V4L/DVB (5062): SN9C102 driver updates

- Add support for SN9C105 and SN9C120
- Add some more USB device identifiers
- Add support for OV7660
- Implement audio ioctl's and VIDIOC_ENUM_FRAMESIZES
- Add preliminary support for 0x0c45/0x6007
- Documentation updates
- Generic improvements
Signed-off-by: Luca Risolia <luca.risolia@studio.unibo.it>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
This commit is contained in:
Luca Risolia 2007-01-08 10:43:56 -03:00 committed by Mauro Carvalho Chehab
parent 19790db00b
commit f327ebbd00
17 changed files with 1905 additions and 841 deletions

View File

@ -1,5 +1,5 @@
SN9C10x PC Camera Controllers
SN9C1xx PC Camera Controllers
Driver for Linux
=============================
@ -53,20 +53,14 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
4. Overview and features
========================
This driver attempts to support the video interface of the devices mounting the
SONiX SN9C101, SN9C102 and SN9C103 PC Camera Controllers.
It's worth to note that SONiX has never collaborated with the author during the
development of this project, despite several requests for enough detailed
specifications of the register tables, compression engine and video data format
of the above chips. Nevertheless, these informations are no longer necessary,
because all the aspects related to these chips are known and have been
described in detail in this documentation.
This driver attempts to support the video interface of the devices assembling
the SONiX SN9C101, SN9C102, SN9C103, SN9C105 and SN9C120 PC Camera Controllers
("SN9C1xx" from now on).
The driver relies on the Video4Linux2 and USB core modules. It has been
designed to run properly on SMP systems as well.
The latest version of the SN9C10x driver can be found at the following URL:
The latest version of the SN9C1xx driver can be found at the following URL:
http://www.linux-projects.org/
Some of the features of the driver are:
@ -85,11 +79,11 @@ Some of the features of the driver are:
high compression quality (see also "Notes for V4L2 application developers"
and "Video frame formats" paragraphs);
- full support for the capabilities of many of the possible image sensors that
can be connected to the SN9C10x bridges, including, for instance, red, green,
can be connected to the SN9C1xx bridges, including, for instance, red, green,
blue and global gain adjustments and exposure (see "Supported devices"
paragraph for details);
- use of default color settings for sunlight conditions;
- dynamic I/O interface for both SN9C10x and image sensor control and
- dynamic I/O interface for both SN9C1xx and image sensor control and
monitoring (see "Optional device control through 'sysfs'" paragraph);
- dynamic driver control thanks to various module parameters (see "Module
parameters" paragraph);
@ -130,8 +124,8 @@ necessary:
CONFIG_USB_UHCI_HCD=m
CONFIG_USB_OHCI_HCD=m
The SN9C103 controller also provides a built-in microphone interface. It is
supported by the USB Audio driver thanks to the ALSA API:
The SN9C103, SN9c105 and SN9C120 controllers also provide a built-in microphone
interface. It is supported by the USB Audio driver thanks to the ALSA API:
# Sound
#
@ -155,18 +149,27 @@ And finally:
6. Module loading
=================
To use the driver, it is necessary to load the "sn9c102" module into memory
after every other module required: "videodev", "usbcore" and, depending on
the USB host controller you have, "ehci-hcd", "uhci-hcd" or "ohci-hcd".
after every other module required: "videodev", "v4l2_common", "compat_ioctl32",
"usbcore" and, depending on the USB host controller you have, "ehci-hcd",
"uhci-hcd" or "ohci-hcd".
Loading can be done as shown below:
[root@localhost home]# modprobe sn9c102
At this point the devices should be recognized. You can invoke "dmesg" to
analyze kernel messages and verify that the loading process has gone well:
Note that the module is called "sn9c102" for historic reasons, althought it
does not just support the SN9C102.
At this point all the devices supported by the driver and connected to the USB
ports should be recognized. You can invoke "dmesg" to analyze kernel messages
and verify that the loading process has gone well:
[user@localhost home]$ dmesg
or, to isolate all the kernel messages generated by the driver:
[user@localhost home]$ dmesg | grep sn9c102
7. Module parameters
====================
@ -198,10 +201,11 @@ Default: 0
-------------------------------------------------------------------------------
Name: frame_timeout
Type: uint array (min = 0, max = 64)
Syntax: <n[,...]>
Description: Timeout for a video frame in seconds. This parameter is
specific for each detected camera. This parameter can be
changed at runtime thanks to the /sys filesystem interface.
Syntax: <0|n[,...]>
Description: Timeout for a video frame in seconds before returning an I/O
error; 0 for infinity. This parameter is specific for each
detected camera and can be changed at runtime thanks to the
/sys filesystem interface.
Default: 2
-------------------------------------------------------------------------------
Name: debug
@ -223,20 +227,21 @@ Default: 2
8. Optional device control through "sysfs" [1]
==========================================
If the kernel has been compiled with the CONFIG_VIDEO_ADV_DEBUG option enabled,
it is possible to read and write both the SN9C10x and the image sensor
it is possible to read and write both the SN9C1xx and the image sensor
registers by using the "sysfs" filesystem interface.
Every time a supported device is recognized, a write-only file named "green" is
created in the /sys/class/video4linux/videoX directory. You can set the green
channel's gain by writing the desired value to it. The value may range from 0
to 15 for SN9C101 or SN9C102 bridges, from 0 to 127 for SN9C103 bridges.
Similarly, only for SN9C103 controllers, blue and red gain control files are
available in the same directory, for which accepted values may range from 0 to
127.
to 15 for the SN9C101 or SN9C102 bridges, from 0 to 127 for the SN9C103,
SN9C105 and SN9C120 bridges.
Similarly, only for the SN9C103, SN9C105 and SN9120 controllers, blue and red
gain control files are available in the same directory, for which accepted
values may range from 0 to 127.
There are other four entries in the directory above for each registered camera:
"reg", "val", "i2c_reg" and "i2c_val". The first two files control the
SN9C10x bridge, while the other two control the sensor chip. "reg" and
SN9C1xx bridge, while the other two control the sensor chip. "reg" and
"i2c_reg" hold the values of the current register index where the following
reading/writing operations are addressed at through "val" and "i2c_val". Their
use is not intended for end-users. Note that "i2c_reg" and "i2c_val" will not
@ -259,61 +264,84 @@ Now let's set the green gain's register of the SN9C101 or SN9C102 chips to 2:
[root@localhost #] echo 0x11 > reg
[root@localhost #] echo 2 > val
Note that the SN9C10x always returns 0 when some of its registers are read.
Note that the SN9C1xx always returns 0 when some of its registers are read.
To avoid race conditions, all the I/O accesses to the above files are
serialized.
The sysfs interface also provides the "frame_header" entry, which exports the
frame header of the most recent requested and captured video frame. The header
is always 18-bytes long and is appended to every video frame by the SN9C10x
is always 18-bytes long and is appended to every video frame by the SN9C1xx
controllers. As an example, this additional information can be used by the user
application for implementing auto-exposure features via software.
The following table describes the frame header:
The following table describes the frame header exported by the SN9C101 and
SN9C102:
Byte # Value Description
------ ----- -----------
0x00 0xFF Frame synchronisation pattern.
0x01 0xFF Frame synchronisation pattern.
0x02 0x00 Frame synchronisation pattern.
0x03 0xC4 Frame synchronisation pattern.
0x04 0xC4 Frame synchronisation pattern.
0x05 0x96 Frame synchronisation pattern.
0x06 0xXX Unknown meaning. The exact value depends on the chip;
possible values are 0x00, 0x01 and 0x20.
0x07 0xXX Variable value, whose bits are ff00uzzc, where ff is a
frame counter, u is unknown, zz is a size indicator
(00 = VGA, 01 = SIF, 10 = QSIF) and c stands for
"compression enabled" (1 = yes, 0 = no).
0x08 0xXX Brightness sum inside Auto-Exposure area (low-byte).
0x09 0xXX Brightness sum inside Auto-Exposure area (high-byte).
For a pure white image, this number will be equal to 500
times the area of the specified AE area. For images
that are not pure white, the value scales down according
to relative whiteness.
0x0A 0xXX Brightness sum outside Auto-Exposure area (low-byte).
0x0B 0xXX Brightness sum outside Auto-Exposure area (high-byte).
For a pure white image, this number will be equal to 125
times the area outside of the specified AE area. For
images that are not pure white, the value scales down
according to relative whiteness.
according to relative whiteness.
Byte # Value or bits Description
------ ------------- -----------
0x00 0xFF Frame synchronisation pattern
0x01 0xFF Frame synchronisation pattern
0x02 0x00 Frame synchronisation pattern
0x03 0xC4 Frame synchronisation pattern
0x04 0xC4 Frame synchronisation pattern
0x05 0x96 Frame synchronisation pattern
0x06 [3:0] Read channel gain control = (1+R_GAIN/8)
[7:4] Blue channel gain control = (1+B_GAIN/8)
0x07 [ 0 ] Compression mode. 0=No compression, 1=Compression enabled
[2:1] Maximum scale factor for compression
[ 3 ] 1 = USB fifo(2K bytes) is full
[ 4 ] 1 = Digital gain is finish
[ 5 ] 1 = Exposure is finish
[7:6] Frame index
0x08 [7:0] Y sum inside Auto-Exposure area (low-byte)
0x09 [7:0] Y sum inside Auto-Exposure area (high-byte)
where Y sum = (R/4 + 5G/16 + B/8) / 32
0x0A [7:0] Y sum outside Auto-Exposure area (low-byte)
0x0B [7:0] Y sum outside Auto-Exposure area (high-byte)
where Y sum = (R/4 + 5G/16 + B/8) / 128
0x0C 0xXX Not used
0x0D 0xXX Not used
0x0E 0xXX Not used
0x0F 0xXX Not used
0x10 0xXX Not used
0x11 0xXX Not used
The following bytes are used by the SN9C103 bridge only:
The following table describes the frame header exported by the SN9C103:
0x0C 0xXX Unknown meaning
0x0D 0xXX Unknown meaning
0x0E 0xXX Unknown meaning
0x0F 0xXX Unknown meaning
0x10 0xXX Unknown meaning
0x11 0xXX Unknown meaning
Byte # Value or bits Description
------ ------------- -----------
0x00 0xFF Frame synchronisation pattern
0x01 0xFF Frame synchronisation pattern
0x02 0x00 Frame synchronisation pattern
0x03 0xC4 Frame synchronisation pattern
0x04 0xC4 Frame synchronisation pattern
0x05 0x96 Frame synchronisation pattern
0x06 [6:0] Read channel gain control = (1/2+R_GAIN/64)
0x07 [6:0] Blue channel gain control = (1/2+B_GAIN/64)
[7:4]
0x08 [ 0 ] Compression mode. 0=No compression, 1=Compression enabled
[2:1] Maximum scale factor for compression
[ 3 ] 1 = USB fifo(2K bytes) is full
[ 4 ] 1 = Digital gain is finish
[ 5 ] 1 = Exposure is finish
[7:6] Frame index
0x09 [7:0] Y sum inside Auto-Exposure area (low-byte)
0x0A [7:0] Y sum inside Auto-Exposure area (high-byte)
where Y sum = (R/4 + 5G/16 + B/8) / 32
0x0B [7:0] Y sum outside Auto-Exposure area (low-byte)
0x0C [7:0] Y sum outside Auto-Exposure area (high-byte)
where Y sum = (R/4 + 5G/16 + B/8) / 128
0x0D [1:0] Audio frame number
[ 2 ] 1 = Audio is recording
0x0E [7:0] Audio summation (low-byte)
0x0F [7:0] Audio summation (high-byte)
0x10 [7:0] Audio sample count
0x11 [7:0] Audio peak data in audio frame
The AE area (sx, sy, ex, ey) in the active window can be set by programming the
registers 0x1c, 0x1d, 0x1e and 0x1f of the SN9C10x controllers, where one unit
registers 0x1c, 0x1d, 0x1e and 0x1f of the SN9C1xx controllers, where one unit
corresponds to 32 pixels.
[1] Part of the meaning of the frame header has been documented by Bertrik
Sikken.
[1] The frame headers exported by the SN9C105 and SN9C120 are not described.
9. Supported devices
@ -323,15 +351,19 @@ here. They have never collaborated with the author, so no advertising.
From the point of view of a driver, what unambiguously identify a device are
its vendor and product USB identifiers. Below is a list of known identifiers of
devices mounting the SN9C10x PC camera controllers:
devices assembling the SN9C1xx PC camera controllers:
Vendor ID Product ID
--------- ----------
0x0471 0x0327
0x0471 0x0328
0x0c45 0x6001
0x0c45 0x6005
0x0c45 0x6007
0x0c45 0x6009
0x0c45 0x600d
0x0c45 0x6011
0x0c45 0x6019
0x0c45 0x6024
0x0c45 0x6025
0x0c45 0x6028
@ -342,6 +374,7 @@ Vendor ID Product ID
0x0c45 0x602d
0x0c45 0x602e
0x0c45 0x6030
0x0c45 0x603f
0x0c45 0x6080
0x0c45 0x6082
0x0c45 0x6083
@ -368,24 +401,40 @@ Vendor ID Product ID
0x0c45 0x60bb
0x0c45 0x60bc
0x0c45 0x60be
0x0c45 0x60c0
0x0c45 0x60c8
0x0c45 0x60cc
0x0c45 0x60ea
0x0c45 0x60ec
0x0c45 0x60fa
0x0c45 0x60fb
0x0c45 0x60fc
0x0c45 0x60fe
0x0c45 0x6130
0x0c45 0x613a
0x0c45 0x613b
0x0c45 0x613c
0x0c45 0x613e
The list above does not imply that all those devices work with this driver: up
until now only the ones that mount the following image sensors are supported;
kernel messages will always tell you whether this is the case:
until now only the ones that assemble the following image sensors are
supported; kernel messages will always tell you whether this is the case (see
"Module loading" paragraph):
Model Manufacturer
----- ------------
HV7131D Hynix Semiconductor, Inc.
MI-0343 Micron Technology, Inc.
OV7630 OmniVision Technologies, Inc.
OV7660 OmniVision Technologies, Inc.
PAS106B PixArt Imaging, Inc.
PAS202BCA PixArt Imaging, Inc.
PAS202BCB PixArt Imaging, Inc.
TAS5110C1B Taiwan Advanced Sensor Corporation
TAS5130D1B Taiwan Advanced Sensor Corporation
All the available control settings of each image sensor are supported through
the V4L2 interface.
Some of the available control settings of each image sensor are supported
through the V4L2 interface.
Donations of new models for further testing and support would be much
appreciated. Non-available hardware will not be supported by the author of this
@ -429,12 +478,15 @@ supplied by this driver).
11. Video frame formats [1]
=======================
The SN9C10x PC Camera Controllers can send images in two possible video
formats over the USB: either native "Sequential RGB Bayer" or Huffman
compressed. The latter is used to achieve high frame rates. The current video
format may be selected or queried from the user application by calling the
VIDIOC_S_FMT or VIDIOC_G_FMT ioctl's, as described in the V4L2 API
specifications.
The SN9C1xx PC Camera Controllers can send images in two possible video
formats over the USB: either native "Sequential RGB Bayer" or compressed.
The compression is used to achieve high frame rates. With regard to the
SN9C101, SN9C102 and SN9C103, the compression is based on the Huffman encoding
algorithm described below, while the SN9C105 and SN9C120 the compression is
based on the JPEG standard.
The current video format may be selected or queried from the user application
by calling the VIDIOC_S_FMT or VIDIOC_G_FMT ioctl's, as described in the V4L2
API specifications.
The name "Sequential Bayer" indicates the organization of the red, green and
blue pixels in one video frame. Each pixel is associated with a 8-bit long
@ -447,14 +499,14 @@ G[m] R[m+1] G[m+2] R[m+2] ... G[2m-2] R[2m-1]
... G[n(m-2)] R[n(m-1)]
The above matrix also represents the sequential or progressive read-out mode of
the (n, m) Bayer color filter array used in many CCD/CMOS image sensors.
the (n, m) Bayer color filter array used in many CCD or CMOS image sensors.
One compressed video frame consists of a bitstream that encodes for every R, G,
or B pixel the difference between the value of the pixel itself and some
reference pixel value. Pixels are organised in the Bayer pattern and the Bayer
sub-pixels are tracked individually and alternatingly. For example, in the
first line values for the B and G1 pixels are alternatingly encoded, while in
the second line values for the G2 and R pixels are alternatingly encoded.
The Huffman compressed video frame consists of a bitstream that encodes for
every R, G, or B pixel the difference between the value of the pixel itself and
some reference pixel value. Pixels are organised in the Bayer pattern and the
Bayer sub-pixels are tracked individually and alternatingly. For example, in
the first line values for the B and G1 pixels are alternatingly encoded, while
in the second line values for the G2 and R pixels are alternatingly encoded.
The pixel reference value is calculated as follows:
- the 4 top left pixels are encoded in raw uncompressed 8-bit format;
@ -470,8 +522,9 @@ The pixel reference value is calculated as follows:
decoding.
The algorithm purely describes the conversion from compressed Bayer code used
in the SN9C10x chips to uncompressed Bayer. Additional steps are required to
convert this to a color image (i.e. a color interpolation algorithm).
in the SN9C101, SN9C102 and SN9C103 chips to uncompressed Bayer. Additional
steps are required to convert this to a color image (i.e. a color interpolation
algorithm).
The following Huffman codes have been found:
0: +0 (relative to reference pixel value)
@ -506,13 +559,18 @@ order):
- Philippe Coval for having helped testing the PAS202BCA image sensor;
- Joao Rodrigo Fuzaro, Joao Limirio, Claudio Filho and Caio Begotti for the
donation of a webcam;
- Dennis Heitmann for the donation of a webcam;
- Jon Hollstrom for the donation of a webcam;
- Nick McGill for the donation of a webcam;
- Carlos Eduardo Medaglia Dyonisio, who added the support for the PAS202BCB
image sensor;
- Stefano Mozzi, who donated 45 EU;
- Andrew Pearce for the donation of a webcam;
- John Pullan for the donation of a webcam;
- Bertrik Sikken, who reverse-engineered and documented the Huffman compression
algorithm used in the SN9C10x controllers and implemented the first decoder;
algorithm used in the SN9C101, SN9C102 and SN9C103 controllers and
implemented the first decoder;
- Mizuno Takafumi for the donation of a webcam;
- an "anonymous" donator (who didn't want his name to be revealed) for the
donation of a webcam.
- an anonymous donator for the donation of four webcams.

