Raw NAND controller drivers:

* Intel: Fix an error handling path in 'ebu_dma_start()'
 * Tango: Remove the driver
 * Marvell: Convert comma to semicolon
 * MXC: Convert comma to semicolon
 * Qcom: Add support for Qcom SMEM parser
 
 Related MTD changes:
 * parsers: Add Qcom SMEM parser
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEE9HuaYnbmDhq/XIDIJWrqGEe9VoQFAmAYQpEACgkQJWrqGEe9
 VoQ94gf+K9XjYPbA6mOezHSp4P7RHS6qJVs5BByW//E8i6r7GxC8wFEgjmAxD2E0
 /W7ZlZaKYElug/iqLKwo9VE0lcRMEBBrkWpGKzr3uNWZcBsjnXY73h5PEFxYBDbN
 kPlRv1UGpJ5vuxAzsK5IvHfxGpom76ASfh5oKejdW4bLf60b80trhvJZ9SyShCN/
 kB0+yQ91I2jiH/a8mAOmuIkOgPutImjnAEbFh2NLTheqk859ylXCZuNObTNT1/XH
 G+9/1luFlaRVHabEJgB1qdoSBlI9rrmu9ZiReNniGjPxmfTo/ipidPlNJGDdRCki
 0SNUeAYJWbHkEnZ7iNCQjT51KL393A==
 =obwS
 -----END PGP SIGNATURE-----

Merge tag 'nand/for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux into mtd/next

Raw NAND controller drivers:
* Intel: Fix an error handling path in 'ebu_dma_start()'
* Tango: Remove the driver
* Marvell: Convert comma to semicolon
* MXC: Convert comma to semicolon
* Qcom: Add support for Qcom SMEM parser

Related MTD changes:
* parsers: Add Qcom SMEM parser
This commit is contained in:
Richard Weinberger 2021-02-10 10:21:13 +01:00
commit 89fb650008
11 changed files with 221 additions and 740 deletions

View File

@ -0,0 +1,33 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/mtd/partitions/qcom,smem-part.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Qualcomm SMEM NAND flash partition parser binding
maintainers:
- Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
description: |
The Qualcomm SoCs supporting the NAND controller interface features a Shared
Memory (SMEM) based partition table scheme. The maximum partitions supported
varies between partition table revisions. V3 supports maximum 16 partitions
and V4 supports 48 partitions.
properties:
compatible:
const: qcom,smem-part
required:
- compatible
additionalProperties: false
examples:
- |
flash {
partitions {
compatible = "qcom,smem-part";
};
};

View File

@ -102,13 +102,6 @@ config MTD_NAND_S3C2410_CLKSTOP
when the is NAND chip selected or released, but will save
approximately 5mA of power when there is nothing happening.
config MTD_NAND_TANGO
tristate "Tango NAND controller"
depends on ARCH_TANGO || COMPILE_TEST
depends on HAS_IOMEM
help
Enables the NAND Flash controller on Tango chips.
config MTD_NAND_SHARPSL
tristate "Sharp SL Series (C7xx + others) NAND controller"
depends on ARCH_PXA || COMPILE_TEST

View File

@ -10,7 +10,6 @@ obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o
obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o
obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o
obj-$(CONFIG_MTD_NAND_TANGO) += tango_nand.o
obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o
obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o

View File

@ -318,8 +318,10 @@ static int ebu_dma_start(struct ebu_nand_controller *ebu_host, u32 dir,
}
tx = dmaengine_prep_slave_single(chan, buf_dma, len, dir, flags);
if (!tx)
return -ENXIO;
if (!tx) {
ret = -ENXIO;
goto err_unmap;
}
tx->callback = callback;
tx->callback_param = ebu_host;

View File

@ -2396,7 +2396,7 @@ static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
* be greater than that to be sure tCCS delay is respected.
*/
nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
period_ns) - 2,
period_ns) - 2;
nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
period_ns);

View File

@ -1731,7 +1731,7 @@ static int mxcnd_probe(struct platform_device *pdev)
this->legacy.chip_delay = 5;
nand_set_controller_data(this, host);
nand_set_flash_node(this, pdev->dev.of_node),
nand_set_flash_node(this, pdev->dev.of_node);
this->legacy.dev_ready = mxc_nand_dev_ready;
this->legacy.cmdfunc = mxc_nand_command;
this->legacy.read_byte = mxc_nand_read_byte;

