EDAC/bluefield: Use Arm SMC for EMI access on BlueField-2

The BlueField EDAC driver supports the first generation BlueField-1 SoC, but
not the second generation BlueField-2 SoC. The BlueField-2 SoC is different in
that only secure accesses are allowed to the External Memory Interface (EMI)
register block. On BlueField-2, all read/write accesses from Linux to EMI
registers are routed via the Arm Secure Monitor Call (SMC) through Arm Trusted
Firmware (ATF), which runs at EL3 privileged state.

On BlueField-1, EMI registers are mapped and accessed directly. In order to
support BlueField-2, the driver's read and write access methods must be
extended with additional logic to include secure access to the EMI registers
via SMCs.

  [ bp: Move struct member comments above them, simplify. ]

Signed-off-by: David Thompson <davthompson@nvidia.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shravan Kumar Ramani <shravankr@nvidia.com>
Link: https://lore.kernel.org/r/20241021233013.18405-1-davthompson@nvidia.com
This commit is contained in:
David Thompson 2024-10-21 19:30:13 -04:00 committed by Borislav Petkov (AMD)
parent 1fe774a93b
commit e419675754

View File

@ -47,13 +47,22 @@
#define MLXBF_EDAC_MAX_DIMM_PER_MC 2 #define MLXBF_EDAC_MAX_DIMM_PER_MC 2
#define MLXBF_EDAC_ERROR_GRAIN 8 #define MLXBF_EDAC_ERROR_GRAIN 8
#define MLXBF_WRITE_REG_32 (0x82000009)
#define MLXBF_READ_REG_32 (0x8200000A)
#define MLXBF_SIP_SVC_VERSION (0x8200ff03)
#define MLXBF_SMCCC_ACCESS_VIOLATION (-4)
#define MLXBF_SVC_REQ_MAJOR 0
#define MLXBF_SVC_REQ_MINOR 3
/* /*
* Request MLNX_SIP_GET_DIMM_INFO * Request MLXBF_SIP_GET_DIMM_INFO
* *
* Retrieve information about DIMM on a certain slot. * Retrieve information about DIMM on a certain slot.
* *
* Call register usage: * Call register usage:
* a0: MLNX_SIP_GET_DIMM_INFO * a0: MLXBF_SIP_GET_DIMM_INFO
* a1: (Memory controller index) << 16 | (Dimm index in memory controller) * a1: (Memory controller index) << 16 | (Dimm index in memory controller)
* a2-7: not used. * a2-7: not used.
* *
@ -61,7 +70,7 @@
* a0: MLXBF_DIMM_INFO defined below describing the DIMM. * a0: MLXBF_DIMM_INFO defined below describing the DIMM.
* a1-3: not used. * a1-3: not used.
*/ */
#define MLNX_SIP_GET_DIMM_INFO 0x82000008 #define MLXBF_SIP_GET_DIMM_INFO 0x82000008
/* Format for the SMC response about the memory information */ /* Format for the SMC response about the memory information */
#define MLXBF_DIMM_INFO__SIZE_GB GENMASK_ULL(15, 0) #define MLXBF_DIMM_INFO__SIZE_GB GENMASK_ULL(15, 0)
@ -72,9 +81,15 @@
#define MLXBF_DIMM_INFO__PACKAGE_X GENMASK_ULL(31, 24) #define MLXBF_DIMM_INFO__PACKAGE_X GENMASK_ULL(31, 24)
struct bluefield_edac_priv { struct bluefield_edac_priv {
/* pointer to device structure */
struct device *dev;
int dimm_ranks[MLXBF_EDAC_MAX_DIMM_PER_MC]; int dimm_ranks[MLXBF_EDAC_MAX_DIMM_PER_MC];
void __iomem *emi_base; void __iomem *emi_base;
int dimm_per_mc; int dimm_per_mc;
/* access to secure regs supported */
bool svc_sreg_support;
/* SMC table# for secure regs access */