View File

@ -1,9 +1,9 @@
config USB_SN9C102
tristate "USB SN9C10x PC Camera Controller support"
tristate "USB SN9C1xx PC Camera Controller support"
depends on USB && VIDEO_V4L1
---help---
Say Y here if you want support for cameras based on SONiX SN9C101,
SN9C102 or SN9C103 PC Camera Controllers.
SN9C102, SN9C103, SN9C105 and SN9C120 PC Camera Controllers.
See <file:Documentation/video4linux/sn9c102.txt> for more info.

View File

@ -1,5 +1,5 @@
sn9c102-objs := sn9c102_core.o sn9c102_hv7131d.o sn9c102_mi0343.o \
sn9c102_ov7630.o sn9c102_pas106b.o sn9c102_pas202bca.o \
sn9c102_ov7630.o sn9c102_ov7660.o sn9c102_pas106b.o \
sn9c102_pas202bcb.o sn9c102_tas5110c1b.o \
sn9c102_tas5130d1b.o

View File

@ -1,5 +1,5 @@
/***************************************************************************
* V4L2 driver for SN9C10x PC Camera Controllers *
* V4L2 driver for SN9C1xx PC Camera Controllers *
* *
* Copyright (C) 2004-2006 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
@ -37,33 +37,10 @@
#include <linux/string.h>
#include <linux/stddef.h>
#include "sn9c102_config.h"
#include "sn9c102_sensor.h"
#include "sn9c102_devtable.h"
/*****************************************************************************/
#define SN9C102_DEBUG
#define SN9C102_DEBUG_LEVEL 2
#define SN9C102_MAX_DEVICES 64
#define SN9C102_PRESERVE_IMGSCALE 0
#define SN9C102_FORCE_MUNMAP 0
#define SN9C102_MAX_FRAMES 32
#define SN9C102_URBS 2
#define SN9C102_ISO_PACKETS 7
#define SN9C102_ALTERNATE_SETTING 8
#define SN9C102_URB_TIMEOUT msecs_to_jiffies(2 * SN9C102_ISO_PACKETS)
#define SN9C102_CTRL_TIMEOUT 300
#define SN9C102_FRAME_TIMEOUT 2
/*****************************************************************************/
enum sn9c102_bridge {
BRIDGE_SN9C101 = 0x01,
BRIDGE_SN9C102 = 0x02,
BRIDGE_SN9C103 = 0x04,
};
SN9C102_ID_TABLE
SN9C102_SENSOR_TABLE
enum sn9c102_frame_state {
F_UNUSED,
@ -99,13 +76,11 @@ enum sn9c102_stream_state {
STREAM_ON,
};
typedef char sn9c103_sof_header_t[18];
typedef char sn9c102_sof_header_t[12];
typedef char sn9c102_eof_header_t[4];
typedef char sn9c102_sof_header_t[62];
struct sn9c102_sysfs_attr {
u8 reg, i2c_reg;
sn9c103_sof_header_t frame_header;
sn9c102_sof_header_t frame_header;
};
struct sn9c102_module_param {
@ -137,8 +112,8 @@ struct sn9c102_device {
struct v4l2_jpegcompression compression;
struct sn9c102_sysfs_attr sysfs;
sn9c103_sof_header_t sof_header;
u16 reg[63];
sn9c102_sof_header_t sof_header;
u16 reg[384];
struct sn9c102_module_param module_param;
@ -155,10 +130,7 @@ struct sn9c102_device {
struct sn9c102_device*
sn9c102_match_id(struct sn9c102_device* cam, const struct usb_device_id *id)
{
if (usb_match_id(usb_ifnum_to_if(cam->usbdev, 0), id))
return cam;
return NULL;
return usb_match_id(usb_ifnum_to_if(cam->usbdev, 0), id) ? cam : NULL;
}
@ -169,6 +141,19 @@ sn9c102_attach_sensor(struct sn9c102_device* cam,
memcpy(&cam->sensor, sensor, sizeof(struct sn9c102_sensor));
}
enum sn9c102_bridge
sn9c102_get_bridge(struct sn9c102_device* cam)
{
return cam->bridge;
}
struct sn9c102_sensor* sn9c102_get_sensor(struct sn9c102_device* cam)
{
return &cam->sensor;
}
/*****************************************************************************/
#undef DBG

View File

@ -0,0 +1,86 @@
/***************************************************************************
* Global parameters for the V4L2 driver for SN9C1xx PC Camera Controllers *
* *
* Copyright (C) 2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *
***************************************************************************/
#ifndef _SN9C102_CONFIG_H_
#define _SN9C102_CONFIG_H_
#include <linux/types.h>
#include <linux/jiffies.h>
#define SN9C102_DEBUG
#define SN9C102_DEBUG_LEVEL 2
#define SN9C102_MAX_DEVICES 64
#define SN9C102_PRESERVE_IMGSCALE 0
#define SN9C102_FORCE_MUNMAP 0
#define SN9C102_MAX_FRAMES 32
#define SN9C102_URBS 2
#define SN9C102_ISO_PACKETS 7
#define SN9C102_ALTERNATE_SETTING 8
#define SN9C102_URB_TIMEOUT msecs_to_jiffies(2 * SN9C102_ISO_PACKETS)
#define SN9C102_CTRL_TIMEOUT 300
#define SN9C102_FRAME_TIMEOUT 0
/*****************************************************************************/
static const u8 SN9C102_Y_QTABLE0[64] = {
8, 5, 5, 8, 12, 20, 25, 30,
6, 6, 7, 9, 13, 29, 30, 27,
7, 6, 8, 12, 20, 28, 34, 28,
7, 8, 11, 14, 25, 43, 40, 31,
9, 11, 18, 28, 34, 54, 51, 38,
12, 17, 27, 32, 40, 52, 56, 46,
24, 32, 39, 43, 51, 60, 60, 50,
36, 46, 47, 49, 56, 50, 51, 49
};
static const u8 SN9C102_UV_QTABLE0[64] = {
8, 9, 12, 23, 49, 49, 49, 49,
9, 10, 13, 33, 49, 49, 49, 49,
12, 13, 28, 49, 49, 49, 49, 49,
23, 33, 49, 49, 49, 49, 49, 49,
49, 49, 49, 49, 49, 49, 49, 49,
49, 49, 49, 49, 49, 49, 49, 49,
49, 49, 49, 49, 49, 49, 49, 49,
49, 49, 49, 49, 49, 49, 49, 49
};
static const u8 SN9C102_Y_QTABLE1[64] = {
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99
};
static const u8 SN9C102_UV_QTABLE1[64] = {
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
};
#endif /* _SN9C102_CONFIG_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,142 @@
/***************************************************************************
* Table of device identifiers of the SN9C1xx PC Camera Controllers *
* *
* Copyright (C) 2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *
***************************************************************************/
#ifndef _SN9C102_DEVTABLE_H_
#define _SN9C102_DEVTABLE_H_
#include <linux/usb.h>
struct sn9c102_device;
/*
Each SN9C1xx camera has proper PID/VID identifiers.
SN9C103, SN9C105, SN9C120 support multiple interfaces, but we only have to
handle the video class interface.
*/
#define SN9C102_USB_DEVICE(vend, prod, bridge) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
USB_DEVICE_ID_MATCH_INT_CLASS, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = 0xff, \
.driver_info = (bridge)
static const struct usb_device_id sn9c102_id_table[] = {
/* SN9C101 and SN9C102 */
{ SN9C102_USB_DEVICE(0x0c45, 0x6001, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6005, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6007, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6009, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6011, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x600d, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6019, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6024, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6025, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6028, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6029, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x602a, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x602b, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x602c, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x602d, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x602e, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6030, BRIDGE_SN9C102), },
{ SN9C102_USB_DEVICE(0x0c45, 0x603f, BRIDGE_SN9C102), },
/* SN9C103 */
{ SN9C102_USB_DEVICE(0x0c45, 0x6080, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6082, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6083, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x6088, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x608a, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x608b, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x608c, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x608e, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x608f, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60a0, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60a2, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60a3, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60a8, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60aa, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60ab, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60ac, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60ae, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60af, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60b0, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60b2, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60b3, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60b8, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60ba, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60bb, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60bc, BRIDGE_SN9C103), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60be, BRIDGE_SN9C103), },
/* SN9C105 */
{ SN9C102_USB_DEVICE(0x0471, 0x0327, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0471, 0x0328, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60c0, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60c8, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60cc, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60ea, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60ec, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60fa, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60fb, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60fc, BRIDGE_SN9C105), },
{ SN9C102_USB_DEVICE(0x0c45, 0x60fe, BRIDGE_SN9C105), },
/* SN9C120 */
{ SN9C102_USB_DEVICE(0x0c45, 0x6130, BRIDGE_SN9C120), },
{ SN9C102_USB_DEVICE(0x0c45, 0x613a, BRIDGE_SN9C120), },
{ SN9C102_USB_DEVICE(0x0c45, 0x613b, BRIDGE_SN9C120), },
{ SN9C102_USB_DEVICE(0x0c45, 0x613c, BRIDGE_SN9C120), },
{ SN9C102_USB_DEVICE(0x0c45, 0x613e, BRIDGE_SN9C120), },
{ }
};
/*
Probing functions: on success, you must attach the sensor to the camera
by calling sn9c102_attach_sensor().
To enable the I2C communication, you might need to perform a really basic
initialization of the SN9C1XX chip.
Functions must return 0 on success, the appropriate error otherwise.
*/
extern int sn9c102_probe_hv7131d(struct sn9c102_device* cam);
extern int sn9c102_probe_mi0343(struct sn9c102_device* cam);
extern int sn9c102_probe_ov7630(struct sn9c102_device* cam);
extern int sn9c102_probe_ov7660(struct sn9c102_device* cam);
extern int sn9c102_probe_pas106b(struct sn9c102_device* cam);
extern int sn9c102_probe_pas202bcb(struct sn9c102_device* cam);
extern int sn9c102_probe_tas5110c1b(struct sn9c102_device* cam);
extern int sn9c102_probe_tas5130d1b(struct sn9c102_device* cam);
/*
Add the above entries to this table. Be sure to add the entry in the right
place, since, on failure, the next probing routine is called according to
the order of the list below, from top to bottom.
*/
static int (*sn9c102_sensor_table[])(struct sn9c102_device*) = {
&sn9c102_probe_mi0343, /* strong detection based on SENSOR ids */
&sn9c102_probe_pas106b, /* strong detection based on SENSOR ids */
&sn9c102_probe_pas202bcb, /* strong detection based on SENSOR ids */
&sn9c102_probe_hv7131d, /* strong detection based on SENSOR ids */
&sn9c102_probe_ov7630, /* strong detection based on SENSOR ids */
&sn9c102_probe_ov7660, /* strong detection based on SENSOR ids */
&sn9c102_probe_tas5110c1b, /* detection based on USB pid/vid */
&sn9c102_probe_tas5130d1b, /* detection based on USB pid/vid */
NULL,
};
#endif /* _SN9C102_DEVTABLE_H_ */

