Lockless (and preemptless) fastpaths for slub

Use the this_cpu_cmpxchg_double functionality to implement a lockless
allocation algorithm on arches that support fast this_cpu_ops.

Each of the per cpu pointers is paired with a transaction id that ensures
that updates of the per cpu information can only occur in sequence on
a certain cpu.

A transaction id is a "long" integer that is comprised of an event number
and the cpu number. The event number is incremented for every change to the
per cpu state. This means that the cmpxchg instruction can verify for an
update that nothing interfered and that we are updating the percpu structure
for the processor where we picked up the information and that we are also
currently on that processor when we update the information.

This results in a significant decrease of the overhead in the fastpaths. It
also makes it easy to adopt the fast path for realtime kernels since this
is lockless and does not require the use of the current per cpu area
over the critical section. It is only important that the per cpu area is
current at the beginning of the critical section and at the end.

So there is no need even to disable preemption.

Test results show that the fastpath cycle count is reduced by up to ~ 40%
(alloc/free test goes from ~140 cycles down to ~80). The slowpath for kfree
adds a few cycles.

Sadly this does nothing for the slowpath which is where the main issues with
performance in slub are but the best case performance rises significantly.
(For that see the more complex slub patches that require cmpxchg_double)

Kmalloc: alloc/free test

Before:

10000 times kmalloc(8)/kfree -> 134 cycles
10000 times kmalloc(16)/kfree -> 152 cycles
10000 times kmalloc(32)/kfree -> 144 cycles
10000 times kmalloc(64)/kfree -> 142 cycles
10000 times kmalloc(128)/kfree -> 142 cycles
10000 times kmalloc(256)/kfree -> 132 cycles
10000 times kmalloc(512)/kfree -> 132 cycles
10000 times kmalloc(1024)/kfree -> 135 cycles
10000 times kmalloc(2048)/kfree -> 135 cycles
10000 times kmalloc(4096)/kfree -> 135 cycles
10000 times kmalloc(8192)/kfree -> 144 cycles
10000 times kmalloc(16384)/kfree -> 754 cycles

After:

10000 times kmalloc(8)/kfree -> 78 cycles
10000 times kmalloc(16)/kfree -> 78 cycles
10000 times kmalloc(32)/kfree -> 82 cycles
10000 times kmalloc(64)/kfree -> 88 cycles
10000 times kmalloc(128)/kfree -> 79 cycles
10000 times kmalloc(256)/kfree -> 79 cycles
10000 times kmalloc(512)/kfree -> 85 cycles
10000 times kmalloc(1024)/kfree -> 82 cycles
10000 times kmalloc(2048)/kfree -> 82 cycles
10000 times kmalloc(4096)/kfree -> 85 cycles
10000 times kmalloc(8192)/kfree -> 82 cycles
10000 times kmalloc(16384)/kfree -> 706 cycles

Kmalloc: Repeatedly allocate then free test

Before:

10000 times kmalloc(8) -> 211 cycles kfree -> 113 cycles
10000 times kmalloc(16) -> 174 cycles kfree -> 115 cycles
10000 times kmalloc(32) -> 235 cycles kfree -> 129 cycles
10000 times kmalloc(64) -> 222 cycles kfree -> 120 cycles
10000 times kmalloc(128) -> 343 cycles kfree -> 139 cycles
10000 times kmalloc(256) -> 827 cycles kfree -> 147 cycles
10000 times kmalloc(512) -> 1048 cycles kfree -> 272 cycles
10000 times kmalloc(1024) -> 2043 cycles kfree -> 528 cycles
10000 times kmalloc(2048) -> 4002 cycles kfree -> 571 cycles
10000 times kmalloc(4096) -> 7740 cycles kfree -> 628 cycles
10000 times kmalloc(8192) -> 8062 cycles kfree -> 850 cycles
10000 times kmalloc(16384) -> 8895 cycles kfree -> 1249 cycles

After:

10000 times kmalloc(8) -> 190 cycles kfree -> 129 cycles
10000 times kmalloc(16) -> 76 cycles kfree -> 123 cycles
10000 times kmalloc(32) -> 126 cycles kfree -> 124 cycles
10000 times kmalloc(64) -> 181 cycles kfree -> 128 cycles
10000 times kmalloc(128) -> 310 cycles kfree -> 140 cycles
10000 times kmalloc(256) -> 809 cycles kfree -> 165 cycles
10000 times kmalloc(512) -> 1005 cycles kfree -> 269 cycles
10000 times kmalloc(1024) -> 1999 cycles kfree -> 527 cycles
10000 times kmalloc(2048) -> 3967 cycles kfree -> 570 cycles
10000 times kmalloc(4096) -> 7658 cycles kfree -> 637 cycles
10000 times kmalloc(8192) -> 8111 cycles kfree -> 859 cycles
10000 times kmalloc(16384) -> 8791 cycles kfree -> 1173 cycles

