Merge branch 'v2.6.36-rc8' into for-2.6.37/barrier

Conflicts:
	block/blk-core.c
	drivers/block/loop.c
	mm/swapfile.c

Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This commit is contained in:
Jens Axboe 2010-10-19 09:13:04 +02:00
commit fa251f8990
1408 changed files with 17069 additions and 13763 deletions

View File

@ -3554,12 +3554,12 @@ E: cvance@nai.com
D: portions of the Linux Security Module (LSM) framework and security modules
N: Petr Vandrovec
E: vandrove@vc.cvut.cz
E: petr@vandrovec.name
D: Small contributions to ncpfs
D: Matrox framebuffer driver
S: Chudenicka 8
S: 10200 Prague 10, Hostivar
S: Czech Republic
S: 21513 Conradia Ct
S: Cupertino, CA 95014
S: USA
N: Thibaut Varene
E: T-Bone@parisc-linux.org

View File

@ -46,7 +46,6 @@
<sect1><title>Atomic and pointer manipulation</title>
!Iarch/x86/include/asm/atomic.h
!Iarch/x86/include/asm/unaligned.h
</sect1>
<sect1><title>Delaying, scheduling, and timer routines</title>

View File

@ -57,7 +57,6 @@
</para>
<sect1><title>String Conversions</title>
!Ilib/vsprintf.c
!Elib/vsprintf.c
</sect1>
<sect1><title>String Manipulation</title>

View File

@ -1961,6 +1961,12 @@ machines due to caching.
</sect1>
</chapter>
<chapter id="apiref">
<title>Mutex API reference</title>
!Iinclude/linux/mutex.h
!Ekernel/mutex.c
</chapter>
<chapter id="references">
<title>Further reading</title>

View File

@ -104,4 +104,9 @@
<title>Block IO</title>
!Iinclude/trace/events/block.h
</chapter>
<chapter id="workqueue">
<title>Workqueue</title>
!Iinclude/trace/events/workqueue.h
</chapter>
</book>

View File

@ -0,0 +1,45 @@
CFQ ioscheduler tunables
========================
slice_idle
----------
This specifies how long CFQ should idle for next request on certain cfq queues
(for sequential workloads) and service trees (for random workloads) before
queue is expired and CFQ selects next queue to dispatch from.
By default slice_idle is a non-zero value. That means by default we idle on
queues/service trees. This can be very helpful on highly seeky media like
single spindle SATA/SAS disks where we can cut down on overall number of
seeks and see improved throughput.
Setting slice_idle to 0 will remove all the idling on queues/service tree
level and one should see an overall improved throughput on faster storage
devices like multiple SATA/SAS disks in hardware RAID configuration. The down
side is that isolation provided from WRITES also goes down and notion of
IO priority becomes weaker.
So depending on storage and workload, it might be useful to set slice_idle=0.
In general I think for SATA/SAS disks and software RAID of SATA/SAS disks
keeping slice_idle enabled should be useful. For any configurations where
there are multiple spindles behind single LUN (Host based hardware RAID
controller or for storage arrays), setting slice_idle=0 might end up in better
throughput and acceptable latencies.
CFQ IOPS Mode for group scheduling
===================================
Basic CFQ design is to provide priority based time slices. Higher priority
process gets bigger time slice and lower priority process gets smaller time
slice. Measuring time becomes harder if storage is fast and supports NCQ and
it would be better to dispatch multiple requests from multiple cfq queues in
request queue at a time. In such scenario, it is not possible to measure time
consumed by single queue accurately.
What is possible though is to measure number of requests dispatched from a
single queue and also allow dispatch from multiple cfq queue at the same time.
This effectively becomes the fairness in terms of IOPS (IO operations per
second).
If one sets slice_idle=0 and if storage supports NCQ, CFQ internally switches
to IOPS mode and starts providing fairness in terms of number of requests
dispatched. Note that this mode switching takes effect only for group
scheduling. For non-cgroup users nothing should change.

View File

@ -217,6 +217,7 @@ Details of cgroup files
CFQ sysfs tunable
=================
/sys/block/<disk>/queue/iosched/group_isolation
-----------------------------------------------
If group_isolation=1, it provides stronger isolation between groups at the
expense of throughput. By default group_isolation is 0. In general that
@ -243,6 +244,33 @@ By default one should run with group_isolation=0. If that is not sufficient
and one wants stronger isolation between groups, then set group_isolation=1
but this will come at cost of reduced throughput.
/sys/block/<disk>/queue/iosched/slice_idle
------------------------------------------
On a faster hardware CFQ can be slow, especially with sequential workload.
This happens because CFQ idles on a single queue and single queue might not
drive deeper request queue depths to keep the storage busy. In such scenarios
one can try setting slice_idle=0 and that would switch CFQ to IOPS
(IO operations per second) mode on NCQ supporting hardware.
That means CFQ will not idle between cfq queues of a cfq group and hence be
able to driver higher queue depth and achieve better throughput. That also
means that cfq provides fairness among groups in terms of IOPS and not in
terms of disk time.
/sys/block/<disk>/queue/iosched/group_idle
------------------------------------------
If one disables idling on individual cfq queues and cfq service trees by
setting slice_idle=0, group_idle kicks in. That means CFQ will still idle
on the group in an attempt to provide fairness among groups.
By default group_idle is same as slice_idle and does not do anything if
slice_idle is enabled.
One can experience an overall throughput drop if you have created multiple
groups and put applications in that group which are not driving enough
IO to keep disk busy. In that case set group_idle=0, and CFQ will not idle
on individual groups and throughput should improve.
What works
==========
- Currently only sync IO queues are support. All the buffered writes are

View File

@ -109,17 +109,19 @@ use numbers 2000-2063 to identify GPIOs in a bank of I2C GPIO expanders.
If you want to initialize a structure with an invalid GPIO number, use
some negative number (perhaps "-EINVAL"); that will never be valid. To
test if a number could reference a GPIO, you may use this predicate:
test if such number from such a structure could reference a GPIO, you
may use this predicate:
int gpio_is_valid(int number);
A number that's not valid will be rejected by calls which may request
or free GPIOs (see below). Other numbers may also be rejected; for
example, a number might be valid but unused on a given board.
Whether a platform supports multiple GPIO controllers is currently a
platform-specific implementation issue.
example, a number might be valid but temporarily unused on a given board.
Whether a platform supports multiple GPIO controllers is a platform-specific
implementation issue, as are whether that support can leave "holes" in the space
of GPIO numbers, and whether new controllers can be added at runtime. Such issues
can affect things including whether adjacent GPIO numbers are both valid.
Using GPIOs
-----------
@ -480,12 +482,16 @@ To support this framework, a platform's Kconfig will "select" either
ARCH_REQUIRE_GPIOLIB or ARCH_WANT_OPTIONAL_GPIOLIB
and arrange that its <asm/gpio.h> includes <asm-generic/gpio.h> and defines
three functions: gpio_get_value(), gpio_set_value(), and gpio_cansleep().
They may also want to provide a custom value for ARCH_NR_GPIOS.
ARCH_REQUIRE_GPIOLIB means that the gpio-lib code will always get compiled
It may also provide a custom value for ARCH_NR_GPIOS, so that it better
reflects the number of GPIOs in actual use on that platform, without
wasting static table space. (It should count both built-in/SoC GPIOs and
also ones on GPIO expanders.
ARCH_REQUIRE_GPIOLIB means that the gpiolib code will always get compiled
into the kernel on that architecture.
ARCH_WANT_OPTIONAL_GPIOLIB means the gpio-lib code defaults to off and the user
ARCH_WANT_OPTIONAL_GPIOLIB means the gpiolib code defaults to off and the user
can enable it and build it into the kernel optionally.
If neither of these options are selected, the platform does not support

View File

@ -91,12 +91,11 @@ name The chip name.
I2C devices get this attribute created automatically.
RO
update_rate The rate at which the chip will update readings.
update_interval The interval at which the chip will update readings.
Unit: millisecond
RW
Some devices have a variable update rate. This attribute
can be used to change the update rate to the desired
frequency.
Some devices have a variable update rate or interval.
This attribute can be used to change it to the desired value.
************

View File

@ -345,5 +345,10 @@ documentation, in <filename>, for the functions listed.
section titled <section title> from <filename>.
Spaces are allowed in <section title>; do not quote the <section title>.
!C<filename> is replaced by nothing, but makes the tools check that
all DOC: sections and documented functions, symbols, etc. are used.
This makes sense to use when you use !F/!P only and want to verify
that all documentation is included.
Tim.
*/ <twaugh@redhat.com>

View File

@ -1974,15 +1974,18 @@ and is between 256 and 4096 characters. It is defined in the file
force Enable ASPM even on devices that claim not to support it.
WARNING: Forcing ASPM on may cause system lockups.
pcie_ports= [PCIE] PCIe ports handling:
auto Ask the BIOS whether or not to use native PCIe services
associated with PCIe ports (PME, hot-plug, AER). Use
them only if that is allowed by the BIOS.
native Use native PCIe services associated with PCIe ports
unconditionally.
compat Treat PCIe ports as PCI-to-PCI bridges, disable the PCIe
ports driver.
pcie_pme= [PCIE,PM] Native PCIe PME signaling options:
Format: {auto|force}[,nomsi]
auto Use native PCIe PME signaling if the BIOS allows the
kernel to control PCIe config registers of root ports.
force Use native PCIe PME signaling even if the BIOS refuses
to allow the kernel to control the relevant PCIe config
registers.
nomsi Do not use MSI for native PCIe PME signaling (this makes
all PCIe root ports use INTx for everything).
all PCIe root ports use INTx for all services).
pcmv= [HW,PCMCIA] BadgePAD 4
@ -2629,8 +2632,10 @@ and is between 256 and 4096 characters. It is defined in the file
aux-ide-disks -- unplug non-primary-master IDE devices
nics -- unplug network devices
all -- unplug all emulated devices (NICs and IDE disks)
ignore -- continue loading the Xen platform PCI driver even
if the version check failed
unnecessary -- unplugging emulated devices is
unnecessary even if the host did not respond to
the unplug protocol
never -- do not unplug even if version check succeeds
xirc2ps_cs= [NET,PCMCIA]
Format:

View File

@ -1,5 +1,6 @@
# This creates the demonstration utility "lguest" which runs a Linux guest.
CFLAGS:=-m32 -Wall -Wmissing-declarations -Wmissing-prototypes -O3 -I../../include -I../../arch/x86/include -U_FORTIFY_SOURCE
# Missing headers? Add "-I../../include -I../../arch/x86/include"
CFLAGS:=-m32 -Wall -Wmissing-declarations -Wmissing-prototypes -O3 -U_FORTIFY_SOURCE
all: lguest

View File

@ -39,14 +39,14 @@
#include <limits.h>
#include <stddef.h>
#include <signal.h>
#include "linux/lguest_launcher.h"
#include "linux/virtio_config.h"
#include "linux/virtio_net.h"
#include "linux/virtio_blk.h"
#include "linux/virtio_console.h"
#include "linux/virtio_rng.h"
#include "linux/virtio_ring.h"
#include "asm/bootparam.h"
#include <linux/virtio_config.h>
#include <linux/virtio_net.h>
#include <linux/virtio_blk.h>
#include <linux/virtio_console.h>
#include <linux/virtio_rng.h>
#include <linux/virtio_ring.h>
#include <asm/bootparam.h>
#include "../../include/linux/lguest_launcher.h"
/*L:110
* We can ignore the 42 include files we need for this program, but I do want
* to draw attention to the use of kernel-style types.
@ -1447,14 +1447,15 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name)
static void configure_device(int fd, const char *tapif, u32 ipaddr)
{
struct ifreq ifr;
struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
struct sockaddr_in sin;
memset(&ifr, 0, sizeof(ifr));
strcpy(ifr.ifr_name, tapif);
/* Don't read these incantations. Just cut & paste them like I did! */
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(ipaddr);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(ipaddr);
memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
err(1, "Setting %s interface address", tapif);
ifr.ifr_flags = IFF_UP;

View File

@ -9,7 +9,7 @@ firstly, there's nothing wrong with semaphores. But if the simpler
mutex semantics are sufficient for your code, then there are a couple
of advantages of mutexes:
- 'struct mutex' is smaller on most architectures: .e.g on x86,
- 'struct mutex' is smaller on most architectures: E.g. on x86,
'struct semaphore' is 20 bytes, 'struct mutex' is 16 bytes.
A smaller structure size means less RAM footprint, and better
CPU-cache utilization.
@ -136,3 +136,4 @@ the APIs of 'struct mutex' have been streamlined:
void mutex_lock_nested(struct mutex *lock, unsigned int subclass);
int mutex_lock_interruptible_nested(struct mutex *lock,
unsigned int subclass);
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);

