mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-16 02:14:58 +00:00
18 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Tejun Heo
|
5cbb302880 |
sched_ext: Rename scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
In sched_ext API, a repeatedly reported pain point is the overuse of the verb "dispatch" and confusion around "consume": - ops.dispatch() - scx_bpf_dispatch[_vtime]() - scx_bpf_consume() - scx_bpf_dispatch[_vtime]_from_dsq*() This overloading of the term is historical. Originally, there were only built-in DSQs and moving a task into a DSQ always dispatched it for execution. Using the verb "dispatch" for the kfuncs to move tasks into these DSQs made sense. Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was from a non-local DSQ to a local DSQ and this operation was named "consume". This was already confusing as a task could be dispatched to a user DSQ from ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch(). Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse as "dispatch" in this context meant moving a task to an arbitrary DSQ from a user DSQ. Clean up the API with the following renames: 1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]() 2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local() 3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*() This patch performs the third set of renames. Compatibility is maintained by: - The previous kfunc names are still provided by the kernel so that old binaries can run. Kernel generates a warning when the old names are used. - compat.bpf.h provides wrappers for the new names which automatically fall back to the old names when running on older kernels. They also trigger build error if old names are used for new builds. - scx_bpf_dispatch[_vtime]_from_dsq*() were already wrapped in __COMPAT macros as they were introduced during v6.12 cycle. Wrap new API in __COMPAT macros too and trigger build errors on both __COMPAT prefixed and naked usages of the old names. The compat features will be dropped after v6.15. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Andrea Righi <arighi@nvidia.com> Acked-by: Changwoo Min <changwoo@igalia.com> Acked-by: Johannes Bechberger <me@mostlynerdless.de> Acked-by: Giovanni Gherdovich <ggherdovich@suse.com> Cc: Dan Schatzberg <dschatzberg@meta.com> Cc: Ming Yang <yougmark94@gmail.com> |
||
Tejun Heo
|
5209c03c8e |
sched_ext: Rename scx_bpf_consume() to scx_bpf_dsq_move_to_local()
In sched_ext API, a repeatedly reported pain point is the overuse of the verb "dispatch" and confusion around "consume": - ops.dispatch() - scx_bpf_dispatch[_vtime]() - scx_bpf_consume() - scx_bpf_dispatch[_vtime]_from_dsq*() This overloading of the term is historical. Originally, there were only built-in DSQs and moving a task into a DSQ always dispatched it for execution. Using the verb "dispatch" for the kfuncs to move tasks into these DSQs made sense. Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was from a non-local DSQ to a local DSQ and this operation was named "consume". This was already confusing as a task could be dispatched to a user DSQ from ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch(). Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse as "dispatch" in this context meant moving a task to an arbitrary DSQ from a user DSQ. Clean up the API with the following renames: 1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]() 2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local() 3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*() This patch performs the second rename. Compatibility is maintained by: - The previous kfunc names are still provided by the kernel so that old binaries can run. Kernel generates a warning when the old names are used. - compat.bpf.h provides wrappers for the new names which automatically fall back to the old names when running on older kernels. They also trigger build error if old names are used for new builds. The compat features will be dropped after v6.15. v2: Comment and documentation updates. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Andrea Righi <arighi@nvidia.com> Acked-by: Changwoo Min <changwoo@igalia.com> Acked-by: Johannes Bechberger <me@mostlynerdless.de> Acked-by: Giovanni Gherdovich <ggherdovich@suse.com> Cc: Dan Schatzberg <dschatzberg@meta.com> Cc: Ming Yang <yougmark94@gmail.com> |
||
Tejun Heo
|
