|
|
|
@ -53,6 +53,17 @@
|
|
|
|
|
* page. */
|
|
|
|
|
#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
|
|
|
|
|
|
|
|
|
|
/* For PAE we need the PMD index as well. We use the last 2MB, so we
|
|
|
|
|
* will need the last pmd entry of the last pmd page. */
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
|
|
|
|
|
#define RESERVE_MEM 2U
|
|
|
|
|
#define CHECK_GPGD_MASK _PAGE_PRESENT
|
|
|
|
|
#else
|
|
|
|
|
#define RESERVE_MEM 4U
|
|
|
|
|
#define CHECK_GPGD_MASK _PAGE_TABLE
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* We actually need a separate PTE page for each CPU. Remember that after the
|
|
|
|
|
* Switcher code itself comes two pages for each CPU, and we don't want this
|
|
|
|
|
* CPU's guest to see the pages of any other CPU. */
|
|
|
|
@ -73,23 +84,58 @@ static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
|
|
|
|
|
{
|
|
|
|
|
unsigned int index = pgd_index(vaddr);
|
|
|
|
|
|
|
|
|
|
#ifndef CONFIG_X86_PAE
|
|
|
|
|
/* We kill any Guest trying to touch the Switcher addresses. */
|
|
|
|
|
if (index >= SWITCHER_PGD_INDEX) {
|
|
|
|
|
kill_guest(cpu, "attempt to access switcher pages");
|
|
|
|
|
index = 0;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
/* Return a pointer index'th pgd entry for the i'th page table. */
|
|
|
|
|
return &cpu->lg->pgdirs[i].pgdir[index];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
/* This routine then takes the PGD entry given above, which contains the
|
|
|
|
|
* address of the PMD page. It then returns a pointer to the PMD entry for the
|
|
|
|
|
* given address. */
|
|
|
|
|
static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
|
|
|
|
|
{
|
|
|
|
|
unsigned int index = pmd_index(vaddr);
|
|
|
|
|
pmd_t *page;
|
|
|
|
|
|
|
|
|
|
/* We kill any Guest trying to touch the Switcher addresses. */
|
|
|
|
|
if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
|
|
|
|
|
index >= SWITCHER_PMD_INDEX) {
|
|
|
|
|
kill_guest(cpu, "attempt to access switcher pages");
|
|
|
|
|
index = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* You should never call this if the PGD entry wasn't valid */
|
|
|
|
|
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
|
|
|
|
|
page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
|
|
|
|
|
|
|
|
|
|
return &page[index];
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* This routine then takes the page directory entry returned above, which
|
|
|
|
|
* contains the address of the page table entry (PTE) page. It then returns a
|
|
|
|
|
* pointer to the PTE entry for the given address. */
|
|
|
|
|
static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr)
|
|
|
|
|
static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
|
|
|
|
|
{
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
|
|
|
|
|
pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
|
|
|
|
|
|
|
|
|
|
/* You should never call this if the PMD entry wasn't valid */
|
|
|
|
|
BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
|
|
|
|
|
#else
|
|
|
|
|
pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
|
|
|
|
|
/* You should never call this if the PGD entry wasn't valid */
|
|
|
|
|
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return &page[pte_index(vaddr)];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -101,10 +147,31 @@ static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
|
|
|
|
|
return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr)
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
|
|
|
|
|
{
|
|
|
|
|
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
|
|
|
|
|
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
|
|
|
|
|
return gpage + pmd_index(vaddr) * sizeof(pmd_t);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
static unsigned long gpte_addr(struct lg_cpu *cpu,
|
|
|
|
|
pgd_t gpgd, unsigned long vaddr)
|
|
|
|
|
{
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmd_t gpmd;
|
|
|
|
|
#endif
|
|
|
|
|
unsigned long gpage;
|
|
|
|
|
|
|
|
|
|
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
|
|
|
|
|
gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
|
|
|
|
|
BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
|
|
|
|
|
#else
|
|
|
|
|
gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
|
|
|
|
|
#endif
|
|
|
|
|
return gpage + pte_index(vaddr) * sizeof(pte_t);
|
|
|
|
|
}
|
|
|
|
|
/*:*/
|
|
|
|
@ -184,11 +251,20 @@ static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
|
|
|
|
|
|
|
|
|
|
static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
|
|
|
|
|
{
|
|
|
|
|
if ((pgd_flags(gpgd) & ~_PAGE_TABLE) ||
|
|
|
|
|
if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
|
|
|
|
|
(pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
|
|
|
|
|
kill_guest(cpu, "bad page directory entry");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
|
|
|
|
|
{
|
|
|
|
|
if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
|
|
|
|
|
(pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
|
|
|
|
|
kill_guest(cpu, "bad page middle directory entry");
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*H:330
|
|
|
|
|
* (i) Looking up a page table entry when the Guest faults.
