37 Commits

Author SHA1 Message Date
Donglin Peng
3646970322 arm64: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
The previous patch ("function_graph: Support recording and printing
the return value of function") has laid the groundwork for the for
the funcgraph-retval, and this modification makes it available on
the ARM64 platform.

We introduce a new structure called fgraph_ret_regs for the ARM64
platform to hold return registers and the frame pointer. We then
fill its content in the return_to_handler and pass its address to
the function ftrace_return_to_handler to record the return value.

Link: https://lkml.kernel.org/r/c78366416ce93f704ae7000c4ee60eb4258c38f7.1680954589.git.pengdonglin@sangfor.com.cn

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Donglin Peng <pengdonglin@sangfor.com.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-06-20 18:38:37 -04:00
Florent Revest
2aa6ac0351 arm64: ftrace: Add direct call support
This builds up on the CALL_OPS work which extends the ftrace patchsite
on arm64 with an ops pointer usable by the ftrace trampoline.

This ops pointer is valid at all time. Indeed, it is either pointing to
ftrace_list_ops or to the single ops which should be called from that
patchsite.

There are a few cases to distinguish:
- If a direct call ops is the only one tracing a function:
  - If the direct called trampoline is within the reach of a BL
    instruction
     -> the ftrace patchsite jumps to the trampoline
  - Else
     -> the ftrace patchsite jumps to the ftrace_caller trampoline which
        reads the ops pointer in the patchsite and jumps to the direct
        call address stored in the ops
- Else
  -> the ftrace patchsite jumps to the ftrace_caller trampoline and its
     ops literal points to ftrace_list_ops so it iterates over all
     registered ftrace ops, including the direct call ops and calls its
     call_direct_funcs handler which stores the direct called
     trampoline's address in the ftrace_regs and the ftrace_caller
     trampoline will return to that address instead of returning to the
     traced function

Signed-off-by: Florent Revest <revest@chromium.org>
Co-developed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20230405180250.2046566-2-revest@chromium.org
Signed-off-by: Will Deacon <will@kernel.org>
2023-04-11 18:06:39 +01:00
Mark Rutland
baaf553d3b arm64: Implement HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS
This patch enables support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64.
This allows each ftrace callsite to provide an ftrace_ops to the common
ftrace trampoline, allowing each callsite to invoke distinct tracer
functions without the need to fall back to list processing or to
allocate custom trampolines for each callsite. This significantly speeds
up cases where multiple distinct trace functions are used and callsites
are mostly traced by a single tracer.

The main idea is to place a pointer to the ftrace_ops as a literal at a
fixed offset from the function entry point, which can be recovered by
the common ftrace trampoline. Using a 64-bit literal avoids branch range
limitations, and permits the ops to be swapped atomically without
special considerations that apply to code-patching. In future this will
also allow for the implementation of DYNAMIC_FTRACE_WITH_DIRECT_CALLS
without branch range limitations by using additional fields in struct
ftrace_ops.

As noted in the core patch adding support for
DYNAMIC_FTRACE_WITH_CALL_OPS, this approach allows for directly invoking
ftrace_ops::func even for ftrace_ops which are dynamically-allocated (or
part of a module), without going via ftrace_ops_list_func.

Currently, this approach is not compatible with CLANG_CFI, as the
presence/absence of pre-function NOPs changes the offset of the
pre-function type hash, and there's no existing mechanism to ensure a
consistent offset for instrumented and uninstrumented functions. When
CLANG_CFI is enabled, the existing scheme with a global ops->func
pointer is used, and there should be no functional change. I am
currently working with others to allow the two to work together in
future (though this will liekly require updated compiler support).

I've benchamrked this with the ftrace_ops sample module [1], which is
not currently upstream, but available at:

  https://lore.kernel.org/lkml/20230103124912.2948963-1-mark.rutland@arm.com
  git://git.kernel.org/pub/scm/linux/kernel/git/mark/linux.git ftrace-ops-sample-20230109

Using that module I measured the total time taken for 100,000 calls to a
trivial instrumented function, with a number of tracers enabled with
relevant filters (which would apply to the instrumented function) and a
number of tracers enabled with irrelevant filters (which would not apply
to the instrumented function). I tested on an M1 MacBook Pro, running
under a HVF-accelerated QEMU VM (i.e. on real hardware).

Before this patch:

  Number of tracers     || Total time  | Per-call average time (ns)
  Relevant | Irrelevant || (ns)        | Total        | Overhead
  =========+============++=============+==============+============
         0 |          0 ||      94,583 |         0.95 |           -
         0 |          1 ||      93,709 |         0.94 |           -
         0 |          2 ||      93,666 |         0.94 |           -
         0 |         10 ||      93,709 |         0.94 |           -
         0 |        100 ||      93,792 |         0.94 |           -
  ---------+------------++-------------+--------------+------------
         1 |          1 ||   6,467,833 |        64.68 |       63.73
         1 |          2 ||   7,509,708 |        75.10 |       74.15
         1 |         10 ||  23,786,792 |       237.87 |      236.92
         1 |        100 || 106,432,500 |     1,064.43 |     1063.38
  ---------+------------++-------------+--------------+------------
         1 |          0 ||   1,431,875 |        14.32 |       13.37
         2 |          0 ||   6,456,334 |        64.56 |       63.62
        10 |          0 ||  22,717,000 |       227.17 |      226.22
       100 |          0 || 103,293,667 |      1032.94 |     1031.99
  ---------+------------++-------------+--------------+--------------

  Note: per-call overhead is estimated relative to the baseline case
  with 0 relevant tracers and 0 irrelevant tracers.