cc26abb1a1 |
sched_ext: Rename scx_bpf_dispatch[_vtime]() to scx_bpf_dsq_insert[_vtime]()
In sched_ext API, a repeatedly reported pain point is the overuse of the verb "dispatch" and confusion around "consume": - ops.dispatch() - scx_bpf_dispatch[_vtime]() - scx_bpf_consume() - scx_bpf_dispatch[_vtime]_from_dsq*() This overloading of the term is historical. Originally, there were only built-in DSQs and moving a task into a DSQ always dispatched it for execution. Using the verb "dispatch" for the kfuncs to move tasks into these DSQs made sense. Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was from a non-local DSQ to a local DSQ and this operation was named "consume". This was already confusing as a task could be dispatched to a user DSQ from ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch(). Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse as "dispatch" in this context meant moving a task to an arbitrary DSQ from a user DSQ. Clean up the API with the following renames: 1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]() 2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local() 3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*() This patch performs the first set of renames. Compatibility is maintained by: - The previous kfunc names are still provided by the kernel so that old binaries can run. Kernel generates a warning when the old names are used. - compat.bpf.h provides wrappers for the new names which automatically fall back to the old names when running on older kernels. They also trigger build error if old names are used for new builds. The compat features will be dropped after v6.15. v2: Documentation updates. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Andrea Righi <arighi@nvidia.com> Acked-by: Changwoo Min <changwoo@igalia.com> Acked-by: Johannes Bechberger <me@mostlynerdless.de> Acked-by: Giovanni Gherdovich <ggherdovich@suse.com> Cc: Dan Schatzberg <dschatzberg@meta.com> Cc: Ming Yang <yougmark94@gmail.com> |
||
Tejun Heo
|
9b671793c7 |
sched_ext, scx_qmap: Add and use SCX_ENQ_CPU_SELECTED
scx_qmap and other schedulers in the SCX repo are using SCX_ENQ_WAKEUP to tell whether ops.select_cpu() was called. This is incorrect as ops.select_cpu() can be skipped in the wakeup path and leads to e.g. incorrectly skipping direct dispatch for tasks that are bound to a single CPU. sched core has been updated to specify ENQUEUE_RQ_SELECTED if ->select_task_rq() was called. Map it to SCX_ENQ_CPU_SELECTED and update scx_qmap to test it instead of SCX_ENQ_WAKEUP. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com> Cc: Daniel Hodges <hodges.daniel.scott@gmail.com> Cc: Changwoo Min <multics69@gmail.com> Cc: Andrea Righi <andrea.righi@linux.dev> Cc: Dan Schatzberg <schatzberg.dan@gmail.com> |
||
Tejun Heo
|
1e123fd73d |
sched_ext: Add __COMPAT helpers for features added during v6.12 devel cycle
cgroup support and scx_bpf_dispatch[_vtime]_from_dsq() are newly added since 8bb30798fd6e ("sched_ext: Fixes incorrect type in bpf_scx_init()") which is the current earliest commit targeted by BPF schedulers. Add compat helpers for them and apply them in the example schedulers. These will be dropped after a few kernel releases. The exact backward compatibility window hasn't been decided yet. Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Tejun Heo
|
2d285d5615 |
scx_qmap: Implement highpri boosting
Implement a silly boosting mechanism for nice -20 tasks. The only purpose is demonstrating and testing scx_bpf_dispatch_from_dsq(). The boosting only works within SHARED_DSQ and makes only minor differences with increased dispatch batch (-b). This exercises moving tasks to a user DSQ and all local DSQs from ops.dispatch() and BPF timerfn. v2: - Updated to use scx_bpf_dispatch_from_dsq_set_{slice|vtime}(). - Drop the workaround for the iterated tasks not being trusted by the verifier. The issue is fixed from BPF side. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Daniel Hodges <hodges.daniel.scott@gmail.com> Cc: David Vernet <void@manifault.com> Cc: Changwoo Min <multics69@gmail.com> Cc: Andrea Righi <andrea.righi@linux.dev> Cc: Dan Schatzberg <schatzberg.dan@gmail.com> |
||
Tejun Heo
|
7c65ae81ea |
sched_ext: Don't call put_prev_task_scx() before picking the next task