View File

@ -1,8 +1,8 @@
/***************************************************************************
* Plug-in for HV7131D image sensor connected to the SN9C10x PC Camera *
* Plug-in for HV7131D image sensor connected to the SN9C1xx PC Camera *
* Controllers *
* *
* Copyright (C) 2004-2006 by Luca Risolia <luca.risolia@studio.unibo.it> *
* Copyright (C) 2004-2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
@ -124,7 +124,7 @@ static int hv7131d_set_ctrl(struct sn9c102_device* cam,
static int hv7131d_set_crop(struct sn9c102_device* cam,
const struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = &hv7131d;
struct sn9c102_sensor* s = sn9c102_get_sensor(cam);
int err = 0;
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left) + 2,
v_start = (u8)(rect->top - s->cropcap.bounds.top) + 2;
@ -153,6 +153,7 @@ static int hv7131d_set_pix_format(struct sn9c102_device* cam,
static struct sn9c102_sensor hv7131d = {
.name = "HV7131D",
.maintainer = "Luca Risolia <luca.risolia@studio.unibo.it>",
.supported_bridge = BRIDGE_SN9C101 | BRIDGE_SN9C102 | BRIDGE_SN9C103,
.sysfs_ops = SN9C102_I2C_READ | SN9C102_I2C_WRITE,
.frequency = SN9C102_I2C_100KHZ,
.interface = SN9C102_I2C_2WIRES,

View File

@ -1,8 +1,8 @@
/***************************************************************************
* Plug-in for MI-0343 image sensor connected to the SN9C10x PC Camera *
* Plug-in for MI-0343 image sensor connected to the SN9C1xx PC Camera *
* Controllers *
* *
* Copyright (C) 2004-2006 by Luca Risolia <luca.risolia@studio.unibo.it> *
* Copyright (C) 2004-2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
@ -201,7 +201,7 @@ static int mi0343_set_ctrl(struct sn9c102_device* cam,
static int mi0343_set_crop(struct sn9c102_device* cam,
const struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = &mi0343;
struct sn9c102_sensor* s = sn9c102_get_sensor(cam);
int err = 0;
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left) + 0,
v_start = (u8)(rect->top - s->cropcap.bounds.top) + 2;
@ -237,6 +237,7 @@ static int mi0343_set_pix_format(struct sn9c102_device* cam,
static struct sn9c102_sensor mi0343 = {
.name = "MI-0343",
.maintainer = "Luca Risolia <luca.risolia@studio.unibo.it>",
.supported_bridge = BRIDGE_SN9C101 | BRIDGE_SN9C102 | BRIDGE_SN9C103,
.frequency = SN9C102_I2C_100KHZ,
.interface = SN9C102_I2C_2WIRES,
.i2c_slave_id = 0x5d,

View File

@ -1,8 +1,8 @@
/***************************************************************************
* Plug-in for OV7630 image sensor connected to the SN9C10x PC Camera *
* Plug-in for OV7630 image sensor connected to the SN9C1xx PC Camera *
* Controllers *
* *
* Copyright (C) 2005-2006 by Luca Risolia <luca.risolia@studio.unibo.it> *
* Copyright (C) 2006-2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
@ -29,13 +29,17 @@ static int ov7630_init(struct sn9c102_device* cam)
{
int err = 0;
switch (sn9c102_get_bridge(cam)) {
case BRIDGE_SN9C101:
case BRIDGE_SN9C102:
err += sn9c102_write_reg(cam, 0x00, 0x14);
err += sn9c102_write_reg(cam, 0x60, 0x17);
err += sn9c102_write_reg(cam, 0x0f, 0x18);
err += sn9c102_write_reg(cam, 0x50, 0x19);
err += sn9c102_i2c_write(cam, 0x12, 0x80);
err += sn9c102_i2c_write(cam, 0x11, 0x01);
err += sn9c102_i2c_write(cam, 0x12, 0x8d);
err += sn9c102_i2c_write(cam, 0x12, 0x0d);
err += sn9c102_i2c_write(cam, 0x11, 0x00);
err += sn9c102_i2c_write(cam, 0x15, 0x34);
err += sn9c102_i2c_write(cam, 0x16, 0x03);
err += sn9c102_i2c_write(cam, 0x17, 0x1c);
@ -43,14 +47,12 @@ static int ov7630_init(struct sn9c102_device* cam)
err += sn9c102_i2c_write(cam, 0x19, 0x06);
err += sn9c102_i2c_write(cam, 0x1a, 0xf6);
err += sn9c102_i2c_write(cam, 0x1b, 0x04);
err += sn9c102_i2c_write(cam, 0x20, 0xf6);
err += sn9c102_i2c_write(cam, 0x20, 0x44);
err += sn9c102_i2c_write(cam, 0x23, 0xee);
err += sn9c102_i2c_write(cam, 0x26, 0xa0);
err += sn9c102_i2c_write(cam, 0x27, 0x9a);
err += sn9c102_i2c_write(cam, 0x28, 0xa0);
err += sn9c102_i2c_write(cam, 0x28, 0x20);
err += sn9c102_i2c_write(cam, 0x29, 0x30);
err += sn9c102_i2c_write(cam, 0x2a, 0xa0);
err += sn9c102_i2c_write(cam, 0x2b, 0x1f);
err += sn9c102_i2c_write(cam, 0x2f, 0x3d);
err += sn9c102_i2c_write(cam, 0x30, 0x24);
err += sn9c102_i2c_write(cam, 0x32, 0x86);
@ -63,11 +65,137 @@ static int ov7630_init(struct sn9c102_device* cam)
err += sn9c102_i2c_write(cam, 0x71, 0x00);
err += sn9c102_i2c_write(cam, 0x74, 0x21);
err += sn9c102_i2c_write(cam, 0x7d, 0xf7);
break;
case BRIDGE_SN9C103:
err += sn9c102_write_reg(cam, 0x00, 0x02);
err += sn9c102_write_reg(cam, 0x00, 0x03);
err += sn9c102_write_reg(cam, 0x1a, 0x04);
err += sn9c102_write_reg(cam, 0x20, 0x05);
err += sn9c102_write_reg(cam, 0x20, 0x06);
err += sn9c102_write_reg(cam, 0x20, 0x07);
err += sn9c102_write_reg(cam, 0x03, 0x10);
err += sn9c102_write_reg(cam, 0x0a, 0x14);
err += sn9c102_write_reg(cam, 0x60, 0x17);
err += sn9c102_write_reg(cam, 0x0f, 0x18);
err += sn9c102_write_reg(cam, 0x50, 0x19);
err += sn9c102_write_reg(cam, 0x1d, 0x1a);
err += sn9c102_write_reg(cam, 0x10, 0x1b);
err += sn9c102_write_reg(cam, 0x02, 0x1c);
err += sn9c102_write_reg(cam, 0x03, 0x1d);
err += sn9c102_write_reg(cam, 0x0f, 0x1e);
err += sn9c102_write_reg(cam, 0x0c, 0x1f);
err += sn9c102_write_reg(cam, 0x00, 0x20);
err += sn9c102_write_reg(cam, 0x10, 0x21);
err += sn9c102_write_reg(cam, 0x20, 0x22);
err += sn9c102_write_reg(cam, 0x30, 0x23);
err += sn9c102_write_reg(cam, 0x40, 0x24);
err += sn9c102_write_reg(cam, 0x50, 0x25);
err += sn9c102_write_reg(cam, 0x60, 0x26);
err += sn9c102_write_reg(cam, 0x70, 0x27);
err += sn9c102_write_reg(cam, 0x80, 0x28);
err += sn9c102_write_reg(cam, 0x90, 0x29);
err += sn9c102_write_reg(cam, 0xa0, 0x2a);
err += sn9c102_write_reg(cam, 0xb0, 0x2b);
err += sn9c102_write_reg(cam, 0xc0, 0x2c);
err += sn9c102_write_reg(cam, 0xd0, 0x2d);
err += sn9c102_write_reg(cam, 0xe0, 0x2e);
err += sn9c102_write_reg(cam, 0xf0, 0x2f);
err += sn9c102_write_reg(cam, 0xff, 0x30);
err += sn9c102_i2c_write(cam, 0x12, 0x8d);
err += sn9c102_i2c_write(cam, 0x12, 0x0d);
err += sn9c102_i2c_write(cam, 0x15, 0x34);
err += sn9c102_i2c_write(cam, 0x11, 0x01);
err += sn9c102_i2c_write(cam, 0x1b, 0x04);
err += sn9c102_i2c_write(cam, 0x20, 0x44);
err += sn9c102_i2c_write(cam, 0x23, 0xee);
err += sn9c102_i2c_write(cam, 0x26, 0xa0);
err += sn9c102_i2c_write(cam, 0x27, 0x9a);
err += sn9c102_i2c_write(cam, 0x28, 0x20);
err += sn9c102_i2c_write(cam, 0x29, 0x30);
err += sn9c102_i2c_write(cam, 0x2f, 0x3d);
err += sn9c102_i2c_write(cam, 0x30, 0x24);
err += sn9c102_i2c_write(cam, 0x32, 0x86);
err += sn9c102_i2c_write(cam, 0x60, 0xa9);
err += sn9c102_i2c_write(cam, 0x61, 0x42);
err += sn9c102_i2c_write(cam, 0x65, 0x00);
err += sn9c102_i2c_write(cam, 0x69, 0x38);
err += sn9c102_i2c_write(cam, 0x6f, 0x88);
err += sn9c102_i2c_write(cam, 0x70, 0x0b);
err += sn9c102_i2c_write(cam, 0x71, 0x00);
err += sn9c102_i2c_write(cam, 0x74, 0x21);
err += sn9c102_i2c_write(cam, 0x7d, 0xf7);
break;
default:
break;
}
return err;
}
static int ov7630_get_ctrl(struct sn9c102_device* cam,
struct v4l2_control* ctrl)
{
int err = 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x10)) < 0)
return -EIO;
break;
case V4L2_CID_RED_BALANCE:
ctrl->value = sn9c102_pread_reg(cam, 0x07);
break;
case V4L2_CID_BLUE_BALANCE:
ctrl->value = sn9c102_pread_reg(cam, 0x06);
break;
case SN9C102_V4L2_CID_GREEN_BALANCE:
ctrl->value = sn9c102_pread_reg(cam, 0x05);
break;
case V4L2_CID_GAIN:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x00)) < 0)
return -EIO;
ctrl->value &= 0x3f;
break;
case V4L2_CID_DO_WHITE_BALANCE:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x0c)) < 0)
return -EIO;
ctrl->value &= 0x3f;
break;
case V4L2_CID_WHITENESS:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x0d)) < 0)
return -EIO;
ctrl->value &= 0x3f;
break;
case V4L2_CID_AUTOGAIN:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x13)) < 0)
return -EIO;
ctrl->value &= 0x01;
break;
case V4L2_CID_VFLIP:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x75)) < 0)
return -EIO;
ctrl->value = (ctrl->value & 0x80) ? 1 : 0;
break;
case SN9C102_V4L2_CID_GAMMA:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x14)) < 0)
return -EIO;
ctrl->value = (ctrl->value & 0x02) ? 1 : 0;
break;
case SN9C102_V4L2_CID_BAND_FILTER:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x2d)) < 0)
return -EIO;
ctrl->value = (ctrl->value & 0x02) ? 1 : 0;
break;
default:
return -EINVAL;
}
return err ? -EIO : 0;
}
static int ov7630_set_ctrl(struct sn9c102_device* cam,
const struct v4l2_control* ctrl)
{
@ -75,57 +203,35 @@ static int ov7630_set_ctrl(struct sn9c102_device* cam,
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
err += sn9c102_i2c_write(cam, 0x10, ctrl->value >> 2);
err += sn9c102_i2c_write(cam, 0x76, ctrl->value & 0x03);
err += sn9c102_i2c_write(cam, 0x10, ctrl->value);
break;
case V4L2_CID_RED_BALANCE:
err += sn9c102_i2c_write(cam, 0x02, ctrl->value);
err += sn9c102_write_reg(cam, ctrl->value, 0x07);
break;
case V4L2_CID_BLUE_BALANCE:
err += sn9c102_i2c_write(cam, 0x01, ctrl->value);
err += sn9c102_write_reg(cam, ctrl->value, 0x06);
break;
case SN9C102_V4L2_CID_GREEN_BALANCE:
err += sn9c102_write_reg(cam, ctrl->value, 0x05);
break;
case V4L2_CID_GAIN:
err += sn9c102_i2c_write(cam, 0x00, ctrl->value);
break;
case V4L2_CID_CONTRAST:
err += ctrl->value ? sn9c102_i2c_write(cam, 0x05,
(ctrl->value-1) | 0x20)
: sn9c102_i2c_write(cam, 0x05, 0x00);
break;
case V4L2_CID_BRIGHTNESS:
err += sn9c102_i2c_write(cam, 0x06, ctrl->value);
break;
case V4L2_CID_SATURATION:
err += sn9c102_i2c_write(cam, 0x03, ctrl->value << 4);
break;
case V4L2_CID_HUE:
err += ctrl->value ? sn9c102_i2c_write(cam, 0x04,
(ctrl->value-1) | 0x20)
: sn9c102_i2c_write(cam, 0x04, 0x00);
break;
case V4L2_CID_DO_WHITE_BALANCE:
err += sn9c102_i2c_write(cam, 0x0c, ctrl->value);
break;
case V4L2_CID_WHITENESS:
err += sn9c102_i2c_write(cam, 0x0d, ctrl->value);
break;
case V4L2_CID_AUTO_WHITE_BALANCE:
err += sn9c102_i2c_write(cam, 0x12, (ctrl->value << 2) | 0x78);
break;
case V4L2_CID_AUTOGAIN:
err += sn9c102_i2c_write(cam, 0x13, ctrl->value);
err += sn9c102_i2c_write(cam, 0x13, ctrl->value |
(ctrl->value << 1));
break;
case V4L2_CID_VFLIP:
err += sn9c102_i2c_write(cam, 0x75, 0x0e | (ctrl->value << 7));
break;
case V4L2_CID_BLACK_LEVEL:
err += sn9c102_i2c_write(cam, 0x25, ctrl->value);
break;
case SN9C102_V4L2_CID_BRIGHT_LEVEL:
err += sn9c102_i2c_write(cam, 0x24, ctrl->value);
break;
case SN9C102_V4L2_CID_GAMMA:
err += sn9c102_i2c_write(cam, 0x14, (ctrl->value << 2) | 0x80);
err += sn9c102_i2c_write(cam, 0x14, ctrl->value << 2);
break;
case SN9C102_V4L2_CID_BAND_FILTER:
err += sn9c102_i2c_write(cam, 0x2d, ctrl->value << 2);
@ -141,10 +247,12 @@ static int ov7630_set_ctrl(struct sn9c102_device* cam,
static int ov7630_set_crop(struct sn9c102_device* cam,
const struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = &ov7630;
struct sn9c102_sensor* s = sn9c102_get_sensor(cam);
int err = 0;
u8 v_start = (u8)(rect->top - s->cropcap.bounds.top) + 1;
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left) + 1,
v_start = (u8)(rect->top - s->cropcap.bounds.top) + 1;
err += sn9c102_write_reg(cam, h_start, 0x12);
err += sn9c102_write_reg(cam, v_start, 0x13);
return err;
@ -168,7 +276,8 @@ static int ov7630_set_pix_format(struct sn9c102_device* cam,
static struct sn9c102_sensor ov7630 = {
.name = "OV7630",
.maintainer = "Luca Risolia <luca.risolia@studio.unibo.it>",
.sysfs_ops = SN9C102_I2C_WRITE,
.supported_bridge = BRIDGE_SN9C101 | BRIDGE_SN9C102 | BRIDGE_SN9C103,
.sysfs_ops = SN9C102_I2C_READ | SN9C102_I2C_WRITE,
.frequency = SN9C102_I2C_100KHZ,
.interface = SN9C102_I2C_2WIRES,
.i2c_slave_id = 0x21,
@ -184,84 +293,14 @@ static struct sn9c102_sensor ov7630 = {
.default_value = 0x14,
.flags = 0,
},
{
.id = V4L2_CID_HUE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "hue",
.minimum = 0x00,
.maximum = 0x1f+1,
.step = 0x01,
.default_value = 0x00,
.flags = 0,
},
{
.id = V4L2_CID_SATURATION,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "saturation",
.minimum = 0x00,
.maximum = 0x0f,
.step = 0x01,
.default_value = 0x08,
.flags = 0,
},
{
.id = V4L2_CID_CONTRAST,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "contrast",
.minimum = 0x00,
.maximum = 0x1f+1,
.step = 0x01,
.default_value = 0x00,
.flags = 0,
},
{
.id = V4L2_CID_EXPOSURE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "exposure",
.minimum = 0x000,
.maximum = 0x3ff,
.step = 0x001,
.default_value = 0x83<<2,
.flags = 0,
},
{
.id = V4L2_CID_RED_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "red balance",
.minimum = 0x00,
.maximum = 0xff,
.step = 0x01,
.default_value = 0x3a,
.flags = 0,
},
{
.id = V4L2_CID_BLUE_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "blue balance",
.minimum = 0x00,
.maximum = 0xff,
.step = 0x01,
.default_value = 0x77,
.flags = 0,
},
{
.id = V4L2_CID_BRIGHTNESS,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "brightness",
.minimum = 0x00,
.maximum = 0xff,
.step = 0x01,
.default_value = 0xa0,
.flags = 0,
},
{
.id = V4L2_CID_DO_WHITE_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "white balance background: blue",
.minimum = 0x00,
.maximum = 0x3f,
.step = 0x01,
.default_value = 0x20,
.default_value = 0x60,
.flags = 0,
},
{
@ -275,21 +314,41 @@ static struct sn9c102_sensor ov7630 = {
.flags = 0,
},
{
.id = V4L2_CID_AUTO_WHITE_BALANCE,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "auto white balance",
.id = V4L2_CID_DO_WHITE_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "white balance background: blue",
.minimum = 0x00,
.maximum = 0x01,
.maximum = 0x3f,
.step = 0x01,
.default_value = 0x01,
.default_value = 0x20,
.flags = 0,
},
{
.id = V4L2_CID_RED_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "red balance",
.minimum = 0x00,
.maximum = 0x7f,
.step = 0x01,
.default_value = 0x20,
.flags = 0,
},
{
.id = V4L2_CID_BLUE_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "blue balance",
.minimum = 0x00,
.maximum = 0x7f,
.step = 0x01,
.default_value = 0x20,
.flags = 0,
},
{
.id = V4L2_CID_AUTOGAIN,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "gain & exposure mode",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "auto adjust",
.minimum = 0x00,
.maximum = 0x03,
.maximum = 0x01,
.step = 0x01,
.default_value = 0x00,
.flags = 0,
@ -305,23 +364,13 @@ static struct sn9c102_sensor ov7630 = {
.flags = 0,
},
{
.id = V4L2_CID_BLACK_LEVEL,
.id = SN9C102_V4L2_CID_GREEN_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "black pixel ratio",
.minimum = 0x01,
.maximum = 0x9a,
.name = "green balance",
.minimum = 0x00,
.maximum = 0x7f,
.step = 0x01,
.default_value = 0x8a,
.flags = 0,
},
{
.id = SN9C102_V4L2_CID_BRIGHT_LEVEL,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "bright pixel ratio",
.minimum = 0x01,
.maximum = 0x9a,
.step = 0x01,
.default_value = 0x10,
.default_value = 0x20,
.flags = 0,
},
{
@ -345,6 +394,7 @@ static struct sn9c102_sensor ov7630 = {
.flags = 0,
},
},
.get_ctrl = &ov7630_get_ctrl,
.set_ctrl = &ov7630_set_ctrl,
.cropcap = {
.bounds = {
@ -364,7 +414,7 @@ static struct sn9c102_sensor ov7630 = {
.pix_format = {
.width = 640,
.height = 480,
.pixelformat = V4L2_PIX_FMT_SBGGR8,
.pixelformat = V4L2_PIX_FMT_SN9C10X,
.priv = 8,
},
.set_pix_format = &ov7630_set_pix_format
@ -373,28 +423,36 @@ static struct sn9c102_sensor ov7630 = {
int sn9c102_probe_ov7630(struct sn9c102_device* cam)
{
const struct usb_device_id ov7630_id_table[] = {
{ USB_DEVICE(0x0c45, 0x602c), },
{ USB_DEVICE(0x0c45, 0x602d), },
{ USB_DEVICE(0x0c45, 0x608f), },
{ USB_DEVICE(0x0c45, 0x60b0), },
{ }
};
int err = 0;
if (!sn9c102_match_id(cam, ov7630_id_table))
return -ENODEV;
int pid, ver, err = 0;
switch (sn9c102_get_bridge(cam)) {
case BRIDGE_SN9C101:
case BRIDGE_SN9C102:
err += sn9c102_write_reg(cam, 0x01, 0x01);
err += sn9c102_write_reg(cam, 0x00, 0x01);
err += sn9c102_write_reg(cam, 0x28, 0x17);
if (err)
break;
case BRIDGE_SN9C103: /* do _not_ change anything! */
err += sn9c102_write_reg(cam, 0x09, 0x01);
err += sn9c102_write_reg(cam, 0x42, 0x01);
err += sn9c102_write_reg(cam, 0x28, 0x17);
err += sn9c102_write_reg(cam, 0x44, 0x02);
pid = sn9c102_i2c_try_read(cam, &ov7630, 0x0a);
if (err || pid < 0) { /* try a different initialization */
err = sn9c102_write_reg(cam, 0x01, 0x01);
err += sn9c102_write_reg(cam, 0x00, 0x01);
}
break;
default:
break;
}
pid = sn9c102_i2c_try_read(cam, &ov7630, 0x0a);
ver = sn9c102_i2c_try_read(cam, &ov7630, 0x0b);
if (err || pid < 0 || ver < 0)
return -EIO;
err += sn9c102_i2c_try_write(cam, &ov7630, 0x0b, 0);
if (err)
if (pid != 0x76 || ver != 0x31)
return -ENODEV;
sn9c102_attach_sensor(cam, &ov7630);
return 0;