View File

@ -2821,6 +2821,8 @@ static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
return 0;
}
static const char * const probes[] = { "qcomsmem", NULL };
static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
struct qcom_nand_host *host,
struct device_node *dn)
@ -2884,7 +2886,7 @@ static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
}
}
ret = mtd_device_register(mtd, NULL, 0);
ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
if (ret)
nand_cleanup(chip);

View File

@ -1,727 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2016 Sigma Designs
*/
#include <linux/io.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/rawnand.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
/* Offsets relative to chip->base */
#define PBUS_CMD 0
#define PBUS_ADDR 4
#define PBUS_DATA 8
/* Offsets relative to reg_base */
#define NFC_STATUS 0x00
#define NFC_FLASH_CMD 0x04
#define NFC_DEVICE_CFG 0x08
#define NFC_TIMING1 0x0c
#define NFC_TIMING2 0x10
#define NFC_XFER_CFG 0x14
#define NFC_PKT_0_CFG 0x18
#define NFC_PKT_N_CFG 0x1c
#define NFC_BB_CFG 0x20
#define NFC_ADDR_PAGE 0x24
#define NFC_ADDR_OFFSET 0x28
#define NFC_XFER_STATUS 0x2c
/* NFC_STATUS values */
#define CMD_READY BIT(31)
/* NFC_FLASH_CMD values */
#define NFC_READ 1
#define NFC_WRITE 2
/* NFC_XFER_STATUS values */
#define PAGE_IS_EMPTY BIT(16)
/* Offsets relative to mem_base */
#define METADATA 0x000
#define ERROR_REPORT 0x1c0
/*
* Error reports are split in two bytes:
* byte 0 for the first packet in the page (PKT_0)
* byte 1 for other packets in the page (PKT_N, for N > 0)
* ERR_COUNT_PKT_N is the max error count over all but the first packet.
*/
#define ERR_COUNT_PKT_0(v) (((v) >> 0) & 0x3f)
#define ERR_COUNT_PKT_N(v) (((v) >> 8) & 0x3f)
#define DECODE_FAIL_PKT_0(v) (((v) & BIT(7)) == 0)
#define DECODE_FAIL_PKT_N(v) (((v) & BIT(15)) == 0)
/* Offsets relative to pbus_base */
#define PBUS_CS_CTRL 0x83c
#define PBUS_PAD_MODE 0x8f0
/* PBUS_CS_CTRL values */
#define PBUS_IORDY BIT(31)
/*
* PBUS_PAD_MODE values
* In raw mode, the driver communicates directly with the NAND chips.
* In NFC mode, the NAND Flash controller manages the communication.
* We use NFC mode for read and write; raw mode for everything else.
*/
#define MODE_RAW 0
#define MODE_NFC BIT(31)
#define METADATA_SIZE 4
#define BBM_SIZE 6
#define FIELD_ORDER 15
#define MAX_CS 4
struct tango_nfc {
struct nand_controller hw;
void __iomem *reg_base;
void __iomem *mem_base;
void __iomem *pbus_base;
struct tango_chip *chips[MAX_CS];
struct dma_chan *chan;
int freq_kHz;
};
#define to_tango_nfc(ptr) container_of(ptr, struct tango_nfc, hw)
struct tango_chip {
struct nand_chip nand_chip;
void __iomem *base;
u32 timing1;
u32 timing2;
u32 xfer_cfg;
u32 pkt_0_cfg;
u32 pkt_n_cfg;
u32 bb_cfg;
};
#define to_tango_chip(ptr) container_of(ptr, struct tango_chip, nand_chip)
#define XFER_CFG(cs, page_count, steps, metadata_size) \
((cs) << 24 | (page_count) << 16 | (steps) << 8 | (metadata_size))
#define PKT_CFG(size, strength) ((size) << 16 | (strength))
#define BB_CFG(bb_offset, bb_size) ((bb_offset) << 16 | (bb_size))
#define TIMING(t0, t1, t2, t3) ((t0) << 24 | (t1) << 16 | (t2) << 8 | (t3))
static void tango_select_target(struct nand_chip *chip, unsigned int cs)
{
struct tango_nfc *nfc = to_tango_nfc(chip->controller);
struct tango_chip *tchip = to_tango_chip(chip);
writel_relaxed(tchip->timing1, nfc->reg_base + NFC_TIMING1);
writel_relaxed(tchip->timing2, nfc->reg_base + NFC_TIMING2);
writel_relaxed(tchip->xfer_cfg, nfc->reg_base + NFC_XFER_CFG);
writel_relaxed(tchip->pkt_0_cfg, nfc->reg_base + NFC_PKT_0_CFG);