After this patch

  Number of tracers     || Total time  | Per-call average time (ns)
  Relevant | Irrelevant || (ns)        | Total        | Overhead
  =========+============++=============+==============+============
         0 |          0 ||      94,541 |         0.95 |           -
         0 |          1 ||      93,666 |         0.94 |           -
         0 |          2 ||      93,709 |         0.94 |           -
         0 |         10 ||      93,667 |         0.94 |           -
         0 |        100 ||      93,792 |         0.94 |           -
  ---------+------------++-------------+--------------+------------
         1 |          1 ||     281,000 |         2.81 |        1.86
         1 |          2 ||     281,042 |         2.81 |        1.87
         1 |         10 ||     280,958 |         2.81 |        1.86
         1 |        100 ||     281,250 |         2.81 |        1.87
  ---------+------------++-------------+--------------+------------
         1 |          0 ||     280,959 |         2.81 |        1.86
         2 |          0 ||   6,502,708 |        65.03 |       64.08
        10 |          0 ||  18,681,209 |       186.81 |      185.87
       100 |          0 || 103,550,458 |     1,035.50 |     1034.56
  ---------+------------++-------------+--------------+------------

  Note: per-call overhead is estimated relative to the baseline case
  with 0 relevant tracers and 0 irrelevant tracers.

As can be seen from the above:

a) Whenever there is a single relevant tracer function associated with a
   tracee, the overhead of invoking the tracer is constant, and does not
   scale with the number of tracers which are *not* associated with that
   tracee.

b) The overhead for a single relevant tracer has dropped to ~1/7 of the
   overhead prior to this series (from 13.37ns to 1.86ns). This is
   largely due to permitting calls to dynamically-allocated ftrace_ops
   without going through ftrace_ops_list_func.

I've run the ftrace selftests from v6.2-rc3, which reports:

| # of passed:  110
| # of failed:  0
| # of unresolved:  3
| # of untested:  0
| # of unsupported:  0
| # of xfailed:  1
| # of undefined(test bug):  0

... where the unresolved entries were the tests for DIRECT functions
(which are not supported), and the checkbashisms selftest (which is
irrelevant here):

| [8] Test ftrace direct functions against tracers        [UNRESOLVED]
| [9] Test ftrace direct functions against kprobes        [UNRESOLVED]
| [62] Meta-selftest: Checkbashisms       [UNRESOLVED]

... with all other tests passing (or failing as expected).

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230123134603.1064407-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-01-24 11:49:43 +00:00
Linus Torvalds
06cff4a58e arm64 updates for 6.2
ACPI:
 	* Enable FPDT support for boot-time profiling
 	* Fix CPU PMU probing to work better with PREEMPT_RT
 	* Update SMMUv3 MSI DeviceID parsing to latest IORT spec
 	* APMT support for probing Arm CoreSight PMU devices
 
 CPU features:
 	* Advertise new SVE instructions (v2.1)
 	* Advertise range prefetch instruction
 	* Advertise CSSC ("Common Short Sequence Compression") scalar
 	  instructions, adding things like min, max, abs, popcount
 	* Enable DIT (Data Independent Timing) when running in the kernel
 	* More conversion of system register fields over to the generated
 	  header
 
 CPU misfeatures:
 	* Workaround for Cortex-A715 erratum #2645198
 
 Dynamic SCS:
 	* Support for dynamic shadow call stacks to allow switching at
 	  runtime between Clang's SCS implementation and the CPU's
 	  pointer authentication feature when it is supported (complete
 	  with scary DWARF parser!)
 
 Tracing and debug:
 	* Remove static ftrace in favour of, err, dynamic ftrace!
 	* Seperate 'struct ftrace_regs' from 'struct pt_regs' in core
 	  ftrace and existing arch code
 	* Introduce and implement FTRACE_WITH_ARGS on arm64 to replace
 	  the old FTRACE_WITH_REGS
 	* Extend 'crashkernel=' parameter with default value and fallback
 	  to placement above 4G physical if initial (low) allocation
 	  fails
 
 SVE:
 	* Optimisation to avoid disabling SVE unconditionally on syscall
 	  entry and just zeroing the non-shared state on return instead
 
 Exceptions:
 	* Rework of undefined instruction handling to avoid serialisation
 	  on global lock (this includes emulation of user accesses to the
 	  ID registers)
 
 Perf and PMU:
 	* Support for TLP filters in Hisilicon's PCIe PMU device
 	* Support for the DDR PMU present in Amlogic Meson G12 SoCs
 	* Support for the terribly-named "CoreSight PMU" architecture
 	  from Arm (and Nvidia's implementation of said architecture)
 
 Misc:
 	* Tighten up our boot protocol for systems with memory above
           52 bits physical
 	* Const-ify static keys to satisty jump label asm constraints
 	* Trivial FFA driver cleanups in preparation for v1.1 support
 	* Export the kernel_neon_* APIs as GPL symbols
 	* Harden our instruction generation routines against
 	  instrumentation
 	* A bunch of robustness improvements to our arch-specific selftests
 	* Minor cleanups and fixes all over (kbuild, kprobes, kfence, PMU, ...)
 -----BEGIN PGP SIGNATURE-----
 
 iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmOPLFAQHHdpbGxAa2Vy
 bmVsLm9yZwAKCRC3rHDchMFjNPRcCACLyDTvkimiqfoPxzzgdkx/6QOvw9s3/mXg
 UcTORSZBR1VnYkiMYEKVz/tTfG99dnWtD8/0k/rz48NbhBfsF2sN4ukyBBXVf0zR
 fjnaVyVC11LUgBgZKPo6maV+jf/JWf9hJtpPl06KTiPb2Hw2JX4DXg+PeF8t2hGx
 NLH4ekQOrlDM8mlsN5mc0YsHbiuO7Xe/NRuet8TsgU4bEvLAwO6bzOLVUMqDQZNq
 bQe2ENcGVAzAf7iRJb38lj9qB/5hrQTHRXqLXMSnJyyVjQEwYca0PeJMa7x30bXF
 ZZ+xQ8Wq0mxiffZraf6SE34yD4gaYS4Fziw7rqvydC15vYhzJBH1
 =hV+2
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "The highlights this time are support for dynamically enabling and
  disabling Clang's Shadow Call Stack at boot and a long-awaited
  optimisation to the way in which we handle the SVE register state on
  system call entry to avoid taking unnecessary traps from userspace.