u32 sreg_tbl;
}; };
static u64 smc_call1(u64 smc_op, u64 smc_arg) static u64 smc_call1(u64 smc_op, u64 smc_arg)
@ -86,6 +101,71 @@ static u64 smc_call1(u64 smc_op, u64 smc_arg)
return res.a0; return res.a0;
} }
static int secure_readl(void __iomem *addr, u32 *result, u32 sreg_tbl)
{
struct arm_smccc_res res;
int status;
arm_smccc_smc(MLXBF_READ_REG_32, sreg_tbl, (uintptr_t)addr,
0, 0, 0, 0, 0, &res);
status = res.a0;
if (status == SMCCC_RET_NOT_SUPPORTED ||
status == MLXBF_SMCCC_ACCESS_VIOLATION)
return -1;
*result = (u32)res.a1;
return 0;
}
static int secure_writel(void __iomem *addr, u32 data, u32 sreg_tbl)
{
struct arm_smccc_res res;
int status;
arm_smccc_smc(MLXBF_WRITE_REG_32, sreg_tbl, data, (uintptr_t)addr,
0, 0, 0, 0, &res);
status = res.a0;
if (status == SMCCC_RET_NOT_SUPPORTED ||
status == MLXBF_SMCCC_ACCESS_VIOLATION)
return -1;
else
return 0;
}
static int bluefield_edac_readl(struct bluefield_edac_priv *priv, u32 offset, u32 *result)
{
void __iomem *addr;
int err = 0;
addr = priv->emi_base + offset;
if (priv->svc_sreg_support)
err = secure_readl(addr, result, priv->sreg_tbl);
else
*result = readl(addr);
return err;
}
static int bluefield_edac_writel(struct bluefield_edac_priv *priv, u32 offset, u32 data)
{
void __iomem *addr;
int err = 0;
addr = priv->emi_base + offset;
if (priv->svc_sreg_support)
err = secure_writel(addr, data, priv->sreg_tbl);
else
writel(data, addr);
return err;
}
/* /*
* Gather the ECC information from the External Memory Interface registers * Gather the ECC information from the External Memory Interface registers
* and report it to the edac handler. * and report it to the edac handler.
@ -99,7 +179,7 @@ static void bluefield_gather_report_ecc(struct mem_ctl_info *mci,
u32 ecc_latch_select, dram_syndrom, serr, derr, syndrom; u32 ecc_latch_select, dram_syndrom, serr, derr, syndrom;
enum hw_event_mc_err_type ecc_type; enum hw_event_mc_err_type ecc_type;
u64 ecc_dimm_addr; u64 ecc_dimm_addr;
int ecc_dimm; int ecc_dimm, err;
ecc_type = is_single_ecc ? HW_EVENT_ERR_CORRECTED : ecc_type = is_single_ecc ? HW_EVENT_ERR_CORRECTED :
HW_EVENT_ERR_UNCORRECTED; HW_EVENT_ERR_UNCORRECTED;
@ -109,14 +189,19 @@ static void bluefield_gather_report_ecc(struct mem_ctl_info *mci,
* registers with information about the last ECC error occurrence. * registers with information about the last ECC error occurrence.
*/ */
ecc_latch_select = MLXBF_ECC_LATCH_SEL__START; ecc_latch_select = MLXBF_ECC_LATCH_SEL__START;
writel(ecc_latch_select, priv->emi_base + MLXBF_ECC_LATCH_SEL); err = bluefield_edac_writel(priv, MLXBF_ECC_LATCH_SEL, ecc_latch_select);
if (err)
dev_err(priv->dev, "ECC latch select write failed.\n");
/* /*
* Verify that the ECC reported info in the registers is of the * Verify that the ECC reported info in the registers is of the
* same type as the one asked to report. If not, just report the * same type as the one asked to report. If not, just report the
* error without the detailed information. * error without the detailed information.