View File

@ -1,82 +1,35 @@
Linux* Base Driver for the Intel(R) PRO/1000 Family of Adapters
===============================================================
September 26, 2006
Intel Gigabit Linux driver.
Copyright(c) 1999 - 2010 Intel Corporation.
Contents
========
- In This Release
- Identifying Your Adapter
- Building and Installation
- Command Line Parameters
- Speed and Duplex Configuration
- Additional Configurations
- Known Issues
- Support
In This Release
===============
This file describes the Linux* Base Driver for the Intel(R) PRO/1000 Family
of Adapters. This driver includes support for Itanium(R)2-based systems.
For questions related to hardware requirements, refer to the documentation
supplied with your Intel PRO/1000 adapter. All hardware requirements listed
apply to use with Linux.
The following features are now available in supported kernels:
- Native VLANs
- Channel Bonding (teaming)
- SNMP
Channel Bonding documentation can be found in the Linux kernel source:
/Documentation/networking/bonding.txt
The driver information previously displayed in the /proc filesystem is not
supported in this release. Alternatively, you can use ethtool (version 1.6
or later), lspci, and ifconfig to obtain the same information.
Instructions on updating ethtool can be found in the section "Additional
Configurations" later in this document.
NOTE: The Intel(R) 82562v 10/100 Network Connection only provides 10/100
support.
Identifying Your Adapter
========================
For more information on how to identify your adapter, go to the Adapter &
Driver ID Guide at:
http://support.intel.com/support/network/adapter/pro100/21397.htm
http://support.intel.com/support/go/network/adapter/idguide.htm
For the latest Intel network drivers for Linux, refer to the following
website. In the search field, enter your adapter name or type, or use the
networking link on the left to search for your adapter:
http://downloadfinder.intel.com/scripts-df/support_intel.asp
http://support.intel.com/support/go/network/adapter/home.htm
Command Line Parameters
=======================
If the driver is built as a module, the following optional parameters
are used by entering them on the command line with the modprobe command
using this syntax:
modprobe e1000 [<option>=<VAL1>,<VAL2>,...]
For example, with two PRO/1000 PCI adapters, entering:
modprobe e1000 TxDescriptors=80,128
loads the e1000 driver with 80 TX descriptors for the first adapter and
128 TX descriptors for the second adapter.
The default value for each parameter is generally the recommended setting,
unless otherwise noted.
@ -89,10 +42,6 @@ NOTES: For more information about the AutoNeg, Duplex, and Speed
parameters, see the application note at:
http://www.intel.com/design/network/applnots/ap450.htm
A descriptor describes a data buffer and attributes related to
the data buffer. This information is accessed by the hardware.
AutoNeg
-------
(Supported only on adapters with copper connections)
@ -106,7 +55,6 @@ Duplex parameters must not be specified.
NOTE: Refer to the Speed and Duplex section of this readme for more
information on the AutoNeg parameter.
Duplex
------
(Supported only on adapters with copper connections)
@ -119,7 +67,6 @@ set to auto-negotiate, the board auto-detects the correct duplex. If the
link partner is forced (either full or half), Duplex defaults to half-
duplex.
FlowControl
-----------
Valid Range: 0-3 (0=none, 1=Rx only, 2=Tx only, 3=Rx&Tx)
@ -128,16 +75,16 @@ Default Value: Reads flow control settings from the EEPROM
This parameter controls the automatic generation(Tx) and response(Rx)
to Ethernet PAUSE frames.
InterruptThrottleRate
---------------------
(not supported on Intel(R) 82542, 82543 or 82544-based adapters)
Valid Range: 0,1,3,100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
Valid Range: 0,1,3,4,100-100000 (0=off, 1=dynamic, 3=dynamic conservative,
4=simplified balancing)
Default Value: 3
The driver can limit the amount of interrupts per second that the adapter
will generate for incoming packets. It does this by writing a value to the
adapter that is based on the maximum amount of interrupts that the adapter
will generate for incoming packets. It does this by writing a value to the
adapter that is based on the maximum amount of interrupts that the adapter
will generate per second.
Setting InterruptThrottleRate to a value greater or equal to 100
@ -146,37 +93,43 @@ per second, even if more packets have come in. This reduces interrupt
load on the system and can lower CPU utilization under heavy load,
but will increase latency as packets are not processed as quickly.
The default behaviour of the driver previously assumed a static
InterruptThrottleRate value of 8000, providing a good fallback value for
all traffic types,but lacking in small packet performance and latency.
The hardware can handle many more small packets per second however, and
The default behaviour of the driver previously assumed a static
InterruptThrottleRate value of 8000, providing a good fallback value for
all traffic types,but lacking in small packet performance and latency.
The hardware can handle many more small packets per second however, and
for this reason an adaptive interrupt moderation algorithm was implemented.
Since 7.3.x, the driver has two adaptive modes (setting 1 or 3) in which
it dynamically adjusts the InterruptThrottleRate value based on the traffic
it dynamically adjusts the InterruptThrottleRate value based on the traffic
that it receives. After determining the type of incoming traffic in the last
timeframe, it will adjust the InterruptThrottleRate to an appropriate value
timeframe, it will adjust the InterruptThrottleRate to an appropriate value
for that traffic.
The algorithm classifies the incoming traffic every interval into
classes. Once the class is determined, the InterruptThrottleRate value is
adjusted to suit that traffic type the best. There are three classes defined:
classes. Once the class is determined, the InterruptThrottleRate value is
adjusted to suit that traffic type the best. There are three classes defined:
"Bulk traffic", for large amounts of packets of normal size; "Low latency",
for small amounts of traffic and/or a significant percentage of small
packets; and "Lowest latency", for almost completely small packets or
packets; and "Lowest latency", for almost completely small packets or
minimal traffic.
In dynamic conservative mode, the InterruptThrottleRate value is set to 4000
for traffic that falls in class "Bulk traffic". If traffic falls in the "Low
latency" or "Lowest latency" class, the InterruptThrottleRate is increased
In dynamic conservative mode, the InterruptThrottleRate value is set to 4000
for traffic that falls in class "Bulk traffic". If traffic falls in the "Low
latency" or "Lowest latency" class, the InterruptThrottleRate is increased
stepwise to 20000. This default mode is suitable for most applications.
For situations where low latency is vital such as cluster or
grid computing, the algorithm can reduce latency even more when
InterruptThrottleRate is set to mode 1. In this mode, which operates
the same as mode 3, the InterruptThrottleRate will be increased stepwise to
the same as mode 3, the InterruptThrottleRate will be increased stepwise to
70000 for traffic in class "Lowest latency".
In simplified mode the interrupt rate is based on the ratio of Tx and
Rx traffic. If the bytes per second rate is approximately equal, the
interrupt rate will drop as low as 2000 interrupts per second. If the
traffic is mostly transmit or mostly receive, the interrupt rate could
be as high as 8000.
Setting InterruptThrottleRate to 0 turns off any interrupt moderation
and may improve small packet latency, but is generally not suitable
for bulk throughput traffic.
@ -212,8 +165,6 @@ NOTE: When e1000 is loaded with default settings and multiple adapters
be platform-specific. If CPU utilization is not a concern, use
RX_POLLING (NAPI) and default driver settings.
RxDescriptors
-------------
Valid Range: 80-256 for 82542 and 82543-based adapters
@ -225,15 +176,14 @@ by the driver. Increasing this value allows the driver to buffer more
incoming packets, at the expense of increased system memory utilization.
Each descriptor is 16 bytes. A receive buffer is also allocated for each
descriptor and can be either 2048, 4096, 8192, or 16384 bytes, depending
descriptor and can be either 2048, 4096, 8192, or 16384 bytes, depending
on the MTU setting. The maximum MTU size is 16110.
NOTE: MTU designates the frame size. It only needs to be set for Jumbo
Frames. Depending on the available system resources, the request
for a higher number of receive descriptors may be denied. In this
NOTE: MTU designates the frame size. It only needs to be set for Jumbo
Frames. Depending on the available system resources, the request
for a higher number of receive descriptors may be denied. In this
case, use a lower number.
RxIntDelay
----------
Valid Range: 0-65535 (0=off)
@ -254,7 +204,6 @@ CAUTION: When setting RxIntDelay to a value other than 0, adapters may
restoring the network connection. To eliminate the potential
for the hang ensure that RxIntDelay is set to 0.
RxAbsIntDelay
-------------
(This parameter is supported only on 82540, 82545 and later adapters.)
@ -268,7 +217,6 @@ packet is received within the set amount of time. Proper tuning,
along with RxIntDelay, may improve traffic throughput in specific network
conditions.
Speed
-----
(This parameter is supported only on adapters with copper connections.)
@ -280,7 +228,6 @@ Speed forces the line speed to the specified value in megabits per second
partner is set to auto-negotiate, the board will auto-detect the correct
speed. Duplex should also be set when Speed is set to either 10 or 100.
TxDescriptors
-------------
Valid Range: 80-256 for 82542 and 82543-based adapters
@ -295,6 +242,36 @@ NOTE: Depending on the available system resources, the request for a
higher number of transmit descriptors may be denied. In this case,
use a lower number.
TxDescriptorStep
----------------
Valid Range: 1 (use every Tx Descriptor)
4 (use every 4th Tx Descriptor)
Default Value: 1 (use every Tx Descriptor)
On certain non-Intel architectures, it has been observed that intense TX
traffic bursts of short packets may result in an improper descriptor
writeback. If this occurs, the driver will report a "TX Timeout" and reset
the adapter, after which the transmit flow will restart, though data may
have stalled for as much as 10 seconds before it resumes.
The improper writeback does not occur on the first descriptor in a system
memory cache-line, which is typically 32 bytes, or 4 descriptors long.
Setting TxDescriptorStep to a value of 4 will ensure that all TX descriptors
are aligned to the start of a system memory cache line, and so this problem
will not occur.
NOTES: Setting TxDescriptorStep to 4 effectively reduces the number of
TxDescriptors available for transmits to 1/4 of the normal allocation.
This has a possible negative performance impact, which may be
compensated for by allocating more descriptors using the TxDescriptors
module parameter.
There are other conditions which may result in "TX Timeout", which will
not be resolved by the use of the TxDescriptorStep parameter. As the
issue addressed by this parameter has never been observed on Intel
Architecture platforms, it should not be used on Intel platforms.
TxIntDelay
----------
@ -307,7 +284,6 @@ efficiency if properly tuned for specific network traffic. If the
system is reporting dropped transmits, this value may be set too high
causing the driver to run out of available transmit descriptors.
TxAbsIntDelay
-------------
(This parameter is supported only on 82540, 82545 and later adapters.)
@ -330,6 +306,35 @@ Default Value: 1
A value of '1' indicates that the driver should enable IP checksum
offload for received packets (both UDP and TCP) to the adapter hardware.
Copybreak
---------
Valid Range: 0-xxxxxxx (0=off)
Default Value: 256
Usage: insmod e1000.ko copybreak=128
Driver copies all packets below or equaling this size to a fresh Rx
buffer before handing it up the stack.
This parameter is different than other parameters, in that it is a
single (not 1,1,1 etc.) parameter applied to all driver instances and
it is also available during runtime at
/sys/module/e1000/parameters/copybreak
SmartPowerDownEnable
--------------------
Valid Range: 0-1
Default Value: 0 (disabled)
Allows PHY to turn off in lower power states. The user can turn off
this parameter in supported chipsets.
KumeranLockLoss
---------------
Valid Range: 0-1
Default Value: 1 (enabled)
This workaround skips resetting the PHY at shutdown for the initial
silicon releases of ICH8 systems.
Speed and Duplex Configuration
==============================
@ -385,40 +390,9 @@ If the link partner is forced to a specific speed and duplex, then this
parameter should not be used. Instead, use the Speed and Duplex parameters
previously mentioned to force the adapter to the same speed and duplex.
Additional Configurations
=========================
Configuring the Driver on Different Distributions
-------------------------------------------------
Configuring a network driver to load properly when the system is started
is distribution dependent. Typically, the configuration process involves
adding an alias line to /etc/modules.conf or /etc/modprobe.conf as well
as editing other system startup scripts and/or configuration files. Many
popular Linux distributions ship with tools to make these changes for you.
To learn the proper way to configure a network device for your system,
refer to your distribution documentation. If during this process you are
asked for the driver or module name, the name for the Linux Base Driver
for the Intel(R) PRO/1000 Family of Adapters is e1000.
As an example, if you install the e1000 driver for two PRO/1000 adapters
(eth0 and eth1) and set the speed and duplex to 10full and 100half, add
the following to modules.conf or or modprobe.conf:
alias eth0 e1000
alias eth1 e1000
options e1000 Speed=10,100 Duplex=2,1
Viewing Link Messages
---------------------
Link messages will not be displayed to the console if the distribution is
restricting system messages. In order to see network driver link messages
on your console, set dmesg to eight by entering the following:
dmesg -n 8
NOTE: This setting is not saved across reboots.
Jumbo Frames
------------
Jumbo Frames support is enabled by changing the MTU to a value larger than
@ -437,9 +411,11 @@ Additional Configurations
setting in a different location.
Notes:
- To enable Jumbo Frames, increase the MTU size on the interface beyond
1500.
Degradation in throughput performance may be observed in some Jumbo frames
environments. If this is observed, increasing the application's socket buffer
size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values may help.
See the specific application manual and /usr/src/linux*/Documentation/
networking/ip-sysctl.txt for more details.
- The maximum MTU setting for Jumbo Frames is 16110. This value coincides
with the maximum Jumbo Frames size of 16128.
@ -447,40 +423,11 @@ Additional Configurations
- Using Jumbo Frames at 10 or 100 Mbps may result in poor performance or
loss of link.
- Some Intel gigabit adapters that support Jumbo Frames have a frame size
limit of 9238 bytes, with a corresponding MTU size limit of 9216 bytes.
The adapters with this limitation are based on the Intel(R) 82571EB,
82572EI, 82573L and 80003ES2LAN controller. These correspond to the
following product names:
Intel(R) PRO/1000 PT Server Adapter
Intel(R) PRO/1000 PT Desktop Adapter
Intel(R) PRO/1000 PT Network Connection
Intel(R) PRO/1000 PT Dual Port Server Adapter
Intel(R) PRO/1000 PT Dual Port Network Connection
Intel(R) PRO/1000 PF Server Adapter
Intel(R) PRO/1000 PF Network Connection
Intel(R) PRO/1000 PF Dual Port Server Adapter
Intel(R) PRO/1000 PB Server Connection
Intel(R) PRO/1000 PL Network Connection
Intel(R) PRO/1000 EB Network Connection with I/O Acceleration
Intel(R) PRO/1000 EB Backplane Connection with I/O Acceleration
Intel(R) PRO/1000 PT Quad Port Server Adapter
- Adapters based on the Intel(R) 82542 and 82573V/E controller do not
support Jumbo Frames. These correspond to the following product names:
Intel(R) PRO/1000 Gigabit Server Adapter
Intel(R) PRO/1000 PM Network Connection
- The following adapters do not support Jumbo Frames:
Intel(R) 82562V 10/100 Network Connection
Intel(R) 82566DM Gigabit Network Connection
Intel(R) 82566DC Gigabit Network Connection
Intel(R) 82566MM Gigabit Network Connection
Intel(R) 82566MC Gigabit Network Connection
Intel(R) 82562GT 10/100 Network Connection
Intel(R) 82562G 10/100 Network Connection
Ethtool
-------
The driver utilizes the ethtool interface for driver configuration and
@ -490,142 +437,14 @@ Additional Configurations
The latest release of ethtool can be found from
http://sourceforge.net/projects/gkernel.
NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support
for a more complete ethtool feature set can be enabled by upgrading
ethtool to ethtool-1.8.1.
Enabling Wake on LAN* (WoL)
---------------------------
WoL is configured through the Ethtool* utility. Ethtool is included with
all versions of Red Hat after Red Hat 7.2. For other Linux distributions,
download and install Ethtool from the following website:
http://sourceforge.net/projects/gkernel.
For instructions on enabling WoL with Ethtool, refer to the website listed
above.
WoL is configured through the Ethtool* utility.
WoL will be enabled on the system during the next shut down or reboot.
For this driver version, in order to enable WoL, the e1000 driver must be
loaded when shutting down or rebooting the system.
Wake On LAN is only supported on port A for the following devices:
Intel(R) PRO/1000 PT Dual Port Network Connection
Intel(R) PRO/1000 PT Dual Port Server Connection
Intel(R) PRO/1000 PT Dual Port Server Adapter
Intel(R) PRO/1000 PF Dual Port Server Adapter
Intel(R) PRO/1000 PT Quad Port Server Adapter
NAPI
----
NAPI (Rx polling mode) is enabled in the e1000 driver.
See www.cyberus.ca/~hadi/usenix-paper.tgz for more information on NAPI.
Known Issues
============
Dropped Receive Packets on Half-duplex 10/100 Networks
------------------------------------------------------
If you have an Intel PCI Express adapter running at 10mbps or 100mbps, half-
duplex, you may observe occasional dropped receive packets. There are no
workarounds for this problem in this network configuration. The network must
be updated to operate in full-duplex, and/or 1000mbps only.
Jumbo Frames System Requirement
-------------------------------
Memory allocation failures have been observed on Linux systems with 64 MB
of RAM or less that are running Jumbo Frames. If you are using Jumbo
Frames, your system may require more than the advertised minimum
requirement of 64 MB of system memory.
Performance Degradation with Jumbo Frames
-----------------------------------------
Degradation in throughput performance may be observed in some Jumbo frames
environments. If this is observed, increasing the application's socket
buffer size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values
may help. See the specific application manual and
/usr/src/linux*/Documentation/
networking/ip-sysctl.txt for more details.
Jumbo Frames on Foundry BigIron 8000 switch
-------------------------------------------
There is a known issue using Jumbo frames when connected to a Foundry
BigIron 8000 switch. This is a 3rd party limitation. If you experience
loss of packets, lower the MTU size.
Allocating Rx Buffers when Using Jumbo Frames
---------------------------------------------
Allocating Rx buffers when using Jumbo Frames on 2.6.x kernels may fail if
the available memory is heavily fragmented. This issue may be seen with PCI-X
adapters or with packet split disabled. This can be reduced or eliminated
by changing the amount of available memory for receive buffer allocation, by
increasing /proc/sys/vm/min_free_kbytes.
Multiple Interfaces on Same Ethernet Broadcast Network
------------------------------------------------------
Due to the default ARP behavior on Linux, it is not possible to have
one system on two IP networks in the same Ethernet broadcast domain
(non-partitioned switch) behave as expected. All Ethernet interfaces
will respond to IP traffic for any IP address assigned to the system.
This results in unbalanced receive traffic.
If you have multiple interfaces in a server, either turn on ARP
filtering by entering:
echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
(this only works if your kernel's version is higher than 2.4.5),
NOTE: This setting is not saved across reboots. The configuration
change can be made permanent by adding the line:
net.ipv4.conf.all.arp_filter = 1
to the file /etc/sysctl.conf
or,
install the interfaces in separate broadcast domains (either in
different switches or in a switch partitioned to VLANs).
82541/82547 can't link or are slow to link with some link partners
-----------------------------------------------------------------
There is a known compatibility issue with 82541/82547 and some
low-end switches where the link will not be established, or will
be slow to establish. In particular, these switches are known to
be incompatible with 82541/82547:
Planex FXG-08TE
I-O Data ETG-SH8
To workaround this issue, the driver can be compiled with an override
of the PHY's master/slave setting. Forcing master or forcing slave
mode will improve time-to-link.
# make CFLAGS_EXTRA=-DE1000_MASTER_SLAVE=<n>
Where <n> is:
0 = Hardware default
1 = Master mode
2 = Slave mode
3 = Auto master/slave
Disable rx flow control with ethtool
------------------------------------
In order to disable receive flow control using ethtool, you must turn
off auto-negotiation on the same command line.
For example:
ethtool -A eth? autoneg off rx off
Unplugging network cable while ethtool -p is running
----------------------------------------------------
In kernel versions 2.5.50 and later (including 2.6 kernel), unplugging
the network cable while ethtool -p is running will cause the system to
become unresponsive to keyboard commands, except for control-alt-delete.
Restarting the system appears to be the only remedy.
Support
=======