View File

@ -0,0 +1,592 @@
/***************************************************************************
* Plug-in for OV7660 image sensor connected to the SN9C1xx PC Camera *
* Controllers *
* *
* Copyright (C) 2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *
***************************************************************************/
#include "sn9c102_sensor.h"
static struct sn9c102_sensor ov7660;
static int ov7660_init(struct sn9c102_device* cam)
{
int err = 0;
err += sn9c102_write_reg(cam, 0x40, 0x02);
err += sn9c102_write_reg(cam, 0x00, 0x03);
err += sn9c102_write_reg(cam, 0x1a, 0x04);
err += sn9c102_write_reg(cam, 0x03, 0x10);
err += sn9c102_write_reg(cam, 0x08, 0x14);
err += sn9c102_write_reg(cam, 0x20, 0x17);
err += sn9c102_write_reg(cam, 0x8b, 0x18);
err += sn9c102_write_reg(cam, 0x00, 0x19);
err += sn9c102_write_reg(cam, 0x1d, 0x1a);
err += sn9c102_write_reg(cam, 0x10, 0x1b);
err += sn9c102_write_reg(cam, 0x02, 0x1c);
err += sn9c102_write_reg(cam, 0x03, 0x1d);
err += sn9c102_write_reg(cam, 0x0f, 0x1e);
err += sn9c102_write_reg(cam, 0x0c, 0x1f);
err += sn9c102_write_reg(cam, 0x00, 0x20);
err += sn9c102_write_reg(cam, 0x29, 0x21);
err += sn9c102_write_reg(cam, 0x40, 0x22);
err += sn9c102_write_reg(cam, 0x54, 0x23);
err += sn9c102_write_reg(cam, 0x66, 0x24);
err += sn9c102_write_reg(cam, 0x76, 0x25);
err += sn9c102_write_reg(cam, 0x85, 0x26);
err += sn9c102_write_reg(cam, 0x94, 0x27);
err += sn9c102_write_reg(cam, 0xa1, 0x28);
err += sn9c102_write_reg(cam, 0xae, 0x29);
err += sn9c102_write_reg(cam, 0xbb, 0x2a);
err += sn9c102_write_reg(cam, 0xc7, 0x2b);
err += sn9c102_write_reg(cam, 0xd3, 0x2c);
err += sn9c102_write_reg(cam, 0xde, 0x2d);
err += sn9c102_write_reg(cam, 0xea, 0x2e);
err += sn9c102_write_reg(cam, 0xf4, 0x2f);
err += sn9c102_write_reg(cam, 0xff, 0x30);
err += sn9c102_write_reg(cam, 0x00, 0x3F);
err += sn9c102_write_reg(cam, 0xC7, 0x40);
err += sn9c102_write_reg(cam, 0x01, 0x41);
err += sn9c102_write_reg(cam, 0x44, 0x42);
err += sn9c102_write_reg(cam, 0x00, 0x43);
err += sn9c102_write_reg(cam, 0x44, 0x44);
err += sn9c102_write_reg(cam, 0x00, 0x45);
err += sn9c102_write_reg(cam, 0x44, 0x46);
err += sn9c102_write_reg(cam, 0x00, 0x47);
err += sn9c102_write_reg(cam, 0xC7, 0x48);
err += sn9c102_write_reg(cam, 0x01, 0x49);
err += sn9c102_write_reg(cam, 0xC7, 0x4A);
err += sn9c102_write_reg(cam, 0x01, 0x4B);
err += sn9c102_write_reg(cam, 0xC7, 0x4C);
err += sn9c102_write_reg(cam, 0x01, 0x4D);
err += sn9c102_write_reg(cam, 0x44, 0x4E);
err += sn9c102_write_reg(cam, 0x00, 0x4F);
err += sn9c102_write_reg(cam, 0x44, 0x50);
err += sn9c102_write_reg(cam, 0x00, 0x51);
err += sn9c102_write_reg(cam, 0x44, 0x52);
err += sn9c102_write_reg(cam, 0x00, 0x53);
err += sn9c102_write_reg(cam, 0xC7, 0x54);
err += sn9c102_write_reg(cam, 0x01, 0x55);
err += sn9c102_write_reg(cam, 0xC7, 0x56);
err += sn9c102_write_reg(cam, 0x01, 0x57);
err += sn9c102_write_reg(cam, 0xC7, 0x58);
err += sn9c102_write_reg(cam, 0x01, 0x59);
err += sn9c102_write_reg(cam, 0x44, 0x5A);
err += sn9c102_write_reg(cam, 0x00, 0x5B);
err += sn9c102_write_reg(cam, 0x44, 0x5C);
err += sn9c102_write_reg(cam, 0x00, 0x5D);
err += sn9c102_write_reg(cam, 0x44, 0x5E);
err += sn9c102_write_reg(cam, 0x00, 0x5F);
err += sn9c102_write_reg(cam, 0xC7, 0x60);
err += sn9c102_write_reg(cam, 0x01, 0x61);
err += sn9c102_write_reg(cam, 0xC7, 0x62);
err += sn9c102_write_reg(cam, 0x01, 0x63);
err += sn9c102_write_reg(cam, 0xC7, 0x64);
err += sn9c102_write_reg(cam, 0x01, 0x65);
err += sn9c102_write_reg(cam, 0x44, 0x66);
err += sn9c102_write_reg(cam, 0x00, 0x67);
err += sn9c102_write_reg(cam, 0x44, 0x68);
err += sn9c102_write_reg(cam, 0x00, 0x69);
err += sn9c102_write_reg(cam, 0x44, 0x6A);
err += sn9c102_write_reg(cam, 0x00, 0x6B);
err += sn9c102_write_reg(cam, 0xC7, 0x6C);
err += sn9c102_write_reg(cam, 0x01, 0x6D);
err += sn9c102_write_reg(cam, 0xC7, 0x6E);
err += sn9c102_write_reg(cam, 0x01, 0x6F);
err += sn9c102_write_reg(cam, 0xC7, 0x70);
err += sn9c102_write_reg(cam, 0x01, 0x71);
err += sn9c102_write_reg(cam, 0x44, 0x72);
err += sn9c102_write_reg(cam, 0x00, 0x73);
err += sn9c102_write_reg(cam, 0x44, 0x74);
err += sn9c102_write_reg(cam, 0x00, 0x75);
err += sn9c102_write_reg(cam, 0x44, 0x76);
err += sn9c102_write_reg(cam, 0x00, 0x77);
err += sn9c102_write_reg(cam, 0xC7, 0x78);
err += sn9c102_write_reg(cam, 0x01, 0x79);
err += sn9c102_write_reg(cam, 0xC7, 0x7A);
err += sn9c102_write_reg(cam, 0x01, 0x7B);
err += sn9c102_write_reg(cam, 0xC7, 0x7C);
err += sn9c102_write_reg(cam, 0x01, 0x7D);
err += sn9c102_write_reg(cam, 0x44, 0x7E);
err += sn9c102_write_reg(cam, 0x00, 0x7F);
err += sn9c102_write_reg(cam, 0x14, 0x84);
err += sn9c102_write_reg(cam, 0x00, 0x85);
err += sn9c102_write_reg(cam, 0x27, 0x86);
err += sn9c102_write_reg(cam, 0x00, 0x87);
err += sn9c102_write_reg(cam, 0x07, 0x88);
err += sn9c102_write_reg(cam, 0x00, 0x89);
err += sn9c102_write_reg(cam, 0xEC, 0x8A);
err += sn9c102_write_reg(cam, 0x0f, 0x8B);
err += sn9c102_write_reg(cam, 0xD8, 0x8C);
err += sn9c102_write_reg(cam, 0x0f, 0x8D);
err += sn9c102_write_reg(cam, 0x3D, 0x8E);
err += sn9c102_write_reg(cam, 0x00, 0x8F);
err += sn9c102_write_reg(cam, 0x3D, 0x90);
err += sn9c102_write_reg(cam, 0x00, 0x91);
err += sn9c102_write_reg(cam, 0xCD, 0x92);
err += sn9c102_write_reg(cam, 0x0f, 0x93);
err += sn9c102_write_reg(cam, 0xf7, 0x94);
err += sn9c102_write_reg(cam, 0x0f, 0x95);
err += sn9c102_write_reg(cam, 0x0C, 0x96);
err += sn9c102_write_reg(cam, 0x00, 0x97);
err += sn9c102_write_reg(cam, 0x00, 0x98);
err += sn9c102_write_reg(cam, 0x66, 0x99);
err += sn9c102_write_reg(cam, 0x05, 0x9A);
err += sn9c102_write_reg(cam, 0x00, 0x9B);
err += sn9c102_write_reg(cam, 0x04, 0x9C);
err += sn9c102_write_reg(cam, 0x00, 0x9D);
err += sn9c102_write_reg(cam, 0x08, 0x9E);
err += sn9c102_write_reg(cam, 0x00, 0x9F);
err += sn9c102_write_reg(cam, 0x2D, 0xC0);
err += sn9c102_write_reg(cam, 0x2D, 0xC1);
err += sn9c102_write_reg(cam, 0x3A, 0xC2);
err += sn9c102_write_reg(cam, 0x05, 0xC3);
err += sn9c102_write_reg(cam, 0x04, 0xC4);
err += sn9c102_write_reg(cam, 0x3F, 0xC5);
err += sn9c102_write_reg(cam, 0x00, 0xC6);
err += sn9c102_write_reg(cam, 0x00, 0xC7);
err += sn9c102_write_reg(cam, 0x50, 0xC8);
err += sn9c102_write_reg(cam, 0x3C, 0xC9);
err += sn9c102_write_reg(cam, 0x28, 0xCA);
err += sn9c102_write_reg(cam, 0xD8, 0xCB);
err += sn9c102_write_reg(cam, 0x14, 0xCC);
err += sn9c102_write_reg(cam, 0xEC, 0xCD);
err += sn9c102_write_reg(cam, 0x32, 0xCE);
err += sn9c102_write_reg(cam, 0xDD, 0xCF);
err += sn9c102_write_reg(cam, 0x32, 0xD0);
err += sn9c102_write_reg(cam, 0xDD, 0xD1);
err += sn9c102_write_reg(cam, 0x6A, 0xD2);
err += sn9c102_write_reg(cam, 0x50, 0xD3);
err += sn9c102_write_reg(cam, 0x00, 0xD4);
err += sn9c102_write_reg(cam, 0x00, 0xD5);
err += sn9c102_write_reg(cam, 0x00, 0xD6);
err += sn9c102_i2c_write(cam, 0x12, 0x80);
err += sn9c102_i2c_write(cam, 0x11, 0x09);
err += sn9c102_i2c_write(cam, 0x00, 0x0A);
err += sn9c102_i2c_write(cam, 0x01, 0x78);
err += sn9c102_i2c_write(cam, 0x02, 0x90);
err += sn9c102_i2c_write(cam, 0x03, 0x00);
err += sn9c102_i2c_write(cam, 0x04, 0x00);
err += sn9c102_i2c_write(cam, 0x05, 0x08);
err += sn9c102_i2c_write(cam, 0x06, 0x0B);
err += sn9c102_i2c_write(cam, 0x07, 0x00);
err += sn9c102_i2c_write(cam, 0x08, 0x1C);
err += sn9c102_i2c_write(cam, 0x09, 0x01);
err += sn9c102_i2c_write(cam, 0x0A, 0x76);
err += sn9c102_i2c_write(cam, 0x0B, 0x60);
err += sn9c102_i2c_write(cam, 0x0C, 0x00);
err += sn9c102_i2c_write(cam, 0x0D, 0x08);
err += sn9c102_i2c_write(cam, 0x0E, 0x04);
err += sn9c102_i2c_write(cam, 0x0F, 0x6F);
err += sn9c102_i2c_write(cam, 0x10, 0x20);
err += sn9c102_i2c_write(cam, 0x11, 0x03);
err += sn9c102_i2c_write(cam, 0x12, 0x05);
err += sn9c102_i2c_write(cam, 0x13, 0xF8);
err += sn9c102_i2c_write(cam, 0x14, 0x2C);
err += sn9c102_i2c_write(cam, 0x15, 0x00);
err += sn9c102_i2c_write(cam, 0x16, 0x02);
err += sn9c102_i2c_write(cam, 0x17, 0x10);
err += sn9c102_i2c_write(cam, 0x18, 0x60);
err += sn9c102_i2c_write(cam, 0x19, 0x02);
err += sn9c102_i2c_write(cam, 0x1A, 0x7B);
err += sn9c102_i2c_write(cam, 0x1B, 0x02);
err += sn9c102_i2c_write(cam, 0x1C, 0x7F);
err += sn9c102_i2c_write(cam, 0x1D, 0xA2);
err += sn9c102_i2c_write(cam, 0x1E, 0x01);
err += sn9c102_i2c_write(cam, 0x1F, 0x0E);
err += sn9c102_i2c_write(cam, 0x20, 0x05);
err += sn9c102_i2c_write(cam, 0x21, 0x05);
err += sn9c102_i2c_write(cam, 0x22, 0x05);
err += sn9c102_i2c_write(cam, 0x23, 0x05);
err += sn9c102_i2c_write(cam, 0x24, 0x68);
err += sn9c102_i2c_write(cam, 0x25, 0x58);
err += sn9c102_i2c_write(cam, 0x26, 0xD4);
err += sn9c102_i2c_write(cam, 0x27, 0x80);
err += sn9c102_i2c_write(cam, 0x28, 0x80);
err += sn9c102_i2c_write(cam, 0x29, 0x30);
err += sn9c102_i2c_write(cam, 0x2A, 0x00);
err += sn9c102_i2c_write(cam, 0x2B, 0x00);
err += sn9c102_i2c_write(cam, 0x2C, 0x80);
err += sn9c102_i2c_write(cam, 0x2D, 0x00);
err += sn9c102_i2c_write(cam, 0x2E, 0x00);
err += sn9c102_i2c_write(cam, 0x2F, 0x0E);
err += sn9c102_i2c_write(cam, 0x30, 0x08);
err += sn9c102_i2c_write(cam, 0x31, 0x30);
err += sn9c102_i2c_write(cam, 0x32, 0xB4);
err += sn9c102_i2c_write(cam, 0x33, 0x00);
err += sn9c102_i2c_write(cam, 0x34, 0x07);
err += sn9c102_i2c_write(cam, 0x35, 0x84);
err += sn9c102_i2c_write(cam, 0x36, 0x00);
err += sn9c102_i2c_write(cam, 0x37, 0x0C);
err += sn9c102_i2c_write(cam, 0x38, 0x02);
err += sn9c102_i2c_write(cam, 0x39, 0x43);
err += sn9c102_i2c_write(cam, 0x3A, 0x00);
err += sn9c102_i2c_write(cam, 0x3B, 0x02);