  Summary:

  ACPI:
   - Enable FPDT support for boot-time profiling
   - Fix CPU PMU probing to work better with PREEMPT_RT
   - Update SMMUv3 MSI DeviceID parsing to latest IORT spec
   - APMT support for probing Arm CoreSight PMU devices

  CPU features:
   - Advertise new SVE instructions (v2.1)
   - Advertise range prefetch instruction
   - Advertise CSSC ("Common Short Sequence Compression") scalar
     instructions, adding things like min, max, abs, popcount
   - Enable DIT (Data Independent Timing) when running in the kernel
   - More conversion of system register fields over to the generated
     header

  CPU misfeatures:
   - Workaround for Cortex-A715 erratum #2645198

  Dynamic SCS:
   - Support for dynamic shadow call stacks to allow switching at
     runtime between Clang's SCS implementation and the CPU's pointer
     authentication feature when it is supported (complete with scary
     DWARF parser!)

  Tracing and debug:
   - Remove static ftrace in favour of, err, dynamic ftrace!
   - Seperate 'struct ftrace_regs' from 'struct pt_regs' in core ftrace
     and existing arch code
   - Introduce and implement FTRACE_WITH_ARGS on arm64 to replace the
     old FTRACE_WITH_REGS
   - Extend 'crashkernel=' parameter with default value and fallback to
     placement above 4G physical if initial (low) allocation fails

  SVE:
   - Optimisation to avoid disabling SVE unconditionally on syscall
     entry and just zeroing the non-shared state on return instead

  Exceptions:
   - Rework of undefined instruction handling to avoid serialisation on
     global lock (this includes emulation of user accesses to the ID
     registers)

  Perf and PMU:
   - Support for TLP filters in Hisilicon's PCIe PMU device
   - Support for the DDR PMU present in Amlogic Meson G12 SoCs
   - Support for the terribly-named "CoreSight PMU" architecture from
     Arm (and Nvidia's implementation of said architecture)

  Misc:
   - Tighten up our boot protocol for systems with memory above 52 bits
     physical
   - Const-ify static keys to satisty jump label asm constraints
   - Trivial FFA driver cleanups in preparation for v1.1 support
   - Export the kernel_neon_* APIs as GPL symbols
   - Harden our instruction generation routines against instrumentation
   - A bunch of robustness improvements to our arch-specific selftests
   - Minor cleanups and fixes all over (kbuild, kprobes, kfence, PMU, ...)"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (151 commits)
  arm64: kprobes: Return DBG_HOOK_ERROR if kprobes can not handle a BRK
  arm64: kprobes: Let arch do_page_fault() fix up page fault in user handler
  arm64: Prohibit instrumentation on arch_stack_walk()
  arm64:uprobe fix the uprobe SWBP_INSN in big-endian
  arm64: alternatives: add __init/__initconst to some functions/variables
  arm_pmu: Drop redundant armpmu->map_event() in armpmu_event_init()
  kselftest/arm64: Allow epoll_wait() to return more than one result
  kselftest/arm64: Don't drain output while spawning children
  kselftest/arm64: Hold fp-stress children until they're all spawned
  arm64/sysreg: Remove duplicate definitions from asm/sysreg.h
  arm64/sysreg: Convert ID_DFR1_EL1 to automatic generation
  arm64/sysreg: Convert ID_DFR0_EL1 to automatic generation
  arm64/sysreg: Convert ID_AFR0_EL1 to automatic generation
  arm64/sysreg: Convert ID_MMFR5_EL1 to automatic generation
  arm64/sysreg: Convert MVFR2_EL1 to automatic generation
  arm64/sysreg: Convert MVFR1_EL1 to automatic generation
  arm64/sysreg: Convert MVFR0_EL1 to automatic generation
  arm64/sysreg: Convert ID_PFR2_EL1 to automatic generation
  arm64/sysreg: Convert ID_PFR1_EL1 to automatic generation
  arm64/sysreg: Convert ID_PFR0_EL1 to automatic generation
  ...
2022-12-12 09:50:05 -08:00
Mark Rutland
cfce092dae ftrace: arm64: remove static ftrace
The build test robot pointer out that there's a build failure when:

  CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=y
  CONFIG_DYNAMIC_FTRACE_WITH_ARGS=n

... due to some mismatched ifdeffery, some of which checks
CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS, and some of which checks
CONFIG_DYNAMIC_FTRACE_WITH_ARGS, leading to some missing definitions expected
by the core code when CONFIG_DYNAMIC_FTRACE=n and consequently
CONFIG_DYNAMIC_FTRACE_WITH_ARGS=n.

There's really not much point in supporting CONFIG_DYNAMIC_FTRACE=n (AKA
static ftrace). All supported toolchains allow us to implement
DYNAMIC_FTRACE, distributions all prefer DYNAMIC_FTRACE, and both
powerpc and s390 removed support for static ftrace in commits:

  0c0c52306f4792a4 ("powerpc: Only support DYNAMIC_FTRACE not static")
  5d6a0163494c78ad ("s390/ftrace: enforce DYNAMIC_FTRACE if FUNCTION_TRACER is selected")

... and according to Steven, static ftrace is only supported on x86 to
allow testing that the core code still functions in this configuration.

Given that, let's simplify matters by removing arm64's support for
static ftrace. This avoids the problem originally reported, and leaves
us with less code to maintain.