View File

@ -0,0 +1,302 @@
Linux* Driver for Intel(R) Network Connection
===============================================================
Intel Gigabit Linux driver.
Copyright(c) 1999 - 2010 Intel Corporation.
Contents
========
- Identifying Your Adapter
- Command Line Parameters
- Additional Configurations
- Support
Identifying Your Adapter
========================
The e1000e driver supports all PCI Express Intel(R) Gigabit Network
Connections, except those that are 82575, 82576 and 82580-based*.
* NOTE: The Intel(R) PRO/1000 P Dual Port Server Adapter is supported by
the e1000 driver, not the e1000e driver due to the 82546 part being used
behind a PCI Express bridge.
For more information on how to identify your adapter, go to the Adapter &
Driver ID Guide at:
http://support.intel.com/support/go/network/adapter/idguide.htm
For the latest Intel network drivers for Linux, refer to the following
website. In the search field, enter your adapter name or type, or use the
networking link on the left to search for your adapter:
http://support.intel.com/support/go/network/adapter/home.htm
Command Line Parameters
=======================
The default value for each parameter is generally the recommended setting,
unless otherwise noted.
NOTES: For more information about the InterruptThrottleRate,
RxIntDelay, TxIntDelay, RxAbsIntDelay, and TxAbsIntDelay
parameters, see the application note at:
http://www.intel.com/design/network/applnots/ap450.htm
InterruptThrottleRate
---------------------
Valid Range: 0,1,3,4,100-100000 (0=off, 1=dynamic, 3=dynamic conservative,
4=simplified balancing)
Default Value: 3
The driver can limit the amount of interrupts per second that the adapter
will generate for incoming packets. It does this by writing a value to the
adapter that is based on the maximum amount of interrupts that the adapter
will generate per second.
Setting InterruptThrottleRate to a value greater or equal to 100
will program the adapter to send out a maximum of that many interrupts
per second, even if more packets have come in. This reduces interrupt
load on the system and can lower CPU utilization under heavy load,
but will increase latency as packets are not processed as quickly.
The driver has two adaptive modes (setting 1 or 3) in which
it dynamically adjusts the InterruptThrottleRate value based on the traffic
that it receives. After determining the type of incoming traffic in the last
timeframe, it will adjust the InterruptThrottleRate to an appropriate value
for that traffic.
The algorithm classifies the incoming traffic every interval into
classes. Once the class is determined, the InterruptThrottleRate value is
adjusted to suit that traffic type the best. There are three classes defined:
"Bulk traffic", for large amounts of packets of normal size; "Low latency",
for small amounts of traffic and/or a significant percentage of small
packets; and "Lowest latency", for almost completely small packets or
minimal traffic.
In dynamic conservative mode, the InterruptThrottleRate value is set to 4000
for traffic that falls in class "Bulk traffic". If traffic falls in the "Low
latency" or "Lowest latency" class, the InterruptThrottleRate is increased
stepwise to 20000. This default mode is suitable for most applications.
For situations where low latency is vital such as cluster or
grid computing, the algorithm can reduce latency even more when
InterruptThrottleRate is set to mode 1. In this mode, which operates
the same as mode 3, the InterruptThrottleRate will be increased stepwise to
70000 for traffic in class "Lowest latency".
In simplified mode the interrupt rate is based on the ratio of Tx and
Rx traffic. If the bytes per second rate is approximately equal the
interrupt rate will drop as low as 2000 interrupts per second. If the
traffic is mostly transmit or mostly receive, the interrupt rate could
be as high as 8000.
Setting InterruptThrottleRate to 0 turns off any interrupt moderation
and may improve small packet latency, but is generally not suitable
for bulk throughput traffic.
NOTE: InterruptThrottleRate takes precedence over the TxAbsIntDelay and
RxAbsIntDelay parameters. In other words, minimizing the receive
and/or transmit absolute delays does not force the controller to
generate more interrupts than what the Interrupt Throttle Rate
allows.
NOTE: When e1000e is loaded with default settings and multiple adapters
are in use simultaneously, the CPU utilization may increase non-
linearly. In order to limit the CPU utilization without impacting
the overall throughput, we recommend that you load the driver as
follows:
modprobe e1000e InterruptThrottleRate=3000,3000,3000
This sets the InterruptThrottleRate to 3000 interrupts/sec for
the first, second, and third instances of the driver. The range
of 2000 to 3000 interrupts per second works on a majority of
systems and is a good starting point, but the optimal value will
be platform-specific. If CPU utilization is not a concern, use
RX_POLLING (NAPI) and default driver settings.
RxIntDelay
----------
Valid Range: 0-65535 (0=off)
Default Value: 0
This value delays the generation of receive interrupts in units of 1.024
microseconds. Receive interrupt reduction can improve CPU efficiency if
properly tuned for specific network traffic. Increasing this value adds
extra latency to frame reception and can end up decreasing the throughput
of TCP traffic. If the system is reporting dropped receives, this value
may be set too high, causing the driver to run out of available receive
descriptors.
CAUTION: When setting RxIntDelay to a value other than 0, adapters may
hang (stop transmitting) under certain network conditions. If
this occurs a NETDEV WATCHDOG message is logged in the system
event log. In addition, the controller is automatically reset,
restoring the network connection. To eliminate the potential
for the hang ensure that RxIntDelay is set to 0.
RxAbsIntDelay
-------------
Valid Range: 0-65535 (0=off)
Default Value: 8
This value, in units of 1.024 microseconds, limits the delay in which a
receive interrupt is generated. Useful only if RxIntDelay is non-zero,
this value ensures that an interrupt is generated after the initial
packet is received within the set amount of time. Proper tuning,
along with RxIntDelay, may improve traffic throughput in specific network
conditions.
TxIntDelay
----------
Valid Range: 0-65535 (0=off)
Default Value: 8
This value delays the generation of transmit interrupts in units of
1.024 microseconds. Transmit interrupt reduction can improve CPU
efficiency if properly tuned for specific network traffic. If the
system is reporting dropped transmits, this value may be set too high
causing the driver to run out of available transmit descriptors.
TxAbsIntDelay
-------------
Valid Range: 0-65535 (0=off)
Default Value: 32
This value, in units of 1.024 microseconds, limits the delay in which a
transmit interrupt is generated. Useful only if TxIntDelay is non-zero,
this value ensures that an interrupt is generated after the initial
packet is sent on the wire within the set amount of time. Proper tuning,
along with TxIntDelay, may improve traffic throughput in specific
network conditions.
Copybreak
---------
Valid Range: 0-xxxxxxx (0=off)
Default Value: 256
Driver copies all packets below or equaling this size to a fresh Rx
buffer before handing it up the stack.
This parameter is different than other parameters, in that it is a
single (not 1,1,1 etc.) parameter applied to all driver instances and
it is also available during runtime at
/sys/module/e1000e/parameters/copybreak
SmartPowerDownEnable
--------------------
Valid Range: 0-1
Default Value: 0 (disabled)
Allows PHY to turn off in lower power states. The user can set this parameter
in supported chipsets.
KumeranLockLoss
---------------
Valid Range: 0-1
Default Value: 1 (enabled)
This workaround skips resetting the PHY at shutdown for the initial
silicon releases of ICH8 systems.
IntMode
-------
Valid Range: 0-2 (0=legacy, 1=MSI, 2=MSI-X)
Default Value: 2
Allows changing the interrupt mode at module load time, without requiring a
recompile. If the driver load fails to enable a specific interrupt mode, the
driver will try other interrupt modes, from least to most compatible. The
interrupt order is MSI-X, MSI, Legacy. If specifying MSI (IntMode=1)
interrupts, only MSI and Legacy will be attempted.
CrcStripping
------------
Valid Range: 0-1
Default Value: 1 (enabled)
Strip the CRC from received packets before sending up the network stack. If
you have a machine with a BMC enabled but cannot receive IPMI traffic after
loading or enabling the driver, try disabling this feature.
WriteProtectNVM
---------------
Valid Range: 0-1
Default Value: 1 (enabled)
Set the hardware to ignore all write/erase cycles to the GbE region in the
ICHx NVM (non-volatile memory). This feature can be disabled by the
WriteProtectNVM module parameter (enabled by default) only after a hardware
reset, but the machine must be power cycled before trying to enable writes.
Note: the kernel boot option iomem=relaxed may need to be set if the kernel
config option CONFIG_STRICT_DEVMEM=y, if the root user wants to write the
NVM from user space via ethtool.
Additional Configurations
=========================
Jumbo Frames
------------
Jumbo Frames support is enabled by changing the MTU to a value larger than
the default of 1500. Use the ifconfig command to increase the MTU size.
For example:
ifconfig eth<x> mtu 9000 up
This setting is not saved across reboots.
Notes:
- The maximum MTU setting for Jumbo Frames is 9216. This value coincides
with the maximum Jumbo Frames size of 9234 bytes.
- Using Jumbo Frames at 10 or 100 Mbps is not supported and may result in
poor performance or loss of link.
- Some adapters limit Jumbo Frames sized packets to a maximum of
4096 bytes and some adapters do not support Jumbo Frames.
Ethtool
-------
The driver utilizes the ethtool interface for driver configuration and
diagnostics, as well as displaying statistical information. We
strongly recommend downloading the latest version of Ethtool at:
http://sourceforge.net/projects/gkernel.
Speed and Duplex
----------------
Speed and Duplex are configured through the Ethtool* utility. For
instructions, refer to the Ethtool man page.
Enabling Wake on LAN* (WoL)
---------------------------
WoL is configured through the Ethtool* utility. For instructions on
enabling WoL with Ethtool, refer to the Ethtool man page.
WoL will be enabled on the system during the next shut down or reboot.
For this driver version, in order to enable WoL, the e1000e driver must be
loaded when shutting down or rebooting the system.
In most cases Wake On LAN is only supported on port A for multiple port
adapters. To verify if a port supports Wake on LAN run ethtool eth<X>.
Support
=======
For general information, go to the Intel support website at:
www.intel.com/support/
or the Intel Wired Networking project hosted by Sourceforge at:
http://sourceforge.net/projects/e1000
If an issue is identified with the released source code on the supported
kernel with a supported adapter, email the specific information related
to the issue to e1000-devel@lists.sf.net

40
Documentation/networking/ixgbevf.txt Executable file → Normal file
View File

@ -1,19 +1,16 @@
Linux* Base Driver for Intel(R) Network Connection
==================================================
November 24, 2009
Intel Gigabit Linux driver.
Copyright(c) 1999 - 2010 Intel Corporation.
Contents
========
- In This Release
- Identifying Your Adapter
- Known Issues/Troubleshooting
- Support
In This Release
===============
This file describes the ixgbevf Linux* Base Driver for Intel Network
Connection.
@ -33,7 +30,7 @@ Identifying Your Adapter
For more information on how to identify your adapter, go to the Adapter &
Driver ID Guide at:
http://support.intel.com/support/network/sb/CS-008441.htm
http://support.intel.com/support/go/network/adapter/idguide.htm
Known Issues/Troubleshooting
============================
@ -57,34 +54,3 @@ or the Intel Wired Networking project hosted by Sourceforge at:
If an issue is identified with the released source code on the supported
kernel with a supported adapter, email the specific information related
to the issue to e1000-devel@lists.sf.net
License
=======
Intel 10 Gigabit Linux driver.
Copyright(c) 1999 - 2009 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Trademarks
==========
Intel, Itanium, and Pentium are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other
countries.
* Other names and brands may be claimed as the property of others.

View File

@ -13,7 +13,7 @@ regulators (where voltage output is controllable) and current sinks (where
current limit is controllable).
(C) 2008 Wolfson Microelectronics PLC.
Author: Liam Girdwood <lg@opensource.wolfsonmicro.com>
Author: Liam Girdwood <lrg@slimlogic.co.uk>
Nomenclature

View File

@ -296,6 +296,7 @@ Conexant 5051
Conexant 5066
=============
laptop Basic Laptop config (default)
hp-laptop HP laptops, e g G60
dell-laptop Dell laptops
dell-vostro Dell Vostro
olpc-xo-1_5 OLPC XO 1.5

View File

@ -478,7 +478,7 @@ static void prepare_hwpoison_fd(void)
}
if (opt_unpoison && !hwpoison_forget_fd) {
sprintf(buf, "%s/renew-pfn", hwpoison_debug_fs);
sprintf(buf, "%s/unpoison-pfn", hwpoison_debug_fs);
hwpoison_forget_fd = checked_open(buf, O_WRONLY);
}
}

380
Documentation/workqueue.txt Normal file
View File

@ -0,0 +1,380 @@
Concurrency Managed Workqueue (cmwq)
September, 2010 Tejun Heo <tj@kernel.org>
Florian Mickler <florian@mickler.org>
CONTENTS
1. Introduction
2. Why cmwq?
3. The Design
4. Application Programming Interface (API)
5. Example Execution Scenarios
6. Guidelines
1. Introduction
There are many cases where an asynchronous process execution context
is needed and the workqueue (wq) API is the most commonly used
mechanism for such cases.
When such an asynchronous execution context is needed, a work item
describing which function to execute is put on a queue. An
independent thread serves as the asynchronous execution context. The
queue is called workqueue and the thread is called worker.
While there are work items on the workqueue the worker executes the
functions associated with the work items one after the other. When
there is no work item left on the workqueue the worker becomes idle.
When a new work item gets queued, the worker begins executing again.
2. Why cmwq?
In the original wq implementation, a multi threaded (MT) wq had one
worker thread per CPU and a single threaded (ST) wq had one worker
thread system-wide. A single MT wq needed to keep around the same
number of workers as the number of CPUs. The kernel grew a lot of MT
wq users over the years and with the number of CPU cores continuously
rising, some systems saturated the default 32k PID space just booting
up.
Although MT wq wasted a lot of resource, the level of concurrency
provided was unsatisfactory. The limitation was common to both ST and
MT wq albeit less severe on MT. Each wq maintained its own separate
worker pool. A MT wq could provide only one execution context per CPU
while a ST wq one for the whole system. Work items had to compete for
those very limited execution contexts leading to various problems
including proneness to deadlocks around the single execution context.
The tension between the provided level of concurrency and resource
usage also forced its users to make unnecessary tradeoffs like libata
choosing to use ST wq for polling PIOs and accepting an unnecessary
limitation that no two polling PIOs can progress at the same time. As
MT wq don't provide much better concurrency, users which require
higher level of concurrency, like async or fscache, had to implement
their own thread pool.
Concurrency Managed Workqueue (cmwq) is a reimplementation of wq with
focus on the following goals.
* Maintain compatibility with the original workqueue API.
* Use per-CPU unified worker pools shared by all wq to provide
flexible level of concurrency on demand without wasting a lot of
resource.
* Automatically regulate worker pool and level of concurrency so that
the API users don't need to worry about such details.
3. The Design
In order to ease the asynchronous execution of functions a new
abstraction, the work item, is introduced.
A work item is a simple struct that holds a pointer to the function
that is to be executed asynchronously. Whenever a driver or subsystem
wants a function to be executed asynchronously it has to set up a work
item pointing to that function and queue that work item on a
workqueue.
Special purpose threads, called worker threads, execute the functions
off of the queue, one after the other. If no work is queued, the
worker threads become idle. These worker threads are managed in so
called thread-pools.
The cmwq design differentiates between the user-facing workqueues that
subsystems and drivers queue work items on and the backend mechanism
which manages thread-pool and processes the queued work items.
The backend is called gcwq. There is one gcwq for each possible CPU
and one gcwq to serve work items queued on unbound workqueues.
Subsystems and drivers can create and queue work items through special
workqueue API functions as they see fit. They can influence some
aspects of the way the work items are executed by setting flags on the
workqueue they are putting the work item on. These flags include
things like CPU locality, reentrancy, concurrency limits and more. To
get a detailed overview refer to the API description of
alloc_workqueue() below.
When a work item is queued to a workqueue, the target gcwq is
determined according to the queue parameters and workqueue attributes
and appended on the shared worklist of the gcwq. For example, unless
specifically overridden, a work item of a bound workqueue will be
queued on the worklist of exactly that gcwq that is associated to the
CPU the issuer is running on.
For any worker pool implementation, managing the concurrency level
(how many execution contexts are active) is an important issue. cmwq
tries to keep the concurrency at a minimal but sufficient level.
Minimal to save resources and sufficient in that the system is used at
its full capacity.
Each gcwq bound to an actual CPU implements concurrency management by
hooking into the scheduler. The gcwq is notified whenever an active
worker wakes up or sleeps and keeps track of the number of the
currently runnable workers. Generally, work items are not expected to
hog a CPU and consume many cycles. That means maintaining just enough
concurrency to prevent work processing from stalling should be
optimal. As long as there are one or more runnable workers on the
CPU, the gcwq doesn't start execution of a new work, but, when the
last running worker goes to sleep, it immediately schedules a new
worker so that the CPU doesn't sit idle while there are pending work
items. This allows using a minimal number of workers without losing
execution bandwidth.
Keeping idle workers around doesn't cost other than the memory space
for kthreads, so cmwq holds onto idle ones for a while before killing
them.
For an unbound wq, the above concurrency management doesn't apply and
the gcwq for the pseudo unbound CPU tries to start executing all work
items as soon as possible. The responsibility of regulating
concurrency level is on the users. There is also a flag to mark a
bound wq to ignore the concurrency management. Please refer to the
API section for details.
Forward progress guarantee relies on that workers can be created when
more execution contexts are necessary, which in turn is guaranteed
through the use of rescue workers. All work items which might be used
on code paths that handle memory reclaim are required to be queued on
wq's that have a rescue-worker reserved for execution under memory
pressure. Else it is possible that the thread-pool deadlocks waiting
for execution contexts to free up.
4. Application Programming Interface (API)
alloc_workqueue() allocates a wq. The original create_*workqueue()
functions are deprecated and scheduled for removal. alloc_workqueue()
takes three arguments - @name, @flags and @max_active. @name is the
name of the wq and also used as the name of the rescuer thread if
there is one.
A wq no longer manages execution resources but serves as a domain for
forward progress guarantee, flush and work item attributes. @flags
and @max_active control how work items are assigned execution
resources, scheduled and executed.
@flags:
WQ_NON_REENTRANT
By default, a wq guarantees non-reentrance only on the same
CPU. A work item may not be executed concurrently on the same
CPU by multiple workers but is allowed to be executed
concurrently on multiple CPUs. This flag makes sure
non-reentrance is enforced across all CPUs. Work items queued
to a non-reentrant wq are guaranteed to be executed by at most
one worker system-wide at any given time.
WQ_UNBOUND
Work items queued to an unbound wq are served by a special
gcwq which hosts workers which are not bound to any specific
CPU. This makes the wq behave as a simple execution context
provider without concurrency management. The unbound gcwq
tries to start execution of work items as soon as possible.
Unbound wq sacrifices locality but is useful for the following
cases.
* Wide fluctuation in the concurrency level requirement is
expected and using bound wq may end up creating large number
of mostly unused workers across different CPUs as the issuer
hops through different CPUs.
* Long running CPU intensive workloads which can be better
managed by the system scheduler.
WQ_FREEZEABLE
A freezeable wq participates in the freeze phase of the system
suspend operations. Work items on the wq are drained and no
new work item starts execution until thawed.
WQ_RESCUER
All wq which might be used in the memory reclaim paths _MUST_
have this flag set. This reserves one worker exclusively for
the execution of this wq under memory pressure.
WQ_HIGHPRI
Work items of a highpri wq are queued at the head of the
worklist of the target gcwq and start execution regardless of
the current concurrency level. In other words, highpri work
items will always start execution as soon as execution
resource is available.
Ordering among highpri work items is preserved - a highpri
work item queued after another highpri work item will start
execution after the earlier highpri work item starts.
Although highpri work items are not held back by other
runnable work items, they still contribute to the concurrency
level. Highpri work items in runnable state will prevent
non-highpri work items from starting execution.
This flag is meaningless for unbound wq.
WQ_CPU_INTENSIVE
Work items of a CPU intensive wq do not contribute to the
concurrency level. In other words, runnable CPU intensive
work items will not prevent other work items from starting
execution. This is useful for bound work items which are
expected to hog CPU cycles so that their execution is
regulated by the system scheduler.
Although CPU intensive work items don't contribute to the
concurrency level, start of their executions is still
regulated by the concurrency management and runnable
non-CPU-intensive work items can delay execution of CPU
intensive work items.
This flag is meaningless for unbound wq.
WQ_HIGHPRI | WQ_CPU_INTENSIVE
This combination makes the wq avoid interaction with
concurrency management completely and behave as a simple
per-CPU execution context provider. Work items queued on a
highpri CPU-intensive wq start execution as soon as resources
are available and don't affect execution of other work items.
@max_active:
@max_active determines the maximum number of execution contexts per
CPU which can be assigned to the work items of a wq. For example,
with @max_active of 16, at most 16 work items of the wq can be
executing at the same time per CPU.
Currently, for a bound wq, the maximum limit for @max_active is 512
and the default value used when 0 is specified is 256. For an unbound
wq, the limit is higher of 512 and 4 * num_possible_cpus(). These
values are chosen sufficiently high such that they are not the
limiting factor while providing protection in runaway cases.
The number of active work items of a wq is usually regulated by the
users of the wq, more specifically, by how many work items the users
may queue at the same time. Unless there is a specific need for
throttling the number of active work items, specifying '0' is
recommended.
Some users depend on the strict execution ordering of ST wq. The
combination of @max_active of 1 and WQ_UNBOUND is used to achieve this
behavior. Work items on such wq are always queued to the unbound gcwq
and only one work item can be active at any given time thus achieving
the same ordering property as ST wq.
5. Example Execution Scenarios
The following example execution scenarios try to illustrate how cmwq
behave under different configurations.
Work items w0, w1, w2 are queued to a bound wq q0 on the same CPU.
w0 burns CPU for 5ms then sleeps for 10ms then burns CPU for 5ms
again before finishing. w1 and w2 burn CPU for 5ms then sleep for
10ms.
Ignoring all other tasks, works and processing overhead, and assuming
simple FIFO scheduling, the following is one highly simplified version
of possible sequences of events with the original wq.
TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 starts and burns CPU
25 w1 sleeps
35 w1 wakes up and finishes
35 w2 starts and burns CPU
40 w2 sleeps
50 w2 wakes up and finishes
And with cmwq with @max_active >= 3,
TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
5 w1 starts and burns CPU
10 w1 sleeps
10 w2 starts and burns CPU
15 w2 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 wakes up and finishes
25 w2 wakes up and finishes
If @max_active == 2,
TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
5 w1 starts and burns CPU
10 w1 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 wakes up and finishes
20 w2 starts and burns CPU
25 w2 sleeps
35 w2 wakes up and finishes
Now, let's assume w1 and w2 are queued to a different wq q1 which has
WQ_HIGHPRI set,
TIME IN MSECS EVENT
0 w1 and w2 start and burn CPU
5 w1 sleeps
10 w2 sleeps
10 w0 starts and burns CPU
15 w0 sleeps
15 w1 wakes up and finishes
20 w2 wakes up and finishes
25 w0 wakes up and burns CPU
30 w0 finishes
If q1 has WQ_CPU_INTENSIVE set,
TIME IN MSECS EVENT
0 w0 starts and burns CPU
5 w0 sleeps
5 w1 and w2 start and burn CPU
10 w1 sleeps
15 w2 sleeps
15 w0 wakes up and burns CPU
20 w0 finishes
20 w1 wakes up and finishes
25 w2 wakes up and finishes
6. Guidelines
* Do not forget to use WQ_RESCUER if a wq may process work items which
are used during memory reclaim. Each wq with WQ_RESCUER set has one
rescuer thread reserved for it. If there is dependency among
multiple work items used during memory reclaim, they should be
queued to separate wq each with WQ_RESCUER.
* Unless strict ordering is required, there is no need to use ST wq.
* Unless there is a specific need, using 0 for @max_active is
recommended. In most use cases, concurrency level usually stays
well under the default limit.
* A wq serves as a domain for forward progress guarantee (WQ_RESCUER),
flush and work item attributes. Work items which are not involved
in memory reclaim and don't need to be flushed as a part of a group
of work items, and don't require any special attribute, can use one
of the system wq. There is no difference in execution
characteristics between using a dedicated wq and a system wq.
* Unless work items are expected to consume a huge amount of CPU
cycles, using a bound wq is usually beneficial due to the increased
level of locality in wq operations and work item execution.

