi_message *message)
{
DECLARE_COMPLETION_ONSTACK(done);
unsigned long flags;
int status;
struct spi_controller *ctlr = spi->controller;
@ -4391,12 +4475,10 @@ static int __spi_sync(struct spi_device *spi, struct spi_message *message)
return -ESHUTDOWN;
}
status = __spi_validate(spi, message);
if (status != 0)
status = spi_maybe_optimize_message(spi, message);
if (status)
return status;
message->spi = spi;
SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
@ -4428,7 +4510,11 @@ static int __spi_sync(struct spi_device *spi, struct spi_message *message)
*/
message->complete = spi_complete;
message->context = &done;
status = spi_async_locked(spi, message);
spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
status = __spi_async(spi, message);
spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
if (status == 0) {
wait_for_completion(&done);
status = message->status;

View File

@ -802,7 +802,7 @@ static int spidev_probe(struct spi_device *spi)
spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
dev = device_create(&spidev_class, &spi->dev, spidev->devt,
spidev, "spidev%d.%d",
spi->master->bus_num, spi_get_chipselect(spi, 0));
spi->controller->bus_num, spi_get_chipselect(spi, 0));
status = PTR_ERR_OR_ZERO(dev);
} else {
dev_dbg(&spi->dev, "no minor number available!\n");

View File

@ -794,7 +794,7 @@ int fbtft_register_framebuffer(struct fb_info *fb_info)
if (par->txbuf.buf && par->txbuf.len >= 1024)
sprintf(text1, ", %zu KiB buffer memory", par->txbuf.len >> 10);
if (spi)
sprintf(text2, ", spi%d.%d at %d MHz", spi->master->bus_num,
sprintf(text2, ", spi%d.%d at %d MHz", spi->controller->bus_num,
spi_get_chipselect(spi, 0), spi->max_speed_hz / 1000000);
dev_info(fb_info->dev,
"%s frame buffer, %dx%d, %d KiB video memory%s, fps=%lu%s\n",
@ -1215,7 +1215,7 @@ int fbtft_probe_common(struct fbtft_display *display,
/* 9-bit SPI setup */
if (par->spi && display->buswidth == 9) {
if (par->spi->master->bits_per_word_mask & SPI_BPW_MASK(9)) {
if (par->spi->controller->bits_per_word_mask & SPI_BPW_MASK(9)) {
par->spi->bits_per_word = 9;
} else {
dev_warn(&par->spi->dev,