|
|
|
|
|
*
|
|
|
|
@ -207,6 +283,11 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|
|
|
|
pte_t gpte;
|
|
|
|
|
pte_t *spte;
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmd_t *spmd;
|
|
|
|
|
pmd_t gpmd;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* First step: get the top-level Guest page table entry. */
|
|
|
|
|
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
|
|
|
|
|
/* Toplevel not present? We can't map it in. */
|
|
|
|
@ -228,12 +309,40 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|
|
|
|
check_gpgd(cpu, gpgd);
|
|
|
|
|
/* And we copy the flags to the shadow PGD entry. The page
|
|
|
|
|
* number in the shadow PGD is the page we just allocated. */
|
|
|
|
|
*spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
|
|
|
|
|
set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
|
|
|
|
|
/* middle level not present? We can't map it in. */
|
|
|
|
|
if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Now look at the matching shadow entry. */
|
|
|
|
|
spmd = spmd_addr(cpu, *spgd, vaddr);
|
|
|
|
|
|
|
|
|
|
if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
|
|
|
|
|
/* No shadow entry: allocate a new shadow PTE page. */
|
|
|
|
|
unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
|
|
|
|
|
|
|
|
|
|
/* This is not really the Guest's fault, but killing it is
|
|
|
|
|
* simple for this corner case. */
|
|
|
|
|
if (!ptepage) {
|
|
|
|
|
kill_guest(cpu, "out of memory allocating pte page");
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We check that the Guest pmd is OK. */
|
|
|
|
|
check_gpmd(cpu, gpmd);
|
|
|
|
|
|
|
|
|
|
/* And we copy the flags to the shadow PMD entry. The page
|
|
|
|
|
* number in the shadow PMD is the page we just allocated. */
|
|
|
|
|
native_set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
/* OK, now we look at the lower level in the Guest page table: keep its
|
|
|
|
|
* address, because we might update it later. */
|
|
|
|
|
gpte_ptr = gpte_addr(gpgd, vaddr);
|
|
|
|
|
gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
|
|
|
|
|
gpte = lgread(cpu, gpte_ptr, pte_t);
|
|
|
|
|
|
|
|
|
|
/* If this page isn't in the Guest page tables, we can't page it in. */
|
|
|
|
@ -259,7 +368,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
|
|
|
|
|
gpte = pte_mkdirty(gpte);
|
|
|
|
|
|
|
|
|
|
/* Get the pointer to the shadow PTE entry we're going to set. */
|
|
|
|
|
spte = spte_addr(*spgd, vaddr);
|
|
|
|
|
spte = spte_addr(cpu, *spgd, vaddr);
|
|
|
|
|
/* If there was a valid shadow PTE entry here before, we release it.