*/ */
dram_syndrom = readl(priv->emi_base + MLXBF_SYNDROM); err = bluefield_edac_readl(priv, MLXBF_SYNDROM, &dram_syndrom);
if (err)
dev_err(priv->dev, "DRAM syndrom read failed.\n");
serr = FIELD_GET(MLXBF_SYNDROM__SERR, dram_syndrom); serr = FIELD_GET(MLXBF_SYNDROM__SERR, dram_syndrom);
derr = FIELD_GET(MLXBF_SYNDROM__DERR, dram_syndrom); derr = FIELD_GET(MLXBF_SYNDROM__DERR, dram_syndrom);
syndrom = FIELD_GET(MLXBF_SYNDROM__SYN, dram_syndrom); syndrom = FIELD_GET(MLXBF_SYNDROM__SYN, dram_syndrom);
@ -127,13 +212,21 @@ static void bluefield_gather_report_ecc(struct mem_ctl_info *mci,
return; return;
} }
dram_additional_info = readl(priv->emi_base + MLXBF_ADD_INFO); err = bluefield_edac_readl(priv, MLXBF_ADD_INFO, &dram_additional_info);
if (err)
dev_err(priv->dev, "DRAM additional info read failed.\n");
err_prank = FIELD_GET(MLXBF_ADD_INFO__ERR_PRANK, dram_additional_info); err_prank = FIELD_GET(MLXBF_ADD_INFO__ERR_PRANK, dram_additional_info);
ecc_dimm = (err_prank >= 2 && priv->dimm_ranks[0] <= 2) ? 1 : 0; ecc_dimm = (err_prank >= 2 && priv->dimm_ranks[0] <= 2) ? 1 : 0;
edea0 = readl(priv->emi_base + MLXBF_ERR_ADDR_0); err = bluefield_edac_readl(priv, MLXBF_ERR_ADDR_0, &edea0);
edea1 = readl(priv->emi_base + MLXBF_ERR_ADDR_1); if (err)
dev_err(priv->dev, "Error addr 0 read failed.\n");
err = bluefield_edac_readl(priv, MLXBF_ERR_ADDR_1, &edea1);
if (err)
dev_err(priv->dev, "Error addr 1 read failed.\n");
ecc_dimm_addr = ((u64)edea1 << 32) | edea0; ecc_dimm_addr = ((u64)edea1 << 32) | edea0;
@ -147,6 +240,7 @@ static void bluefield_edac_check(struct mem_ctl_info *mci)
{ {
struct bluefield_edac_priv *priv = mci->pvt_info; struct bluefield_edac_priv *priv = mci->pvt_info;
u32 ecc_count, single_error_count, double_error_count, ecc_error = 0; u32 ecc_count, single_error_count, double_error_count, ecc_error = 0;
int err;
/* /*
* The memory controller might not be initialized by the firmware * The memory controller might not be initialized by the firmware
@ -155,7 +249,10 @@ static void bluefield_edac_check(struct mem_ctl_info *mci)
if (mci->edac_cap == EDAC_FLAG_NONE) if (mci->edac_cap == EDAC_FLAG_NONE)
return; return;
ecc_count = readl(priv->emi_base + MLXBF_ECC_CNT); err = bluefield_edac_readl(priv, MLXBF_ECC_CNT, &ecc_count);
if (err)
dev_err(priv->dev, "ECC count read failed.\n");
single_error_count = FIELD_GET(MLXBF_ECC_CNT__SERR_CNT, ecc_count); single_error_count = FIELD_GET(MLXBF_ECC_CNT__SERR_CNT, ecc_count);
double_error_count = FIELD_GET(MLXBF_ECC_CNT__DERR_CNT, ecc_count); double_error_count = FIELD_GET(MLXBF_ECC_CNT__DERR_CNT, ecc_count);
@ -172,8 +269,11 @@ static void bluefield_edac_check(struct mem_ctl_info *mci)
} }
/* Write to clear reported errors. */ /* Write to clear reported errors. */
if (ecc_count) if (ecc_count) {
writel(ecc_error, priv->emi_base + MLXBF_ECC_ERR); err = bluefield_edac_writel(priv, MLXBF_ECC_ERR, ecc_error);
if (err)
dev_err(priv->dev, "ECC Error write failed.\n");