fd03c5b85855 ("sched: Rework pick_next_task()") changed the definition of pick_next_task() from: pick_next_task() := pick_task() + set_next_task(.first = true) to: pick_next_task(prev) := pick_task() + put_prev_task() + set_next_task(.first = true) making invoking put_prev_task() pick_next_task()'s responsibility. This reordering allows pick_task() to be shared between regular and core-sched paths and put_prev_task() to know the next task. sched_ext depended on put_prev_task_scx() enqueueing the current task before pick_next_task_scx() is called. While pulling sched/core changes, 70cc76aa0d80 ("Merge branch 'tip/sched/core' into for-6.12") added an explicit put_prev_task_scx() call for SCX tasks in pick_next_task_scx() before picking the first task as a workaround. Clean it up and adopt the conventions that other sched classes are following. The operation of keeping running the current task was spread and required the task to be put on the local DSQ before picking: - balance_one() used SCX_TASK_BAL_KEEP to indicate that the task is still runnable, hasn't exhausted its slice, and thus should keep running. - put_prev_task_scx() enqueued the task to local DSQ if SCX_TASK_BAL_KEEP is set. It also called do_enqueue_task() with SCX_ENQ_LAST if it is the only runnable task. do_enqueue_task() in turn decided whether to use the local DSQ depending on SCX_OPS_ENQ_LAST. Consolidate the logic in balance_one() as it always knows whether it is going to keep the current task. balance_one() now considers all conditions where the current task should be kept and uses SCX_TASK_BAL_KEEP to tell pick_next_task_scx() to keep the current task instead of picking one from the local DSQ. Accordingly, SCX_ENQ_LAST handling is removed from put_prev_task_scx() and do_enqueue_task() and pick_next_task_scx() is updated to pick the current task if SCX_TASK_BAL_KEEP is set. The workaround put_prev_task[_scx]() calls are replaced with put_prev_set_next_task(). This causes two behavior changes observable from the BPF scheduler: - When a task keep running, it no longer goes through enqueue/dequeue cycle and thus ops.stopping/running() transitions. The new behavior is better and all the existing schedulers should be able to handle the new behavior. - The BPF scheduler cannot keep executing the current task by enqueueing SCX_ENQ_LAST task to the local DSQ. If SCX_OPS_ENQ_LAST is specified, the BPF scheduler is responsible for resuming execution after each SCX_ENQ_LAST. SCX_OPS_ENQ_LAST is mostly useful for cases where scheduling decisions are not made on the local CPU - e.g. central or userspace-driven schedulin - and the new behavior is more logical and shouldn't pose any problems. SCX_OPS_ENQ_LAST demonstration from scx_qmap is dropped as it doesn't fit that well anymore and the last task handling is moved to the end of qmap_dispatch(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Vernet <void@manifault.com> Cc: Andrea Righi <righi.andrea@gmail.com> Cc: Changwoo Min <multics69@gmail.com> Cc: Daniel Hodges <hodges.daniel.scott@gmail.com> Cc: Dan Schatzberg <schatzberg.dan@gmail.com> |
||
Tejun Heo
|
1edab907b5 |
sched_ext/scx_qmap: Pick idle CPU for direct dispatch on !wakeup enqueues
Because there was no way to directly dispatch to the local DSQ of a remote CPU from ops.enqueue(), scx_qmap skipped looking for an idle CPU on !wakeup enqueues. This restriction was removed and sched_ext now allows SCX_DSQ_LOCAL_ON verdicts for direct dispatches. Factor out pick_direct_dispatch_cpu() from ops.select_cpu() and use it to direct dispatch from ops.enqueue() on !wakeup enqueues. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com> Cc: Dan Schatzberg <schatzberg.dan@gmail.com> Cc: Changwoo Min <changwoo@igalia.com> Cc: Andrea Righi <righi.andrea@gmail.com> |
||
Tejun Heo
|
6fbd643318 |
sched_ext/scx_qmap: Add an example usage of DSQ iterator
Implement periodic dumping of the shared DSQ to demonstrate the use of the newly added DSQ iterator. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: bpf@vger.kernel.org |
||
Tejun Heo
|
d86adb4fc0 |
sched_ext: Add cpuperf support