Fixes: 26299b3f6ba2 ("ftrace: arm64: move from REGS to ARGS")
Link: https://lore.kernel.org/r/202211212249.livTPi3Y-lkp@intel.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221122163624.1225912-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2022-11-25 12:11:50 +00:00
Mark Rutland
26299b3f6b ftrace: arm64: move from REGS to ARGS
This commit replaces arm64's support for FTRACE_WITH_REGS with support
for FTRACE_WITH_ARGS. This removes some overhead and complexity, and
removes some latent issues with inconsistent presentation of struct
pt_regs (which can only be reliably saved/restored at exception
boundaries).

FTRACE_WITH_REGS has been supported on arm64 since commit:

  3b23e4991fb66f6d ("arm64: implement ftrace with regs")

As noted in the commit message, the major reasons for implementing
FTRACE_WITH_REGS were:

(1) To make it possible to use the ftrace graph tracer with pointer
    authentication, where it's necessary to snapshot/manipulate the LR
    before it is signed by the instrumented function.

(2) To make it possible to implement LIVEPATCH in future, where we need
    to hook function entry before an instrumented function manipulates
    the stack or argument registers. Practically speaking, we need to
    preserve the argument/return registers, PC, LR, and SP.

Neither of these need a struct pt_regs, and only require the set of
registers which are live at function call/return boundaries. Our calling
convention is defined by "Procedure Call Standard for the Arm® 64-bit
Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found
at:

  https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst

Per AAPCS64, all function call argument and return values are held in
the following GPRs:

* X0 - X7 : parameter / result registers
* X8      : indirect result location register
* SP      : stack pointer (AKA SP)

Additionally, ad function call boundaries, the following GPRs hold
context/return information:

* X29 : frame pointer (AKA FP)
* X30 : link register (AKA LR)

... and for ftrace we need to capture the instrumented address:

 * PC  : program counter

No other GPRs are relevant, as none of the other arguments hold
parameters or return values:

* X9  - X17 : temporaries, may be clobbered
* X18       : shadow call stack pointer (or temorary)
* X19 - X28 : callee saved

This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring
the minimal set of registers necessary. This is always sufficient to
manipulate control flow (e.g. for live-patching) or to manipulate
function arguments and return values.

This reduces the necessary stack usage from 336 bytes for pt_regs down
to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing
up 188 bytes. This could be reduced further with changes to the
unwinder.

As there is no longer a need to save different sets of registers for
different features, we no longer need distinct `ftrace_caller` and
`ftrace_regs_caller` trampolines. This allows the trampoline assembly to
be simpler, and simplifies code which previously had to handle the two
trampolines.

I've tested this with the ftrace selftests, where there are no
unexpected failures.

Co-developed-by: Florent Revest <revest@chromium.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Florent Revest <revest@chromium.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2022-11-18 13:56:41 +00:00
Sami Tolvanen
2598ac6ec4 arm64: ftrace: Define ftrace_stub_graph only with FUNCTION_GRAPH_TRACER
The 0-day bot reports that arm64 builds with CONFIG_CFI_CLANG +
CONFIG_FTRACE are broken when CONFIG_FUNCTION_GRAPH_TRACER is not
enabled:

 ld.lld: error: undefined symbol: __kcfi_typeid_ftrace_stub_graph
 >>> referenced by entry-ftrace.S:299 (arch/arm64/kernel/entry-ftrace.S:299)
 >>>               arch/arm64/kernel/entry-ftrace.o:(.text+0x48) in archive vmlinux.a

This is caused by ftrace_stub_graph using SYM_TYPE_FUNC_START when
the address of the function is not taken in any C translation unit.

Fix the build by only defining ftrace_stub_graph when it's actually
needed, i.e. with CONFIG_FUNCTION_GRAPH_TRACER.

Link: https://lore.kernel.org/lkml/202210251659.tRMs78RH-lkp@intel.com/
Fixes: 883bbbffa5a4 ("ftrace,kcfi: Separate ftrace_stub() and ftrace_stub_graph()")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20221109192831.3057131-1-samitolvanen@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2022-11-14 12:28:52 +00:00
Peter Zijlstra
883bbbffa5 ftrace,kcfi: Separate ftrace_stub() and ftrace_stub_graph()
Different function signatures means they needs to be different
functions; otherwise CFI gets upset.

As triggered by the ftrace boot tests:

  [] CFI failure at ftrace_return_to_handler+0xac/0x16c (target: ftrace_stub+0x0/0x14; expected type: 0x0a5d5347)

Fixes: 3c516f89e17e ("x86: Add support for CONFIG_CFI_CLANG")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/Y06dg4e1xF6JTdQq@hirez.programming.kicks-ass.net
2022-10-20 17:10:27 +02:00
Mark Rutland
0d8116ccd8 arm64: ftrace: remove redundant label
Since commit:

  c4a0ebf87cebbfa2 ("arm64/ftrace: Make function graph use ftrace directly")

The 'ftrace_common_return' label has been unused.

Remove it.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Will Deacon <will@kernel.org>
Tested-by: "Ivan T. Ivanov" <iivanov@suse.de>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220614080944.1349146-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2022-06-15 16:14:47 +01:00
Chengming Zhou
c4a0ebf87c arm64/ftrace: Make function graph use ftrace directly
As we do in commit 0c0593b45c9b ("x86/ftrace: Make function graph
use ftrace directly"), we don't need special hook for graph tracer,
but instead we use graph_ops:func function to install return_hooker.

Since commit 3b23e4991fb6 ("arm64: implement ftrace with regs") add
implementation for FTRACE_WITH_REGS on arm64, we can easily adopt
the same cleanup on arm64.

And this cleanup only changes the FTRACE_WITH_REGS implementation,
so the mcount-based implementation is unaffected.