View File

@ -42,7 +42,7 @@ struct gb_spilib {
#define XFER_TIMEOUT_TOLERANCE 200
static struct spi_master *get_master_from_spi(struct gb_spilib *spi)
static struct spi_controller *get_controller_from_spi(struct gb_spilib *spi)
{
return gb_connection_get_data(spi->connection);
}
@ -324,10 +324,10 @@ static void gb_spi_decode_response(struct gb_spilib *spi,
}
}
static int gb_spi_transfer_one_message(struct spi_master *master,
static int gb_spi_transfer_one_message(struct spi_controller *ctlr,
struct spi_message *msg)
{
struct gb_spilib *spi = spi_master_get_devdata(master);
struct gb_spilib *spi = spi_controller_get_devdata(ctlr);
struct gb_connection *connection = spi->connection;
struct gb_spi_transfer_response *response;
struct gb_operation *operation;
@ -371,21 +371,21 @@ static int gb_spi_transfer_one_message(struct spi_master *master,
out:
msg->status = ret;
clean_xfer_state(spi);
spi_finalize_current_message(master);
spi_finalize_current_message(ctlr);
return ret;
}
static int gb_spi_prepare_transfer_hardware(struct spi_master *master)
static int gb_spi_prepare_transfer_hardware(struct spi_controller *ctlr)
{
struct gb_spilib *spi = spi_master_get_devdata(master);
struct gb_spilib *spi = spi_controller_get_devdata(ctlr);
return spi->ops->prepare_transfer_hardware(spi->parent);
}
static int gb_spi_unprepare_transfer_hardware(struct spi_master *master)
static int gb_spi_unprepare_transfer_hardware(struct spi_controller *ctlr)
{
struct gb_spilib *spi = spi_master_get_devdata(master);
struct gb_spilib *spi = spi_controller_get_devdata(ctlr);
spi->ops->unprepare_transfer_hardware(spi->parent);
@ -440,7 +440,7 @@ static int gb_spi_get_master_config(struct gb_spilib *spi)
static int gb_spi_setup_device(struct gb_spilib *spi, u8 cs)
{
struct spi_master *master = get_master_from_spi(spi);
struct spi_controller *ctlr = get_controller_from_spi(spi);
struct gb_spi_device_config_request request;
struct gb_spi_device_config_response response;
struct spi_board_info spi_board = { {0} };
@ -471,11 +471,11 @@ static int gb_spi_setup_device(struct gb_spilib *spi, u8 cs)
return -EINVAL;
spi_board.mode = le16_to_cpu(response.mode);
spi_board.bus_num = master->bus_num;
spi_board.bus_num = ctlr->bus_num;
spi_board.chip_select = cs;
spi_board.max_speed_hz = le32_to_cpu(response.max_speed_hz);
spidev = spi_new_device(master, &spi_board);
spidev = spi_new_device(ctlr, &spi_board);
if (!spidev)
return -EINVAL;
@ -486,52 +486,52 @@ int gb_spilib_master_init(struct gb_connection *connection, struct device *dev,
struct spilib_ops *ops)
{
struct gb_spilib *spi;
struct spi_master *master;
struct spi_controller *ctlr;
int ret;
u8 i;
/* Allocate master with space for data */
master = spi_alloc_master(dev, sizeof(*spi));
if (!master) {
ctlr = spi_alloc_master(dev, sizeof(*spi));
if (!ctlr) {
dev_err(dev, "cannot alloc SPI master\n");
return -ENOMEM;
}
spi = spi_master_get_devdata(master);
spi = spi_controller_get_devdata(ctlr);
spi->connection = connection;
gb_connection_set_data(connection, master);
gb_connection_set_data(connection, ctlr);
spi->parent = dev;
spi->ops = ops;
/* get master configuration */
/* get controller configuration */
ret = gb_spi_get_master_config(spi);
if (ret)
goto exit_spi_put;
master->bus_num = -1; /* Allow spi-core to allocate it dynamically */
master->num_chipselect = spi->num_chipselect;
master->mode_bits = spi->mode;
master->flags = spi->flags;
master->bits_per_word_mask = spi->bits_per_word_mask;
ctlr->bus_num = -1; /* Allow spi-core to allocate it dynamically */
ctlr->num_chipselect = spi->num_chipselect;
ctlr->mode_bits = spi->mode;
ctlr->flags = spi->flags;
ctlr->bits_per_word_mask = spi->bits_per_word_mask;
/* Attach methods */
master->cleanup = gb_spi_cleanup;
master->setup = gb_spi_setup;
master->transfer_one_message = gb_spi_transfer_one_message;
ctlr->cleanup = gb_spi_cleanup;
ctlr->setup = gb_spi_setup;
ctlr->transfer_one_message = gb_spi_transfer_one_message;
if (ops && ops->prepare_transfer_hardware) {
master->prepare_transfer_hardware =
ctlr->prepare_transfer_hardware =
gb_spi_prepare_transfer_hardware;
}
if (ops && ops->unprepare_transfer_hardware) {
master->unprepare_transfer_hardware =
ctlr->unprepare_transfer_hardware =
gb_spi_unprepare_transfer_hardware;
}
master->auto_runtime_pm = true;
ctlr->auto_runtime_pm = true;
ret = spi_register_master(master);
ret = spi_register_controller(ctlr);
if (ret < 0)
goto exit_spi_put;
@ -548,12 +548,12 @@ int gb_spilib_master_init(struct gb_connection *connection, struct device *dev,
return 0;
exit_spi_put:
spi_master_put(master);
spi_controller_put(ctlr);
return ret;
exit_spi_unregister:
spi_unregister_master(master);
spi_unregister_controller(ctlr);
return ret;
}
@ -561,9 +561,9 @@ EXPORT_SYMBOL_GPL(gb_spilib_master_init);
void gb_spilib_master_exit(struct gb_connection *connection)
{
struct spi_master *master = gb_connection_get_data(connection);
struct spi_controller *ctlr = gb_connection_get_data(connection);
spi_unregister_master(master);
spi_unregister_controller(ctlr);
}
EXPORT_SYMBOL_GPL(gb_spilib_master_exit);