|
|
|
|
|
* This can happen with a write to a previously read-only entry. */
|
|
|
|
|
release_pte(*spte);
|
|
|
|
@ -301,14 +410,23 @@ static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
|
|
|
|
|
pgd_t *spgd;
|
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmd_t *spmd;
|
|
|
|
|
#endif
|
|
|
|
|
/* Look at the current top level entry: is it present? */
|
|
|
|
|
spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
|
|
|
|
|
if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
spmd = spmd_addr(cpu, *spgd, vaddr);
|
|
|
|
|
if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
|
|
|
|
|
return false;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Check the flags on the pte entry itself: it must be present and
|
|
|
|
|
* writable. */
|
|
|
|
|
flags = pte_flags(*(spte_addr(*spgd, vaddr)));
|
|
|
|
|
flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
|
|
|
|
|
|
|
|
|
|
return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
|
|
|
|
|
}
|
|
|
|
@ -322,6 +440,41 @@ void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
|
|
|
|
|
kill_guest(cpu, "bad stack page %#lx", vaddr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
static void release_pmd(pmd_t *spmd)
|
|
|
|
|
{
|
|
|
|
|
/* If the entry's not present, there's nothing to release. */
|
|
|
|
|
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
|
|
|
|
|
unsigned int i;
|
|
|
|
|
pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
|
|
|
|
|
/* For each entry in the page, we might need to release it. */
|
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++)
|
|
|
|
|
release_pte(ptepage[i]);
|
|
|
|
|
/* Now we can free the page of PTEs */
|
|
|
|
|
free_page((long)ptepage);
|
|
|
|
|
/* And zero out the PMD entry so we never release it twice. */
|
|
|
|
|
native_set_pmd(spmd, __pmd(0));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void release_pgd(pgd_t *spgd)
|
|
|
|
|
{
|
|
|
|
|
/* If the entry's not present, there's nothing to release. */
|
|
|
|
|
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
|
|
|
|
|
unsigned int i;
|
|
|
|
|
pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++)
|
|
|
|
|
release_pmd(&pmdpage[i]);
|
|
|
|
|
|
|
|
|
|
/* Now we can free the page of PMDs */
|
|
|
|
|
free_page((long)pmdpage);
|
|
|
|
|
/* And zero out the PGD entry so we never release it twice. */
|
|
|
|
|
set_pgd(spgd, __pgd(0));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#else /* !CONFIG_X86_PAE */
|
|
|
|
|
/*H:450 If we chase down the release_pgd() code, it looks like this: */
|
|
|
|
|
static void release_pgd(pgd_t *spgd)
|
|
|
|
|
{
|
|
|
|
@ -341,7 +494,7 @@ static void release_pgd(pgd_t *spgd)
|
|
|
|
|
*spgd = __pgd(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
|
|
|
|
|
* hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
|
|
|
|
|
* It simply releases every PTE page from 0 up to the Guest's kernel address. */
|
|
|
|
@ -370,6 +523,9 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
|
|
|
|
|
pgd_t gpgd;
|
|
|
|
|
pte_t gpte;
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmd_t gpmd;
|
|
|
|
|
#endif
|
|
|
|
|
/* First step: get the top-level Guest page table entry. */
|
|
|
|
|
gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
|
|
|
|
|
/* Toplevel not present? We can't map it in. */
|
|
|
|
@ -378,7 +534,13 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
|
|
|
|
|
return -1UL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
|
|
|
|
|
gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
|
|
|
|
|
if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
|
|
|
|
|
kill_guest(cpu, "Bad address %#lx", vaddr);
|
|
|
|
|
#endif
|
|
|
|
|
gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
|
|
|
|
|
if (!(pte_flags(gpte) & _PAGE_PRESENT))
|
|
|
|
|
kill_guest(cpu, "Bad address %#lx", vaddr);
|
|
|
|
|
|
|
|
|
@ -405,6 +567,9 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
|
|
|
|
|
int *blank_pgdir)
|
|
|
|
|
{
|
|