writel_relaxed(tchip->pkt_n_cfg, nfc->reg_base + NFC_PKT_N_CFG);
writel_relaxed(tchip->bb_cfg, nfc->reg_base + NFC_BB_CFG);
}
static int tango_waitrdy(struct nand_chip *chip, unsigned int timeout_ms)
{
struct tango_nfc *nfc = to_tango_nfc(chip->controller);
u32 status;
return readl_relaxed_poll_timeout(nfc->pbus_base + PBUS_CS_CTRL,
status, status & PBUS_IORDY, 20,
timeout_ms);
}
static int tango_exec_instr(struct nand_chip *chip,
const struct nand_op_instr *instr)
{
struct tango_chip *tchip = to_tango_chip(chip);
unsigned int i;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writeb_relaxed(instr->ctx.cmd.opcode, tchip->base + PBUS_CMD);
return 0;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++)
writeb_relaxed(instr->ctx.addr.addrs[i],
tchip->base + PBUS_ADDR);
return 0;
case NAND_OP_DATA_IN_INSTR:
ioread8_rep(tchip->base + PBUS_DATA, instr->ctx.data.buf.in,
instr->ctx.data.len);
return 0;
case NAND_OP_DATA_OUT_INSTR:
iowrite8_rep(tchip->base + PBUS_DATA, instr->ctx.data.buf.out,
instr->ctx.data.len);
return 0;
case NAND_OP_WAITRDY_INSTR:
return tango_waitrdy(chip,
instr->ctx.waitrdy.timeout_ms);
default:
break;
}
return -EINVAL;
}
static int tango_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
unsigned int i;
int ret = 0;
if (check_only)
return 0;
tango_select_target(chip, op->cs);
for (i = 0; i < op->ninstrs; i++) {
ret = tango_exec_instr(chip, &op->instrs[i]);
if (ret)
break;
}
return ret;
}
/*
* The controller does not check for bitflips in erased pages,
* therefore software must check instead.
*/
static int check_erased_page(struct nand_chip *chip, u8 *buf)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *meta = chip->oob_poi + BBM_SIZE;
u8 *ecc = chip->oob_poi + BBM_SIZE + METADATA_SIZE;
const int ecc_size = chip->ecc.bytes;
const int pkt_size = chip->ecc.size;
int i, res, meta_len, bitflips = 0;
for (i = 0; i < chip->ecc.steps; ++i) {
meta_len = i ? 0 : METADATA_SIZE;
res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
meta, meta_len,
chip->ecc.strength);
if (res < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += res;
bitflips = max(res, bitflips);
buf += pkt_size;
ecc += ecc_size;
}
return bitflips;
}
static int decode_error_report(struct nand_chip *chip)
{
u32 status, res;
struct mtd_info *mtd = nand_to_mtd(chip);
struct tango_nfc *nfc = to_tango_nfc(chip->controller);
status = readl_relaxed(nfc->reg_base + NFC_XFER_STATUS);
if (status & PAGE_IS_EMPTY)
return 0;
res = readl_relaxed(nfc->mem_base + ERROR_REPORT);
if (DECODE_FAIL_PKT_0(res) || DECODE_FAIL_PKT_N(res))
return -EBADMSG;
/* ERR_COUNT_PKT_N is max, not sum, but that's all we have */
mtd->ecc_stats.corrected +=
ERR_COUNT_PKT_0(res) + ERR_COUNT_PKT_N(res);
return max(ERR_COUNT_PKT_0(res), ERR_COUNT_PKT_N(res));
}
static void tango_dma_callback(void *arg)
{
complete(arg);
}
static int do_dma(struct tango_nfc *nfc, enum dma_data_direction dir, int cmd,
const void *buf, int len, int page)
{
void __iomem *addr = nfc->reg_base + NFC_STATUS;
struct dma_chan *chan = nfc->chan;
struct dma_async_tx_descriptor *desc;
enum dma_transfer_direction tdir;
struct scatterlist sg;
struct completion tx_done;
int err = -EIO;
u32 res, val;
sg_init_one(&sg, buf, len);
if (dma_map_sg(chan->device->dev, &sg, 1, dir) != 1)
return -EIO;
tdir = dir == DMA_TO_DEVICE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
desc = dmaengine_prep_slave_sg(chan, &sg, 1, tdir, DMA_PREP_INTERRUPT);
if (!desc)
goto dma_unmap;
desc->callback = tango_dma_callback;
desc->callback_param = &tx_done;
init_completion(&tx_done);