View File

@ -454,6 +454,17 @@ L: linux-rdma@vger.kernel.org
S: Maintained
F: drivers/infiniband/hw/amso1100/
ANALOG DEVICES INC ASOC DRIVERS
L: uclinux-dist-devel@blackfin.uclinux.org
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
W: http://blackfin.uclinux.org/
S: Supported
F: sound/soc/blackfin/*
F: sound/soc/codecs/ad1*
F: sound/soc/codecs/adau*
F: sound/soc/codecs/adav*
F: sound/soc/codecs/ssm*
AOA (Apple Onboard Audio) ALSA DRIVER
M: Johannes Berg <johannes@sipsolutions.net>
L: linuxppc-dev@lists.ozlabs.org
@ -951,6 +962,23 @@ W: http://www.fluff.org/ben/linux/
S: Maintained
F: arch/arm/mach-s3c6410/
ARM/S5P ARM ARCHITECTURES
M: Kukjin Kim <kgene.kim@samsung.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
L: linux-samsung-soc@vger.kernel.org (moderated for non-subscribers)
S: Maintained
F: arch/arm/mach-s5p*/
ARM/SAMSUNG S5P SERIES FIMC SUPPORT
M: Kyungmin Park <kyungmin.park@samsung.com>
M: Sylwester Nawrocki <s.nawrocki@samsung.com>
L: linux-arm-kernel@lists.infradead.org
L: linux-media@vger.kernel.org
S: Maintained
F: arch/arm/plat-s5p/dev-fimc*
F: arch/arm/plat-samsung/include/plat/*fimc*
F: drivers/media/video/s5p-fimc/
ARM/SHMOBILE ARM ARCHITECTURE
M: Paul Mundt <lethal@linux-sh.org>
M: Magnus Damm <magnus.damm@gmail.com>
@ -1124,7 +1152,7 @@ ATLX ETHERNET DRIVERS
M: Jay Cliburn <jcliburn@gmail.com>
M: Chris Snook <chris.snook@gmail.com>
M: Jie Yang <jie.yang@atheros.com>
L: atl1-devel@lists.sourceforge.net
L: netdev@vger.kernel.org
W: http://sourceforge.net/projects/atl1
W: http://atl1.sourceforge.net
S: Maintained
@ -1209,7 +1237,7 @@ F: drivers/auxdisplay/
F: include/linux/cfag12864b.h
AVR32 ARCHITECTURE
M: Haavard Skinnemoen <hskinnemoen@atmel.com>
M: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
W: http://www.atmel.com/products/AVR32/
W: http://avr32linux.org/
W: http://avrfreaks.net/
@ -1217,7 +1245,7 @@ S: Supported
F: arch/avr32/
AVR32/AT32AP MACHINE SUPPORT
M: Haavard Skinnemoen <hskinnemoen@atmel.com>
M: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
S: Supported
F: arch/avr32/mach-at32ap/
@ -1434,6 +1462,16 @@ S: Maintained
F: Documentation/video4linux/cafe_ccic
F: drivers/media/video/cafe_ccic*
CAIF NETWORK LAYER
M: Sjur Braendeland <sjur.brandeland@stericsson.com>
L: netdev@vger.kernel.org
S: Supported
F: Documentation/networking/caif/
F: drivers/net/caif/
F: include/linux/caif/
F: include/net/caif/
F: net/caif/
CALGARY x86-64 IOMMU
M: Muli Ben-Yehuda <muli@il.ibm.com>
M: "Jon D. Mason" <jdmason@kudzu.us>
@ -1665,8 +1703,7 @@ F: kernel/cgroup*
F: mm/*cgroup*
CORETEMP HARDWARE MONITORING DRIVER
M: Rudolf Marek <r.marek@assembler.cz>
M: Huaxu Wan <huaxu.wan@intel.com>
M: Fenghua Yu <fenghua.yu@intel.com>
L: lm-sensors@lm-sensors.org
S: Maintained
F: Documentation/hwmon/coretemp
@ -2179,6 +2216,12 @@ W: http://acpi4asus.sf.net
S: Maintained
F: drivers/platform/x86/eeepc-laptop.c
EFIFB FRAMEBUFFER DRIVER
L: linux-fbdev@vger.kernel.org
M: Peter Jones <pjones@redhat.com>
S: Maintained
F: drivers/video/efifb.c
EFS FILESYSTEM
W: http://aeschi.ch.eu.org/efs/
S: Orphan
@ -2191,6 +2234,12 @@ L: linux-rdma@vger.kernel.org
S: Supported
F: drivers/infiniband/hw/ehca/
EHEA (IBM pSeries eHEA 10Gb ethernet adapter) DRIVER
M: Breno Leitao <leitao@linux.vnet.ibm.com>
L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/ehea/
EMBEDDED LINUX
M: Paul Gortmaker <paul.gortmaker@windriver.com>
M: Matt Mackall <mpm@selenic.com>
@ -2286,6 +2335,12 @@ S: Maintained
F: Documentation/hwmon/f71805f
F: drivers/hwmon/f71805f.c
FANOTIFY
M: Eric Paris <eparis@redhat.com>
S: Maintained
F: fs/notify/fanotify/
F: include/linux/fanotify.h
FARSYNC SYNCHRONOUS DRIVER
M: Kevin Curtis <kevin.curtis@farsite.co.uk>
W: http://www.farsite.co.uk/
@ -2490,7 +2545,7 @@ S: Supported
F: drivers/scsi/gdt*
GENERIC GPIO I2C DRIVER
M: Haavard Skinnemoen <hskinnemoen@atmel.com>
M: Haavard Skinnemoen <hskinnemoen@gmail.com>
S: Supported
F: drivers/i2c/busses/i2c-gpio.c
F: include/linux/i2c-gpio.h
@ -2625,9 +2680,14 @@ S: Maintained
F: drivers/media/video/gspca/
HARDWARE MONITORING
M: Jean Delvare <khali@linux-fr.org>
M: Guenter Roeck <guenter.roeck@ericsson.com>
L: lm-sensors@lm-sensors.org
W: http://www.lm-sensors.org/
S: Orphan
T: quilt kernel.org/pub/linux/kernel/people/jdelvare/linux-2.6/jdelvare-hwmon/
T: quilt kernel.org/pub/linux/kernel/people/groeck/linux-staging/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging.git
S: Maintained
F: Documentation/hwmon/
F: drivers/hwmon/
F: include/linux/hwmon*.h
@ -2765,11 +2825,6 @@ S: Maintained
F: arch/x86/kernel/hpet.c
F: arch/x86/include/asm/hpet.h
HPET: ACPI
M: Bob Picco <bob.picco@hp.com>
S: Maintained
F: drivers/char/hpet.c
HPFS FILESYSTEM
M: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
W: http://artax.karlin.mff.cuni.cz/~mikulas/vyplody/hpfs/index-e.cgi
@ -3018,16 +3073,27 @@ L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/ixp2000/
INTEL ETHERNET DRIVERS (e100/e1000/e1000e/igb/igbvf/ixgb/ixgbe)
INTEL ETHERNET DRIVERS (e100/e1000/e1000e/igb/igbvf/ixgb/ixgbe/ixgbevf)
M: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
M: Jesse Brandeburg <jesse.brandeburg@intel.com>
M: Bruce Allan <bruce.w.allan@intel.com>
M: Alex Duyck <alexander.h.duyck@intel.com>
M: Carolyn Wyborny <carolyn.wyborny@intel.com>
M: Don Skidmore <donald.c.skidmore@intel.com>
M: Greg Rose <gregory.v.rose@intel.com>
M: PJ Waskiewicz <peter.p.waskiewicz.jr@intel.com>
M: Alex Duyck <alexander.h.duyck@intel.com>
M: John Ronciak <john.ronciak@intel.com>
L: e1000-devel@lists.sourceforge.net
W: http://e1000.sourceforge.net/
S: Supported
F: Documentation/networking/e100.txt
F: Documentation/networking/e1000.txt
F: Documentation/networking/e1000e.txt
F: Documentation/networking/igb.txt
F: Documentation/networking/igbvf.txt
F: Documentation/networking/ixgb.txt
F: Documentation/networking/ixgbe.txt
F: Documentation/networking/ixgbevf.txt
F: drivers/net/e100.c
F: drivers/net/e1000/
F: drivers/net/e1000e/
@ -3035,6 +3101,7 @@ F: drivers/net/igb/
F: drivers/net/igbvf/
F: drivers/net/ixgb/
F: drivers/net/ixgbe/
F: drivers/net/ixgbevf/
INTEL PRO/WIRELESS 2100 NETWORK CONNECTION SUPPORT
L: linux-wireless@vger.kernel.org
@ -3382,7 +3449,7 @@ F: drivers/s390/kvm/
KEXEC
M: Eric Biederman <ebiederm@xmission.com>
W: http://ftp.kernel.org/pub/linux/kernel/people/horms/kexec-tools/
W: http://kernel.org/pub/linux/utils/kernel/kexec/
L: kexec@lists.infradead.org
S: Maintained
F: include/linux/kexec.h
@ -3478,7 +3545,7 @@ LGUEST
M: Rusty Russell <rusty@rustcorp.com.au>
L: lguest@lists.ozlabs.org
W: http://lguest.ozlabs.org/
S: Maintained
S: Odd Fixes
F: Documentation/lguest/
F: arch/x86/lguest/
F: drivers/lguest/
@ -3743,9 +3810,8 @@ W: http://www.syskonnect.com
S: Supported
MATROX FRAMEBUFFER DRIVER
M: Petr Vandrovec <vandrove@vc.cvut.cz>
L: linux-fbdev@vger.kernel.org
S: Maintained
S: Orphan
F: drivers/video/matrox/matroxfb_*
F: include/linux/matroxfb.h
@ -3869,10 +3935,8 @@ F: Documentation/serial/moxa-smartio
F: drivers/char/mxser.*
MSI LAPTOP SUPPORT
M: Lennart Poettering <mzxreary@0pointer.de>
M: Lee, Chun-Yi <jlee@novell.com>
L: platform-driver-x86@vger.kernel.org
W: https://tango.0pointer.de/mailman/listinfo/s270-linux
W: http://0pointer.de/lennart/tchibo.html
S: Maintained
F: drivers/platform/x86/msi-laptop.c
@ -3889,8 +3953,10 @@ S: Supported
F: drivers/mfd/
MULTIMEDIA CARD (MMC), SECURE DIGITAL (SD) AND SDIO SUBSYSTEM
S: Orphan
M: Chris Ball <cjb@laptop.org>
L: linux-mmc@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/cjb/mmc.git
S: Maintained
F: drivers/mmc/
F: include/linux/mmc/
@ -3907,13 +3973,12 @@ F: Documentation/sound/oss/MultiSound
F: sound/oss/msnd*
MULTITECH MULTIPORT CARD (ISICOM)
M: Jiri Slaby <jirislaby@gmail.com>
S: Maintained
S: Orphan
F: drivers/char/isicom.c
F: include/linux/isicom.h
MUSB MULTIPOINT HIGH SPEED DUAL-ROLE CONTROLLER
M: Felipe Balbi <felipe.balbi@nokia.com>
M: Felipe Balbi <balbi@ti.com>
L: linux-usb@vger.kernel.org
T: git git://gitorious.org/usb/usb.git
S: Maintained
@ -3933,8 +3998,8 @@ S: Maintained
F: drivers/net/natsemi.c
NCP FILESYSTEM
M: Petr Vandrovec <vandrove@vc.cvut.cz>
S: Maintained
M: Petr Vandrovec <petr@vandrovec.name>
S: Odd Fixes
F: fs/ncpfs/
NCR DUAL 700 SCSI DRIVER (MICROCHANNEL)
@ -4211,7 +4276,7 @@ S: Maintained
F: drivers/char/hw_random/omap-rng.c
OMAP USB SUPPORT
M: Felipe Balbi <felipe.balbi@nokia.com>
M: Felipe Balbi <balbi@ti.com>
M: David Brownell <dbrownell@users.sourceforge.net>
L: linux-usb@vger.kernel.org
L: linux-omap@vger.kernel.org
@ -4588,7 +4653,7 @@ F: include/linux/preempt.h
PRISM54 WIRELESS DRIVER
M: "Luis R. Rodriguez" <mcgrof@gmail.com>
L: linux-wireless@vger.kernel.org
W: http://prism54.org
W: http://wireless.kernel.org/en/users/Drivers/p54
S: Obsolete
F: drivers/net/wireless/prism54/
@ -4789,6 +4854,7 @@ RCUTORTURE MODULE
M: Josh Triplett <josh@freedesktop.org>
M: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
S: Supported
T: git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-2.6-rcu.git
F: Documentation/RCU/torture.txt
F: kernel/rcutorture.c
@ -4813,6 +4879,7 @@ M: Dipankar Sarma <dipankar@in.ibm.com>
M: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
W: http://www.rdrop.com/users/paulmck/rclock/
S: Supported
T: git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-2.6-rcu.git
F: Documentation/RCU/
F: include/linux/rcu*
F: include/linux/srcu*
@ -4820,12 +4887,10 @@ F: kernel/rcu*
F: kernel/srcu*
X: kernel/rcutorture.c
REAL TIME CLOCK DRIVER
REAL TIME CLOCK DRIVER (LEGACY)
M: Paul Gortmaker <p_gortmaker@yahoo.com>
S: Maintained
F: Documentation/rtc.txt
F: drivers/rtc/
F: include/linux/rtc.h
F: drivers/char/rtc.c
REAL TIME CLOCK (RTC) SUBSYSTEM
M: Alessandro Zummo <a.zummo@towertech.it>
@ -4965,6 +5030,12 @@ F: drivers/media/common/saa7146*
F: drivers/media/video/*7146*
F: include/media/*7146*
SAMSUNG AUDIO (ASoC) DRIVERS
M: Jassi Brar <jassi.brar@samsung.com>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
S: Supported
F: sound/soc/s3c24xx
TLG2300 VIDEO4LINUX-2 DRIVER
M: Huang Shijie <shijie8@gmail.com>
M: Kang Yong <kangyong@telegent.com>
@ -5062,8 +5133,10 @@ S: Maintained
F: drivers/mmc/host/sdricoh_cs.c
SECURE DIGITAL HOST CONTROLLER INTERFACE (SDHCI) DRIVER
S: Orphan
M: Chris Ball <cjb@laptop.org>
L: linux-mmc@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/cjb/mmc.git
S: Maintained
F: drivers/mmc/host/sdhci.*
SECURE DIGITAL HOST CONTROLLER INTERFACE, OPEN FIRMWARE BINDINGS (SDHCI-OF)
@ -6405,8 +6478,10 @@ F: include/linux/wm97xx.h
WOLFSON MICROELECTRONICS DRIVERS
M: Mark Brown <broonie@opensource.wolfsonmicro.com>
M: Ian Lartey <ian@opensource.wolfsonmicro.com>
M: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
T: git git://opensource.wolfsonmicro.com/linux-2.6-asoc
T: git git://opensource.wolfsonmicro.com/linux-2.6-audioplus
W: http://opensource.wolfsonmicro.com/node/8
W: http://opensource.wolfsonmicro.com/content/linux-drivers-wolfson-devices
S: Supported
F: Documentation/hwmon/wm83??
F: drivers/leds/leds-wm83*.c

View File

@ -1,8 +1,8 @@
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 36
EXTRAVERSION = -rc2
NAME = Sheep on Meth
EXTRAVERSION = -rc8
NAME = Flesh-Eating Bats with Fangs
# *DOCUMENTATION*
# To see a list of typical targets execute "make help"
@ -1408,8 +1408,8 @@ checkstack:
$(OBJDUMP) -d vmlinux $$(find . -name '*.ko') | \
$(PERL) $(src)/scripts/checkstack.pl $(CHECKSTACK_ARCH)
kernelrelease: include/config/kernel.release
@echo $(KERNELRELEASE)
kernelrelease:
@echo "$(KERNELVERSION)$$($(CONFIG_SHELL) $(srctree)/scripts/setlocalversion $(srctree))"
kernelversion:
@echo $(KERNELVERSION)

View File

@ -32,8 +32,9 @@ config HAVE_OPROFILE
config KPROBES
bool "Kprobes"
depends on KALLSYMS && MODULES
depends on MODULES
depends on HAVE_KPROBES
select KALLSYMS
help
Kprobes allows you to trap at almost any kernel address and
execute a callback function. register_kprobe() establishes
@ -45,7 +46,6 @@ config OPTPROBES
def_bool y
depends on KPROBES && HAVE_OPTPROBES
depends on !PREEMPT
select KALLSYMS_ALL
config HAVE_EFFICIENT_UNALIGNED_ACCESS
bool

View File

@ -17,7 +17,6 @@
# define L1_CACHE_SHIFT 5
#endif
#define L1_CACHE_ALIGN(x) (((x)+(L1_CACHE_BYTES-1))&~(L1_CACHE_BYTES-1))
#define SMP_CACHE_BYTES L1_CACHE_BYTES
#endif

View File

@ -43,6 +43,8 @@ extern void smp_imb(void);
/* ??? Ought to use this in arch/alpha/kernel/signal.c too. */
#ifndef CONFIG_SMP
#include <linux/sched.h>
extern void __load_new_mm_context(struct mm_struct *);
static inline void
flush_icache_user_range(struct vm_area_struct *vma, struct page *page,

View File

@ -449,10 +449,13 @@
#define __NR_pwritev 491
#define __NR_rt_tgsigqueueinfo 492
#define __NR_perf_event_open 493
#define __NR_fanotify_init 494
#define __NR_fanotify_mark 495
#define __NR_prlimit64 496
#ifdef __KERNEL__
#define NR_SYSCALLS 494
#define NR_SYSCALLS 497
#define __ARCH_WANT_IPC_PARSE_VERSION
#define __ARCH_WANT_OLD_READDIR
@ -463,6 +466,7 @@
#define __ARCH_WANT_SYS_OLD_GETRLIMIT
#define __ARCH_WANT_SYS_OLDUMOUNT
#define __ARCH_WANT_SYS_SIGPENDING
#define __ARCH_WANT_SYS_RT_SIGSUSPEND
/* "Conditional" syscalls. What we want is