|
|
|
unsigned int next;
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmd_t *pmd_table;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* We pick one entry at random to throw out. Choosing the Least
|
|
|
|
|
* Recently Used might be better, but this is easy. */
|
|
|
|
@ -416,10 +581,27 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
|
|
|
|
|
/* If the allocation fails, just keep using the one we have */
|
|
|
|
|
if (!cpu->lg->pgdirs[next].pgdir)
|
|
|
|
|
next = cpu->cpu_pgd;
|
|
|
|
|
else
|
|
|
|
|
/* This is a blank page, so there are no kernel
|
|
|
|
|
* mappings: caller must map the stack! */
|
|
|
|
|
else {
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
/* In PAE mode, allocate a pmd page and populate the
|
|
|
|
|
* last pgd entry. */
|
|
|
|
|
pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
|
|
|
|
|
if (!pmd_table) {
|
|
|
|
|
free_page((long)cpu->lg->pgdirs[next].pgdir);
|
|
|
|
|
set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
|
|
|
|
|
next = cpu->cpu_pgd;
|
|
|
|
|
} else {
|
|
|
|
|
set_pgd(cpu->lg->pgdirs[next].pgdir +
|
|
|
|
|
SWITCHER_PGD_INDEX,
|
|
|
|
|
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
|
|
|
|
|
/* This is a blank page, so there are no kernel
|
|
|
|
|
* mappings: caller must map the stack! */
|
|
|
|
|
*blank_pgdir = 1;
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
*blank_pgdir = 1;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/* Record which Guest toplevel this shadows. */
|
|
|
|
|
cpu->lg->pgdirs[next].gpgdir = gpgdir;
|
|
|
|
@ -460,10 +642,25 @@ static void release_all_pagetables(struct lguest *lg)
|
|
|
|
|
|
|
|
|
|
/* Every shadow pagetable this Guest has */
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
|
|
|
|
|
if (lg->pgdirs[i].pgdir)
|
|
|
|
|
if (lg->pgdirs[i].pgdir) {
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pgd_t *spgd;
|
|
|
|
|
pmd_t *pmdpage;
|
|
|
|
|
unsigned int k;
|
|
|
|
|
|
|
|
|
|
/* Get the last pmd page. */
|
|
|
|
|
spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
|
|
|
|
|
pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
|
|
|
|
|
|
|
|
|
|
/* And release the pmd entries of that pmd page,
|
|
|
|
|
* except for the switcher pmd. */
|
|
|
|
|
for (k = 0; k < SWITCHER_PMD_INDEX; k++)
|
|
|
|
|
release_pmd(&pmdpage[k]);
|
|
|
|
|
#endif
|
|
|
|
|
/* Every PGD entry except the Switcher at the top */
|
|
|
|
|
for (j = 0; j < SWITCHER_PGD_INDEX; j++)
|
|
|
|
|
release_pgd(lg->pgdirs[i].pgdir + j);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We also throw away everything when a Guest tells us it's changed a kernel
|
|
|
|
@ -504,24 +701,37 @@ static void do_set_pte(struct lg_cpu *cpu, int idx,
|
|
|
|
|
{
|
|
|
|
|
/* Look up the matching shadow page directory entry. */
|
|
|
|
|
pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmd_t *spmd;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* If the top level isn't present, there's no entry to update. */
|
|
|
|
|
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
|
|
|
|
|
/* Otherwise, we start by releasing the existing entry. */
|
|
|
|
|
pte_t *spte = spte_addr(*spgd, vaddr);
|
|
|
|
|
release_pte(*spte);
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
spmd = spmd_addr(cpu, *spgd, vaddr);
|
|
|
|
|
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
|
|
|
|
|
#endif
|
|
|
|
|
/* Otherwise, we start by releasing
|
|
|
|
|
* the existing entry. */
|
|
|
|
|
pte_t *spte = spte_addr(cpu, *spgd, vaddr);
|
|
|
|
|
release_pte(*spte);
|
|
|
|
|
|
|
|
|
|
/* If they're setting this entry as dirty or accessed, we might
|
|
|
|
|
* as well put that entry they've given us in now. This shaves
|
|
|
|
|
* 10% off a copy-on-write micro-benchmark. */
|
|
|
|
|
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
|
|
|
|
|
check_gpte(cpu, gpte);
|
|
|
|
|
*spte = gpte_to_spte(cpu, gpte,
|
|
|
|
|
pte_flags(gpte) & _PAGE_DIRTY);
|
|
|
|
|
} else
|
|
|
|
|