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This commit is contained in:
Christoph Lameter 2011-02-25 11:38:54 -06:00 committed by Pekka Enberg
parent d3f661d69a
commit 8a5ec0ba42
2 changed files with 207 additions and 3 deletions

View File

@ -35,7 +35,10 @@ enum stat_item {
NR_SLUB_STAT_ITEMS };
struct kmem_cache_cpu {
void **freelist; /* Pointer to first free per cpu object */
void **freelist; /* Pointer to next available object */
#ifdef CONFIG_CMPXCHG_LOCAL
unsigned long tid; /* Globally unique transaction id */
#endif
struct page *page; /* The slab from which we are allocating */
int node; /* The node of the page (or -1 for debug) */
#ifdef CONFIG_SLUB_STATS

205
mm/slub.c
View File

@ -1494,6 +1494,77 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
}
}
#ifdef CONFIG_CMPXCHG_LOCAL
#ifdef CONFIG_PREEMPT
/*
* Calculate the next globally unique transaction for disambiguiation
* during cmpxchg. The transactions start with the cpu number and are then
* incremented by CONFIG_NR_CPUS.
*/
#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
* No preemption supported therefore also no need to check for
* different cpus.
*/
#define TID_STEP 1
#endif
static inline unsigned long next_tid(unsigned long tid)
{
return tid + TID_STEP;
}
static inline unsigned int tid_to_cpu(unsigned long tid)
{
return tid % TID_STEP;
}
static inline unsigned long tid_to_event(unsigned long tid)
{
return tid / TID_STEP;
}
static inline unsigned int init_tid(int cpu)
{
return cpu;
}
static inline void note_cmpxchg_failure(const char *n,
const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
#ifdef CONFIG_PREEMPT
if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
printk("due to cpu change %d -> %d\n",
tid_to_cpu(tid), tid_to_cpu(actual_tid));
else
#endif
if (tid_to_event(tid) != tid_to_event(actual_tid))
printk("due to cpu running other code. Event %ld->%ld\n",
tid_to_event(tid), tid_to_event(actual_tid));
else
printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
actual_tid, tid, next_tid(tid));
#endif
}
#endif
void init_kmem_cache_cpus(struct kmem_cache *s)
{
#if defined(CONFIG_CMPXCHG_LOCAL) && defined(CONFIG_PREEMPT)
int cpu;
for_each_possible_cpu(cpu)
per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
#endif
}
/*
* Remove the cpu slab
*/
@ -1525,6 +1596,9 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
page->inuse--;
}
c->page = NULL;
#ifdef CONFIG_CMPXCHG_LOCAL
c->tid = next_tid(c->tid);
#endif
unfreeze_slab(s, page, tail);
}
@ -1659,6 +1733,19 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
{
void **object;
struct page *new;
#ifdef CONFIG_CMPXCHG_LOCAL
unsigned long flags;
local_irq_save(flags);
#ifdef CONFIG_PREEMPT
/*
* We may have been preempted and rescheduled on a different
* cpu before disabling interrupts. Need to reload cpu area
* pointer.
*/
c = this_cpu_ptr(s->cpu_slab);
#endif
#endif
/* We handle __GFP_ZERO in the caller */
gfpflags &= ~__GFP_ZERO;
@ -1685,6 +1772,10 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
c->node = page_to_nid(c->page);
unlock_out:
slab_unlock(c->page);
#ifdef CONFIG_CMPXCHG_LOCAL
c->tid = next_tid(c->tid);
local_irq_restore(flags);
#endif
stat(s, ALLOC_SLOWPATH);
return object;
@ -1746,23 +1837,76 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
{
void **object;
struct kmem_cache_cpu *c;
#ifdef CONFIG_CMPXCHG_LOCAL
unsigned long tid;
#else
unsigned long flags;
#endif
if (slab_pre_alloc_hook(s, gfpflags))
return NULL;
#ifndef CONFIG_CMPXCHG_LOCAL
local_irq_save(flags);
#else
redo:
#endif
/*
* Must read kmem_cache cpu data via this cpu ptr. Preemption is
* enabled. We may switch back and forth between cpus while
* reading from one cpu area. That does not matter as long
* as we end up on the original cpu again when doing the cmpxchg.