View File

@ -1201,7 +1201,7 @@ static int max3420_probe(struct spi_device *spi)
int err, irq;
u8 reg[8];
if (spi->master->flags & SPI_CONTROLLER_HALF_DUPLEX) {
if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
dev_err(&spi->dev, "UDC needs full duplex to work\n");
return -EINVAL;
}

View File

@ -32,7 +32,7 @@ static inline int lcd_spi_write(struct spi_device *spi, u32 data)
int timeout = 100000, isr, ret = 0;
u32 tmp;
void __iomem *reg_base = (void __iomem *)
*(void **)spi_master_get_devdata(spi->master);
*(void **) spi_controller_get_devdata(spi->controller);
/* clear ISR */
writel_relaxed(~SPI_IRQ_MASK, reg_base + SPU_IRQ_ISR);
@ -81,7 +81,7 @@ static inline int lcd_spi_write(struct spi_device *spi, u32 data)
static int lcd_spi_setup(struct spi_device *spi)
{
void __iomem *reg_base = (void __iomem *)
*(void **)spi_master_get_devdata(spi->master);
*(void **) spi_controller_get_devdata(spi->controller);
u32 tmp;
tmp = CFG_SCLKCNT(16) |
@ -136,32 +136,32 @@ static int lcd_spi_one_transfer(struct spi_device *spi, struct spi_message *m)
int lcd_spi_register(struct mmphw_ctrl *ctrl)
{
struct spi_master *master;
struct spi_controller *ctlr;
void **p_regbase;
int err;
master = spi_alloc_master(ctrl->dev, sizeof(void *));
if (!master) {
ctlr = spi_alloc_master(ctrl->dev, sizeof(void *));
if (!ctlr) {
dev_err(ctrl->dev, "unable to allocate SPI master\n");
return -ENOMEM;
}
p_regbase = spi_master_get_devdata(master);
p_regbase = spi_controller_get_devdata(ctlr);
*p_regbase = (void __force *)ctrl->reg_base;
/* set bus num to 5 to avoid conflict with other spi hosts */
master->bus_num = 5;
master->num_chipselect = 1;
master->setup = lcd_spi_setup;
master->transfer = lcd_spi_one_transfer;
ctlr->bus_num = 5;
ctlr->num_chipselect = 1;
ctlr->setup = lcd_spi_setup;
ctlr->transfer = lcd_spi_one_transfer;
err = spi_register_master(master);
err = spi_register_controller(ctlr);
if (err < 0) {
dev_err(ctrl->dev, "unable to register SPI master\n");
spi_master_put(master);
spi_controller_put(ctlr);
return err;
}
dev_info(&master->dev, "registered\n");
dev_info(&ctlr->dev, "registered\n");
return 0;
}

View File

@ -16,6 +16,7 @@
#ifndef _SSP_PL022_H
#define _SSP_PL022_H
#include <linux/dmaengine.h>
#include <linux/types.h>
/**
@ -224,6 +225,7 @@ struct dma_chan;
* struct pl022_ssp_master - device.platform_data for SPI controller devices.
* @bus_id: identifier for this bus
* @enable_dma: if true enables DMA driven transfers.
* @dma_filter: callback filter for dma_request_channel.
* @dma_rx_param: parameter to locate an RX DMA channel.
* @dma_tx_param: parameter to locate a TX DMA channel.
* @autosuspend_delay: delay in ms following transfer completion before the
@ -235,7 +237,7 @@ struct dma_chan;
struct pl022_ssp_controller {
u16 bus_id;
u8 enable_dma:1;
bool (*dma_filter)(struct dma_chan *chan, void *filter_param);
dma_filter_fn dma_filter;
void *dma_rx_param;
void *dma_tx_param;
int autosuspend_delay;

View File

@ -5,6 +5,7 @@
#ifndef __LINUX_SPI_PXA2XX_SPI_H
#define __LINUX_SPI_PXA2XX_SPI_H
#include <linux/dmaengine.h>
#include <linux/types.h>
#include <linux/pxa2xx_ssp.h>
@ -22,7 +23,7 @@ struct pxa2xx_spi_controller {
bool is_target;
/* DMA engine specific config */
bool (*dma_filter)(struct dma_chan *chan, void *param);
dma_filter_fn dma_filter;
void *tx_param;
void *rx_param;