/* Otherwise kill it and we can demand_page() it in
|
|
|
|
|
* later. */
|
|
|
|
|
*spte = __pte(0);
|
|
|
|
|
/* If they're setting this entry as dirty or accessed,
|
|
|
|
|
* we might as well put that entry they've given us
|
|
|
|
|
* in now. This shaves 10% off a
|
|
|
|
|
* copy-on-write micro-benchmark. */
|
|
|
|
|
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
|
|
|
|
|
check_gpte(cpu, gpte);
|
|
|
|
|
native_set_pte(spte,
|
|
|
|
|
gpte_to_spte(cpu, gpte,
|
|
|
|
|
pte_flags(gpte) & _PAGE_DIRTY));
|
|
|
|
|
} else
|
|
|
|
|
/* Otherwise kill it and we can demand_page()
|
|
|
|
|
* it in later. */
|
|
|
|
|
native_set_pte(spte, __pte(0));
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -572,8 +782,6 @@ void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
|
|
|
|
|
{
|
|
|
|
|
int pgdir;
|
|
|
|
|
|
|
|
|
|
/* The kernel seems to try to initialize this early on: we ignore its
|
|
|
|
|
* attempts to map over the Switcher. */
|
|
|
|
|
if (idx >= SWITCHER_PGD_INDEX)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
@ -583,6 +791,12 @@ void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
|
|
|
|
|
/* ... throw it away. */
|
|
|
|
|
release_pgd(lg->pgdirs[pgdir].pgdir + idx);
|
|
|
|
|
}
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
|
|
|
|
|
{
|
|
|
|
|
guest_pagetable_clear_all(&lg->cpus[0]);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Once we know how much memory we have we can construct simple identity
|
|
|
|
|
* (which set virtual == physical) and linear mappings
|
|
|
|
@ -596,8 +810,16 @@ static unsigned long setup_pagetables(struct lguest *lg,
|
|
|
|
|
{
|
|
|
|
|
pgd_t __user *pgdir;
|
|
|
|
|
pte_t __user *linear;
|
|
|
|
|
unsigned int mapped_pages, i, linear_pages, phys_linear;
|
|
|
|
|
unsigned long mem_base = (unsigned long)lg->mem_base;
|
|
|
|
|
unsigned int mapped_pages, i, linear_pages;
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmd_t __user *pmds;
|
|
|
|
|
unsigned int j;
|
|
|
|
|
pgd_t pgd;
|
|
|
|
|
pmd_t pmd;
|
|
|
|
|
#else
|
|
|
|
|
unsigned int phys_linear;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* We have mapped_pages frames to map, so we need
|
|
|
|
|
* linear_pages page tables to map them. */
|
|
|
|
@ -610,6 +832,9 @@ static unsigned long setup_pagetables(struct lguest *lg,
|
|
|
|
|
/* Now we use the next linear_pages pages as pte pages */
|
|
|
|
|
linear = (void *)pgdir - linear_pages * PAGE_SIZE;
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmds = (void *)linear - PAGE_SIZE;
|
|
|
|
|
#endif
|
|
|
|
|
/* Linear mapping is easy: put every page's address into the
|
|
|
|
|
* mapping in order. */
|
|
|
|
|
for (i = 0; i < mapped_pages; i++) {
|
|
|
|
@ -621,6 +846,22 @@ static unsigned long setup_pagetables(struct lguest *lg,
|
|
|
|
|
|
|
|
|
|
/* The top level points to the linear page table pages above.
|
|
|
|
|
* We setup the identity and linear mappings here. */
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
for (i = 0, j; i < mapped_pages && j < PTRS_PER_PMD;
|
|
|
|
|
i += PTRS_PER_PTE, j++) {
|
|
|
|
|
native_set_pmd(&pmd, __pmd(((unsigned long)(linear + i)
|
|
|
|
|
- mem_base) | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
|
|
|
|
|
|
|
|
|
|
if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
|
|
|
|
|
return -EFAULT;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
set_pgd(&pgd, __pgd(((u32)pmds - mem_base) | _PAGE_PRESENT));
|
|
|
|
|
if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
|
|
|
|
|
return -EFAULT;
|
|
|
|
|
if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0)
|
|
|
|
|
return -EFAULT;
|
|
|
|
|
#else
|
|
|
|
|
phys_linear = (unsigned long)linear - mem_base;
|
|
|
|
|
for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
|
|
|
|
|
pgd_t pgd;
|
|
|
|
@ -633,6 +874,7 @@ static unsigned long setup_pagetables(struct lguest *lg,
|
|
|
|
|
&pgd, sizeof(pgd)))
|
|
|
|
|