View File

@ -73,8 +73,6 @@
ldq $20, HAE_REG($19); \
stq $21, HAE_CACHE($19); \
stq $21, 0($20); \
ldq $0, 0($sp); \
ldq $1, 8($sp); \
99:; \
ldq $19, 72($sp); \
ldq $20, 80($sp); \
@ -316,19 +314,24 @@ ret_from_sys_call:
cmovne $26, 0, $19 /* $19 = 0 => non-restartable */
ldq $0, SP_OFF($sp)
and $0, 8, $0
beq $0, restore_all
ret_from_reschedule:
beq $0, ret_to_kernel
ret_to_user:
/* Make sure need_resched and sigpending don't change between
sampling and the rti. */
lda $16, 7
call_pal PAL_swpipl
ldl $5, TI_FLAGS($8)
and $5, _TIF_WORK_MASK, $2
bne $5, work_pending
bne $2, work_pending
restore_all:
RESTORE_ALL
call_pal PAL_rti
ret_to_kernel:
lda $16, 7
call_pal PAL_swpipl
br restore_all
.align 3
$syscall_error:
/*
@ -363,7 +366,7 @@ $ret_success:
* $8: current.
* $19: The old syscall number, or zero if this is not a return
* from a syscall that errored and is possibly restartable.
* $20: Error indication.
* $20: The old a3 value
*/
.align 4
@ -392,12 +395,18 @@ $work_resched:
$work_notifysig:
mov $sp, $16
br $1, do_switch_stack
bsr $1, do_switch_stack
mov $sp, $17
mov $5, $18
mov $19, $9 /* save old syscall number */
mov $20, $10 /* save old a3 */
and $5, _TIF_SIGPENDING, $2
cmovne $2, 0, $9 /* we don't want double syscall restarts */
jsr $26, do_notify_resume
mov $9, $19
mov $10, $20
bsr $1, undo_switch_stack
br restore_all
br ret_to_user
.end work_pending
/*
@ -430,6 +439,7 @@ strace:
beq $1, 1f
ldq $27, 0($2)
1: jsr $26, ($27), sys_gettimeofday
ret_from_straced:
ldgp $gp, 0($26)
/* check return.. */
@ -650,7 +660,7 @@ kernel_thread:
/* We don't actually care for a3 success widgetry in the kernel.
Not for positive errno values. */
stq $0, 0($sp) /* $0 */
br restore_all
br ret_to_kernel
.end kernel_thread
/*
@ -757,11 +767,15 @@ sys_vfork:
.ent sys_sigreturn
sys_sigreturn:
.prologue 0
lda $9, ret_from_straced
cmpult $26, $9, $9
mov $sp, $17
lda $18, -SWITCH_STACK_SIZE($sp)
lda $sp, -SWITCH_STACK_SIZE($sp)
jsr $26, do_sigreturn
br $1, undo_switch_stack
bne $9, 1f
jsr $26, syscall_trace
1: br $1, undo_switch_stack
br ret_from_sys_call
.end sys_sigreturn
@ -770,46 +784,18 @@ sys_sigreturn:
.ent sys_rt_sigreturn
sys_rt_sigreturn:
.prologue 0
lda $9, ret_from_straced
cmpult $26, $9, $9
mov $sp, $17
lda $18, -SWITCH_STACK_SIZE($sp)
lda $sp, -SWITCH_STACK_SIZE($sp)
jsr $26, do_rt_sigreturn
br $1, undo_switch_stack
bne $9, 1f
jsr $26, syscall_trace
1: br $1, undo_switch_stack
br ret_from_sys_call
.end sys_rt_sigreturn
.align 4
.globl sys_sigsuspend
.ent sys_sigsuspend
sys_sigsuspend:
.prologue 0
mov $sp, $17
br $1, do_switch_stack
mov $sp, $18
subq $sp, 16, $sp
stq $26, 0($sp)
jsr $26, do_sigsuspend
ldq $26, 0($sp)
lda $sp, SWITCH_STACK_SIZE+16($sp)
ret
.end sys_sigsuspend
.align 4
.globl sys_rt_sigsuspend
.ent sys_rt_sigsuspend
sys_rt_sigsuspend:
.prologue 0
mov $sp, $18
br $1, do_switch_stack
mov $sp, $19
subq $sp, 16, $sp
stq $26, 0($sp)
jsr $26, do_rt_sigsuspend
ldq $26, 0($sp)
lda $sp, SWITCH_STACK_SIZE+16($sp)
ret
.end sys_rt_sigsuspend
.align 4
.globl sys_sethae
.ent sys_sethae
@ -928,15 +914,6 @@ sys_execve:
jmp $31, do_sys_execve
.end sys_execve
.align 4
.globl osf_sigprocmask
.ent osf_sigprocmask
osf_sigprocmask:
.prologue 0
mov $sp, $18
jmp $31, sys_osf_sigprocmask
.end osf_sigprocmask
.align 4
.globl alpha_ni_syscall
.ent alpha_ni_syscall

View File

@ -90,11 +90,13 @@ static int
ev6_parse_cbox(u64 c_addr, u64 c1_syn, u64 c2_syn,
u64 c_stat, u64 c_sts, int print)
{
char *sourcename[] = { "UNKNOWN", "UNKNOWN", "UNKNOWN",
"MEMORY", "BCACHE", "DCACHE",
"BCACHE PROBE", "BCACHE PROBE" };
char *streamname[] = { "D", "I" };
char *bitsname[] = { "SINGLE", "DOUBLE" };
static const char * const sourcename[] = {
"UNKNOWN", "UNKNOWN", "UNKNOWN",
"MEMORY", "BCACHE", "DCACHE",
"BCACHE PROBE", "BCACHE PROBE"
};
static const char * const streamname[] = { "D", "I" };
static const char * const bitsname[] = { "SINGLE", "DOUBLE" };
int status = MCHK_DISPOSITION_REPORT;
int source = -1, stream = -1, bits = -1;

View File

@ -109,7 +109,7 @@ marvel_print_err_cyc(u64 err_cyc)
#define IO7__ERR_CYC__CYCLE__M (0x7)
printk("%s Packet In Error: %s\n"
"%s Error in %s, cycle %ld%s%s\n",
"%s Error in %s, cycle %lld%s%s\n",
err_print_prefix,
packet_desc[EXTRACT(err_cyc, IO7__ERR_CYC__PACKET)],
err_print_prefix,
@ -313,7 +313,7 @@ marvel_print_po7_ugbge_sym(u64 ugbge_sym)
}
printk("%s Up Hose Garbage Symptom:\n"
"%s Source Port: %ld - Dest PID: %ld - OpCode: %s\n",
"%s Source Port: %lld - Dest PID: %lld - OpCode: %s\n",
err_print_prefix,
err_print_prefix,
EXTRACT(ugbge_sym, IO7__PO7_UGBGE_SYM__UPH_SRC_PORT),
@ -552,7 +552,7 @@ marvel_print_pox_spl_cmplt(u64 spl_cmplt)
#define IO7__POX_SPLCMPLT__REM_BYTE_COUNT__M (0xfff)
printk("%s Split Completion Error:\n"
"%s Source (Bus:Dev:Func): %ld:%ld:%ld\n",
"%s Source (Bus:Dev:Func): %lld:%lld:%lld\n",
err_print_prefix,
err_print_prefix,
EXTRACT(spl_cmplt, IO7__POX_SPLCMPLT__SOURCE_BUS),
@ -589,22 +589,23 @@ marvel_print_pox_spl_cmplt(u64 spl_cmplt)
static void
marvel_print_pox_trans_sum(u64 trans_sum)
{
char *pcix_cmd[] = { "Interrupt Acknowledge",
"Special Cycle",
"I/O Read",
"I/O Write",
"Reserved",
"Reserved / Device ID Message",
"Memory Read",
"Memory Write",
"Reserved / Alias to Memory Read Block",
"Reserved / Alias to Memory Write Block",
"Configuration Read",
"Configuration Write",
"Memory Read Multiple / Split Completion",
"Dual Address Cycle",
"Memory Read Line / Memory Read Block",
"Memory Write and Invalidate / Memory Write Block"
static const char * const pcix_cmd[] = {
"Interrupt Acknowledge",
"Special Cycle",
"I/O Read",
"I/O Write",
"Reserved",
"Reserved / Device ID Message",
"Memory Read",
"Memory Write",
"Reserved / Alias to Memory Read Block",
"Reserved / Alias to Memory Write Block",
"Configuration Read",
"Configuration Write",
"Memory Read Multiple / Split Completion",
"Dual Address Cycle",
"Memory Read Line / Memory Read Block",
"Memory Write and Invalidate / Memory Write Block"
};
#define IO7__POX_TRANSUM__PCI_ADDR__S (0)

View File

@ -75,8 +75,12 @@ titan_parse_p_serror(int which, u64 serror, int print)
int status = MCHK_DISPOSITION_REPORT;
#ifdef CONFIG_VERBOSE_MCHECK
char *serror_src[] = {"GPCI", "APCI", "AGP HP", "AGP LP"};
char *serror_cmd[] = {"DMA Read", "DMA RMW", "SGTE Read", "Reserved"};
static const char * const serror_src[] = {
"GPCI", "APCI", "AGP HP", "AGP LP"
};
static const char * const serror_cmd[] = {
"DMA Read", "DMA RMW", "SGTE Read", "Reserved"
};
#endif /* CONFIG_VERBOSE_MCHECK */
#define TITAN__PCHIP_SERROR__LOST_UECC (1UL << 0)
@ -140,14 +144,15 @@ titan_parse_p_perror(int which, int port, u64 perror, int print)
int status = MCHK_DISPOSITION_REPORT;
#ifdef CONFIG_VERBOSE_MCHECK
char *perror_cmd[] = { "Interrupt Acknowledge", "Special Cycle",
"I/O Read", "I/O Write",
"Reserved", "Reserved",
"Memory Read", "Memory Write",
"Reserved", "Reserved",
"Configuration Read", "Configuration Write",
"Memory Read Multiple", "Dual Address Cycle",
"Memory Read Line","Memory Write and Invalidate"
static const char * const perror_cmd[] = {
"Interrupt Acknowledge", "Special Cycle",
"I/O Read", "I/O Write",
"Reserved", "Reserved",
"Memory Read", "Memory Write",
"Reserved", "Reserved",
"Configuration Read", "Configuration Write",
"Memory Read Multiple", "Dual Address Cycle",
"Memory Read Line", "Memory Write and Invalidate"
};
#endif /* CONFIG_VERBOSE_MCHECK */
@ -273,11 +278,11 @@ titan_parse_p_agperror(int which, u64 agperror, int print)
int cmd, len;
unsigned long addr;
char *agperror_cmd[] = { "Read (low-priority)", "Read (high-priority)",
"Write (low-priority)",
"Write (high-priority)",
"Reserved", "Reserved",
"Flush", "Fence"
static const char * const agperror_cmd[] = {
"Read (low-priority)", "Read (high-priority)",
"Write (low-priority)", "Write (high-priority)",
"Reserved", "Reserved",
"Flush", "Fence"
};
#endif /* CONFIG_VERBOSE_MCHECK */

View File

@ -15,7 +15,6 @@
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/syscalls.h>
#include <linux/unistd.h>
@ -69,7 +68,6 @@ SYSCALL_DEFINE4(osf_set_program_attributes, unsigned long, text_start,
{
struct mm_struct *mm;
lock_kernel();
mm = current->mm;
mm->end_code = bss_start + bss_len;
mm->start_brk = bss_start + bss_len;
@ -78,7 +76,6 @@ SYSCALL_DEFINE4(osf_set_program_attributes, unsigned long, text_start,
printk("set_program_attributes(%lx %lx %lx %lx)\n",
text_start, text_len, bss_start, bss_len);
#endif
unlock_kernel();
return 0;
}
@ -252,7 +249,7 @@ SYSCALL_DEFINE3(osf_statfs, const char __user *, pathname,
retval = user_path(pathname, &path);
if (!retval) {
retval = do_osf_statfs(&path buffer, bufsiz);
retval = do_osf_statfs(&path, buffer, bufsiz);
path_put(&path);
}
return retval;
@ -517,7 +514,6 @@ SYSCALL_DEFINE2(osf_proplist_syscall, enum pl_code, code,
long error;
int __user *min_buf_size_ptr;
lock_kernel();
switch (code) {
case PL_SET:
if (get_user(error, &args->set.nbytes))
@ -547,7 +543,6 @@ SYSCALL_DEFINE2(osf_proplist_syscall, enum pl_code, code,
error = -EOPNOTSUPP;
break;
};
unlock_kernel();
return error;
}
@ -594,7 +589,7 @@ SYSCALL_DEFINE2(osf_sigstack, struct sigstack __user *, uss,
SYSCALL_DEFINE3(osf_sysinfo, int, command, char __user *, buf, long, count)
{
char *sysinfo_table[] = {
const char *sysinfo_table[] = {
utsname()->sysname,
utsname()->nodename,
utsname()->release,
@ -606,7 +601,7 @@ SYSCALL_DEFINE3(osf_sysinfo, int, command, char __user *, buf, long, count)
"dummy", /* secure RPC domain */
};
unsigned long offset;
char *res;
const char *res;
long len, err = -EINVAL;
offset = command-1;

View File

@ -66,7 +66,7 @@ static int pci_mmap_resource(struct kobject *kobj,
{
struct pci_dev *pdev = to_pci_dev(container_of(kobj,
struct device, kobj));
struct resource *res = (struct resource *)attr->private;
struct resource *res = attr->private;
enum pci_mmap_state mmap_type;
struct pci_bus_region bar;
int i;

View File

@ -241,20 +241,20 @@ static inline unsigned long alpha_read_pmc(int idx)
static int alpha_perf_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc, int idx)
{
long left = atomic64_read(&hwc->period_left);
long left = local64_read(&hwc->period_left);
long period = hwc->sample_period;
int ret = 0;
if (unlikely(left <= -period)) {
left = period;
atomic64_set(&hwc->period_left, left);
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (unlikely(left <= 0)) {
left += period;
atomic64_set(&hwc->period_left, left);
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
@ -269,7 +269,7 @@ static int alpha_perf_event_set_period(struct perf_event *event,
if (left > (long)alpha_pmu->pmc_max_period[idx])
left = alpha_pmu->pmc_max_period[idx];
atomic64_set(&hwc->prev_count, (unsigned long)(-left));
local64_set(&hwc->prev_count, (unsigned long)(-left));
alpha_write_pmc(idx, (unsigned long)(-left));
@ -300,10 +300,10 @@ static unsigned long alpha_perf_event_update(struct perf_event *event,
long delta;
again:
prev_raw_count = atomic64_read(&hwc->prev_count);
prev_raw_count = local64_read(&hwc->prev_count);
new_raw_count = alpha_read_pmc(idx);
if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
@ -316,8 +316,8 @@ static unsigned long alpha_perf_event_update(struct perf_event *event,
delta += alpha_pmu->pmc_max_period[idx] + 1;
}
atomic64_add(delta, &event->count);
atomic64_sub(delta, &hwc->period_left);
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
return new_raw_count;
}
@ -636,7 +636,7 @@ static int __hw_perf_event_init(struct perf_event *event)
if (!hwc->sample_period) {
hwc->sample_period = alpha_pmu->pmc_max_period[0];
hwc->last_period = hwc->sample_period;
atomic64_set(&hwc->period_left, hwc->sample_period);
local64_set(&hwc->period_left, hwc->sample_period);
}
return 0;

View File

@ -356,7 +356,7 @@ dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
dest[27] = pt->r27;
dest[28] = pt->r28;
dest[29] = pt->gp;
dest[30] = rdusp();
dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
dest[31] = pt->pc;
/* Once upon a time this was the PS value. Which is stupid

View File

@ -156,9 +156,6 @@ extern void SMC669_Init(int);
/* es1888.c */
extern void es1888_init(void);
/* ns87312.c */
extern void ns87312_enable_ide(long ide_base);
/* ../lib/fpreg.c */
extern void alpha_write_fp_reg (unsigned long reg, unsigned long val);
extern unsigned long alpha_read_fp_reg (unsigned long reg);

View File

@ -41,46 +41,20 @@ static void do_signal(struct pt_regs *, struct switch_stack *,
/*
* The OSF/1 sigprocmask calling sequence is different from the
* C sigprocmask() sequence..
*
* how:
* 1 - SIG_BLOCK
* 2 - SIG_UNBLOCK
* 3 - SIG_SETMASK
*
* We change the range to -1 .. 1 in order to let gcc easily
* use the conditional move instructions.
*
* Note that we don't need to acquire the kernel lock for SMP
* operation, as all of this is local to this thread.
*/
SYSCALL_DEFINE3(osf_sigprocmask, int, how, unsigned long, newmask,
struct pt_regs *, regs)
SYSCALL_DEFINE2(osf_sigprocmask, int, how, unsigned long, newmask)
{
unsigned long oldmask = -EINVAL;
sigset_t oldmask;
sigset_t mask;
unsigned long res;
if ((unsigned long)how-1 <= 2) {
long sign = how-2; /* -1 .. 1 */
unsigned long block, unblock;
newmask &= _BLOCKABLE;
spin_lock_irq(&current->sighand->siglock);
oldmask = current->blocked.sig[0];
unblock = oldmask & ~newmask;
block = oldmask | newmask;
if (!sign)
block = unblock;
if (sign <= 0)
newmask = block;
if (_NSIG_WORDS > 1 && sign > 0)
sigemptyset(&current->blocked);
current->blocked.sig[0] = newmask;
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
regs->r0 = 0; /* special no error return */
siginitset(&mask, newmask & _BLOCKABLE);
res = sigprocmask(how, &mask, &oldmask);
if (!res) {
force_successful_syscall_return();
res = oldmask.sig[0];
}
return oldmask;
return res;
}
SYSCALL_DEFINE3(osf_sigaction, int, sig,
@ -94,9 +68,9 @@ SYSCALL_DEFINE3(osf_sigaction, int, sig,
old_sigset_t mask;
if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
__get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
__get_user(new_ka.sa.sa_flags, &act->sa_flags))
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
__get_user(mask, &act->sa_mask))
return -EFAULT;
__get_user(mask, &act->sa_mask);
siginitset(&new_ka.sa.sa_mask, mask);
new_ka.ka_restorer = NULL;
}
@ -106,9 +80,9 @@ SYSCALL_DEFINE3(osf_sigaction, int, sig,
if (!ret && oact) {
if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
__put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
__put_user(old_ka.sa.sa_flags, &oact->sa_flags))
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
return -EFAULT;
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask);
}
return ret;
@ -144,8 +118,7 @@ SYSCALL_DEFINE5(rt_sigaction, int, sig, const struct sigaction __user *, act,
/*
* Atomically swap in the new signal mask, and wait for a signal.
*/
asmlinkage int
do_sigsuspend(old_sigset_t mask, struct pt_regs *regs, struct switch_stack *sw)
SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
{
mask &= _BLOCKABLE;
spin_lock_irq(&current->sighand->siglock);
@ -154,41 +127,6 @@ do_sigsuspend(old_sigset_t mask, struct pt_regs *regs, struct switch_stack *sw)
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
/* Indicate EINTR on return from any possible signal handler,
which will not come back through here, but via sigreturn. */
regs->r0 = EINTR;
regs->r19 = 1;
current->state = TASK_INTERRUPTIBLE;
schedule();
set_thread_flag(TIF_RESTORE_SIGMASK);
return -ERESTARTNOHAND;
}
asmlinkage int
do_rt_sigsuspend(sigset_t __user *uset, size_t sigsetsize,
struct pt_regs *regs, struct switch_stack *sw)
{
sigset_t set;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&set, uset, sizeof(set)))
return -EFAULT;
sigdelsetmask(&set, ~_BLOCKABLE);
spin_lock_irq(&current->sighand->siglock);
current->saved_sigmask = current->blocked;
current->blocked = set;
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
/* Indicate EINTR on return from any possible signal handler,
which will not come back through here, but via sigreturn. */
regs->r0 = EINTR;
regs->r19 = 1;
current->state = TASK_INTERRUPTIBLE;
schedule();
set_thread_flag(TIF_RESTORE_SIGMASK);
@ -239,6 +177,8 @@ restore_sigcontext(struct sigcontext __user *sc, struct pt_regs *regs,
unsigned long usp;
long i, err = __get_user(regs->pc, &sc->sc_pc);
current_thread_info()->restart_block.fn = do_no_restart_syscall;
sw->r26 = (unsigned long) ret_from_sys_call;
err |= __get_user(regs->r0, sc->sc_regs+0);
@ -591,7 +531,6 @@ syscall_restart(unsigned long r0, unsigned long r19,
regs->pc -= 4;
break;
case ERESTART_RESTARTBLOCK:
current_thread_info()->restart_block.fn = do_no_restart_syscall;
regs->r0 = EINTR;
break;
}