While in theory it would be possible to make a similar cleanup for
!FTRACE_WITH_REGS, this will require rework of the core code, and
so for now we only change the FTRACE_WITH_REGS implementation.

Tested-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Link: https://lore.kernel.org/r/20220420160006.17880-2-zhouchengming@bytedance.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2022-04-29 19:21:12 +01:00
Mark Brown
742a15b1a2 arm64: Use BTI C directly and unconditionally
Now we have a macro for BTI C that looks like a regular instruction change
all the users of the current BTI_C macro to just emit a BTI C directly and
remove the macro.

This does mean that we now unconditionally BTI annotate all assembly
functions, meaning that they are worse in this respect than code generated
by the compiler. The overhead should be minimal for implementations with a
reasonable HINT implementation.

Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20211214152714.2380849-4-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-12-14 18:12:58 +00:00
Mark Rutland
35b6b28e69 arm64: ftrace: add missing BTIs
When branch target identifiers are in use, code reachable via an
indirect branch requires a BTI landing pad at the branch target site.

When building FTRACE_WITH_REGS atop patchable-function-entry, we miss
BTIs at the start start of the `ftrace_caller` and `ftrace_regs_caller`
trampolines, and when these are called from a module via a PLT (which
will use a `BR X16`), we will encounter a BTI failure, e.g.

| # insmod lkdtm.ko
| lkdtm: No crash points registered, enable through debugfs
| # echo function_graph > /sys/kernel/debug/tracing/current_tracer
| # cat /sys/kernel/debug/provoke-crash/DIRECT
| Unhandled 64-bit el1h sync exception on CPU0, ESR 0x34000001 -- BTI
| CPU: 0 PID: 174 Comm: cat Not tainted 5.16.0-rc2-dirty #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 60400405 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=jc)
| pc : ftrace_caller+0x0/0x3c
| lr : lkdtm_debugfs_open+0xc/0x20 [lkdtm]
| sp : ffff800012e43b00
| x29: ffff800012e43b00 x28: 0000000000000000 x27: ffff800012e43c88
| x26: 0000000000000000 x25: 0000000000000000 x24: ffff0000c171f200
| x23: ffff0000c27b1e00 x22: ffff0000c2265240 x21: ffff0000c23c8c30
| x20: ffff8000090ba380 x19: 0000000000000000 x18: 0000000000000000
| x17: 0000000000000000 x16: ffff80001002bb4c x15: 0000000000000000
| x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000900ff0
| x11: ffff0000c4166310 x10: ffff800012e43b00 x9 : ffff8000104f2384
| x8 : 0000000000000001 x7 : 0000000000000000 x6 : 000000000000003f
| x5 : 0000000000000040 x4 : ffff800012e43af0 x3 : 0000000000000001
| x2 : ffff8000090b0000 x1 : ffff0000c171f200 x0 : ffff0000c23c8c30
| Kernel panic - not syncing: Unhandled exception
| CPU: 0 PID: 174 Comm: cat Not tainted 5.16.0-rc2-dirty #3
| Hardware name: linux,dummy-virt (DT)
| Call trace:
|  dump_backtrace+0x0/0x1a4
|  show_stack+0x24/0x30
|  dump_stack_lvl+0x68/0x84
|  dump_stack+0x1c/0x38
|  panic+0x168/0x360
|  arm64_exit_nmi.isra.0+0x0/0x80
|  el1h_64_sync_handler+0x68/0xd4
|  el1h_64_sync+0x78/0x7c
|  ftrace_caller+0x0/0x3c
|  do_dentry_open+0x134/0x3b0
|  vfs_open+0x38/0x44
|  path_openat+0x89c/0xe40
|  do_filp_open+0x8c/0x13c
|  do_sys_openat2+0xbc/0x174
|  __arm64_sys_openat+0x6c/0xbc
|  invoke_syscall+0x50/0x120
|  el0_svc_common.constprop.0+0xdc/0x100
|  do_el0_svc+0x84/0xa0
|  el0_svc+0x28/0x80
|  el0t_64_sync_handler+0xa8/0x130
|  el0t_64_sync+0x1a0/0x1a4
| SMP: stopping secondary CPUs
| Kernel Offset: disabled
| CPU features: 0x0,00000f42,da660c5f
| Memory Limit: none
| ---[ end Kernel panic - not syncing: Unhandled exception ]---

Fix this by adding the required `BTI C`, as we only require these to be
reachable via BL for direct calls or BR X16/X17 for PLTs. For now, these
are open-coded in the function prologue, matching the style of the
`__hwasan_tag_mismatch` trampoline.

In future we may wish to consider adding a new SYM_CODE_START_*()
variant which has an implicit BTI.

When ftrace is built atop mcount, the trampolines are marked with
SYM_FUNC_START(), and so get an implicit BTI. We may need to change
these over to SYM_CODE_START() in future for RELIABLE_STACKTRACE, in
case we need to apply special care aroud the return address being
rewritten.

Fixes: 97fed779f2a6 ("arm64: bti: Provide Kconfig for kernel mode BTI")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20211129135709.2274019-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2021-12-02 10:18:32 +00:00
Jianlin Lv
71e70184f1 arm64: rename S_FRAME_SIZE to PT_REGS_SIZE
S_FRAME_SIZE is the size of the pt_regs structure, no longer the size of
the kernel stack frame, the name is misleading. In keeping with arm32,
rename S_FRAME_SIZE to PT_REGS_SIZE.

Signed-off-by: Jianlin Lv <Jianlin.Lv@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210112015813.2340969-1-Jianlin.Lv@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-01-13 15:09:06 +00:00
Will Deacon
258c3d628f arm64: entry-ftrace.S: Update comment to indicate that x18 is live
The Shadow Call Stack pointer is held in x18, so update the ftrace
entry comment to indicate that it cannot be safely clobbered.

Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
2020-05-18 17:47:50 +01:00
Kunihiko Hayashi
69d113b5c4 arm64: entry-ftrace.S: Fix missing argument for CONFIG_FUNCTION_GRAPH_TRACER=y
Missing argument of another SYM_INNER_LABEL() breaks build for
CONFIG_FUNCTION_GRAPH_TRACER=y.

Fixes: e2d591d29d44 ("arm64: entry-ftrace.S: Convert to modern annotations for assembly functions")
Signed-off-by: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Brown <broonie@kernel.org>
2020-03-11 11:06:48 +00:00
Mark Brown
1e4729ed02 arm64: ftrace: Modernise annotation of return_to_handler
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions.

return_to_handler does entertaining things with LR so doesn't follow the
usual C conventions and should therefore be annotated as code rather than
a function.

Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-09 17:35:16 +00:00
Mark Brown
e434b08b44 arm64: ftrace: Correct annotation of ftrace_caller assembly
In an effort to clarify and simplify the annotation of assembly
functions new macros have been introduced. These replace ENTRY and
ENDPROC with two different annotations for normal functions and those
with unusual calling conventions.

The patchable function entry versions of ftrace_*_caller don't follow the
usual AAPCS rules, pushing things onto the stack which they don't clean up,
and therefore should be annotated as code rather than functions.

Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-09 17:35:14 +00:00
Mark Brown
e2d591d29d arm64: entry-ftrace.S: Convert to modern annotations for assembly functions
In an effort to clarify and simplify the annotation of assembly functions
in the kernel new macros have been introduced. These replace ENTRY and
ENDPROC and also add a new annotation for static functions which previously
had no ENTRY equivalent. Update the annotations in the core kernel code to
the new macros.

Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-09 17:35:12 +00:00
Mark Rutland
70927d02d4 arm64: ftrace: fix ifdeffery
When I tweaked the ftrace entry assembly in commit:

  3b23e4991fb66f6d ("arm64: implement ftrace with regs")

... my ifdeffery tweaks left ftrace_graph_caller undefined for
CONFIG_DYNAMIC_FTRACE && CONFIG_FUNCTION_GRAPH_TRACER when ftrace is
based on mcount.

The kbuild test robot reported that this issue is detected at link time:

| arch/arm64/kernel/entry-ftrace.o: In function `skip_ftrace_call':
| arch/arm64/kernel/entry-ftrace.S:238: undefined reference to `ftrace_graph_caller'
| arch/arm64/kernel/entry-ftrace.S:238:(.text+0x3c): relocation truncated to fit: R_AARCH64_CONDBR19 against undefined symbol
| `ftrace_graph_caller'
| arch/arm64/kernel/entry-ftrace.S:243: undefined reference to `ftrace_graph_caller'
| arch/arm64/kernel/entry-ftrace.S:243:(.text+0x54): relocation truncated to fit: R_AARCH64_CONDBR19 against undefined symbol
| `ftrace_graph_caller'

This patch fixes the ifdeffery so that the mcount version of
ftrace_graph_caller doesn't depend on CONFIG_DYNAMIC_FTRACE. At the same
time, a redundant #else is removed from the ifdeffery for the
patchable-function-entry version of ftrace_graph_caller.

Fixes: 3b23e4991fb66f6d ("arm64: implement ftrace with regs")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Torsten Duwe <duwe@lst.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-12-06 13:25:14 +00:00
Torsten Duwe
3b23e4991f arm64: implement ftrace with regs
This patch implements FTRACE_WITH_REGS for arm64, which allows a traced
function's arguments (and some other registers) to be captured into a
struct pt_regs, allowing these to be inspected and/or modified. This is
a building block for live-patching, where a function's arguments may be
forwarded to another function. This is also necessary to enable ftrace
and in-kernel pointer authentication at the same time, as it allows the
LR value to be captured and adjusted prior to signing.

Using GCC's -fpatchable-function-entry=N option, we can have the
compiler insert a configurable number of NOPs between the function entry
point and the usual prologue. This also ensures functions are AAPCS
compliant (e.g. disabling inter-procedural register allocation).

For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the
following:

| unsigned long bar(void);
|
| unsigned long foo(void)
| {
|         return bar() + 1;
| }

... to:

| <foo>:
|         nop
|         nop
|         stp     x29, x30, [sp, #-16]!
|         mov     x29, sp
|         bl      0 <bar>
|         add     x0, x0, #0x1
|         ldp     x29, x30, [sp], #16
|         ret

This patch builds the kernel with -fpatchable-function-entry=2,
prefixing each function with two NOPs. To trace a function, we replace
these NOPs with a sequence that saves the LR into a GPR, then calls an
ftrace entry assembly function which saves this and other relevant
registers:

| mov	x9, x30
| bl	<ftrace-entry>

Since patchable functions are AAPCS compliant (and the kernel does not
use x18 as a platform register), x9-x18 can be safely clobbered in the
patched sequence and the ftrace entry code.

There are now two ftrace entry functions, ftrace_regs_entry (which saves
all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is
allocated for each within modules.

Signed-off-by: Torsten Duwe <duwe@suse.de>
[Mark: rework asm, comments, PLTs, initialization, commit message]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Torsten Duwe <duwe@suse.de>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Tested-by: Torsten Duwe <duwe@suse.de>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Julien Thierry <jthierry@redhat.com>
Cc: Will Deacon <will@kernel.org>
2019-11-06 14:17:35 +00:00
Thomas Gleixner
d2912cb15b treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
Based on 2 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation #

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 4122 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19 17:09:55 +02:00
Mark Rutland
dbd3196299 arm64: frace: use asm EXPORT_SYMBOL()
For a while now it's been possible to use EXPORT_SYMBOL() in assembly
files, which allows us to place exports immediately after assembly
functions, as we do for C functions.