*/
c = __this_cpu_ptr(s->cpu_slab);
#ifdef CONFIG_CMPXCHG_LOCAL
/*
* The transaction ids are globally unique per cpu and per operation on
* a per cpu queue. Thus they can be guarantee that the cmpxchg_double
* occurs on the right processor and that there was no operation on the
* linked list in between.
*/
tid = c->tid;
barrier();
#endif
object = c->freelist;
if (unlikely(!object || !node_match(c, node)))
object = __slab_alloc(s, gfpflags, node, addr, c);
else {
#ifdef CONFIG_CMPXCHG_LOCAL
/*
* The cmpxchg will only match if there was no additonal
* operation and if we are on the right processor.
*
* The cmpxchg does the following atomically (without lock semantics!)
* 1. Relocate first pointer to the current per cpu area.
* 2. Verify that tid and freelist have not been changed
* 3. If they were not changed replace tid and freelist
*
* Since this is without lock semantics the protection is only against
* code executing on this cpu *not* from access by other cpus.
*/
if (unlikely(!this_cpu_cmpxchg_double(
s->cpu_slab->freelist, s->cpu_slab->tid,
object, tid,
get_freepointer(s, object), next_tid(tid)))) {
note_cmpxchg_failure("slab_alloc", s, tid);
goto redo;
}
#else
c->freelist = get_freepointer(s, object);
#endif
stat(s, ALLOC_FASTPATH);
}
#ifndef CONFIG_CMPXCHG_LOCAL
local_irq_restore(flags);
#endif
if (unlikely(gfpflags & __GFP_ZERO) && object)
memset(object, 0, s->objsize);
@ -1840,9 +1984,13 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
{
void *prior;
void **object = (void *)x;
#ifdef CONFIG_CMPXCHG_LOCAL
unsigned long flags;
stat(s, FREE_SLOWPATH);
local_irq_save(flags);
#endif
slab_lock(page);
stat(s, FREE_SLOWPATH);
if (kmem_cache_debug(s))
goto debug;
@ -1872,6 +2020,9 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
out_unlock:
slab_unlock(page);
#ifdef CONFIG_CMPXCHG_LOCAL
local_irq_restore(flags);
#endif
return;
slab_empty:
@ -1883,6 +2034,9 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
stat(s, FREE_REMOVE_PARTIAL);
}
slab_unlock(page);
#ifdef CONFIG_CMPXCHG_LOCAL
local_irq_restore(flags);
#endif
stat(s, FREE_SLAB);
discard_slab(s, page);
return;
@ -1909,21 +2063,54 @@ static __always_inline void slab_free(struct kmem_cache *s,
{
void **object = (void *)x;
struct kmem_cache_cpu *c;
#ifdef CONFIG_CMPXCHG_LOCAL
unsigned long tid;
#else
unsigned long flags;
#endif
slab_free_hook(s, x);
#ifndef CONFIG_CMPXCHG_LOCAL
local_irq_save(flags);
#endif
redo:
/*
* Determine the currently cpus per cpu slab.
* The cpu may change afterward. However that does not matter since
* data is retrieved via this pointer. If we are on the same cpu
* during the cmpxchg then the free will succedd.
*/
c = __this_cpu_ptr(s->cpu_slab);
#ifdef CONFIG_CMPXCHG_LOCAL
tid = c->tid;
barrier();
#endif
if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
set_freepointer(s, object, c->freelist);
#ifdef CONFIG_CMPXCHG_LOCAL
if (unlikely(!this_cpu_cmpxchg_double(
s->cpu_slab->freelist, s->cpu_slab->tid,
c->freelist, tid,
object, next_tid(tid)))) {
note_cmpxchg_failure("slab_free", s, tid);
goto redo;
}
#else
c->freelist = object;
#endif
stat(s, FREE_FASTPATH);
} else
__slab_free(s, page, x, addr);
#ifndef CONFIG_CMPXCHG_LOCAL
local_irq_restore(flags);
#endif
}
void kmem_cache_free(struct kmem_cache *s, void *x)
@ -2115,9 +2302,23 @@ static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
#ifdef CONFIG_CMPXCHG_LOCAL
/*
* Must align to double word boundary for the double cmpxchg instructions
* to work.
*/
s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
#else
/* Regular alignment is sufficient */
s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
#endif
return s->cpu_slab != NULL;
if (!s->cpu_slab)
return 0;
init_kmem_cache_cpus(s);
return 1;
}
static struct kmem_cache *kmem_cache_node;