View File

@ -87,7 +87,7 @@ static int srm_env_proc_show(struct seq_file *m, void *v)
srm_env_t *entry;
char *page;
entry = (srm_env_t *)m->private;
entry = m->private;
page = (char *)__get_free_page(GFP_USER);
if (!page)
return -ENOMEM;

View File

@ -33,7 +33,7 @@
#include "irq_impl.h"
#include "pci_impl.h"
#include "machvec_impl.h"
#include "pc873xx.h"
/* Note mask bit is true for DISABLED irqs. */
static unsigned long cached_irq_mask = ~0UL;
@ -235,18 +235,31 @@ cabriolet_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
return COMMON_TABLE_LOOKUP;
}
static inline void __init
cabriolet_enable_ide(void)
{
if (pc873xx_probe() == -1) {
printk(KERN_ERR "Probing for PC873xx Super IO chip failed.\n");
} else {
printk(KERN_INFO "Found %s Super IO chip at 0x%x\n",
pc873xx_get_model(), pc873xx_get_base());
pc873xx_enable_ide();
}
}
static inline void __init
cabriolet_init_pci(void)
{
common_init_pci();
ns87312_enable_ide(0x398);
cabriolet_enable_ide();
}
static inline void __init
cia_cab_init_pci(void)
{
cia_init_pci();
ns87312_enable_ide(0x398);
cabriolet_enable_ide();
}
/*

View File

@ -29,7 +29,7 @@
#include "irq_impl.h"
#include "pci_impl.h"
#include "machvec_impl.h"
#include "pc873xx.h"
/* Note mask bit is true for DISABLED irqs. */
static unsigned long cached_irq_mask[2] = { -1, -1 };
@ -264,7 +264,14 @@ takara_init_pci(void)
alpha_mv.pci_map_irq = takara_map_irq_srm;
cia_init_pci();
ns87312_enable_ide(0x26e);
if (pc873xx_probe() == -1) {
printk(KERN_ERR "Probing for PC873xx Super IO chip failed.\n");
} else {
printk(KERN_INFO "Found %s Super IO chip at 0x%x\n",
pc873xx_get_model(), pc873xx_get_base());
pc873xx_enable_ide();
}
}

View File

@ -58,7 +58,7 @@ sys_call_table:
.quad sys_open /* 45 */
.quad alpha_ni_syscall
.quad sys_getxgid
.quad osf_sigprocmask
.quad sys_osf_sigprocmask
.quad alpha_ni_syscall
.quad alpha_ni_syscall /* 50 */
.quad sys_acct
@ -512,6 +512,9 @@ sys_call_table:
.quad sys_pwritev
.quad sys_rt_tgsigqueueinfo
.quad sys_perf_event_open
.quad sys_fanotify_init
.quad sys_fanotify_mark /* 495 */
.quad sys_prlimit64
.size sys_call_table, . - sys_call_table
.type sys_call_table, @object

View File

@ -191,16 +191,16 @@ irqreturn_t timer_interrupt(int irq, void *dev)
write_sequnlock(&xtime_lock);
#ifndef CONFIG_SMP
while (nticks--)
update_process_times(user_mode(get_irq_regs()));
#endif
if (test_perf_event_pending()) {
clear_perf_event_pending();
perf_event_do_pending();
}
#ifndef CONFIG_SMP
while (nticks--)
update_process_times(user_mode(get_irq_regs()));
#endif
return IRQ_HANDLED;
}

View File

@ -13,7 +13,6 @@
#include <linux/sched.h>
#include <linux/tty.h>
#include <linux/delay.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kallsyms.h>
@ -623,7 +622,6 @@ do_entUna(void * va, unsigned long opcode, unsigned long reg,
return;
}
lock_kernel();
printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
pc, va, opcode, reg);
do_exit(SIGSEGV);
@ -646,7 +644,6 @@ do_entUna(void * va, unsigned long opcode, unsigned long reg,
* Yikes! No one to forward the exception to.
* Since the registers are in a weird format, dump them ourselves.
*/
lock_kernel();
printk("%s(%d): unhandled unaligned exception\n",
current->comm, task_pid_nr(current));

View File

@ -271,7 +271,6 @@ config ARCH_AT91
bool "Atmel AT91"
select ARCH_REQUIRE_GPIOLIB
select HAVE_CLK
select ARCH_USES_GETTIMEOFFSET
help
This enables support for systems based on the Atmel AT91RM9200,
AT91SAM9 and AT91CAP9 processors.
@ -1051,6 +1050,32 @@ config ARM_ERRATA_460075
ACTLR register. Note that setting specific bits in the ACTLR register
may not be available in non-secure mode.
config ARM_ERRATA_742230
bool "ARM errata: DMB operation may be faulty"
depends on CPU_V7 && SMP
help
This option enables the workaround for the 742230 Cortex-A9
(r1p0..r2p2) erratum. Under rare circumstances, a DMB instruction
between two write operations may not ensure the correct visibility
ordering of the two writes. This workaround sets a specific bit in
the diagnostic register of the Cortex-A9 which causes the DMB
instruction to behave as a DSB, ensuring the correct behaviour of
the two writes.
config ARM_ERRATA_742231
bool "ARM errata: Incorrect hazard handling in the SCU may lead to data corruption"
depends on CPU_V7 && SMP
help
This option enables the workaround for the 742231 Cortex-A9
(r2p0..r2p2) erratum. Under certain conditions, specific to the
Cortex-A9 MPCore micro-architecture, two CPUs working in SMP mode,
accessing some data located in the same cache line, may get corrupted
data due to bad handling of the address hazard when the line gets
replaced from one of the CPUs at the same time as another CPU is
accessing it. This workaround sets specific bits in the diagnostic
register of the Cortex-A9 which reduces the linefill issuing
capabilities of the processor.
config PL310_ERRATA_588369
bool "Clean & Invalidate maintenance operations do not invalidate clean lines"
depends on CACHE_L2X0 && ARCH_OMAP4
@ -1076,6 +1101,20 @@ config ARM_ERRATA_720789
invalidated are not, resulting in an incoherency in the system page
tables. The workaround changes the TLB flushing routines to invalidate
entries regardless of the ASID.
config ARM_ERRATA_743622
bool "ARM errata: Faulty hazard checking in the Store Buffer may lead to data corruption"
depends on CPU_V7
help
This option enables the workaround for the 743622 Cortex-A9
(r2p0..r2p2) erratum. Under very rare conditions, a faulty
optimisation in the Cortex-A9 Store Buffer may lead to data
corruption. This workaround sets a specific bit in the diagnostic
register of the Cortex-A9 which disables the Store Buffer
optimisation, preventing the defect from occurring. This has no
visible impact on the overall performance or power consumption of the
processor.
endmenu
source "arch/arm/common/Kconfig"
@ -1576,95 +1615,6 @@ config AUTO_ZRELADDR
0xf8000000. This assumes the zImage being placed in the first 128MB
from start of memory.
config ZRELADDR
hex "Physical address of the decompressed kernel image"
depends on !AUTO_ZRELADDR
default 0x00008000 if ARCH_BCMRING ||\
ARCH_CNS3XXX ||\
ARCH_DOVE ||\
ARCH_EBSA110 ||\
ARCH_FOOTBRIDGE ||\
ARCH_INTEGRATOR ||\
ARCH_IOP13XX ||\
ARCH_IOP33X ||\
ARCH_IXP2000 ||\
ARCH_IXP23XX ||\
ARCH_IXP4XX ||\
ARCH_KIRKWOOD ||\
ARCH_KS8695 ||\
ARCH_LOKI ||\
ARCH_MMP ||\
ARCH_MV78XX0 ||\
ARCH_NOMADIK ||\
ARCH_NUC93X ||\
ARCH_NS9XXX ||\
ARCH_ORION5X ||\
ARCH_SPEAR3XX ||\
ARCH_SPEAR6XX ||\
ARCH_U8500 ||\
ARCH_VERSATILE ||\
ARCH_W90X900
default 0x08008000 if ARCH_MX1 ||\
ARCH_SHARK
default 0x10008000 if ARCH_MSM ||\
ARCH_OMAP1 ||\
ARCH_RPC
default 0x20008000 if ARCH_S5P6440 ||\
ARCH_S5P6442 ||\
ARCH_S5PC100 ||\
ARCH_S5PV210
default 0x30008000 if ARCH_S3C2410 ||\
ARCH_S3C2400 ||\
ARCH_S3C2412 ||\
ARCH_S3C2416 ||\
ARCH_S3C2440 ||\
ARCH_S3C2443
default 0x40008000 if ARCH_STMP378X ||\
ARCH_STMP37XX ||\
ARCH_SH7372 ||\
ARCH_SH7377
default 0x50008000 if ARCH_S3C64XX ||\
ARCH_SH7367
default 0x60008000 if ARCH_VEXPRESS
default 0x80008000 if ARCH_MX25 ||\
ARCH_MX3 ||\
ARCH_NETX ||\
ARCH_OMAP2PLUS ||\
ARCH_PNX4008
default 0x90008000 if ARCH_MX5 ||\
ARCH_MX91231
default 0xa0008000 if ARCH_IOP32X ||\
ARCH_PXA ||\
MACH_MX27
default 0xc0008000 if ARCH_LH7A40X ||\
MACH_MX21
default 0xf0008000 if ARCH_AAEC2000 ||\
ARCH_L7200
default 0xc0028000 if ARCH_CLPS711X
default 0x70008000 if ARCH_AT91 && (ARCH_AT91CAP9 || ARCH_AT91SAM9G45)
default 0x20008000 if ARCH_AT91 && !(ARCH_AT91CAP9 || ARCH_AT91SAM9G45)
default 0xc0008000 if ARCH_DAVINCI && ARCH_DAVINCI_DA8XX
default 0x80008000 if ARCH_DAVINCI && !ARCH_DAVINCI_DA8XX
default 0x00008000 if ARCH_EP93XX && EP93XX_SDCE3_SYNC_PHYS_OFFSET
default 0xc0008000 if ARCH_EP93XX && EP93XX_SDCE0_PHYS_OFFSET
default 0xd0008000 if ARCH_EP93XX && EP93XX_SDCE1_PHYS_OFFSET
default 0xe0008000 if ARCH_EP93XX && EP93XX_SDCE2_PHYS_OFFSET
default 0xf0008000 if ARCH_EP93XX && EP93XX_SDCE3_ASYNC_PHYS_OFFSET
default 0x00008000 if ARCH_GEMINI && GEMINI_MEM_SWAP
default 0x10008000 if ARCH_GEMINI && !GEMINI_MEM_SWAP
default 0x70008000 if ARCH_REALVIEW && REALVIEW_HIGH_PHYS_OFFSET
default 0x00008000 if ARCH_REALVIEW && !REALVIEW_HIGH_PHYS_OFFSET
default 0xc0208000 if ARCH_SA1100 && SA1111
default 0xc0008000 if ARCH_SA1100 && !SA1111
default 0x30108000 if ARCH_S3C2410 && PM_H1940
default 0x28E08000 if ARCH_U300 && MACH_U300_SINGLE_RAM
default 0x48008000 if ARCH_U300 && !MACH_U300_SINGLE_RAM
help
ZRELADDR is the physical address where the decompressed kernel
image will be placed. ZRELADDR has to be specified when the
assumption of AUTO_ZRELADDR is not valid, or when ZBOOT_ROM is
selected.
endmenu
menu "CPU Power Management"

View File

@ -14,16 +14,18 @@
MKIMAGE := $(srctree)/scripts/mkuboot.sh
ifneq ($(MACHINE),)
-include $(srctree)/$(MACHINE)/Makefile.boot
include $(srctree)/$(MACHINE)/Makefile.boot
endif
# Note: the following conditions must always be true:
# ZRELADDR == virt_to_phys(PAGE_OFFSET + TEXT_OFFSET)
# PARAMS_PHYS must be within 4MB of ZRELADDR
# INITRD_PHYS must be in RAM
ZRELADDR := $(zreladdr-y)
PARAMS_PHYS := $(params_phys-y)
INITRD_PHYS := $(initrd_phys-y)
export INITRD_PHYS PARAMS_PHYS
export ZRELADDR INITRD_PHYS PARAMS_PHYS
targets := Image zImage xipImage bootpImage uImage
@ -65,7 +67,7 @@ quiet_cmd_uimage = UIMAGE $@
ifeq ($(CONFIG_ZBOOT_ROM),y)
$(obj)/uImage: LOADADDR=$(CONFIG_ZBOOT_ROM_TEXT)
else
$(obj)/uImage: LOADADDR=$(CONFIG_ZRELADDR)
$(obj)/uImage: LOADADDR=$(ZRELADDR)
endif
ifeq ($(CONFIG_THUMB2_KERNEL),y)

View File

@ -79,6 +79,10 @@ endif
EXTRA_CFLAGS := -fpic -fno-builtin
EXTRA_AFLAGS := -Wa,-march=all
# Supply ZRELADDR to the decompressor via a linker symbol.
ifneq ($(CONFIG_AUTO_ZRELADDR),y)
LDFLAGS_vmlinux := --defsym zreladdr=$(ZRELADDR)
endif
ifeq ($(CONFIG_CPU_ENDIAN_BE8),y)
LDFLAGS_vmlinux += --be8
endif
@ -112,5 +116,5 @@ CFLAGS_font.o := -Dstatic=
$(obj)/font.c: $(FONTC)
$(call cmd,shipped)
$(obj)/vmlinux.lds: $(obj)/vmlinux.lds.in arch/arm/boot/Makefile .config
$(obj)/vmlinux.lds: $(obj)/vmlinux.lds.in arch/arm/boot/Makefile $(KCONFIG_CONFIG)
@sed "$(SEDFLAGS)" < $< > $@

View File

@ -177,7 +177,7 @@ not_angel:
and r4, pc, #0xf8000000
add r4, r4, #TEXT_OFFSET
#else
ldr r4, =CONFIG_ZRELADDR
ldr r4, =zreladdr
#endif
subs r0, r0, r1 @ calculate the delta offset

View File

@ -263,6 +263,22 @@ static int it8152_pci_platform_notify_remove(struct device *dev)
return 0;
}
int dma_needs_bounce(struct device *dev, dma_addr_t dma_addr, size_t size)
{
dev_dbg(dev, "%s: dma_addr %08x, size %08x\n",
__func__, dma_addr, size);
return (dev->bus == &pci_bus_type) &&
((dma_addr + size - PHYS_OFFSET) >= SZ_64M);
}
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
if (mask >= PHYS_OFFSET + SZ_64M - 1)
return 0;
return -EIO;
}
int __init it8152_pci_setup(int nr, struct pci_sys_data *sys)
{
it8152_io.start = IT8152_IO_BASE + 0x12000;

View File

@ -13,6 +13,9 @@ CONFIG_MODULE_SRCVERSION_ALL=y
# CONFIG_BLK_DEV_BSG is not set
CONFIG_ARCH_OMAP=y
CONFIG_ARCH_OMAP4=y
# CONFIG_ARCH_OMAP2PLUS_TYPICAL is not set
# CONFIG_ARCH_OMAP2 is not set
# CONFIG_ARCH_OMAP3 is not set
# CONFIG_OMAP_MUX is not set
CONFIG_OMAP_32K_TIMER=y
CONFIG_OMAP_DM_TIMER=y

View File

@ -288,15 +288,7 @@ extern void dmabounce_unregister_dev(struct device *);
* DMA access and 1 if the buffer needs to be bounced.
*
*/
#ifdef CONFIG_SA1111
extern int dma_needs_bounce(struct device*, dma_addr_t, size_t);
#else
static inline int dma_needs_bounce(struct device *dev, dma_addr_t addr,
size_t size)
{
return 0;
}
#endif
/*
* The DMA API, implemented by dmabounce.c. See below for descriptions.

View File

@ -17,7 +17,7 @@
* counter interrupts are regular interrupts and not an NMI. This
* means that when we receive the interrupt we can call
* perf_event_do_pending() that handles all of the work with
* interrupts enabled.
* interrupts disabled.
*/
static inline void
set_perf_event_pending(void)

View File

@ -317,6 +317,10 @@ static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
#define pgprot_dmacoherent(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_BUFFERABLE)
#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
#else
#define pgprot_dmacoherent(prot) \
__pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_UNCACHED)

View File

@ -393,6 +393,9 @@
#define __NR_perf_event_open (__NR_SYSCALL_BASE+364)
#define __NR_recvmmsg (__NR_SYSCALL_BASE+365)
#define __NR_accept4 (__NR_SYSCALL_BASE+366)
#define __NR_fanotify_init (__NR_SYSCALL_BASE+367)
#define __NR_fanotify_mark (__NR_SYSCALL_BASE+368)
#define __NR_prlimit64 (__NR_SYSCALL_BASE+369)
/*
* The following SWIs are ARM private.