err += sn9c102_i2c_write(cam, 0x3C, 0x6C);
err += sn9c102_i2c_write(cam, 0x3D, 0x99);
err += sn9c102_i2c_write(cam, 0x3E, 0x0E);
err += sn9c102_i2c_write(cam, 0x3F, 0x41);
err += sn9c102_i2c_write(cam, 0x40, 0xC1);
err += sn9c102_i2c_write(cam, 0x41, 0x22);
err += sn9c102_i2c_write(cam, 0x42, 0x08);
err += sn9c102_i2c_write(cam, 0x43, 0xF0);
err += sn9c102_i2c_write(cam, 0x44, 0x10);
err += sn9c102_i2c_write(cam, 0x45, 0x78);
err += sn9c102_i2c_write(cam, 0x46, 0xA8);
err += sn9c102_i2c_write(cam, 0x47, 0x60);
err += sn9c102_i2c_write(cam, 0x48, 0x80);
err += sn9c102_i2c_write(cam, 0x49, 0x00);
err += sn9c102_i2c_write(cam, 0x4A, 0x00);
err += sn9c102_i2c_write(cam, 0x4B, 0x00);
err += sn9c102_i2c_write(cam, 0x4C, 0x00);
err += sn9c102_i2c_write(cam, 0x4D, 0x00);
err += sn9c102_i2c_write(cam, 0x4E, 0x00);
err += sn9c102_i2c_write(cam, 0x4F, 0x46);
err += sn9c102_i2c_write(cam, 0x50, 0x36);
err += sn9c102_i2c_write(cam, 0x51, 0x0F);
err += sn9c102_i2c_write(cam, 0x52, 0x17);
err += sn9c102_i2c_write(cam, 0x53, 0x7F);
err += sn9c102_i2c_write(cam, 0x54, 0x96);
err += sn9c102_i2c_write(cam, 0x55, 0x40);
err += sn9c102_i2c_write(cam, 0x56, 0x40);
err += sn9c102_i2c_write(cam, 0x57, 0x40);
err += sn9c102_i2c_write(cam, 0x58, 0x0F);
err += sn9c102_i2c_write(cam, 0x59, 0xBA);
err += sn9c102_i2c_write(cam, 0x5A, 0x9A);
err += sn9c102_i2c_write(cam, 0x5B, 0x22);
err += sn9c102_i2c_write(cam, 0x5C, 0xB9);
err += sn9c102_i2c_write(cam, 0x5D, 0x9B);
err += sn9c102_i2c_write(cam, 0x5E, 0x10);
err += sn9c102_i2c_write(cam, 0x5F, 0xF0);
err += sn9c102_i2c_write(cam, 0x60, 0x05);
err += sn9c102_i2c_write(cam, 0x61, 0x60);
err += sn9c102_i2c_write(cam, 0x62, 0x00);
err += sn9c102_i2c_write(cam, 0x63, 0x00);
err += sn9c102_i2c_write(cam, 0x64, 0x50);
err += sn9c102_i2c_write(cam, 0x65, 0x30);
err += sn9c102_i2c_write(cam, 0x66, 0x00);
err += sn9c102_i2c_write(cam, 0x67, 0x80);
err += sn9c102_i2c_write(cam, 0x68, 0x7A);
err += sn9c102_i2c_write(cam, 0x69, 0x90);
err += sn9c102_i2c_write(cam, 0x6A, 0x80);
err += sn9c102_i2c_write(cam, 0x6B, 0x0A);
err += sn9c102_i2c_write(cam, 0x6C, 0x30);
err += sn9c102_i2c_write(cam, 0x6D, 0x48);
err += sn9c102_i2c_write(cam, 0x6E, 0x80);
err += sn9c102_i2c_write(cam, 0x6F, 0x74);
err += sn9c102_i2c_write(cam, 0x70, 0x64);
err += sn9c102_i2c_write(cam, 0x71, 0x60);
err += sn9c102_i2c_write(cam, 0x72, 0x5C);
err += sn9c102_i2c_write(cam, 0x73, 0x58);
err += sn9c102_i2c_write(cam, 0x74, 0x54);
err += sn9c102_i2c_write(cam, 0x75, 0x4C);
err += sn9c102_i2c_write(cam, 0x76, 0x40);
err += sn9c102_i2c_write(cam, 0x77, 0x38);
err += sn9c102_i2c_write(cam, 0x78, 0x34);
err += sn9c102_i2c_write(cam, 0x79, 0x30);
err += sn9c102_i2c_write(cam, 0x7A, 0x2F);
err += sn9c102_i2c_write(cam, 0x7B, 0x2B);
err += sn9c102_i2c_write(cam, 0x7C, 0x03);
err += sn9c102_i2c_write(cam, 0x7D, 0x07);
err += sn9c102_i2c_write(cam, 0x7E, 0x17);
err += sn9c102_i2c_write(cam, 0x7F, 0x34);
err += sn9c102_i2c_write(cam, 0x80, 0x41);
err += sn9c102_i2c_write(cam, 0x81, 0x4D);
err += sn9c102_i2c_write(cam, 0x82, 0x58);
err += sn9c102_i2c_write(cam, 0x83, 0x63);
err += sn9c102_i2c_write(cam, 0x84, 0x6E);
err += sn9c102_i2c_write(cam, 0x85, 0x77);
err += sn9c102_i2c_write(cam, 0x86, 0x87);
err += sn9c102_i2c_write(cam, 0x87, 0x95);
err += sn9c102_i2c_write(cam, 0x88, 0xAF);
err += sn9c102_i2c_write(cam, 0x89, 0xC7);
err += sn9c102_i2c_write(cam, 0x8A, 0xDF);
err += sn9c102_i2c_write(cam, 0x8B, 0x99);
err += sn9c102_i2c_write(cam, 0x8C, 0x99);
err += sn9c102_i2c_write(cam, 0x8D, 0xCF);
err += sn9c102_i2c_write(cam, 0x8E, 0x20);
err += sn9c102_i2c_write(cam, 0x8F, 0x26);
err += sn9c102_i2c_write(cam, 0x90, 0x10);
err += sn9c102_i2c_write(cam, 0x91, 0x0C);
err += sn9c102_i2c_write(cam, 0x92, 0x25);
err += sn9c102_i2c_write(cam, 0x93, 0x00);
err += sn9c102_i2c_write(cam, 0x94, 0x50);
err += sn9c102_i2c_write(cam, 0x95, 0x50);
err += sn9c102_i2c_write(cam, 0x96, 0x00);
err += sn9c102_i2c_write(cam, 0x97, 0x01);
err += sn9c102_i2c_write(cam, 0x98, 0x10);
err += sn9c102_i2c_write(cam, 0x99, 0x40);
err += sn9c102_i2c_write(cam, 0x9A, 0x40);
err += sn9c102_i2c_write(cam, 0x9B, 0x20);
err += sn9c102_i2c_write(cam, 0x9C, 0x00);
err += sn9c102_i2c_write(cam, 0x9D, 0x99);
err += sn9c102_i2c_write(cam, 0x9E, 0x7F);
err += sn9c102_i2c_write(cam, 0x9F, 0x00);
err += sn9c102_i2c_write(cam, 0xA0, 0x00);
err += sn9c102_i2c_write(cam, 0xA1, 0x00);
return err;
}
static int ov7660_get_ctrl(struct sn9c102_device* cam,
struct v4l2_control* ctrl)
{
int err = 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x10)) < 0)
return -EIO;
break;
case V4L2_CID_DO_WHITE_BALANCE:
ctrl->value = sn9c102_pread_reg(cam, 0x02);
ctrl->value = (ctrl->value & 0x04) ? 1 : 0;
break;
case V4L2_CID_RED_BALANCE:
ctrl->value = sn9c102_pread_reg(cam, 0x05);
ctrl->value &= 0x7f;
break;
case V4L2_CID_BLUE_BALANCE:
ctrl->value = sn9c102_pread_reg(cam, 0x06);
ctrl->value &= 0x7f;
break;
case SN9C102_V4L2_CID_GREEN_BALANCE:
ctrl->value = sn9c102_pread_reg(cam, 0x07);
ctrl->value &= 0x7f;
break;
case V4L2_CID_GAIN:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x00)) < 0)
return -EIO;
ctrl->value &= 0x7f;
break;
case V4L2_CID_AUTOGAIN:
if ((ctrl->value = sn9c102_i2c_read(cam, 0x13)) < 0)
return -EIO;
ctrl->value &= 0x01;
break;
default:
return -EINVAL;
}
return err ? -EIO : 0;
}
static int ov7660_set_ctrl(struct sn9c102_device* cam,
const struct v4l2_control* ctrl)
{
int err = 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
err += sn9c102_i2c_write(cam, 0x10, ctrl->value);
break;
case V4L2_CID_DO_WHITE_BALANCE:
err += sn9c102_write_reg(cam, 0x43 | (ctrl->value << 2), 0x02);
break;
case V4L2_CID_RED_BALANCE:
err += sn9c102_write_reg(cam, ctrl->value, 0x05);
break;
case V4L2_CID_BLUE_BALANCE:
err += sn9c102_write_reg(cam, ctrl->value, 0x06);
break;
case SN9C102_V4L2_CID_GREEN_BALANCE:
err += sn9c102_write_reg(cam, ctrl->value, 0x07);
break;
case V4L2_CID_GAIN:
err += sn9c102_i2c_write(cam, 0x00, ctrl->value);
break;
case V4L2_CID_AUTOGAIN:
err += sn9c102_i2c_write(cam, 0x13, 0xf0 | ctrl->value |
(ctrl->value << 1));
break;
default:
return -EINVAL;
}
return err ? -EIO : 0;
}
static int ov7660_set_crop(struct sn9c102_device* cam,
const struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = sn9c102_get_sensor(cam);
int err = 0;
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left) + 1,
v_start = (u8)(rect->top - s->cropcap.bounds.top) + 1;
err += sn9c102_write_reg(cam, h_start, 0x12);
err += sn9c102_write_reg(cam, v_start, 0x13);
return err;
}
static int ov7660_set_pix_format(struct sn9c102_device* cam,
const struct v4l2_pix_format* pix)
{
int r0, err = 0;
r0 = sn9c102_pread_reg(cam, 0x01);
if (pix->pixelformat == V4L2_PIX_FMT_JPEG) {
err += sn9c102_write_reg(cam, r0 | 0x40, 0x01);
err += sn9c102_write_reg(cam, 0xa2, 0x17);
err += sn9c102_i2c_write(cam, 0x11, 0x00);
} else {
err += sn9c102_write_reg(cam, r0 | 0x40, 0x01);
err += sn9c102_write_reg(cam, 0xa2, 0x17);
err += sn9c102_i2c_write(cam, 0x11, 0x0d);
}
return err;
}
static struct sn9c102_sensor ov7660 = {
.name = "OV7660",
.maintainer = "Luca Risolia <luca.risolia@studio.unibo.it>",
.supported_bridge = BRIDGE_SN9C105 | BRIDGE_SN9C120,
.sysfs_ops = SN9C102_I2C_READ | SN9C102_I2C_WRITE,
.frequency = SN9C102_I2C_100KHZ,
.interface = SN9C102_I2C_2WIRES,
.i2c_slave_id = 0x21,
.init = &ov7660_init,
.qctrl = {
{
.id = V4L2_CID_GAIN,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "global gain",
.minimum = 0x00,
.maximum = 0x7f,
.step = 0x01,
.default_value = 0x0a,
.flags = 0,
},
{
.id = V4L2_CID_EXPOSURE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "exposure",
.minimum = 0x00,
.maximum = 0xff,
.step = 0x01,
.default_value = 0x50,
.flags = 0,
},
{
.id = V4L2_CID_DO_WHITE_BALANCE,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "night mode",
.minimum = 0x00,
.maximum = 0x01,
.step = 0x01,
.default_value = 0x00,
.flags = 0,
},
{
.id = V4L2_CID_RED_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "red balance",
.minimum = 0x00,
.maximum = 0x7f,
.step = 0x01,
.default_value = 0x1f,
.flags = 0,
},
{
.id = V4L2_CID_BLUE_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "blue balance",
.minimum = 0x00,
.maximum = 0x7f,
.step = 0x01,
.default_value = 0x1e,
.flags = 0,
},
{
.id = V4L2_CID_AUTOGAIN,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "auto adjust",
.minimum = 0x00,
.maximum = 0x01,
.step = 0x01,
.default_value = 0x00,
.flags = 0,
},
{
.id = SN9C102_V4L2_CID_GREEN_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "green balance",
.minimum = 0x00,
.maximum = 0x7f,
.step = 0x01,
.default_value = 0x20,
.flags = 0,
},
},
.get_ctrl = &ov7660_get_ctrl,
.set_ctrl = &ov7660_set_ctrl,
.cropcap = {
.bounds = {
.left = 0,
.top = 0,
.width = 640,
.height = 480,
},
.defrect = {
.left = 0,
.top = 0,
.width = 640,
.height = 480,
},
},
.set_crop = &ov7660_set_crop,
.pix_format = {
.width = 640,
.height = 480,
.pixelformat = V4L2_PIX_FMT_JPEG,
.priv = 8,
},
.set_pix_format = &ov7660_set_pix_format
};
int sn9c102_probe_ov7660(struct sn9c102_device* cam)
{
int pid, ver, err = 0;
err += sn9c102_write_reg(cam, 0x01, 0xf1);
err += sn9c102_write_reg(cam, 0x00, 0xf1);
err += sn9c102_write_reg(cam, 0x01, 0x01);
err += sn9c102_write_reg(cam, 0x00, 0x01);
err += sn9c102_write_reg(cam, 0x28, 0x17);
pid = sn9c102_i2c_try_read(cam, &ov7660, 0x0a);
ver = sn9c102_i2c_try_read(cam, &ov7660, 0x0b);
if (err || pid < 0 || ver < 0)
return -EIO;
if (pid != 0x76 || ver != 0x60)
return -ENODEV;
sn9c102_attach_sensor(cam, &ov7660);
return 0;
}