writel_relaxed(MODE_NFC, nfc->pbus_base + PBUS_PAD_MODE);
writel_relaxed(page, nfc->reg_base + NFC_ADDR_PAGE);
writel_relaxed(0, nfc->reg_base + NFC_ADDR_OFFSET);
writel_relaxed(cmd, nfc->reg_base + NFC_FLASH_CMD);
dmaengine_submit(desc);
dma_async_issue_pending(chan);
res = wait_for_completion_timeout(&tx_done, HZ);
if (res > 0)
err = readl_poll_timeout(addr, val, val & CMD_READY, 0, 1000);
writel_relaxed(MODE_RAW, nfc->pbus_base + PBUS_PAD_MODE);
dma_unmap:
dma_unmap_sg(chan->device->dev, &sg, 1, dir);
return err;
}
static int tango_read_page(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct tango_nfc *nfc = to_tango_nfc(chip->controller);
int err, res, len = mtd->writesize;
tango_select_target(chip, chip->cur_cs);
if (oob_required)
chip->ecc.read_oob(chip, page);
err = do_dma(nfc, DMA_FROM_DEVICE, NFC_READ, buf, len, page);
if (err)
return err;
res = decode_error_report(chip);
if (res < 0) {
chip->ecc.read_oob_raw(chip, page);
res = check_erased_page(chip, buf);
}
return res;
}
static int tango_write_page(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct tango_nfc *nfc = to_tango_nfc(chip->controller);
const struct nand_sdr_timings *timings;
int err, len = mtd->writesize;
u8 status;
/* Calling tango_write_oob() would send PAGEPROG twice */
if (oob_required)
return -ENOTSUPP;
tango_select_target(chip, chip->cur_cs);
writel_relaxed(0xffffffff, nfc->mem_base + METADATA);
err = do_dma(nfc, DMA_TO_DEVICE, NFC_WRITE, buf, len, page);
if (err)
return err;
timings = nand_get_sdr_timings(nand_get_interface_config(chip));
err = tango_waitrdy(chip, PSEC_TO_MSEC(timings->tR_max));
if (err)
return err;
err = nand_status_op(chip, &status);
if (err)
return err;
return (status & NAND_STATUS_FAIL) ? -EIO : 0;
}
static void aux_read(struct nand_chip *chip, u8 **buf, int len, int *pos)
{
*pos += len;
if (!*buf) {
/* skip over "len" bytes */
nand_change_read_column_op(chip, *pos, NULL, 0, false);
} else {
struct tango_chip *tchip = to_tango_chip(chip);
ioread8_rep(tchip->base + PBUS_DATA, *buf, len);
*buf += len;
}
}
static void aux_write(struct nand_chip *chip, const u8 **buf, int len, int *pos)
{
*pos += len;
if (!*buf) {
/* skip over "len" bytes */
nand_change_write_column_op(chip, *pos, NULL, 0, false);
} else {
struct tango_chip *tchip = to_tango_chip(chip);
iowrite8_rep(tchip->base + PBUS_DATA, *buf, len);
*buf += len;
}
}
/*
* Physical page layout (not drawn to scale)
*
* NB: Bad Block Marker area splits PKT_N in two (N1, N2).
*
* +---+-----------------+-------+-----+-----------+-----+----+-------+
* | M | PKT_0 | ECC_0 | ... | N1 | BBM | N2 | ECC_N |
* +---+-----------------+-------+-----+-----------+-----+----+-------+
*
* Logical page layout:
*
* +-----+---+-------+-----+-------+
* oob = | BBM | M | ECC_0 | ... | ECC_N |
* +-----+---+-------+-----+-------+
*
* +-----------------+-----+-----------------+
* buf = | PKT_0 | ... | PKT_N |
* +-----------------+-----+-----------------+
*/
static void raw_read(struct nand_chip *chip, u8 *buf, u8 *oob)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *oob_orig = oob;
const int page_size = mtd->writesize;
const int ecc_size = chip->ecc.bytes;
const int pkt_size = chip->ecc.size;
int pos = 0; /* position within physical page */
int rem = page_size; /* bytes remaining until BBM area */
if (oob)
oob += BBM_SIZE;
aux_read(chip, &oob, METADATA_SIZE, &pos);
while (rem > pkt_size) {
aux_read(chip, &buf, pkt_size, &pos);
aux_read(chip, &oob, ecc_size, &pos);
rem = page_size - pos;
}
aux_read(chip, &buf, rem, &pos);
aux_read(chip, &oob_orig, BBM_SIZE, &pos);
aux_read(chip, &buf, pkt_size - rem, &pos);