View File

@ -376,6 +376,9 @@
CALL(sys_perf_event_open)
/* 365 */ CALL(sys_recvmmsg)
CALL(sys_accept4)
CALL(sys_fanotify_init)
CALL(sys_fanotify_mark)
CALL(sys_prlimit64)
#ifndef syscalls_counted
.equ syscalls_padding, ((NR_syscalls + 3) & ~3) - NR_syscalls
#define syscalls_counted

View File

@ -48,6 +48,8 @@ work_pending:
beq no_work_pending
mov r0, sp @ 'regs'
mov r2, why @ 'syscall'
tst r1, #_TIF_SIGPENDING @ delivering a signal?
movne why, #0 @ prevent further restarts
bl do_notify_resume
b ret_slow_syscall @ Check work again
@ -418,11 +420,13 @@ ENDPROC(sys_clone_wrapper)
sys_sigreturn_wrapper:
add r0, sp, #S_OFF
mov why, #0 @ prevent syscall restart handling
b sys_sigreturn
ENDPROC(sys_sigreturn_wrapper)
sys_rt_sigreturn_wrapper:
add r0, sp, #S_OFF
mov why, #0 @ prevent syscall restart handling
b sys_rt_sigreturn
ENDPROC(sys_rt_sigreturn_wrapper)

View File

@ -230,7 +230,7 @@ static void etm_dump(void)
etb_lock(t);
}
static void sysrq_etm_dump(int key, struct tty_struct *tty)
static void sysrq_etm_dump(int key)
{
dev_dbg(tracer.dev, "Dumping ETB buffer\n");
etm_dump();

View File

@ -1162,11 +1162,12 @@ space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
{
/*
* MSR : cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx
* Undef : cccc 0011 0x00 xxxx xxxx xxxx xxxx xxxx
* Undef : cccc 0011 0100 xxxx xxxx xxxx xxxx xxxx
* ALU op with S bit and Rd == 15 :
* cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx
*/
if ((insn & 0x0f900000) == 0x03200000 || /* MSR & Undef */
if ((insn & 0x0fb00000) == 0x03200000 || /* MSR */
(insn & 0x0ff00000) == 0x03400000 || /* Undef */
(insn & 0x0e10f000) == 0x0210f000) /* ALU s-bit, R15 */
return INSN_REJECTED;
@ -1177,7 +1178,7 @@ space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
* *S (bit 20) updates condition codes
* ADC/SBC/RSC reads the C flag
*/
insn &= 0xfff00fff; /* Rn = r0, Rd = r0 */
insn &= 0xffff0fff; /* Rd = r0 */
asi->insn[0] = insn;
asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
emulate_alu_imm_rwflags : emulate_alu_imm_rflags;

View File

@ -319,8 +319,8 @@ validate_event(struct cpu_hw_events *cpuc,
{
struct hw_perf_event fake_event = event->hw;
if (event->pmu && event->pmu != &pmu)
return 0;
if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
return 1;
return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
}
@ -1041,8 +1041,8 @@ armv6pmu_handle_irq(int irq_num,
/*
* Handle the pending perf events.
*
* Note: this call *must* be run with interrupts enabled. For
* platforms that can have the PMU interrupts raised as a PMI, this
* Note: this call *must* be run with interrupts disabled. For
* platforms that can have the PMU interrupts raised as an NMI, this
* will not work.
*/
perf_event_do_pending();
@ -2017,8 +2017,8 @@ static irqreturn_t armv7pmu_handle_irq(int irq_num, void *dev)
/*
* Handle the pending perf events.
*
* Note: this call *must* be run with interrupts enabled. For
* platforms that can have the PMU interrupts raised as a PMI, this
* Note: this call *must* be run with interrupts disabled. For
* platforms that can have the PMU interrupts raised as an NMI, this
* will not work.
*/
perf_event_do_pending();

View File

@ -121,8 +121,8 @@ static struct clk ssc1_clk = {
.pmc_mask = 1 << AT91SAM9G45_ID_SSC1,
.type = CLK_TYPE_PERIPHERAL,
};
static struct clk tcb_clk = {
.name = "tcb_clk",
static struct clk tcb0_clk = {
.name = "tcb0_clk",
.pmc_mask = 1 << AT91SAM9G45_ID_TCB,
.type = CLK_TYPE_PERIPHERAL,
};
@ -192,6 +192,14 @@ static struct clk ohci_clk = {
.parent = &uhphs_clk,
};
/* One additional fake clock for second TC block */
static struct clk tcb1_clk = {
.name = "tcb1_clk",
.pmc_mask = 0,
.type = CLK_TYPE_PERIPHERAL,
.parent = &tcb0_clk,
};
static struct clk *periph_clocks[] __initdata = {
&pioA_clk,
&pioB_clk,
@ -208,7 +216,7 @@ static struct clk *periph_clocks[] __initdata = {
&spi1_clk,
&ssc0_clk,
&ssc1_clk,
&tcb_clk,
&tcb0_clk,
&pwm_clk,
&tsc_clk,
&dma_clk,
@ -221,6 +229,7 @@ static struct clk *periph_clocks[] __initdata = {
&mmc1_clk,
// irq0
&ohci_clk,
&tcb1_clk,
};
/*

View File

@ -46,7 +46,7 @@ static struct resource hdmac_resources[] = {
.end = AT91_BASE_SYS + AT91_DMA + SZ_512 - 1,
.flags = IORESOURCE_MEM,
},
[2] = {
[1] = {
.start = AT91SAM9G45_ID_DMA,
.end = AT91SAM9G45_ID_DMA,
.flags = IORESOURCE_IRQ,
@ -426,7 +426,7 @@ static struct i2c_gpio_platform_data pdata_i2c0 = {
.sda_is_open_drain = 1,
.scl_pin = AT91_PIN_PA21,
.scl_is_open_drain = 1,
.udelay = 2, /* ~100 kHz */
.udelay = 5, /* ~100 kHz */
};
static struct platform_device at91sam9g45_twi0_device = {
@ -440,7 +440,7 @@ static struct i2c_gpio_platform_data pdata_i2c1 = {
.sda_is_open_drain = 1,
.scl_pin = AT91_PIN_PB11,
.scl_is_open_drain = 1,
.udelay = 2, /* ~100 kHz */
.udelay = 5, /* ~100 kHz */
};
static struct platform_device at91sam9g45_twi1_device = {
@ -835,9 +835,9 @@ static struct platform_device at91sam9g45_tcb1_device = {
static void __init at91_add_device_tc(void)
{
/* this chip has one clock and irq for all six TC channels */
at91_clock_associate("tcb_clk", &at91sam9g45_tcb0_device.dev, "t0_clk");
at91_clock_associate("tcb0_clk", &at91sam9g45_tcb0_device.dev, "t0_clk");
platform_device_register(&at91sam9g45_tcb0_device);
at91_clock_associate("tcb_clk", &at91sam9g45_tcb1_device.dev, "t0_clk");
at91_clock_associate("tcb1_clk", &at91sam9g45_tcb1_device.dev, "t0_clk");
platform_device_register(&at91sam9g45_tcb1_device);
}
#else

View File

@ -93,11 +93,12 @@ static struct resource dm9000_resource[] = {
.start = AT91_PIN_PC11,
.end = AT91_PIN_PC11,
.flags = IORESOURCE_IRQ
| IORESOURCE_IRQ_LOWEDGE | IORESOURCE_IRQ_HIGHEDGE,
}
};
static struct dm9000_plat_data dm9000_platdata = {
.flags = DM9000_PLATF_16BITONLY,
.flags = DM9000_PLATF_16BITONLY | DM9000_PLATF_NO_EEPROM,
};
static struct platform_device dm9000_device = {
@ -167,17 +168,6 @@ static struct at91_udc_data __initdata ek_udc_data = {
};
/*
* MCI (SD/MMC)
*/
static struct at91_mmc_data __initdata ek_mmc_data = {
.wire4 = 1,
// .det_pin = ... not connected
// .wp_pin = ... not connected
// .vcc_pin = ... not connected
};
/*
* NAND flash
*/
@ -246,6 +236,10 @@ static void __init ek_add_device_nand(void)
at91_add_device_nand(&ek_nand_data);
}
/*
* SPI related devices
*/
#if defined(CONFIG_SPI_ATMEL) || defined(CONFIG_SPI_ATMEL_MODULE)
/*
* ADS7846 Touchscreen
@ -356,6 +350,19 @@ static struct spi_board_info ek_spi_devices[] = {
#endif
};
#else /* CONFIG_SPI_ATMEL_* */
/* spi0 and mmc/sd share the same PIO pins: cannot be used at the same time */
/*
* MCI (SD/MMC)
* det_pin, wp_pin and vcc_pin are not connected
*/
static struct at91_mmc_data __initdata ek_mmc_data = {
.wire4 = 1,
};
#endif /* CONFIG_SPI_ATMEL_* */
/*
* LCD Controller

View File

@ -501,7 +501,8 @@ postcore_initcall(at91_clk_debugfs_init);
int __init clk_register(struct clk *clk)
{
if (clk_is_peripheral(clk)) {
clk->parent = &mck;
if (!clk->parent)
clk->parent = &mck;
clk->mode = pmc_periph_mode;
list_add_tail(&clk->node, &clocks);
}

View File

@ -28,17 +28,16 @@
static inline void arch_idle(void)
{
#ifndef CONFIG_DEBUG_KERNEL
/*
* Disable the processor clock. The processor will be automatically
* re-enabled by an interrupt or by a reset.
*/
at91_sys_write(AT91_PMC_SCDR, AT91_PMC_PCK);
#else
#ifndef CONFIG_CPU_ARM920T
/*
* Set the processor (CP15) into 'Wait for Interrupt' mode.
* Unlike disabling the processor clock via the PMC (above)
* this allows the processor to be woken via JTAG.
* Post-RM9200 processors need this in conjunction with the above
* to save power when idle.
*/
cpu_do_idle();
#endif

View File

@ -769,8 +769,7 @@ static struct map_desc dm355_io_desc[] = {
.virtual = SRAM_VIRT,
.pfn = __phys_to_pfn(0x00010000),
.length = SZ_32K,
/* MT_MEMORY_NONCACHED requires supersection alignment */
.type = MT_DEVICE,
.type = MT_MEMORY_NONCACHED,
},
};

View File

@ -969,8 +969,7 @@ static struct map_desc dm365_io_desc[] = {
.virtual = SRAM_VIRT,
.pfn = __phys_to_pfn(0x00010000),
.length = SZ_32K,
/* MT_MEMORY_NONCACHED requires supersection alignment */
.type = MT_DEVICE,
.type = MT_MEMORY_NONCACHED,
},
};

View File

@ -653,8 +653,7 @@ static struct map_desc dm644x_io_desc[] = {
.virtual = SRAM_VIRT,
.pfn = __phys_to_pfn(0x00008000),
.length = SZ_16K,
/* MT_MEMORY_NONCACHED requires supersection alignment */
.type = MT_DEVICE,
.type = MT_MEMORY_NONCACHED,
},
};

View File

@ -737,8 +737,7 @@ static struct map_desc dm646x_io_desc[] = {
.virtual = SRAM_VIRT,
.pfn = __phys_to_pfn(0x00010000),
.length = SZ_32K,
/* MT_MEMORY_NONCACHED requires supersection alignment */
.type = MT_DEVICE,
.type = MT_MEMORY_NONCACHED,
},
};

View File

@ -13,8 +13,8 @@
#define IO_SPACE_LIMIT 0xffffffff
#define __io(a) ((void __iomem *)(((a) - DOVE_PCIE0_IO_PHYS_BASE) +\
DOVE_PCIE0_IO_VIRT_BASE))
#define __mem_pci(a) (a)
#define __io(a) ((void __iomem *)(((a) - DOVE_PCIE0_IO_BUS_BASE) + \
DOVE_PCIE0_IO_VIRT_BASE))
#define __mem_pci(a) (a)
#endif

View File

@ -560,4 +560,4 @@ static int __init ep93xx_clock_init(void)
clkdev_add_table(clocks, ARRAY_SIZE(clocks));
return 0;
}
arch_initcall(ep93xx_clock_init);
postcore_initcall(ep93xx_clock_init);

View File

@ -276,7 +276,7 @@ static void channel_disable(struct m2p_channel *ch)
v &= ~(M2P_CONTROL_STALL_IRQ_EN | M2P_CONTROL_NFB_IRQ_EN);
m2p_set_control(ch, v);
while (m2p_channel_state(ch) == STATE_ON)
while (m2p_channel_state(ch) >= STATE_ON)
cpu_relax();
m2p_set_control(ch, 0x0);

View File

@ -122,6 +122,7 @@ config MACH_CPUIMX27
select IMX_HAVE_PLATFORM_IMX_I2C
select IMX_HAVE_PLATFORM_IMX_UART
select IMX_HAVE_PLATFORM_MXC_NAND
select MXC_ULPI if USB_ULPI
help
Include support for Eukrea CPUIMX27 platform. This includes
specific configurations for the module and its peripherals.

View File

@ -259,7 +259,7 @@ static void __init eukrea_cpuimx27_init(void)
i2c_register_board_info(0, eukrea_cpuimx27_i2c_devices,
ARRAY_SIZE(eukrea_cpuimx27_i2c_devices));
imx27_add_i2c_imx1(&cpuimx27_i2c1_data);
imx27_add_i2c_imx0(&cpuimx27_i2c1_data);
platform_add_devices(platform_devices, ARRAY_SIZE(platform_devices));
@ -279,13 +279,13 @@ static void __init eukrea_cpuimx27_init(void)
#if defined(CONFIG_USB_ULPI)
if (otg_mode_host) {
otg_pdata.otg = otg_ulpi_create(&mxc_ulpi_access_ops,
USB_OTG_DRV_VBUS | USB_OTG_DRV_VBUS_EXT);
ULPI_OTG_DRVVBUS | ULPI_OTG_DRVVBUS_EXT);
mxc_register_device(&mxc_otg_host, &otg_pdata);
}
usbh2_pdata.otg = otg_ulpi_create(&mxc_ulpi_access_ops,
USB_OTG_DRV_VBUS | USB_OTG_DRV_VBUS_EXT);
ULPI_OTG_DRVVBUS | ULPI_OTG_DRVVBUS_EXT);
mxc_register_device(&mxc_usbh2, &usbh2_pdata);
#endif

View File

@ -419,13 +419,13 @@ static void __init pca100_init(void)
#if defined(CONFIG_USB_ULPI)
if (otg_mode_host) {
otg_pdata.otg = otg_ulpi_create(&mxc_ulpi_access_ops,
USB_OTG_DRV_VBUS | USB_OTG_DRV_VBUS_EXT);
ULPI_OTG_DRVVBUS | ULPI_OTG_DRVVBUS_EXT);
mxc_register_device(&mxc_otg_host, &otg_pdata);
}
usbh2_pdata.otg = otg_ulpi_create(&mxc_ulpi_access_ops,
USB_OTG_DRV_VBUS | USB_OTG_DRV_VBUS_EXT);
ULPI_OTG_DRVVBUS | ULPI_OTG_DRVVBUS_EXT);
mxc_register_device(&mxc_usbh2, &usbh2_pdata);
#endif

View File

@ -503,6 +503,14 @@ struct pci_bus * __devinit ixp4xx_scan_bus(int nr, struct pci_sys_data *sys)
return pci_scan_bus(sys->busnr, &ixp4xx_ops, sys);
}
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
if (mask >= SZ_64M - 1)
return 0;
return -EIO;
}
EXPORT_SYMBOL(ixp4xx_pci_read);
EXPORT_SYMBOL(ixp4xx_pci_write);

View File

@ -26,6 +26,8 @@
#define PCIBIOS_MAX_MEM 0x4BFFFFFF
#endif
#define ARCH_HAS_DMA_SET_COHERENT_MASK
#define pcibios_assign_all_busses() 1
/* Register locations and bits */

View File

@ -38,7 +38,7 @@
#define KIRKWOOD_PCIE1_IO_PHYS_BASE 0xf3000000
#define KIRKWOOD_PCIE1_IO_VIRT_BASE 0xfef00000
#define KIRKWOOD_PCIE1_IO_BUS_BASE 0x00000000
#define KIRKWOOD_PCIE1_IO_BUS_BASE 0x00100000
#define KIRKWOOD_PCIE1_IO_SIZE SZ_1M
#define KIRKWOOD_PCIE_IO_PHYS_BASE 0xf2000000

View File

@ -117,7 +117,7 @@ static void __init pcie0_ioresources_init(struct pcie_port *pp)
* IORESOURCE_IO
*/
pp->res[0].name = "PCIe 0 I/O Space";
pp->res[0].start = KIRKWOOD_PCIE_IO_PHYS_BASE;
pp->res[0].start = KIRKWOOD_PCIE_IO_BUS_BASE;
pp->res[0].end = pp->res[0].start + KIRKWOOD_PCIE_IO_SIZE - 1;
pp->res[0].flags = IORESOURCE_IO;
@ -139,7 +139,7 @@ static void __init pcie1_ioresources_init(struct pcie_port *pp)
* IORESOURCE_IO
*/
pp->res[0].name = "PCIe 1 I/O Space";
pp->res[0].start = KIRKWOOD_PCIE1_IO_PHYS_BASE;
pp->res[0].start = KIRKWOOD_PCIE1_IO_BUS_BASE;
pp->res[0].end = pp->res[0].start + KIRKWOOD_PCIE1_IO_SIZE - 1;
pp->res[0].flags = IORESOURCE_IO;

View File

@ -9,6 +9,8 @@
#ifndef __ASM_MACH_SYSTEM_H
#define __ASM_MACH_SYSTEM_H
#include <mach/cputype.h>
static inline void arch_idle(void)
{
cpu_do_idle();
@ -16,6 +18,9 @@ static inline void arch_idle(void)
static inline void arch_reset(char mode, const char *cmd)
{
cpu_reset(0);
if (cpu_is_pxa168())
cpu_reset(0xffff0000);
else
cpu_reset(0);
}
#endif /* __ASM_MACH_SYSTEM_H */

View File

@ -215,7 +215,7 @@ struct imx_ssi_platform_data eukrea_mbimxsd_ssi_pdata = {
* Add platform devices present on this baseboard and init
* them from CPU side as far as required to use them later on
*/
void __init eukrea_mbimxsd_baseboard_init(void)
void __init eukrea_mbimxsd25_baseboard_init(void)
{
if (mxc_iomux_v3_setup_multiple_pads(eukrea_mbimxsd_pads,
ARRAY_SIZE(eukrea_mbimxsd_pads)))