View File

@ -1,8 +1,8 @@
/***************************************************************************
* Plug-in for PAS106B image sensor connected to the SN9C10x PC Camera *
* Plug-in for PAS106B image sensor connected to the SN9C1xx PC Camera *
* Controllers *
* *
* Copyright (C) 2004-2006 by Luca Risolia <luca.risolia@studio.unibo.it> *
* Copyright (C) 2004-2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
@ -143,7 +143,7 @@ static int pas106b_set_ctrl(struct sn9c102_device* cam,
static int pas106b_set_crop(struct sn9c102_device* cam,
const struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = &pas106b;
struct sn9c102_sensor* s = sn9c102_get_sensor(cam);
int err = 0;
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left) + 4,
v_start = (u8)(rect->top - s->cropcap.bounds.top) + 3;
@ -172,6 +172,7 @@ static int pas106b_set_pix_format(struct sn9c102_device* cam,
static struct sn9c102_sensor pas106b = {
.name = "PAS106B",
.maintainer = "Luca Risolia <luca.risolia@studio.unibo.it>",
.supported_bridge = BRIDGE_SN9C101 | BRIDGE_SN9C102 | BRIDGE_SN9C103,
.sysfs_ops = SN9C102_I2C_READ | SN9C102_I2C_WRITE,
.frequency = SN9C102_I2C_400KHZ | SN9C102_I2C_100KHZ,
.interface = SN9C102_I2C_2WIRES,

View File

@ -1,238 +0,0 @@
/***************************************************************************
* Plug-in for PAS202BCA image sensor connected to the SN9C10x PC Camera *
* Controllers *
* *
* Copyright (C) 2006 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *
***************************************************************************/
#include <linux/delay.h>
#include "sn9c102_sensor.h"
static struct sn9c102_sensor pas202bca;
static int pas202bca_init(struct sn9c102_device* cam)
{
int err = 0;
err += sn9c102_write_reg(cam, 0x00, 0x10);
err += sn9c102_write_reg(cam, 0x00, 0x11);
err += sn9c102_write_reg(cam, 0x00, 0x14);
err += sn9c102_write_reg(cam, 0x20, 0x17);
err += sn9c102_write_reg(cam, 0x30, 0x19);
err += sn9c102_write_reg(cam, 0x09, 0x18);
err += sn9c102_i2c_write(cam, 0x02, 0x14);
err += sn9c102_i2c_write(cam, 0x03, 0x40);
err += sn9c102_i2c_write(cam, 0x0d, 0x2c);
err += sn9c102_i2c_write(cam, 0x0e, 0x01);
err += sn9c102_i2c_write(cam, 0x0f, 0xa9);
err += sn9c102_i2c_write(cam, 0x10, 0x08);
err += sn9c102_i2c_write(cam, 0x13, 0x63);
err += sn9c102_i2c_write(cam, 0x15, 0x70);
err += sn9c102_i2c_write(cam, 0x11, 0x01);
msleep(400);
return err;
}
static int pas202bca_set_pix_format(struct sn9c102_device* cam,
const struct v4l2_pix_format* pix)
{
int err = 0;
if (pix->pixelformat == V4L2_PIX_FMT_SN9C10X)
err += sn9c102_write_reg(cam, 0x24, 0x17);
else
err += sn9c102_write_reg(cam, 0x20, 0x17);
return err;
}
static int pas202bca_set_ctrl(struct sn9c102_device* cam,
const struct v4l2_control* ctrl)
{
int err = 0;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
err += sn9c102_i2c_write(cam, 0x04, ctrl->value >> 6);
err += sn9c102_i2c_write(cam, 0x05, ctrl->value & 0x3f);
break;
case V4L2_CID_RED_BALANCE:
err += sn9c102_i2c_write(cam, 0x09, ctrl->value);
break;
case V4L2_CID_BLUE_BALANCE:
err += sn9c102_i2c_write(cam, 0x07, ctrl->value);
break;
case V4L2_CID_GAIN:
err += sn9c102_i2c_write(cam, 0x10, ctrl->value);
break;
case SN9C102_V4L2_CID_GREEN_BALANCE:
err += sn9c102_i2c_write(cam, 0x08, ctrl->value);
break;
case SN9C102_V4L2_CID_DAC_MAGNITUDE:
err += sn9c102_i2c_write(cam, 0x0c, ctrl->value);
break;
default:
return -EINVAL;
}
err += sn9c102_i2c_write(cam, 0x11, 0x01);
return err ? -EIO : 0;
}
static int pas202bca_set_crop(struct sn9c102_device* cam,
const struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = &pas202bca;
int err = 0;
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left) + 3,
v_start = (u8)(rect->top - s->cropcap.bounds.top) + 3;
err += sn9c102_write_reg(cam, h_start, 0x12);
err += sn9c102_write_reg(cam, v_start, 0x13);
return err;
}
static struct sn9c102_sensor pas202bca = {
.name = "PAS202BCA",
.maintainer = "Luca Risolia <luca.risolia@studio.unibo.it>",
.sysfs_ops = SN9C102_I2C_READ | SN9C102_I2C_WRITE,
.frequency = SN9C102_I2C_400KHZ | SN9C102_I2C_100KHZ,
.interface = SN9C102_I2C_2WIRES,
.i2c_slave_id = 0x40,
.init = &pas202bca_init,
.qctrl = {
{
.id = V4L2_CID_EXPOSURE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "exposure",
.minimum = 0x01e5,
.maximum = 0x3fff,
.step = 0x0001,
.default_value = 0x01e5,
.flags = 0,
},
{
.id = V4L2_CID_GAIN,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "global gain",
.minimum = 0x00,
.maximum = 0x1f,
.step = 0x01,
.default_value = 0x0c,
.flags = 0,
},
{
.id = V4L2_CID_RED_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "red balance",
.minimum = 0x00,
.maximum = 0x0f,
.step = 0x01,
.default_value = 0x01,
.flags = 0,
},
{
.id = V4L2_CID_BLUE_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "blue balance",
.minimum = 0x00,
.maximum = 0x0f,
.step = 0x01,
.default_value = 0x05,
.flags = 0,
},
{
.id = SN9C102_V4L2_CID_GREEN_BALANCE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "green balance",
.minimum = 0x00,
.maximum = 0x0f,
.step = 0x01,
.default_value = 0x00,
.flags = 0,
},
{
.id = SN9C102_V4L2_CID_DAC_MAGNITUDE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "DAC magnitude",
.minimum = 0x00,
.maximum = 0xff,
.step = 0x01,
.default_value = 0x04,
.flags = 0,
},
},
.set_ctrl = &pas202bca_set_ctrl,
.cropcap = {
.bounds = {
.left = 0,
.top = 0,
.width = 640,
.height = 480,
},
.defrect = {
.left = 0,
.top = 0,
.width = 640,
.height = 480,
},
},
.set_crop = &pas202bca_set_crop,
.pix_format = {
.width = 640,
.height = 480,
.pixelformat = V4L2_PIX_FMT_SBGGR8,
.priv = 8,
},
.set_pix_format = &pas202bca_set_pix_format
};
int sn9c102_probe_pas202bca(struct sn9c102_device* cam)
{
const struct usb_device_id pas202bca_id_table[] = {
{ USB_DEVICE(0x0c45, 0x60af), },
{ }
};
int err = 0;
if (!sn9c102_match_id(cam,pas202bca_id_table))
return -ENODEV;
err += sn9c102_write_reg(cam, 0x01, 0x01);
err += sn9c102_write_reg(cam, 0x40, 0x01);
err += sn9c102_write_reg(cam, 0x28, 0x17);
if (err)
return -EIO;
if (sn9c102_i2c_try_write(cam, &pas202bca, 0x10, 0)) /* try to write */
return -ENODEV;
sn9c102_attach_sensor(cam, &pas202bca);
return 0;
}