aux_read(chip, &oob, ecc_size, &pos);
}
static void raw_write(struct nand_chip *chip, const u8 *buf, const u8 *oob)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const u8 *oob_orig = oob;
const int page_size = mtd->writesize;
const int ecc_size = chip->ecc.bytes;
const int pkt_size = chip->ecc.size;
int pos = 0; /* position within physical page */
int rem = page_size; /* bytes remaining until BBM area */
if (oob)
oob += BBM_SIZE;
aux_write(chip, &oob, METADATA_SIZE, &pos);
while (rem > pkt_size) {
aux_write(chip, &buf, pkt_size, &pos);
aux_write(chip, &oob, ecc_size, &pos);
rem = page_size - pos;
}
aux_write(chip, &buf, rem, &pos);
aux_write(chip, &oob_orig, BBM_SIZE, &pos);
aux_write(chip, &buf, pkt_size - rem, &pos);
aux_write(chip, &oob, ecc_size, &pos);
}
static int tango_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
tango_select_target(chip, chip->cur_cs);
nand_read_page_op(chip, page, 0, NULL, 0);
raw_read(chip, buf, chip->oob_poi);
return 0;
}
static int tango_write_page_raw(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
tango_select_target(chip, chip->cur_cs);
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
raw_write(chip, buf, chip->oob_poi);
return nand_prog_page_end_op(chip);
}
static int tango_read_oob(struct nand_chip *chip, int page)
{
tango_select_target(chip, chip->cur_cs);
nand_read_page_op(chip, page, 0, NULL, 0);
raw_read(chip, NULL, chip->oob_poi);
return 0;
}
static int tango_write_oob(struct nand_chip *chip, int page)
{
tango_select_target(chip, chip->cur_cs);
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
raw_write(chip, NULL, chip->oob_poi);
return nand_prog_page_end_op(chip);
}
static int oob_ecc(struct mtd_info *mtd, int idx, struct mtd_oob_region *res)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (idx >= ecc->steps)
return -ERANGE;
res->offset = BBM_SIZE + METADATA_SIZE + ecc->bytes * idx;
res->length = ecc->bytes;
return 0;
}
static int oob_free(struct mtd_info *mtd, int idx, struct mtd_oob_region *res)
{
return -ERANGE; /* no free space in spare area */
}
static const struct mtd_ooblayout_ops tango_nand_ooblayout_ops = {
.ecc = oob_ecc,
.free = oob_free,
};
static u32 to_ticks(int kHz, int ps)
{
return DIV_ROUND_UP_ULL((u64)kHz * ps, NSEC_PER_SEC);
}
static int tango_set_timings(struct nand_chip *chip, int csline,
const struct nand_interface_config *conf)
{
const struct nand_sdr_timings *sdr = nand_get_sdr_timings(conf);
struct tango_nfc *nfc = to_tango_nfc(chip->controller);
struct tango_chip *tchip = to_tango_chip(chip);
u32 Trdy, Textw, Twc, Twpw, Tacc, Thold, Trpw, Textr;
int kHz = nfc->freq_kHz;
if (IS_ERR(sdr))
return PTR_ERR(sdr);
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
Trdy = to_ticks(kHz, sdr->tCEA_max - sdr->tREA_max);
Textw = to_ticks(kHz, sdr->tWB_max);
Twc = to_ticks(kHz, sdr->tWC_min);
Twpw = to_ticks(kHz, sdr->tWC_min - sdr->tWP_min);
Tacc = to_ticks(kHz, sdr->tREA_max);
Thold = to_ticks(kHz, sdr->tREH_min);
Trpw = to_ticks(kHz, sdr->tRC_min - sdr->tREH_min);
Textr = to_ticks(kHz, sdr->tRHZ_max);
tchip->timing1 = TIMING(Trdy, Textw, Twc, Twpw);
tchip->timing2 = TIMING(Tacc, Thold, Trpw, Textr);
return 0;
}
static int tango_attach_chip(struct nand_chip *chip)
{
struct nand_ecc_ctrl *ecc = &chip->ecc;
ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
ecc->algo = NAND_ECC_ALGO_BCH;
ecc->bytes = DIV_ROUND_UP(ecc->strength * FIELD_ORDER, BITS_PER_BYTE);
ecc->read_page_raw = tango_read_page_raw;
ecc->write_page_raw = tango_write_page_raw;
ecc->read_page = tango_read_page;
ecc->write_page = tango_write_page;