return -EFAULT;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* We return the top level (guest-physical) address: remember where
|
|
|
|
|
* this is. */
|
|
|
|
@ -648,7 +890,10 @@ int init_guest_pagetable(struct lguest *lg)
|
|
|
|
|
u64 mem;
|
|
|
|
|
u32 initrd_size;
|
|
|
|
|
struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pgd_t *pgd;
|
|
|
|
|
pmd_t *pmd_table;
|
|
|
|
|
#endif
|
|
|
|
|
/* Get the Guest memory size and the ramdisk size from the boot header
|
|
|
|
|
* located at lg->mem_base (Guest address 0). */
|
|
|
|
|
if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
|
|
|
|
@ -663,6 +908,15 @@ int init_guest_pagetable(struct lguest *lg)
|
|
|
|
|
lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
|
|
|
|
|
if (!lg->pgdirs[0].pgdir)
|
|
|
|
|
return -ENOMEM;
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pgd = lg->pgdirs[0].pgdir;
|
|
|
|
|
pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
|
|
|
|
|
if (!pmd_table)
|
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
|
|
set_pgd(pgd + SWITCHER_PGD_INDEX,
|
|
|
|
|
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
|
|
|
|
|
#endif
|
|
|
|
|
lg->cpus[0].cpu_pgd = 0;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
@ -672,17 +926,24 @@ void page_table_guest_data_init(struct lg_cpu *cpu)
|
|
|
|
|
{
|
|
|
|
|
/* We get the kernel address: above this is all kernel memory. */
|
|
|
|
|
if (get_user(cpu->lg->kernel_address,
|
|
|
|
|
&cpu->lg->lguest_data->kernel_address)
|
|
|
|
|
/* We tell the Guest that it can't use the top 4MB of virtual
|
|
|
|
|
* addresses used by the Switcher. */
|
|
|
|
|
|| put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem)
|
|
|
|
|
|| put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir))
|
|
|
|
|
&cpu->lg->lguest_data->kernel_address)
|
|
|
|
|
/* We tell the Guest that it can't use the top 2 or 4 MB
|
|
|
|
|
* of virtual addresses used by the Switcher. */
|
|
|
|
|
|| put_user(RESERVE_MEM * 1024 * 1024,
|
|
|
|
|
&cpu->lg->lguest_data->reserve_mem)
|
|
|
|
|
|| put_user(cpu->lg->pgdirs[0].gpgdir,
|
|
|
|
|
&cpu->lg->lguest_data->pgdir))
|
|
|
|
|
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
|
|
|
|
|
|
|
|
|
|
/* In flush_user_mappings() we loop from 0 to
|
|
|
|
|
* "pgd_index(lg->kernel_address)". This assumes it won't hit the
|
|
|
|
|
* Switcher mappings, so check that now. */
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
|
|
|
|
|
pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
|
|
|
|
|
#else
|
|
|
|
|
if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
|
|
|
|
|
#endif
|
|
|
|
|
kill_guest(cpu, "bad kernel address %#lx",
|
|
|
|
|
cpu->lg->kernel_address);
|
|
|
|
|
}
|
|
|
|
@ -708,16 +969,30 @@ void free_guest_pagetable(struct lguest *lg)
|
|
|
|
|
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
|
|
|
|
|
{
|
|
|
|
|
pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
|
|
|
|
|
pgd_t switcher_pgd;
|
|
|
|
|
pte_t regs_pte;
|
|
|
|
|
unsigned long pfn;
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
|
pmd_t switcher_pmd;
|
|
|
|
|
pmd_t *pmd_table;
|
|
|
|
|
|
|
|
|
|
native_set_pmd(&switcher_pmd, pfn_pmd(__pa(switcher_pte_page) >>
|
|
|
|
|
PAGE_SHIFT, PAGE_KERNEL_EXEC));
|
|
|
|
|
|
|
|
|
|
pmd_table = __va(pgd_pfn(cpu->lg->
|
|
|
|
|
pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
|
|
|
|
|
<< PAGE_SHIFT);
|
|
|
|
|
native_set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
|
|
|
|
|
#else
|
|
|
|
|
pgd_t switcher_pgd;
|
|
|
|
|
|
|
|
|
|
/* Make the last PGD entry for this Guest point to the Switcher's PTE
|
|
|
|
|
* page for this CPU (with appropriate flags). */
|
|
|
|
|
switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
|
|
|
|
|
|
|
|
|
|
cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
/* We also change the Switcher PTE page. When we're running the Guest,
|
|
|
|
|
* we want the Guest's "regs" page to appear where the first Switcher
|
|
|
|
|
* page for this CPU is. This is an optimization: when the Switcher
|
|
|
|
|