}
} }
/* Initialize the DIMMs information for the given memory controller. */ /* Initialize the DIMMs information for the given memory controller. */
@ -189,7 +289,7 @@ static void bluefield_edac_init_dimms(struct mem_ctl_info *mci)
dimm = mci->dimms[i]; dimm = mci->dimms[i];
smc_arg = mem_ctrl_idx << 16 | i; smc_arg = mem_ctrl_idx << 16 | i;
smc_info = smc_call1(MLNX_SIP_GET_DIMM_INFO, smc_arg); smc_info = smc_call1(MLXBF_SIP_GET_DIMM_INFO, smc_arg);
if (!FIELD_GET(MLXBF_DIMM_INFO__SIZE_GB, smc_info)) { if (!FIELD_GET(MLXBF_DIMM_INFO__SIZE_GB, smc_info)) {
dimm->mtype = MEM_EMPTY; dimm->mtype = MEM_EMPTY;
@ -244,6 +344,7 @@ static int bluefield_edac_mc_probe(struct platform_device *pdev)
struct bluefield_edac_priv *priv; struct bluefield_edac_priv *priv;
struct device *dev = &pdev->dev; struct device *dev = &pdev->dev;
struct edac_mc_layer layers[1]; struct edac_mc_layer layers[1];
struct arm_smccc_res res;
struct mem_ctl_info *mci; struct mem_ctl_info *mci;
struct resource *emi_res; struct resource *emi_res;
unsigned int mc_idx, dimm_count; unsigned int mc_idx, dimm_count;
@ -279,13 +380,43 @@ static int bluefield_edac_mc_probe(struct platform_device *pdev)
return -ENOMEM; return -ENOMEM;
priv = mci->pvt_info; priv = mci->pvt_info;
priv->dev = dev;
/*
* The "sec_reg_block" property in the ACPI table determines the method
* the driver uses to access the EMI registers:
* a) property is not present - directly access registers via readl/writel
* b) property is present - indirectly access registers via SMC calls
* (assuming required Silicon Provider service version found)
*/
if (device_property_read_u32(dev, "sec_reg_block", &priv->sreg_tbl)) {
priv->svc_sreg_support = false;
} else {
/*
* Check for minimum required Arm Silicon Provider (SiP) service
* version, ensuring support of required SMC function IDs.
*/
arm_smccc_smc(MLXBF_SIP_SVC_VERSION, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0 == MLXBF_SVC_REQ_MAJOR &&
res.a1 >= MLXBF_SVC_REQ_MINOR) {
priv->svc_sreg_support = true;
} else {
dev_err(dev, "Required SMCs are not supported.\n");
ret = -EINVAL;
goto err;
}
}
priv->dimm_per_mc = dimm_count; priv->dimm_per_mc = dimm_count;
priv->emi_base = devm_ioremap_resource(dev, emi_res); if (!priv->svc_sreg_support) {
if (IS_ERR(priv->emi_base)) { priv->emi_base = devm_ioremap_resource(dev, emi_res);
dev_err(dev, "failed to map EMI IO resource\n"); if (IS_ERR(priv->emi_base)) {
ret = PTR_ERR(priv->emi_base); dev_err(dev, "failed to map EMI IO resource\n");
goto err; ret = PTR_ERR(priv->emi_base);
goto err;
}
} else {
priv->emi_base = (void __iomem *)emi_res->start;
} }
mci->pdev = dev; mci->pdev = dev;
@ -320,7 +451,6 @@ static int bluefield_edac_mc_probe(struct platform_device *pdev)
edac_mc_free(mci); edac_mc_free(mci);
return ret; return ret;
} }
static void bluefield_edac_mc_remove(struct platform_device *pdev) static void bluefield_edac_mc_remove(struct platform_device *pdev)