As a step towards removing arm64ksyms.c, let's move the ftrace exports
to the assembly files the functions are defined in.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-10 11:50:12 +00:00
Mark Rutland
7dc48bf96a arm64: ftrace: always pass instrumented pc in x0
The core ftrace hooks take the instrumented PC in x0, but for some
reason arm64's prepare_ftrace_return() takes this in x1.

For consistency, let's flip the argument order and always pass the
instrumented PC in x0.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Torsten Duwe <duwe@suse.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-11-30 13:29:05 +00:00
Mark Rutland
49e258e05e arm64: ftrace: remove return_regs macros
The save_return_regs and restore_return_regs macros are only used by
return_to_handler, and having them defined out-of-line only serves to
obscure the logic.

Before we complicate, let's clean this up and fold the logic directly
into return_to_handler, saving a few lines of macro boilerplate in the
process. At the same time, a missing trailing space is added to the
comments, fixing a code style violation.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Torsten Duwe <duwe@suse.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-11-30 13:29:05 +00:00
Mark Rutland
6e803e2e6e arm64: ftrace: don't adjust the LR value
The core ftrace code requires that when it is handed the PC of an
instrumented function, this PC is the address of the instrumented
instruction. This is necessary so that the core ftrace code can identify
the specific instrumentation site. Since the instrumented function will
be a BL, the address of the instrumented function is LR - 4 at entry to
the ftrace code.

This fixup is applied in the mcount_get_pc and mcount_get_pc0 helpers,
which acquire the PC of the instrumented function.

The mcount_get_lr helper is used to acquire the LR of the instrumented
function, whose value does not require this adjustment, and cannot be
adjusted to anything meaningful. No adjustment of this value is made on
other architectures, including arm. However, arm64 adjusts this value by
4.

This patch brings arm64 in line with other architectures and removes the
adjustment of the LR value.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Torsten Duwe <duwe@suse.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-11-30 13:29:05 +00:00
Mark Rutland
5c176aff5b arm64: ftrace: enable graph FP test
The core frace code has an optional sanity check on the frame pointer
passed by ftrace_graph_caller and return_to_handler. This is cheap,
useful, and enabled unconditionally on x86, sparc, and riscv.

Let's do the same on arm64, so that we can catch any problems early.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Torsten Duwe <duwe@suse.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-11-30 13:29:04 +00:00
Mark Rutland
e4fe196642 arm64: ftrace: use GLOBAL()
The global exports of ftrace_call and ftrace_graph_call are somewhat
painful to read. Let's use the generic GLOBAL() macro to ameliorate
matters.

There should be no functional change as a result of this patch.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Torsten Duwe <duwe@suse.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-11-30 13:29:04 +00:00
Julien Thierry
d125bffcef arm64: Fix static use of function graph
Function graph does not work currently when CONFIG_DYNAMIC_TRACE is not
set. This is because ftrace_function_trace is not always set to ftrace_stub
when function_graph is in use.

Do not skip checking of graph tracer functions when ftrace_function_trace
is set.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-03 12:05:23 +00:00
Arnd Bergmann
f705d95463 arm64: include asm/assembler.h in entry-ftrace.S
In a randconfig build I ran into this build error:

arch/arm64/kernel/entry-ftrace.S: Assembler messages:
arch/arm64/kernel/entry-ftrace.S:101: Error: unknown mnemonic `ldr_l' -- `ldr_l x2,ftrace_trace_function'

The macro is defined in asm/assembler.h, so we should include that file.

Fixes: 829d2bd13392 ("arm64: entry-ftrace.S: avoid open-coded {adr,ldr}_l")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-15 11:34:25 +00:00
Mark Rutland
829d2bd133 arm64: entry-ftrace.S: avoid open-coded {adr,ldr}_l
Some places in the kernel open-code sequences using ADRP for a symbol
another instruction using a :lo12: relocation for that same symbol.
These sequences are easy to get wrong, and more painful to read than is
necessary. For these reasons, it is preferable to use the
{adr,ldr,str}_l macros for these cases.

This patch makes use of these in entry-ftrace.S, removing open-coded
sequences using adrp. This results in a minor code change, since a
temporary register is not used when generating the address for some
symbols, but this is fine, as the value of the temporary register is not
used elsewhere.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-01-17 17:41:19 +00:00
Josh Poimboeuf
e4a744ef2f ftrace: Remove CONFIG_HAVE_FUNCTION_GRAPH_FP_TEST from config
Make HAVE_FUNCTION_GRAPH_FP_TEST a normal define, independent from
kconfig.  This removes some config file pollution and simplifies the
checking for the fp test.

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2c4e5f05054d6d367f702fd153af7a0109dd5c81.1471607358.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-24 12:15:13 +02:00
Li Bin
ee556d00cf arm64: ftrace: fix function_graph tracer panic
When function graph tracer is enabled, the following operation
will trigger panic:

mount -t debugfs nodev /sys/kernel
echo next_tgid > /sys/kernel/tracing/set_ftrace_filter
echo function_graph > /sys/kernel/tracing/current_tracer
ls /proc/