ecc->read_oob = tango_read_oob;
ecc->write_oob = tango_write_oob;
return 0;
}
static const struct nand_controller_ops tango_controller_ops = {
.attach_chip = tango_attach_chip,
.setup_interface = tango_set_timings,
.exec_op = tango_exec_op,
};
static int chip_init(struct device *dev, struct device_node *np)
{
u32 cs;
int err, res;
struct mtd_info *mtd;
struct nand_chip *chip;
struct tango_chip *tchip;
struct nand_ecc_ctrl *ecc;
struct tango_nfc *nfc = dev_get_drvdata(dev);
tchip = devm_kzalloc(dev, sizeof(*tchip), GFP_KERNEL);
if (!tchip)
return -ENOMEM;
res = of_property_count_u32_elems(np, "reg");
if (res < 0)
return res;
if (res != 1)
return -ENOTSUPP; /* Multi-CS chips are not supported */
err = of_property_read_u32_index(np, "reg", 0, &cs);
if (err)
return err;
if (cs >= MAX_CS)
return -EINVAL;
chip = &tchip->nand_chip;
ecc = &chip->ecc;
mtd = nand_to_mtd(chip);
chip->options = NAND_USES_DMA |
NAND_NO_SUBPAGE_WRITE |
NAND_WAIT_TCCS;
chip->controller = &nfc->hw;
tchip->base = nfc->pbus_base + (cs * 256);
nand_set_flash_node(chip, np);
mtd_set_ooblayout(mtd, &tango_nand_ooblayout_ops);
mtd->dev.parent = dev;
err = nand_scan(chip, 1);
if (err)
return err;
tchip->xfer_cfg = XFER_CFG(cs, 1, ecc->steps, METADATA_SIZE);
tchip->pkt_0_cfg = PKT_CFG(ecc->size + METADATA_SIZE, ecc->strength);
tchip->pkt_n_cfg = PKT_CFG(ecc->size, ecc->strength);
tchip->bb_cfg = BB_CFG(mtd->writesize, BBM_SIZE);
err = mtd_device_register(mtd, NULL, 0);
if (err) {
nand_cleanup(chip);
return err;
}
nfc->chips[cs] = tchip;
return 0;
}
static int tango_nand_remove(struct platform_device *pdev)
{
struct tango_nfc *nfc = platform_get_drvdata(pdev);
struct nand_chip *chip;
int cs, ret;
dma_release_channel(nfc->chan);
for (cs = 0; cs < MAX_CS; ++cs) {
if (nfc->chips[cs]) {
chip = &nfc->chips[cs]->nand_chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
}
}
return 0;
}
static int tango_nand_probe(struct platform_device *pdev)
{
int err;
struct clk *clk;
struct resource *res;
struct tango_nfc *nfc;
struct device_node *np;
nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nfc->reg_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(nfc->reg_base))
return PTR_ERR(nfc->reg_base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
nfc->mem_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(nfc->mem_base))
return PTR_ERR(nfc->mem_base);
res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
nfc->pbus_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(nfc->pbus_base))
return PTR_ERR(nfc->pbus_base);
writel_relaxed(MODE_RAW, nfc->pbus_base + PBUS_PAD_MODE);
clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(clk))
return PTR_ERR(clk);
nfc->chan = dma_request_chan(&pdev->dev, "rxtx");
if (IS_ERR(nfc->chan))
return PTR_ERR(nfc->chan);
platform_set_drvdata(pdev, nfc);
nand_controller_init(&nfc->hw);
nfc->hw.ops = &tango_controller_ops;
nfc->freq_kHz = clk_get_rate(clk) / 1000;
for_each_child_of_node(pdev->dev.of_node, np) {
err = chip_init(&pdev->dev, np);
if (err) {
tango_nand_remove(pdev);
of_node_put(np);
return err;
}
}
return 0;
}
static const struct of_device_id tango_nand_ids[] = {
{ .compatible = "sigma,smp8758-nand" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, tango_nand_ids);
static struct platform_driver tango_nand_driver = {
.probe = tango_nand_probe,
.remove = tango_nand_remove,
.driver = {
.name = "tango-nand",
.of_match_table = tango_nand_ids,
},
};
module_platform_driver(tango_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sigma Designs");
MODULE_DESCRIPTION("Tango4 NAND Flash controller driver");