sched_ext currently does not integrate with schedutil. When schedutil is the governor, frequencies are left unregulated and usually get stuck close to the highest performance level from running RT tasks. Add CPU performance monitoring and scaling support by integrating into schedutil. The following kfuncs are added: - scx_bpf_cpuperf_cap(): Query the relative performance capacity of different CPUs in the system. - scx_bpf_cpuperf_cur(): Query the current performance level of a CPU relative to its max performance. - scx_bpf_cpuperf_set(): Set the current target performance level of a CPU. This gives direct control over CPU performance setting to the BPF scheduler. The only changes on the schedutil side are accounting for the utilization factor from sched_ext and disabling frequency holding heuristics as it may not apply well to sched_ext schedulers which may have a lot weaker connection between tasks and their current / last CPU. With cpuperf support added, there is no reason to block uclamp. Enable while at it. A toy implementation of cpuperf is added to scx_qmap as a demonstration of the feature. v2: Ignore cpu_util_cfs_boost() when scx_switched_all() in sugov_get_util() to avoid factoring in stale util metric. (Christian) Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Christian Loehle <christian.loehle@arm.com> |
||
Tejun Heo
|
7b0888b7cc |
sched_ext: Implement core-sched support
The core-sched support is composed of the following parts: - task_struct->scx.core_sched_at is added. This is a timestamp which can be used to order tasks. Depending on whether the BPF scheduler implements custom ordering, it tracks either global FIFO ordering of all tasks or local-DSQ ordering within the dispatched tasks on a CPU. - prio_less() is updated to call scx_prio_less() when comparing SCX tasks. scx_prio_less() calls ops.core_sched_before() if available or uses the core_sched_at timestamp. For global FIFO ordering, the BPF scheduler doesn't need to do anything. Otherwise, it should implement ops.core_sched_before() which reflects the ordering. - When core-sched is enabled, balance_scx() balances all SMT siblings so that they all have tasks dispatched if necessary before pick_task_scx() is called. pick_task_scx() picks between the current task and the first dispatched task on the local DSQ based on availability and the core_sched_at timestamps. Note that FIFO ordering is expected among the already dispatched tasks whether running or on the local DSQ, so this path always compares core_sched_at instead of calling into ops.core_sched_before(). qmap_core_sched_before() is added to scx_qmap. It scales the distances from the heads of the queues to compare the tasks across different priority queues and seems to behave as expected. v3: Fixed build error when !CONFIG_SCHED_SMT reported by Andrea Righi. v2: Sched core added the const qualifiers to prio_less task arguments. Explicitly drop them for ops.core_sched_before() task arguments. BPF enforces access control through the verifier, so the qualifier isn't actually operative and only gets in the way when interacting with various helpers. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Reviewed-by: Josh Don <joshdon@google.com> Cc: Andrea Righi <andrea.righi@canonical.com> |
||
Tejun Heo
|
60c27fb59f |
sched_ext: Implement sched_ext_ops.cpu_online/offline()
Add ops.cpu_online/offline() which are invoked when CPUs come online and offline respectively. As the enqueue path already automatically bypasses tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed to see tasks only on CPUs which are between online() and offline(). If the BPF scheduler doesn't implement ops.cpu_online/offline(), the scheduler is automatically exited with SCX_ECODE_RESTART | SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support trivially by simply reinitializing and reloading the scheduler. scx_qmap is updated to print out online CPUs on hotplug events. Other schedulers are updated to restart based on ecode. v3: - The previous implementation added @reason to sched_class.rq_on/offline() to distinguish between CPU hotplug events and topology updates. This was buggy and fragile as the methods are skipped if the current state equals the target state. Instead, add scx_rq_[de]activate() which are directly called from sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to sleep which can be useful. - ops.dispatch() could be called on a CPU that the BPF scheduler was told to be offline. The dispatch patch is updated to bypass in such cases. v2: - To accommodate lock ordering change between scx_cgroup_rwsem and cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI block and enabled eariler during scx_ope_enable() so that cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem. - Auto exit with ECODE added. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> |