View File

@ -36,7 +36,7 @@ struct spi_message;
* INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
* and SPI infrastructure.
*/
extern struct bus_type spi_bus_type;
extern const struct bus_type spi_bus_type;
/**
* struct spi_statistics - statistics for spi transfers
@ -131,7 +131,6 @@ extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
* struct spi_device - Controller side proxy for an SPI slave device
* @dev: Driver model representation of the device.
* @controller: SPI controller used with the device.
* @master: Copy of controller, for backwards compatibility.
* @max_speed_hz: Maximum clock rate to be used with this chip
* (on this board); may be changed by the device's driver.
* The spi_transfer.speed_hz can override this for each transfer.
@ -185,7 +184,6 @@ extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
struct spi_device {
struct device dev;
struct spi_controller *controller;
struct spi_controller *master; /* Compatibility layer */
u32 max_speed_hz;
u8 chip_select[SPI_CS_CNT_MAX];
u8 bits_per_word;
@ -452,9 +450,11 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
* the @cur_msg_completion. This flag is used to signal the context that
* is running spi_finalize_current_message() that it needs to complete()
* @cur_msg_mapped: message has been mapped for DMA
* @fallback: fallback to PIO if DMA transfer return failure with
* SPI_TRANS_FAIL_NO_START.
* @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
* @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
* selected
* @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
* @xfer_completion: used by core transfer_one_message()
* @busy: message pump is busy
* @running: message pump is running
@ -477,6 +477,8 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
*
* @set_cs: set the logic level of the chip select line. May be called
* from interrupt context.
* @optimize_message: optimize the message for reuse
* @unoptimize_message: release resources allocated by optimize_message
* @prepare_message: set up the controller to transfer a single message,
* for example doing DMA mapping. Called from threaded
* context.
@ -529,8 +531,6 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
* If the driver does not set this, the SPI core takes the snapshot as
* close to the driver hand-over as possible.
* @irq_flags: Interrupt enable state during PTP system timestamping
* @fallback: fallback to PIO if DMA transfer return failure with
* SPI_TRANS_FAIL_NO_START.
* @queue_empty: signal green light for opportunistically skipping the queue
* for spi_sync transfers.
* @must_async: disable all fast paths in the core
@ -710,13 +710,15 @@ struct spi_controller {
bool rt;
bool auto_runtime_pm;
bool cur_msg_mapped;
char last_cs[SPI_CS_CNT_MAX];
char last_cs_index_mask;
bool last_cs_mode_high;
bool fallback;
bool last_cs_mode_high;
s8 last_cs[SPI_CS_CNT_MAX];
u32 last_cs_index_mask : SPI_CS_CNT_MAX;
struct completion xfer_completion;
size_t max_dma_len;
int (*optimize_message)(struct spi_message *msg);
int (*unoptimize_message)(struct spi_message *msg);
int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
int (*transfer_one_message)(struct spi_controller *ctlr,
struct spi_message *mesg);
@ -1113,16 +1115,19 @@ struct spi_transfer {
* @spi: SPI device to which the transaction is queued
* @is_dma_mapped: if true, the caller provided both DMA and CPU virtual
* addresses for each transfer buffer
* @pre_optimized: peripheral driver pre-optimized the message
* @optimized: the message is in the optimized state
* @prepared: spi_prepare_message was called for the this message
* @status: zero for success, else negative errno
* @complete: called to report transaction completions
* @context: the argument to complete() when it's called
* @frame_length: the total number of bytes in the message
* @actual_length: the total number of bytes that were transferred in all
* successful segments
* @status: zero for success, else negative errno
* @queue: for use by whichever driver currently owns the message
* @state: for use by whichever driver currently owns the message
* @opt_state: for use by whichever driver currently owns the message
* @resources: for resource management when the SPI message is processed
* @prepared: spi_prepare_message was called for the this message
*
* A @spi_message is used to execute an atomic sequence of data transfers,
* each represented by a struct spi_transfer. The sequence is "atomic"
@ -1145,6 +1150,11 @@ struct spi_message {
unsigned is_dma_mapped:1;
/* spi_optimize_message() was called for this message */
bool pre_optimized;
/* __spi_optimize_message() was called for this message */
bool optimized;
/* spi_prepare_message() was called for this message */
bool prepared;
@ -1174,6 +1184,11 @@ struct spi_message {
*/
struct list_head queue;
void *state;
/*
* Optional state for use by controller driver between calls to
* __spi_optimize_message() and __spi_unoptimize_message().
*/
void *opt_state;
/* List of spi_res resources when the SPI message is processed */
struct list_head resources;
@ -1257,6 +1272,9 @@ static inline void spi_message_free(struct spi_message *m)
kfree(m);
}
extern int spi_optimize_message(struct spi_device *spi, struct spi_message *msg);
extern void spi_unoptimize_message(struct spi_message *msg);
extern int spi_setup(struct spi_device *spi);
extern int spi_async(struct spi_device *spi, struct spi_message *message);
extern int spi_slave_abort(struct spi_device *spi);
@ -1298,7 +1316,7 @@ spi_max_transfer_size(struct spi_device *spi)
*/
static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
{
u32 bpw_mask = spi->master->bits_per_word_mask;
u32 bpw_mask = spi->controller->bits_per_word_mask;
if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
return true;
@ -1365,12 +1383,10 @@ struct spi_replaced_transfers {
extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
struct spi_message *msg,
size_t maxsize,
gfp_t gfp);
size_t maxsize);
extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
struct spi_message *msg,
size_t maxwords,
gfp_t gfp);
size_t maxwords);
/*---------------------------------------------------------------------------*/
@ -1670,20 +1686,4 @@ spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
}
/* Compatibility layer */
#define spi_master spi_controller
#define spi_master_get_devdata(_ctlr) spi_controller_get_devdata(_ctlr)
#define spi_master_set_devdata(_ctlr, _data) \
spi_controller_set_devdata(_ctlr, _data)
#define spi_master_get(_ctlr) spi_controller_get(_ctlr)
#define spi_master_put(_ctlr) spi_controller_put(_ctlr)
#define spi_master_suspend(_ctlr) spi_controller_suspend(_ctlr)
#define spi_master_resume(_ctlr) spi_controller_resume(_ctlr)
#define spi_register_master(_ctlr) spi_register_controller(_ctlr)
#define devm_spi_register_master(_dev, _ctlr) \
devm_spi_register_controller(_dev, _ctlr)
#define spi_unregister_master(_ctlr) spi_unregister_controller(_ctlr)
#endif /* __LINUX_SPI_H */