View File

@ -160,3 +160,11 @@ config MTD_REDBOOT_PARTS_READONLY
'FIS directory' images, enable this option.
endif # MTD_REDBOOT_PARTS
config MTD_QCOMSMEM_PARTS
tristate "Qualcomm SMEM NAND flash partition parser"
depends on MTD_NAND_QCOM || COMPILE_TEST
depends on QCOM_SMEM
help
This provides support for parsing partitions from Shared Memory (SMEM)
for NAND flash on Qualcomm platforms.

View File

@ -9,3 +9,4 @@ obj-$(CONFIG_MTD_AFS_PARTS) += afs.o
obj-$(CONFIG_MTD_PARSER_TRX) += parser_trx.o
obj-$(CONFIG_MTD_SHARPSL_PARTS) += sharpslpart.o
obj-$(CONFIG_MTD_REDBOOT_PARTS) += redboot.o
obj-$(CONFIG_MTD_QCOMSMEM_PARTS) += qcomsmempart.o

View File

@ -0,0 +1,170 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Qualcomm SMEM NAND flash partition parser
*
* Copyright (C) 2020, Linaro Ltd.
*/
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/slab.h>
#include <linux/soc/qcom/smem.h>
#define SMEM_AARM_PARTITION_TABLE 9
#define SMEM_APPS 0
#define SMEM_FLASH_PART_MAGIC1 0x55ee73aa
#define SMEM_FLASH_PART_MAGIC2 0xe35ebddb
#define SMEM_FLASH_PTABLE_V3 3
#define SMEM_FLASH_PTABLE_V4 4
#define SMEM_FLASH_PTABLE_MAX_PARTS_V3 16
#define SMEM_FLASH_PTABLE_MAX_PARTS_V4 48
#define SMEM_FLASH_PTABLE_HDR_LEN (4 * sizeof(u32))
#define SMEM_FLASH_PTABLE_NAME_SIZE 16
/**
* struct smem_flash_pentry - SMEM Flash partition entry
* @name: Name of the partition
* @offset: Offset in blocks
* @length: Length of the partition in blocks
* @attr: Flags for this partition
*/
struct smem_flash_pentry {
char name[SMEM_FLASH_PTABLE_NAME_SIZE];
__le32 offset;
__le32 length;
u8 attr;
} __packed __aligned(4);
/**
* struct smem_flash_ptable - SMEM Flash partition table
* @magic1: Partition table Magic 1
* @magic2: Partition table Magic 2
* @version: Partition table version
* @numparts: Number of partitions in this ptable
* @pentry: Flash partition entries belonging to this ptable
*/
struct smem_flash_ptable {
__le32 magic1;
__le32 magic2;
__le32 version;
__le32 numparts;
struct smem_flash_pentry pentry[SMEM_FLASH_PTABLE_MAX_PARTS_V4];
} __packed __aligned(4);
static int parse_qcomsmem_part(struct mtd_info *mtd,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct smem_flash_pentry *pentry;
struct smem_flash_ptable *ptable;
size_t len = SMEM_FLASH_PTABLE_HDR_LEN;
struct mtd_partition *parts;
int ret, i, numparts;
char *name, *c;
pr_debug("Parsing partition table info from SMEM\n");
ptable = qcom_smem_get(SMEM_APPS, SMEM_AARM_PARTITION_TABLE, &len);
if (IS_ERR(ptable)) {
pr_err("Error reading partition table header\n");
return PTR_ERR(ptable);
}
/* Verify ptable magic */