||
David Vernet
|
245254f708 |
sched_ext: Implement sched_ext_ops.cpu_acquire/release()
Scheduler classes are strictly ordered and when a higher priority class has tasks to run, the lower priority ones lose access to the CPU. Being able to monitor and act on these events are necessary for use cases includling strict core-scheduling and latency management. This patch adds two operations ops.cpu_acquire() and .cpu_release(). The former is invoked when a CPU becomes available to the BPF scheduler and the opposite for the latter. This patch also implements scx_bpf_reenqueue_local() which can be called from .cpu_release() to trigger requeueing of all tasks in the local dsq of the CPU so that the tasks can be reassigned to other available CPUs. scx_pair is updated to use .cpu_acquire/release() along with %SCX_KICK_WAIT to make the pair scheduling guarantee strict even when a CPU is preempted by a higher priority scheduler class. scx_qmap is updated to use .cpu_acquire/release() to empty the local dsq of a preempted CPU. A similar approach can be adopted by BPF schedulers that want to have a tight control over latency. v4: Use the new SCX_KICK_IDLE to wake up a CPU after re-enqueueing. v3: Drop the const qualifier from scx_cpu_release_args.task. BPF enforces access control through the verifier, so the qualifier isn't actually operative and only gets in the way when interacting with various helpers. v2: Add p->scx.kf_mask annotation to allow calling scx_bpf_reenqueue_local() from ops.cpu_release() nested inside ops.init() and other sleepable operations. Signed-off-by: David Vernet <dvernet@meta.com> Reviewed-by: Tejun Heo <tj@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> |
||
Tejun Heo
|
0922f54fdd |
sched_ext: Make watchdog handle ops.dispatch() looping stall
The dispatch path retries if the local DSQ is still empty after ops.dispatch() either dispatched or consumed a task. This is both out of necessity and for convenience. It has to retry because the dispatch path might lose the tasks to dequeue while the rq lock is released while trying to migrate tasks across CPUs, and the retry mechanism makes ops.dispatch() implementation easier as it only needs to make some forward progress each iteration. However, this makes it possible for ops.dispatch() to stall CPUs by repeatedly dispatching ineligible tasks. If all CPUs are stalled that way, the watchdog or sysrq handler can't run and the system can't be saved. Let's address the issue by breaking out of the dispatch loop after 32 iterations. It is unlikely but not impossible for ops.dispatch() to legitimately go over the iteration limit. We want to come back to the dispatch path in such cases as not doing so risks stalling the CPU by idling with runnable tasks pending. As the previous task is still current in balance_scx(), resched_curr() doesn't do anything - it will just get cleared. Let's instead use scx_kick_bpf() which will trigger reschedule after switching to the next task which will likely be the idle task. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> |
||
Tejun Heo
|
07814a9439 |
sched_ext: Print debug dump after an error exit
If a BPF scheduler triggers an error, the scheduler is aborted and the system is reverted to the built-in scheduler. In the process, a lot of information which may be useful for figuring out what happened can be lost. This patch adds debug dump which captures information which may be useful for debugging including runqueue and runnable thread states at the time of failure. The following shows a debug dump after triggering the watchdog: root@test ~# os/work/tools/sched_ext/build/bin/scx_qmap -t 100 stats : enq=1 dsp=0 delta=1 deq=0 stats : enq=90 dsp=90 delta=0 deq=0 stats : enq=156 dsp=156 delta=0 deq=0 stats : enq=218 dsp=218 delta=0 deq=0 stats : enq=255 dsp=255 delta=0 deq=0 stats : enq=271 dsp=271 delta=0 deq=0 stats : enq=284 dsp=284 delta=0 deq=0 stats : enq=293 dsp=293 delta=0 deq=0 DEBUG DUMP ================================================================================ kworker/u32:12[320] triggered exit kind 1026: runnable task stall (stress[1530] failed to run for 6.841s) Backtrace: scx_watchdog_workfn+0x136/0x1c0 process_scheduled_works+0x2b5/0x600 worker_thread+0x269/0x360 