View File

@ -10,7 +10,7 @@ struct spi_bitbang {
u8 use_dma;
u16 flags; /* extra spi->mode support */
struct spi_master *master;
struct spi_controller *ctlr;
/* setup_transfer() changes clock and/or wordsize to match settings
* for this transfer; zeroes restore defaults from spi_device.

View File

@ -15,8 +15,8 @@
*/
/**
* struct spi_gpio_platform_data - parameter for bitbanged SPI master
* @num_chipselect: how many slaves to allow
* struct spi_gpio_platform_data - parameter for bitbanged SPI host controller
* @num_chipselect: how many target devices to allow
*/
struct spi_gpio_platform_data {
u16 num_chipselect;

View File

@ -278,13 +278,13 @@ static inline void v4l2_i2c_subdev_unregister(struct v4l2_subdev *sd)
*
*
* @v4l2_dev: pointer to &struct v4l2_device.
* @master: pointer to struct spi_master.
* @ctlr: pointer to struct spi_controller.
* @info: pointer to struct spi_board_info.
*
* returns a &struct v4l2_subdev pointer.
*/
struct v4l2_subdev *v4l2_spi_new_subdev(struct v4l2_device *v4l2_dev,
struct spi_master *master, struct spi_board_info *info);
struct spi_controller *ctlr, struct spi_board_info *info);
/**
* v4l2_spi_subdev_init - Initialize a v4l2_subdev with data from an
@ -308,7 +308,7 @@ void v4l2_spi_subdev_unregister(struct v4l2_subdev *sd);
static inline struct v4l2_subdev *
v4l2_spi_new_subdev(struct v4l2_device *v4l2_dev,
struct spi_master *master, struct spi_board_info *info)
struct spi_controller *ctlr, struct spi_board_info *info)
{
return NULL;
}