if (le32_to_cpu(ptable->magic1) != SMEM_FLASH_PART_MAGIC1 ||
le32_to_cpu(ptable->magic2) != SMEM_FLASH_PART_MAGIC2) {
pr_err("Partition table magic verification failed\n");
return -EINVAL;
}
/* Ensure that # of partitions is less than the max we have allocated */
numparts = le32_to_cpu(ptable->numparts);
if (numparts > SMEM_FLASH_PTABLE_MAX_PARTS_V4) {
pr_err("Partition numbers exceed the max limit\n");
return -EINVAL;
}
/* Find out length of partition data based on table version */
if (le32_to_cpu(ptable->version) <= SMEM_FLASH_PTABLE_V3) {
len = SMEM_FLASH_PTABLE_HDR_LEN + SMEM_FLASH_PTABLE_MAX_PARTS_V3 *
sizeof(struct smem_flash_pentry);
} else if (le32_to_cpu(ptable->version) == SMEM_FLASH_PTABLE_V4) {
len = SMEM_FLASH_PTABLE_HDR_LEN + SMEM_FLASH_PTABLE_MAX_PARTS_V4 *
sizeof(struct smem_flash_pentry);
} else {
pr_err("Unknown ptable version (%d)", le32_to_cpu(ptable->version));
return -EINVAL;
}
/*
* Now that the partition table header has been parsed, verified
* and the length of the partition table calculated, read the
* complete partition table
*/
ptable = qcom_smem_get(SMEM_APPS, SMEM_AARM_PARTITION_TABLE, &len);
if (IS_ERR_OR_NULL(ptable)) {
pr_err("Error reading partition table\n");
return PTR_ERR(ptable);
}
parts = kcalloc(numparts, sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
for (i = 0; i < numparts; i++) {
pentry = &ptable->pentry[i];
if (pentry->name[0] == '\0')
continue;
name = kstrdup(pentry->name, GFP_KERNEL);
if (!name) {
ret = -ENOMEM;
goto out_free_parts;
}
/* Convert name to lower case */
for (c = name; *c != '\0'; c++)
*c = tolower(*c);
parts[i].name = name;
parts[i].offset = le32_to_cpu(pentry->offset) * mtd->erasesize;
parts[i].mask_flags = pentry->attr;
parts[i].size = le32_to_cpu(pentry->length) * mtd->erasesize;
pr_debug("%d: %s offs=0x%08x size=0x%08x attr:0x%08x\n",
i, pentry->name, le32_to_cpu(pentry->offset),
le32_to_cpu(pentry->length), pentry->attr);
}
pr_debug("SMEM partition table found: ver: %d len: %d\n",
le32_to_cpu(ptable->version), numparts);
*pparts = parts;
return numparts;
out_free_parts:
while (--i >= 0)
kfree(parts[i].name);
kfree(parts);
*pparts = NULL;
return ret;
}
static const struct of_device_id qcomsmem_of_match_table[] = {
{ .compatible = "qcom,smem-part" },
{},
};
MODULE_DEVICE_TABLE(of, qcomsmem_of_match_table);
static struct mtd_part_parser mtd_parser_qcomsmem = {
.parse_fn = parse_qcomsmem_part,
.name = "qcomsmem",
.of_match_table = qcomsmem_of_match_table,
};
module_mtd_part_parser(mtd_parser_qcomsmem);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
MODULE_DESCRIPTION("Qualcomm SMEM NAND flash partition parser");