View File

@ -1,13 +1,13 @@
/***************************************************************************
* Plug-in for PAS202BCB image sensor connected to the SN9C10x PC Camera *
* Plug-in for PAS202BCB image sensor connected to the SN9C1xx PC Camera *
* Controllers *
* *
* Copyright (C) 2004 by Carlos Eduardo Medaglia Dyonisio *
* <medaglia@undl.org.br> *
* http://cadu.homelinux.com:8080/ *
* *
* DAC Magnitude, exposure and green gain controls added by *
* Luca Risolia <luca.risolia@studio.unibo.it> *
* Support for SN9C103, DAC Magnitude, exposure and green gain controls *
* added by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
@ -35,12 +35,54 @@ static int pas202bcb_init(struct sn9c102_device* cam)
{
int err = 0;
switch (sn9c102_get_bridge(cam)) {
case BRIDGE_SN9C101:
case BRIDGE_SN9C102:
err += sn9c102_write_reg(cam, 0x00, 0x10);
err += sn9c102_write_reg(cam, 0x00, 0x11);
err += sn9c102_write_reg(cam, 0x00, 0x14);
err += sn9c102_write_reg(cam, 0x20, 0x17);
err += sn9c102_write_reg(cam, 0x30, 0x19);
err += sn9c102_write_reg(cam, 0x09, 0x18);
break;
case BRIDGE_SN9C103:
err += sn9c102_write_reg(cam, 0x00, 0x02);
err += sn9c102_write_reg(cam, 0x00, 0x03);
err += sn9c102_write_reg(cam, 0x1a, 0x04);
err += sn9c102_write_reg(cam, 0x20, 0x05);
err += sn9c102_write_reg(cam, 0x20, 0x06);
err += sn9c102_write_reg(cam, 0x20, 0x07);
err += sn9c102_write_reg(cam, 0x00, 0x10);
err += sn9c102_write_reg(cam, 0x00, 0x11);
err += sn9c102_write_reg(cam, 0x00, 0x14);
err += sn9c102_write_reg(cam, 0x20, 0x17);
err += sn9c102_write_reg(cam, 0x30, 0x19);
err += sn9c102_write_reg(cam, 0x09, 0x18);
err += sn9c102_write_reg(cam, 0x02, 0x1c);
err += sn9c102_write_reg(cam, 0x03, 0x1d);
err += sn9c102_write_reg(cam, 0x0f, 0x1e);
err += sn9c102_write_reg(cam, 0x0c, 0x1f);
err += sn9c102_write_reg(cam, 0x00, 0x20);
err += sn9c102_write_reg(cam, 0x10, 0x21);
err += sn9c102_write_reg(cam, 0x20, 0x22);
err += sn9c102_write_reg(cam, 0x30, 0x23);
err += sn9c102_write_reg(cam, 0x40, 0x24);
err += sn9c102_write_reg(cam, 0x50, 0x25);
err += sn9c102_write_reg(cam, 0x60, 0x26);
err += sn9c102_write_reg(cam, 0x70, 0x27);
err += sn9c102_write_reg(cam, 0x80, 0x28);
err += sn9c102_write_reg(cam, 0x90, 0x29);
err += sn9c102_write_reg(cam, 0xa0, 0x2a);
err += sn9c102_write_reg(cam, 0xb0, 0x2b);
err += sn9c102_write_reg(cam, 0xc0, 0x2c);
err += sn9c102_write_reg(cam, 0xd0, 0x2d);
err += sn9c102_write_reg(cam, 0xe0, 0x2e);
err += sn9c102_write_reg(cam, 0xf0, 0x2f);
err += sn9c102_write_reg(cam, 0xff, 0x30);
break;
default:
break;
}
err += sn9c102_i2c_write(cam, 0x02, 0x14);
err += sn9c102_i2c_write(cam, 0x03, 0x40);
@ -107,7 +149,7 @@ static int pas202bcb_set_pix_format(struct sn9c102_device* cam,
int err = 0;
if (pix->pixelformat == V4L2_PIX_FMT_SN9C10X)
err += sn9c102_write_reg(cam, 0x24, 0x17);
err += sn9c102_write_reg(cam, 0x28, 0x17);
else
err += sn9c102_write_reg(cam, 0x20, 0x17);
@ -152,11 +194,23 @@ static int pas202bcb_set_ctrl(struct sn9c102_device* cam,
static int pas202bcb_set_crop(struct sn9c102_device* cam,
const struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = &pas202bcb;
struct sn9c102_sensor* s = sn9c102_get_sensor(cam);
int err = 0;
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left) + 4,
u8 h_start = 0,
v_start = (u8)(rect->top - s->cropcap.bounds.top) + 3;
switch (sn9c102_get_bridge(cam)) {
case BRIDGE_SN9C101:
case BRIDGE_SN9C102:
h_start = (u8)(rect->left - s->cropcap.bounds.left) + 4;
break;
case BRIDGE_SN9C103:
h_start = (u8)(rect->left - s->cropcap.bounds.left) + 3;
break;
default:
break;
}
err += sn9c102_write_reg(cam, h_start, 0x12);
err += sn9c102_write_reg(cam, v_start, 0x13);
@ -166,8 +220,8 @@ static int pas202bcb_set_crop(struct sn9c102_device* cam,
static struct sn9c102_sensor pas202bcb = {
.name = "PAS202BCB",
.maintainer = "Carlos Eduardo Medaglia Dyonisio "
"<medaglia@undl.org.br>",
.maintainer = "Luca Risolia <luca.risolia@studio.unibo.it>",
.supported_bridge = BRIDGE_SN9C101 | BRIDGE_SN9C102 | BRIDGE_SN9C103,
.sysfs_ops = SN9C102_I2C_READ | SN9C102_I2C_WRITE,
.frequency = SN9C102_I2C_400KHZ | SN9C102_I2C_100KHZ,
.interface = SN9C102_I2C_2WIRES,
@ -191,7 +245,7 @@ static struct sn9c102_sensor pas202bcb = {
.minimum = 0x00,
.maximum = 0x1f,
.step = 0x01,
.default_value = 0x0c,
.default_value = 0x0b,
.flags = 0,
},
{
@ -201,7 +255,7 @@ static struct sn9c102_sensor pas202bcb = {
.minimum = 0x00,
.maximum = 0x0f,
.step = 0x01,
.default_value = 0x01,
.default_value = 0x00,
.flags = 0,
},
{
@ -271,16 +325,27 @@ int sn9c102_probe_pas202bcb(struct sn9c102_device* cam)
* Minimal initialization to enable the I2C communication
* NOTE: do NOT change the values!
*/
err += sn9c102_write_reg(cam, 0x01, 0x01); /* sensor power down */
err += sn9c102_write_reg(cam, 0x40, 0x01); /* sensor power on */
err += sn9c102_write_reg(cam, 0x28, 0x17); /* sensor clock at 24 MHz */
if (err)
return -EIO;
switch (sn9c102_get_bridge(cam)) {
case BRIDGE_SN9C101:
case BRIDGE_SN9C102:
err += sn9c102_write_reg(cam, 0x01, 0x01); /* power down */
err += sn9c102_write_reg(cam, 0x40, 0x01); /* power on */
err += sn9c102_write_reg(cam, 0x28, 0x17); /* clock 24 MHz */
break;
case BRIDGE_SN9C103: /* do _not_ change anything! */
err += sn9c102_write_reg(cam, 0x09, 0x01);
err += sn9c102_write_reg(cam, 0x44, 0x01);
err += sn9c102_write_reg(cam, 0x44, 0x02);
err += sn9c102_write_reg(cam, 0x29, 0x17);
break;
default:
break;
}
r0 = sn9c102_i2c_try_read(cam, &pas202bcb, 0x00);
r1 = sn9c102_i2c_try_read(cam, &pas202bcb, 0x01);
if (r0 < 0 || r1 < 0)
if (err || r0 < 0 || r1 < 0)
return -EIO;
pid = (r0 << 4) | ((r1 & 0xf0) >> 4);