------------[ cut here ]------------
[  198.501417] Unable to handle kernel paging request at virtual address cb88537fdc8ba316
[  198.506126] pgd = ffffffc008f79000
[  198.509363] [cb88537fdc8ba316] *pgd=00000000488c6003, *pud=00000000488c6003, *pmd=0000000000000000
[  198.517726] Internal error: Oops: 94000005 [#1] SMP
[  198.518798] Modules linked in:
[  198.520582] CPU: 1 PID: 1388 Comm: ls Tainted: G
[  198.521800] Hardware name: linux,dummy-virt (DT)
[  198.522852] task: ffffffc0fa9e8000 ti: ffffffc0f9ab0000 task.ti: ffffffc0f9ab0000
[  198.524306] PC is at next_tgid+0x30/0x100
[  198.525205] LR is at return_to_handler+0x0/0x20
[  198.526090] pc : [<ffffffc0002a1070>] lr : [<ffffffc0000907c0>] pstate: 60000145
[  198.527392] sp : ffffffc0f9ab3d40
[  198.528084] x29: ffffffc0f9ab3d40 x28: ffffffc0f9ab0000
[  198.529406] x27: ffffffc000d6a000 x26: ffffffc000b786e8
[  198.530659] x25: ffffffc0002a1900 x24: ffffffc0faf16c00
[  198.531942] x23: ffffffc0f9ab3ea0 x22: 0000000000000002
[  198.533202] x21: ffffffc000d85050 x20: 0000000000000002
[  198.534446] x19: 0000000000000002 x18: 0000000000000000
[  198.535719] x17: 000000000049fa08 x16: ffffffc000242efc
[  198.537030] x15: 0000007fa472b54c x14: ffffffffff000000
[  198.538347] x13: ffffffc0fada84a0 x12: 0000000000000001
[  198.539634] x11: ffffffc0f9ab3d70 x10: ffffffc0f9ab3d70
[  198.540915] x9 : ffffffc0000907c0 x8 : ffffffc0f9ab3d40
[  198.542215] x7 : 0000002e330f08f0 x6 : 0000000000000015
[  198.543508] x5 : 0000000000000f08 x4 : ffffffc0f9835ec0
[  198.544792] x3 : cb88537fdc8ba316 x2 : cb88537fdc8ba306
[  198.546108] x1 : 0000000000000002 x0 : ffffffc000d85050
[  198.547432]
[  198.547920] Process ls (pid: 1388, stack limit = 0xffffffc0f9ab0020)
[  198.549170] Stack: (0xffffffc0f9ab3d40 to 0xffffffc0f9ab4000)
[  198.582568] Call trace:
[  198.583313] [<ffffffc0002a1070>] next_tgid+0x30/0x100
[  198.584359] [<ffffffc0000907bc>] ftrace_graph_caller+0x6c/0x70
[  198.585503] [<ffffffc0000907bc>] ftrace_graph_caller+0x6c/0x70
[  198.586574] [<ffffffc0000907bc>] ftrace_graph_caller+0x6c/0x70
[  198.587660] [<ffffffc0000907bc>] ftrace_graph_caller+0x6c/0x70
[  198.588896] Code: aa0003f5 2a0103f4 b4000102 91004043 (885f7c60)
[  198.591092] ---[ end trace 6a346f8f20949ac8 ]---

This is because when using function graph tracer, if the traced
function return value is in multi regs ([x0-x7]), return_to_handler
may corrupt them. So in return_to_handler, the parameter regs should
be protected properly.

Cc: <stable@vger.kernel.org> # 3.18+
Signed-off-by: Li Bin <huawei.libin@huawei.com>
Acked-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-02 11:12:56 +01:00
Ard Biesheuvel
f1ba46ee78 arm64: ftrace: eliminate literal pool entries
Replace ldr xN, =<symbol> with adrp/add or adrp/ldr [as appropriate]
in the implementation of _mcount(), which may be called very often.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-11-07 15:04:49 +00:00
Steven Rostedt (Red Hat)
ac694fda32 arm64, ftrace: Remove check of obsolete variable function_trace_stop
Nothing sets function_trace_stop to disable function tracing anymore.
Remove the check for it in the arch code.

arm64 was broken anyway, as it had an ifdef testing
 CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST which is only set if
the arch supports the code (which it obviously did not), and
it was testing a non existent ftrace_trace_stop instead of
function_trace_stop.

Link: http://lkml.kernel.org/r/20140627124421.GP26276@arm.com

Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-07-18 13:58:10 -04:00
Paul Bolle
a46ec3a14a arm64: ftrace: Fix comment typo 'CONFIG_FUNCTION_GRAPH_FP_TEST'
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-06-18 12:40:52 +01:00
AKASHI Takahiro
bd7d38dbdf arm64: ftrace: Add dynamic ftrace support
This patch allows "dynamic ftrace" if CONFIG_DYNAMIC_FTRACE is enabled.
Here we can turn on and off tracing dynamically per-function base.

On arm64, this is done by patching single branch instruction to _mcount()
inserted by gcc -pg option. The branch is replaced to NOP initially at
kernel start up, and later on, NOP to branch to ftrace_caller() when
enabled or branch to NOP when disabled.
Please note that ftrace_caller() is a counterpart of _mcount() in case of
'static' ftrace.

More details on architecture specific requirements are described in
Documentation/trace/ftrace-design.txt.

Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-05-29 09:08:33 +01:00
AKASHI Takahiro
819e50e25d arm64: Add ftrace support
This patch implements arm64 specific part to support function tracers,
such as function (CONFIG_FUNCTION_TRACER), function_graph
(CONFIG_FUNCTION_GRAPH_TRACER) and function profiler
(CONFIG_FUNCTION_PROFILER).

With 'function' tracer, all the functions in the kernel are traced with
timestamps in ${sysfs}/tracing/trace. If function_graph tracer is
specified, call graph is generated.

The kernel must be compiled with -pg option so that _mcount() is inserted
at the beginning of functions. This function is called on every function's
entry as long as tracing is enabled.
In addition, function_graph tracer also needs to be able to probe function's
exit. ftrace_graph_caller() & return_to_handler do this by faking link
register's value to intercept function's return path.

More details on architecture specific requirements are described in
Documentation/trace/ftrace-design.txt.

Reviewed-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-05-29 09:08:08 +01:00