View File

@ -138,7 +138,7 @@ static void __init eukrea_cpuimx25_init(void)
#if defined(CONFIG_USB_ULPI)
if (otg_mode_host) {
otg_pdata.otg = otg_ulpi_create(&mxc_ulpi_access_ops,
USB_OTG_DRV_VBUS | USB_OTG_DRV_VBUS_EXT);
ULPI_OTG_DRVVBUS | ULPI_OTG_DRVVBUS_EXT);
mxc_register_device(&mxc_otg, &otg_pdata);
}
@ -147,8 +147,8 @@ static void __init eukrea_cpuimx25_init(void)
if (!otg_mode_host)
mxc_register_device(&otg_udc_device, &otg_device_pdata);
#ifdef CONFIG_MACH_EUKREA_MBIMXSD_BASEBOARD
eukrea_mbimxsd_baseboard_init();
#ifdef CONFIG_MACH_EUKREA_MBIMXSD25_BASEBOARD
eukrea_mbimxsd25_baseboard_init();
#endif
}

View File

@ -155,7 +155,7 @@ static unsigned long get_rate_arm(void)
aad = &clk_consumer[(pdr0 >> 16) & 0xf];
if (aad->sel)
fref = fref * 2 / 3;
fref = fref * 3 / 4;
return fref / aad->arm;
}
@ -164,7 +164,7 @@ static unsigned long get_rate_ahb(struct clk *clk)
{
unsigned long pdr0 = __raw_readl(CCM_BASE + CCM_PDR0);
struct arm_ahb_div *aad;
unsigned long fref = get_rate_mpll();
unsigned long fref = get_rate_arm();
aad = &clk_consumer[(pdr0 >> 16) & 0xf];
@ -176,16 +176,11 @@ static unsigned long get_rate_ipg(struct clk *clk)
return get_rate_ahb(NULL) >> 1;
}
static unsigned long get_3_3_div(unsigned long in)
{
return (((in >> 3) & 0x7) + 1) * ((in & 0x7) + 1);
}
static unsigned long get_rate_uart(struct clk *clk)
{
unsigned long pdr3 = __raw_readl(CCM_BASE + CCM_PDR3);
unsigned long pdr4 = __raw_readl(CCM_BASE + CCM_PDR4);
unsigned long div = get_3_3_div(pdr4 >> 10);
unsigned long div = ((pdr4 >> 10) & 0x3f) + 1;
if (pdr3 & (1 << 14))
return get_rate_arm() / div;
@ -216,7 +211,7 @@ static unsigned long get_rate_sdhc(struct clk *clk)
break;
}
return rate / get_3_3_div(div);
return rate / (div + 1);
}
static unsigned long get_rate_mshc(struct clk *clk)
@ -270,7 +265,7 @@ static unsigned long get_rate_csi(struct clk *clk)
else
rate = get_rate_ppll();
return rate / get_3_3_div((pdr2 >> 16) & 0x3f);
return rate / (((pdr2 >> 16) & 0x3f) + 1);
}
static unsigned long get_rate_otg(struct clk *clk)
@ -283,25 +278,51 @@ static unsigned long get_rate_otg(struct clk *clk)
else
rate = get_rate_ppll();
return rate / get_3_3_div((pdr4 >> 22) & 0x3f);
return rate / (((pdr4 >> 22) & 0x3f) + 1);
}
static unsigned long get_rate_ipg_per(struct clk *clk)
{
unsigned long pdr0 = __raw_readl(CCM_BASE + CCM_PDR0);
unsigned long pdr4 = __raw_readl(CCM_BASE + CCM_PDR4);
unsigned long div1, div2;
unsigned long div;
if (pdr0 & (1 << 26)) {
div1 = (pdr4 >> 19) & 0x7;
div2 = (pdr4 >> 16) & 0x7;
return get_rate_arm() / ((div1 + 1) * (div2 + 1));
div = (pdr4 >> 16) & 0x3f;
return get_rate_arm() / (div + 1);
} else {
div1 = (pdr0 >> 12) & 0x7;
return get_rate_ahb(NULL) / div1;
div = (pdr0 >> 12) & 0x7;
return get_rate_ahb(NULL) / (div + 1);
}
}
static unsigned long get_rate_hsp(struct clk *clk)
{
unsigned long hsp_podf = (__raw_readl(CCM_BASE + CCM_PDR0) >> 20) & 0x03;
unsigned long fref = get_rate_mpll();
if (fref > 400 * 1000 * 1000) {
switch (hsp_podf) {
case 0:
return fref >> 2;
case 1:
return fref >> 3;
case 2:
return fref / 3;
}
} else {
switch (hsp_podf) {
case 0:
case 2:
return fref / 3;
case 1:
return fref / 6;
}
}
return 0;
}
static int clk_cgr_enable(struct clk *clk)
{
u32 reg;
@ -359,7 +380,7 @@ DEFINE_CLOCK(i2c1_clk, 0, CCM_CGR1, 10, get_rate_ipg_per, NULL);
DEFINE_CLOCK(i2c2_clk, 1, CCM_CGR1, 12, get_rate_ipg_per, NULL);
DEFINE_CLOCK(i2c3_clk, 2, CCM_CGR1, 14, get_rate_ipg_per, NULL);
DEFINE_CLOCK(iomuxc_clk, 0, CCM_CGR1, 16, NULL, NULL);
DEFINE_CLOCK(ipu_clk, 0, CCM_CGR1, 18, get_rate_ahb, NULL);
DEFINE_CLOCK(ipu_clk, 0, CCM_CGR1, 18, get_rate_hsp, NULL);
DEFINE_CLOCK(kpp_clk, 0, CCM_CGR1, 20, get_rate_ipg, NULL);
DEFINE_CLOCK(mlb_clk, 0, CCM_CGR1, 22, get_rate_ahb, NULL);
DEFINE_CLOCK(mshc_clk, 0, CCM_CGR1, 24, get_rate_mshc, NULL);
@ -485,10 +506,10 @@ static struct clk_lookup lookups[] = {
int __init mx35_clocks_init()
{
unsigned int ll = 0;
unsigned int cgr2 = 3 << 26, cgr3 = 0;
#if defined(CONFIG_DEBUG_LL) && !defined(CONFIG_DEBUG_ICEDCC)
ll = (3 << 16);
cgr2 |= 3 << 16;
#endif
clkdev_add_table(lookups, ARRAY_SIZE(lookups));
@ -499,8 +520,20 @@ int __init mx35_clocks_init()
__raw_writel((3 << 18), CCM_BASE + CCM_CGR0);
__raw_writel((3 << 2) | (3 << 4) | (3 << 6) | (3 << 8) | (3 << 16),
CCM_BASE + CCM_CGR1);
__raw_writel((3 << 26) | ll, CCM_BASE + CCM_CGR2);
__raw_writel(0, CCM_BASE + CCM_CGR3);
/*
* Check if we came up in internal boot mode. If yes, we need some
* extra clocks turned on, otherwise the MX35 boot ROM code will
* hang after a watchdog reset.
*/
if (!(__raw_readl(CCM_BASE + CCM_RCSR) & (3 << 10))) {
/* Additionally turn on UART1, SCC, and IIM clocks */
cgr2 |= 3 << 16 | 3 << 4;
cgr3 |= 3 << 2;
}
__raw_writel(cgr2, CCM_BASE + CCM_CGR2);
__raw_writel(cgr3, CCM_BASE + CCM_CGR3);
mxc_timer_init(&gpt_clk,
MX35_IO_ADDRESS(MX35_GPT1_BASE_ADDR), MX35_INT_GPT);

View File

@ -216,7 +216,7 @@ struct imx_ssi_platform_data eukrea_mbimxsd_ssi_pdata = {
* Add platform devices present on this baseboard and init
* them from CPU side as far as required to use them later on
*/
void __init eukrea_mbimxsd_baseboard_init(void)
void __init eukrea_mbimxsd35_baseboard_init(void)
{
if (mxc_iomux_v3_setup_multiple_pads(eukrea_mbimxsd_pads,
ARRAY_SIZE(eukrea_mbimxsd_pads)))

View File

@ -192,7 +192,7 @@ static void __init mxc_board_init(void)
#if defined(CONFIG_USB_ULPI)
if (otg_mode_host) {
otg_pdata.otg = otg_ulpi_create(&mxc_ulpi_access_ops,
USB_OTG_DRV_VBUS | USB_OTG_DRV_VBUS_EXT);
ULPI_OTG_DRVVBUS | ULPI_OTG_DRVVBUS_EXT);
mxc_register_device(&mxc_otg_host, &otg_pdata);
}
@ -201,8 +201,8 @@ static void __init mxc_board_init(void)
if (!otg_mode_host)
mxc_register_device(&mxc_otg_udc_device, &otg_device_pdata);
#ifdef CONFIG_MACH_EUKREA_MBIMXSD_BASEBOARD
eukrea_mbimxsd_baseboard_init();
#ifdef CONFIG_MACH_EUKREA_MBIMXSD35_BASEBOARD
eukrea_mbimxsd35_baseboard_init();
#endif
}

View File

@ -56,7 +56,7 @@ static void _clk_ccgr_disable(struct clk *clk)
{
u32 reg;
reg = __raw_readl(clk->enable_reg);
reg &= ~(MXC_CCM_CCGRx_MOD_OFF << clk->enable_shift);
reg &= ~(MXC_CCM_CCGRx_CG_MASK << clk->enable_shift);
__raw_writel(reg, clk->enable_reg);
}

View File

@ -25,6 +25,7 @@ obj-$(CONFIG_LOCAL_TIMERS) += timer-mpu.o
obj-$(CONFIG_HOTPLUG_CPU) += omap-hotplug.o
obj-$(CONFIG_ARCH_OMAP4) += omap44xx-smc.o omap4-common.o
AFLAGS_omap-headsmp.o :=-Wa,-march=armv7-a
AFLAGS_omap44xx-smc.o :=-Wa,-march=armv7-a
# Functions loaded to SRAM

View File

@ -3417,7 +3417,13 @@ int __init omap3xxx_clk_init(void)
struct omap_clk *c;
u32 cpu_clkflg = CK_3XXX;
if (cpu_is_omap34xx()) {
if (cpu_is_omap3517()) {
cpu_mask = RATE_IN_3XXX | RATE_IN_3430ES2PLUS;
cpu_clkflg |= CK_3517;
} else if (cpu_is_omap3505()) {
cpu_mask = RATE_IN_3XXX | RATE_IN_3430ES2PLUS;
cpu_clkflg |= CK_3505;
} else if (cpu_is_omap34xx()) {
cpu_mask = RATE_IN_3XXX;
cpu_clkflg |= CK_343X;
@ -3432,12 +3438,6 @@ int __init omap3xxx_clk_init(void)
cpu_mask |= RATE_IN_3430ES2PLUS;
cpu_clkflg |= CK_3430ES2;
}
} else if (cpu_is_omap3517()) {
cpu_mask = RATE_IN_3XXX | RATE_IN_3430ES2PLUS;
cpu_clkflg |= CK_3517;
} else if (cpu_is_omap3505()) {
cpu_mask = RATE_IN_3XXX | RATE_IN_3430ES2PLUS;
cpu_clkflg |= CK_3505;
}
if (omap3_has_192mhz_clk())

View File

@ -284,8 +284,8 @@ static void __init omap3_check_revision(void)
default:
omap_revision = OMAP3630_REV_ES1_2;
omap_chip.oc |= CHIP_IS_OMAP3630ES1_2;
break;
}
break;
default:
/* Unknown default to latest silicon rev as default*/
omap_revision = OMAP3630_REV_ES1_2;

View File

@ -177,7 +177,10 @@ omap_irq_base: .word 0
cmpne \irqnr, \tmp
cmpcs \irqnr, \irqnr
.endm
#endif
#endif /* MULTI_OMAP2 */
#ifdef CONFIG_SMP
/* We assume that irqstat (the raw value of the IRQ acknowledge
* register) is preserved from the macro above.
* If there is an IPI, we immediately signal end of interrupt
@ -205,8 +208,7 @@ omap_irq_base: .word 0
streq \irqstat, [\base, #GIC_CPU_EOI]
cmp \tmp, #0
.endm
#endif
#endif /* MULTI_OMAP2 */
#endif /* CONFIG_SMP */
.macro irq_prio_table
.endm

View File

@ -102,8 +102,7 @@ static void __init wakeup_secondary(void)
* Send a 'sev' to wake the secondary core from WFE.
* Drain the outstanding writes to memory
*/
dsb();
set_event();
dsb_sev();
mb();
}

View File

@ -480,7 +480,9 @@ void omap_sram_idle(void)
}
/* Disable IO-PAD and IO-CHAIN wakeup */
if (omap3_has_io_wakeup() && core_next_state < PWRDM_POWER_ON) {
if (omap3_has_io_wakeup() &&
(per_next_state < PWRDM_POWER_ON ||
core_next_state < PWRDM_POWER_ON)) {
prm_clear_mod_reg_bits(OMAP3430_EN_IO_MASK, WKUP_MOD, PM_WKEN);
omap3_disable_io_chain();
}

View File

@ -312,8 +312,7 @@ static int pxa_set_target(struct cpufreq_policy *policy,
freqs.cpu = policy->cpu;
if (freq_debug)
pr_debug(KERN_INFO "Changing CPU frequency to %d Mhz, "
"(SDRAM %d Mhz)\n",
pr_debug("Changing CPU frequency to %d Mhz, (SDRAM %d Mhz)\n",
freqs.new / 1000, (pxa_freq_settings[idx].div2) ?
(new_freq_mem / 2000) : (new_freq_mem / 1000));
@ -398,7 +397,7 @@ static int pxa_set_target(struct cpufreq_policy *policy,
return 0;
}
static __init int pxa_cpufreq_init(struct cpufreq_policy *policy)
static int pxa_cpufreq_init(struct cpufreq_policy *policy)
{
int i;
unsigned int freq;

View File

@ -204,7 +204,7 @@ static int pxa3xx_cpufreq_set(struct cpufreq_policy *policy,
return 0;
}
static __init int pxa3xx_cpufreq_init(struct cpufreq_policy *policy)
static int pxa3xx_cpufreq_init(struct cpufreq_policy *policy)
{
int ret = -EINVAL;

View File

@ -264,23 +264,35 @@
* <= 0x2 for pxa21x/pxa25x/pxa26x/pxa27x
* == 0x3 for pxa300/pxa310/pxa320
*/
#if defined(CONFIG_PXA25x) || defined(CONFIG_PXA27x)
#define __cpu_is_pxa2xx(id) \
({ \
unsigned int _id = (id) >> 13 & 0x7; \
_id <= 0x2; \
})
#else
#define __cpu_is_pxa2xx(id) (0)
#endif
#ifdef CONFIG_PXA3xx
#define __cpu_is_pxa3xx(id) \
({ \
unsigned int _id = (id) >> 13 & 0x7; \
_id == 0x3; \
})
#else
#define __cpu_is_pxa3xx(id) (0)
#endif
#if defined(CONFIG_CPU_PXA930) || defined(CONFIG_CPU_PXA935)
#define __cpu_is_pxa93x(id) \
({ \
unsigned int _id = (id) >> 4 & 0xfff; \
_id == 0x683 || _id == 0x693; \
})
#else
#define __cpu_is_pxa93x(id) (0)
#endif
#define cpu_is_pxa2xx() \
({ \
@ -309,7 +321,7 @@ extern unsigned long get_clock_tick_rate(void);
#define PCIBIOS_MIN_IO 0
#define PCIBIOS_MIN_MEM 0
#define pcibios_assign_all_busses() 1
#define ARCH_HAS_DMA_SET_COHERENT_MASK
#endif
#endif /* _ASM_ARCH_HARDWARE_H */

View File

@ -6,6 +6,8 @@
#ifndef __ASM_ARM_ARCH_IO_H
#define __ASM_ARM_ARCH_IO_H
#include <mach/hardware.h>
#define IO_SPACE_LIMIT 0xffffffff
/*

View File

@ -71,10 +71,10 @@
#define GPIO46_CI_DD_7 MFP_CFG_DRV(GPIO46, AF0, DS04X)
#define GPIO47_CI_DD_8 MFP_CFG_DRV(GPIO47, AF1, DS04X)
#define GPIO48_CI_DD_9 MFP_CFG_DRV(GPIO48, AF1, DS04X)
#define GPIO52_CI_HSYNC MFP_CFG_DRV(GPIO52, AF0, DS04X)
#define GPIO51_CI_VSYNC MFP_CFG_DRV(GPIO51, AF0, DS04X)
#define GPIO49_CI_MCLK MFP_CFG_DRV(GPIO49, AF0, DS04X)
#define GPIO50_CI_PCLK MFP_CFG_DRV(GPIO50, AF0, DS04X)
#define GPIO51_CI_HSYNC MFP_CFG_DRV(GPIO51, AF0, DS04X)
#define GPIO52_CI_VSYNC MFP_CFG_DRV(GPIO52, AF0, DS04X)
/* KEYPAD */
#define GPIO3_KP_DKIN_6 MFP_CFG_LPM(GPIO3, AF2, FLOAT)

View File

@ -469,9 +469,13 @@ static struct i2c_board_info __initdata palm27x_pi2c_board_info[] = {
},
};
static struct i2c_pxa_platform_data palm27x_i2c_power_info = {
.use_pio = 1,
};
void __init palm27x_pmic_init(void)
{
i2c_register_board_info(1, ARRAY_AND_SIZE(palm27x_pi2c_board_info));
pxa27x_set_i2c_power_info(NULL);
pxa27x_set_i2c_power_info(&palm27x_i2c_power_info);
}
#endif

View File

@ -240,6 +240,7 @@ static void __init vpac270_onenand_init(void) {}
#if defined(CONFIG_MMC_PXA) || defined(CONFIG_MMC_PXA_MODULE)
static struct pxamci_platform_data vpac270_mci_platform_data = {
.ocr_mask = MMC_VDD_32_33 | MMC_VDD_33_34,
.gpio_power = -1,
.gpio_card_detect = GPIO53_VPAC270_SD_DETECT_N,
.gpio_card_ro = GPIO52_VPAC270_SD_READONLY,
.detect_delay_ms = 200,

View File

@ -15,6 +15,6 @@
#ifndef __ASM_ARCH_VMALLOC_H
#define __ASM_ARCH_VMALLOC_H
#define VMALLOC_END (0xE0000000)
#define VMALLOC_END 0xE0000000UL
#endif /* __ASM_ARCH_VMALLOC_H */

View File

@ -18,10 +18,11 @@
#include <mach/map.h>
#include <mach/gpio-bank-c.h>
#include <mach/spi-clocks.h>
#include <mach/irqs.h>
#include <plat/s3c64xx-spi.h>
#include <plat/gpio-cfg.h>
#include <plat/irqs.h>
#include <plat/devs.h>
static char *spi_src_clks[] = {
[S3C64XX_SPI_SRCCLK_PCLK] = "pclk",

View File

@ -15,6 +15,6 @@
#ifndef __ASM_ARCH_VMALLOC_H
#define __ASM_ARCH_VMALLOC_H
#define VMALLOC_END (0xE0000000)
#define VMALLOC_END 0xE0000000UL
#endif /* __ASM_ARCH_VMALLOC_H */

Some files were not shown because too many files have changed in this diff Show More