View File

@ -1,7 +1,7 @@
/***************************************************************************
* API for image sensors connected to the SN9C10x PC Camera Controllers *
* API for image sensors connected to the SN9C1xx PC Camera Controllers *
* *
* Copyright (C) 2004-2006 by Luca Risolia <luca.risolia@studio.unibo.it> *
* Copyright (C) 2004-2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
@ -36,14 +36,13 @@ struct sn9c102_sensor;
/*
OVERVIEW.
This is a small interface that allows you to add support for any CCD/CMOS
image sensors connected to the SN9C10X bridges. The entire API is documented
image sensors connected to the SN9C1XX bridges. The entire API is documented
below. In the most general case, to support a sensor there are three steps
you have to follow:
1) define the main "sn9c102_sensor" structure by setting the basic fields;
2) write a probing function to be called by the core module when the USB
camera is recognized, then add both the USB ids and the name of that
function to the two corresponding tables SENSOR_TABLE and ID_TABLE (see
below);
function to the two corresponding tables in sn9c102_devtable.h;
3) implement the methods that you want/need (and fill the rest of the main
structure accordingly).
"sn9c102_pas106b.c" is an example of all this stuff. Remember that you do
@ -54,42 +53,21 @@ struct sn9c102_sensor;
/*****************************************************************************/
/*
Probing functions: on success, you must attach the sensor to the camera
by calling sn9c102_attach_sensor() provided below.
To enable the I2C communication, you might need to perform a really basic
initialization of the SN9C10X chip by using the write function declared
ahead.
Functions must return 0 on success, the appropriate error otherwise.
*/
extern int sn9c102_probe_hv7131d(struct sn9c102_device* cam);
extern int sn9c102_probe_mi0343(struct sn9c102_device* cam);
extern int sn9c102_probe_ov7630(struct sn9c102_device* cam);
extern int sn9c102_probe_pas106b(struct sn9c102_device* cam);
extern int sn9c102_probe_pas202bca(struct sn9c102_device* cam);
extern int sn9c102_probe_pas202bcb(struct sn9c102_device* cam);
extern int sn9c102_probe_tas5110c1b(struct sn9c102_device* cam);
extern int sn9c102_probe_tas5130d1b(struct sn9c102_device* cam);
/*
Add the above entries to this table. Be sure to add the entry in the right
place, since, on failure, the next probing routine is called according to
the order of the list below, from top to bottom.
*/
#define SN9C102_SENSOR_TABLE \
static int (*sn9c102_sensor_table[])(struct sn9c102_device*) = { \
&sn9c102_probe_mi0343, /* strong detection based on SENSOR ids */ \
&sn9c102_probe_pas106b, /* strong detection based on SENSOR ids */ \
&sn9c102_probe_pas202bcb, /* strong detection based on SENSOR ids */ \
&sn9c102_probe_hv7131d, /* strong detection based on SENSOR ids */ \
&sn9c102_probe_pas202bca, /* detection mostly based on USB pid/vid */ \
&sn9c102_probe_ov7630, /* detection mostly based on USB pid/vid */ \
&sn9c102_probe_tas5110c1b, /* detection based on USB pid/vid */ \
&sn9c102_probe_tas5130d1b, /* detection based on USB pid/vid */ \
NULL, \
enum sn9c102_bridge {
BRIDGE_SN9C101 = 0x01,
BRIDGE_SN9C102 = 0x02,
BRIDGE_SN9C103 = 0x04,
BRIDGE_SN9C105 = 0x08,
BRIDGE_SN9C120 = 0x10,
};
/* Device identification */
/* Return the bridge name */
enum sn9c102_bridge sn9c102_get_bridge(struct sn9c102_device* cam);
/* Return a pointer the sensor struct attached to the camera */
struct sn9c102_sensor* sn9c102_get_sensor(struct sn9c102_device* cam);
/* Identify a device */
extern struct sn9c102_device*
sn9c102_match_id(struct sn9c102_device* cam, const struct usb_device_id *id);
@ -98,69 +76,9 @@ extern void
sn9c102_attach_sensor(struct sn9c102_device* cam,
struct sn9c102_sensor* sensor);
/*
Each SN9C10x camera has proper PID/VID identifiers.
SN9C103 supports multiple interfaces, but we only handle the video class
interface.
*/
#define SN9C102_USB_DEVICE(vend, prod, intclass) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
USB_DEVICE_ID_MATCH_INT_CLASS, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = (intclass)
#define SN9C102_ID_TABLE \
static const struct usb_device_id sn9c102_id_table[] = { \
{ USB_DEVICE(0x0c45, 0x6001), }, /* TAS5110C1B */ \
{ USB_DEVICE(0x0c45, 0x6005), }, /* TAS5110C1B */ \
{ USB_DEVICE(0x0c45, 0x6007), }, \
{ USB_DEVICE(0x0c45, 0x6009), }, /* PAS106B */ \
{ USB_DEVICE(0x0c45, 0x600d), }, /* PAS106B */ \
{ USB_DEVICE(0x0c45, 0x6024), }, \
{ USB_DEVICE(0x0c45, 0x6025), }, /* TAS5130D1B and TAS5110C1B */ \
{ USB_DEVICE(0x0c45, 0x6028), }, /* PAS202BCB */ \
{ USB_DEVICE(0x0c45, 0x6029), }, /* PAS106B */ \
{ USB_DEVICE(0x0c45, 0x602a), }, /* HV7131D */ \
{ USB_DEVICE(0x0c45, 0x602b), }, /* MI-0343 */ \
{ USB_DEVICE(0x0c45, 0x602c), }, /* OV7630 */ \
{ USB_DEVICE(0x0c45, 0x602d), }, \
{ USB_DEVICE(0x0c45, 0x602e), }, /* OV7630 */ \
{ USB_DEVICE(0x0c45, 0x6030), }, /* MI03x */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x6080, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x6082, 0xff), }, /* MI0343 & MI0360 */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x6083, 0xff), }, /* HV7131[D|E1] */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x6088, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x608a, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x608b, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x608c, 0xff), }, /* HV7131/R */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x608e, 0xff), }, /* CIS-VF10 */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x608f, 0xff), }, /* OV7630 */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x60a0, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60a2, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60a3, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60a8, 0xff), }, /* PAS106B */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x60aa, 0xff), }, /* TAS5130D1B */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x60ab, 0xff), }, /* TAS5110C1B */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x60ac, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60ae, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60af, 0xff), }, /* PAS202BCB */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x60b0, 0xff), }, /* OV7630 (?) */ \
{ SN9C102_USB_DEVICE(0x0c45, 0x60b2, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60b3, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60b8, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60ba, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60bb, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60bc, 0xff), }, \
{ SN9C102_USB_DEVICE(0x0c45, 0x60be, 0xff), }, \
{ } \
};
/*****************************************************************************/
/*
Read/write routines: they always return -1 on error, 0 or the read value
otherwise. NOTE that a real read operation is not supported by the SN9C10X
otherwise. NOTE that a real read operation is not supported by the SN9C1XX
chip for some of its registers. To work around this problem, a pseudo-read
call is provided instead: it returns the last successfully written value
on the register (0 if it has never been written), the usual -1 on error.
@ -176,7 +94,7 @@ extern int sn9c102_i2c_try_read(struct sn9c102_device*,struct sn9c102_sensor*,
These must be used if and only if the sensor doesn't implement the standard
I2C protocol. There are a number of good reasons why you must use the
single-byte versions of these functions: do not abuse. The first function
writes n bytes, from data0 to datan, to registers 0x09 - 0x09+n of SN9C10X
writes n bytes, from data0 to datan, to registers 0x09 - 0x09+n of SN9C1XX
chip. The second one programs the registers 0x09 and 0x10 with data0 and
data1, and places the n bytes read from the sensor register table in the
buffer pointed by 'buffer'. Both the functions return -1 on error; the write
@ -200,16 +118,6 @@ extern int sn9c102_write_regs(struct sn9c102_device*, u8* buff, u16 index);
extern int sn9c102_write_reg(struct sn9c102_device*, u8 value, u16 index);
extern int sn9c102_pread_reg(struct sn9c102_device*, u16 index);
/*
NOTE: there are no exported debugging functions. To uniform the output you
must use the dev_info()/dev_warn()/dev_err() macros defined in device.h,
already included here, the argument being the struct device '&usbdev->dev'
of the sensor structure. Do NOT use these macros before the sensor is
attached or the kernel will crash! However, you should not need to notify
the user about common errors or other messages, since this is done by the
master module.
*/
/*****************************************************************************/
enum sn9c102_i2c_sysfs_ops {
@ -227,17 +135,19 @@ enum sn9c102_i2c_interface {
SN9C102_I2C_3WIRES,
};
#define SN9C102_MAX_CTRLS V4L2_CID_LASTP1-V4L2_CID_BASE+10
#define SN9C102_MAX_CTRLS (V4L2_CID_LASTP1-V4L2_CID_BASE+10)
struct sn9c102_sensor {
char name[32], /* sensor name */
maintainer[64]; /* name of the mantainer <email> */
enum sn9c102_bridge supported_bridge; /* supported SN9C1xx bridges */
/* Supported operations through the 'sysfs' interface */
enum sn9c102_i2c_sysfs_ops sysfs_ops;
/*
These sensor capabilities must be provided if the SN9C10X controller
These sensor capabilities must be provided if the SN9C1XX controller
needs to communicate through the sensor serial interface by using
at least one of the i2c functions available.
*/
@ -260,7 +170,7 @@ struct sn9c102_sensor {
/*
This function will be called after the sensor has been attached.
It should be used to initialize the sensor only, but may also
configure part of the SN9C10X chip if necessary. You don't need to
configure part of the SN9C1XX chip if necessary. You don't need to
setup picture settings like brightness, contrast, etc.. here, if
the corrisponding controls are implemented (see below), since
they are adjusted in the core driver by calling the set_ctrl()
@ -300,7 +210,7 @@ struct sn9c102_sensor {
It is not always true that the largest achievable active window can
cover the whole array of pixels. The V4L2 API defines another
area called "source rectangle", which, in turn, is a subrectangle of
the active window. The SN9C10X chip is always programmed to read the
the active window. The SN9C1XX chip is always programmed to read the
source rectangle.
The bounds of both the active window and the source rectangle are
specified in the cropcap substructures 'bounds' and 'defrect'.
@ -326,13 +236,13 @@ struct sn9c102_sensor {
const struct v4l2_rect* rect);
/*
To be called on VIDIOC_C_SETCROP. The core module always calls a
default routine which configures the appropriate SN9C10X regs (also
default routine which configures the appropriate SN9C1XX regs (also
scaling), but you may need to override/adjust specific stuff.
'rect' contains width and height values that are multiple of 16: in
case you override the default function, you always have to program
the chip to match those values; on error return the corresponding
error code without rolling back.
NOTE: in case, you must program the SN9C10X chip to get rid of
NOTE: in case, you must program the SN9C1XX chip to get rid of
blank pixels or blank lines at the _start_ of each line or
frame after each HSYNC or VSYNC, so that the image starts with
real RGB data (see regs 0x12, 0x13) (having set H_SIZE and,
@ -344,16 +254,16 @@ struct sn9c102_sensor {
/*
What you have to define here are: 1) initial 'width' and 'height' of
the target rectangle 2) the initial 'pixelformat', which can be
either V4L2_PIX_FMT_SN9C10X (for compressed video) or
V4L2_PIX_FMT_SBGGR8 3) 'priv', which we'll be used to indicate the
number of bits per pixel for uncompressed video, 8 or 9 (despite the
current value of 'pixelformat').
either V4L2_PIX_FMT_SN9C10X, V4L2_PIX_FMT_JPEG (for ompressed video)
or V4L2_PIX_FMT_SBGGR8 3) 'priv', which we'll be used to indicate
the number of bits per pixel for uncompressed video, 8 or 9 (despite
the current value of 'pixelformat').
NOTE 1: both 'width' and 'height' _must_ be either 1/1 or 1/2 or 1/4
of cropcap.defrect.width and cropcap.defrect.height. I
suggest 1/1.
NOTE 2: The initial compression quality is defined by the first bit
of reg 0x17 during the initialization of the image sensor.
NOTE 3: as said above, you have to program the SN9C10X chip to get
NOTE 3: as said above, you have to program the SN9C1XX chip to get
rid of any blank pixels, so that the output of the sensor
matches the RGB bayer sequence (i.e. BGBGBG...GRGRGR).
*/
@ -378,12 +288,12 @@ struct sn9c102_sensor {
/*****************************************************************************/
/* Private ioctl's for control settings supported by some image sensors */
#define SN9C102_V4L2_CID_DAC_MAGNITUDE V4L2_CID_PRIVATE_BASE
#define SN9C102_V4L2_CID_GREEN_BALANCE V4L2_CID_PRIVATE_BASE + 1
#define SN9C102_V4L2_CID_RESET_LEVEL V4L2_CID_PRIVATE_BASE + 2
#define SN9C102_V4L2_CID_PIXEL_BIAS_VOLTAGE V4L2_CID_PRIVATE_BASE + 3
#define SN9C102_V4L2_CID_GAMMA V4L2_CID_PRIVATE_BASE + 4
#define SN9C102_V4L2_CID_BAND_FILTER V4L2_CID_PRIVATE_BASE + 5
#define SN9C102_V4L2_CID_BRIGHT_LEVEL V4L2_CID_PRIVATE_BASE + 6
#define SN9C102_V4L2_CID_DAC_MAGNITUDE (V4L2_CID_PRIVATE_BASE + 0)
#define SN9C102_V4L2_CID_GREEN_BALANCE (V4L2_CID_PRIVATE_BASE + 1)
#define SN9C102_V4L2_CID_RESET_LEVEL (V4L2_CID_PRIVATE_BASE + 2)
#define SN9C102_V4L2_CID_PIXEL_BIAS_VOLTAGE (V4L2_CID_PRIVATE_BASE + 3)
#define SN9C102_V4L2_CID_GAMMA (V4L2_CID_PRIVATE_BASE + 4)
#define SN9C102_V4L2_CID_BAND_FILTER (V4L2_CID_PRIVATE_BASE + 5)
#define SN9C102_V4L2_CID_BRIGHT_LEVEL (V4L2_CID_PRIVATE_BASE + 6)
#endif /* _SN9C102_SENSOR_H_ */

View File

@ -1,8 +1,8 @@
/***************************************************************************
* Plug-in for TAS5110C1B image sensor connected to the SN9C10x PC Camera *
* Plug-in for TAS5110C1B image sensor connected to the SN9C1xx PC Camera *
* Controllers *
* *
* Copyright (C) 2004-2006 by Luca Risolia <luca.risolia@studio.unibo.it> *
* Copyright (C) 2004-2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
@ -64,7 +64,7 @@ static int tas5110c1b_set_ctrl(struct sn9c102_device* cam,
static int tas5110c1b_set_crop(struct sn9c102_device* cam,
const struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = &tas5110c1b;
struct sn9c102_sensor* s = sn9c102_get_sensor(cam);
int err = 0;
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left) + 69,
v_start = (u8)(rect->top - s->cropcap.bounds.top) + 9;
@ -98,6 +98,7 @@ static int tas5110c1b_set_pix_format(struct sn9c102_device* cam,
static struct sn9c102_sensor tas5110c1b = {
.name = "TAS5110C1B",
.maintainer = "Luca Risolia <luca.risolia@studio.unibo.it>",
.supported_bridge = BRIDGE_SN9C101 | BRIDGE_SN9C102 | BRIDGE_SN9C103,
.sysfs_ops = SN9C102_I2C_WRITE,
.frequency = SN9C102_I2C_100KHZ,
.interface = SN9C102_I2C_3WIRES,
@ -145,6 +146,7 @@ int sn9c102_probe_tas5110c1b(struct sn9c102_device* cam)
const struct usb_device_id tas5110c1b_id_table[] = {
{ USB_DEVICE(0x0c45, 0x6001), },
{ USB_DEVICE(0x0c45, 0x6005), },
{ USB_DEVICE(0x0c45, 0x6007), },
{ USB_DEVICE(0x0c45, 0x60ab), },
{ }
};

View File

@ -1,8 +1,8 @@
/***************************************************************************
* Plug-in for TAS5130D1B image sensor connected to the SN9C10x PC Camera *
* Plug-in for TAS5130D1B image sensor connected to the SN9C1xx PC Camera *
* Controllers *
* *
* Copyright (C) 2004-2006 by Luca Risolia <luca.risolia@studio.unibo.it> *
* Copyright (C) 2004-2007 by Luca Risolia <luca.risolia@studio.unibo.it> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
@ -65,7 +65,7 @@ static int tas5130d1b_set_ctrl(struct sn9c102_device* cam,
static int tas5130d1b_set_crop(struct sn9c102_device* cam,
const struct v4l2_rect* rect)
{
struct sn9c102_sensor* s = &tas5130d1b;
struct sn9c102_sensor* s = sn9c102_get_sensor(cam);
u8 h_start = (u8)(rect->left - s->cropcap.bounds.left) + 104,
v_start = (u8)(rect->top - s->cropcap.bounds.top) + 12;
int err = 0;
@ -99,6 +99,7 @@ static int tas5130d1b_set_pix_format(struct sn9c102_device* cam,
static struct sn9c102_sensor tas5130d1b = {
.name = "TAS5130D1B",
.maintainer = "Luca Risolia <luca.risolia@studio.unibo.it>",
.supported_bridge = BRIDGE_SN9C101 | BRIDGE_SN9C102 | BRIDGE_SN9C103,
.sysfs_ops = SN9C102_I2C_WRITE,
.frequency = SN9C102_I2C_100KHZ,
.interface = SN9C102_I2C_3WIRES,
@ -154,6 +155,7 @@ static struct sn9c102_sensor tas5130d1b = {
int sn9c102_probe_tas5130d1b(struct sn9c102_device* cam)
{
const struct usb_device_id tas5130d1b_id_table[] = {
{ USB_DEVICE(0x0c45, 0x6024), },
{ USB_DEVICE(0x0c45, 0x6025), },
{ USB_DEVICE(0x0c45, 0x60aa), },
{ }