kthread+0xeb/0x110 ret_from_fork+0x36/0x40 ret_from_fork_asm+0x1a/0x30 QMAP FIFO[0]: QMAP FIFO[1]: QMAP FIFO[2]: 1436 QMAP FIFO[3]: QMAP FIFO[4]: CPU states ---------- CPU 0 : nr_run=1 ops_qseq=244 curr=swapper/0[0] class=idle_sched_class QMAP: dsp_idx=1 dsp_cnt=0 R stress[1530] -6841ms scx_state/flags=3/0x1 ops_state/qseq=2/20 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=ff QMAP: force_local=0 asm_sysvec_apic_timer_interrupt+0x16/0x20 CPU 2 : nr_run=2 ops_qseq=142 curr=swapper/2[0] class=idle_sched_class QMAP: dsp_idx=1 dsp_cnt=0 R sshd[1703] -5905ms scx_state/flags=3/0x9 ops_state/qseq=2/88 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=ff QMAP: force_local=1 __x64_sys_ppoll+0xf6/0x120 do_syscall_64+0x7b/0x150 entry_SYSCALL_64_after_hwframe+0x76/0x7e R fish[1539] -4141ms scx_state/flags=3/0x9 ops_state/qseq=2/124 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=ff QMAP: force_local=1 futex_wait+0x60/0xe0 do_futex+0x109/0x180 __x64_sys_futex+0x117/0x190 do_syscall_64+0x7b/0x150 entry_SYSCALL_64_after_hwframe+0x76/0x7e CPU 3 : nr_run=2 ops_qseq=162 curr=kworker/u32:12[320] class=ext_sched_class QMAP: dsp_idx=1 dsp_cnt=0 *R kworker/u32:12[320] +0ms scx_state/flags=3/0xd ops_state/qseq=0/0 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=ff QMAP: force_local=0 scx_dump_state+0x613/0x6f0 scx_ops_error_irq_workfn+0x1f/0x40 irq_work_run_list+0x82/0xd0 irq_work_run+0x14/0x30 __sysvec_irq_work+0x40/0x140 sysvec_irq_work+0x60/0x70 asm_sysvec_irq_work+0x16/0x20 scx_watchdog_workfn+0x15f/0x1c0 process_scheduled_works+0x2b5/0x600 worker_thread+0x269/0x360 kthread+0xeb/0x110 ret_from_fork+0x36/0x40 ret_from_fork_asm+0x1a/0x30 R kworker/3:2[1436] +0ms scx_state/flags=3/0x9 ops_state/qseq=2/160 sticky/holding_cpu=-1/-1 dsq_id=(n/a) cpus=08 QMAP: force_local=0 kthread+0xeb/0x110 ret_from_fork+0x36/0x40 ret_from_fork_asm+0x1a/0x30 CPU 7 : nr_run=0 ops_qseq=76 curr=swapper/7[0] class=idle_sched_class ================================================================================ EXIT: runnable task stall (stress[1530] failed to run for 6.841s) It shows that CPU 3 was running the watchdog when it triggered the error condition and the scx_qmap thread has been queued on CPU 0 for over 5 seconds but failed to run. It also prints out scx_qmap specific information - e.g. which tasks are queued on each FIFO and so on using the dump_*() ops. This dump has proved pretty useful for developing and debugging BPF schedulers. Debug dump is generated automatically when the BPF scheduler exits due to an error. The debug buffer used in such cases is determined by sched_ext_ops.exit_dump_len and defaults to 32k. If the debug dump overruns the available buffer, the output is truncated and marked accordingly. Debug dump output can also be read through the sched_ext_dump tracepoint. When read through the tracepoint, there is no length limit. SysRq-D can be used to trigger debug dump at any time while a BPF scheduler is loaded. This is non-destructive - the scheduler keeps running afterwards. The output can be read through the sched_ext_dump tracepoint. v2: - The size of exit debug dump buffer can now be customized using sched_ext_ops.exit_dump_len. - sched_ext_ops.dump*() added to enable dumping of BPF scheduler specific information. - Tracpoint output and SysRq-D triggering added. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> |
||
Tejun Heo
|
7bb6f0810e |
sched_ext: Allow BPF schedulers to disallow specific tasks from joining SCHED_EXT
BPF schedulers might not want to schedule certain tasks - e.g. kernel threads. This patch adds p->scx.disallow which can be set by BPF schedulers in such cases. The field can be changed anytime and setting it in ops.prep_enable() guarantees that the task can never be scheduled by sched_ext. scx_qmap is updated with the -d option to disallow a specific PID: # echo $$ 1092 # grep -E '(policy)|(ext\.enabled)' /proc/self/sched policy : 0 ext.enabled : 0 # ./set-scx 1092 # grep -E '(policy)|(ext\.enabled)' /proc/self/sched policy : 7 ext.enabled : 0 Run "scx_qmap -p -d 1092" in another terminal. # cat /sys/kernel/sched_ext/nr_rejected 1 # grep -E '(policy)|(ext\.enabled)' /proc/self/sched policy : 0 ext.enabled : 0 # ./set-scx 1092 setparam failed for 1092 (Permission denied) - v4: Refreshed on top of tip:sched/core. - v3: Update description to reflect /sys/kernel/sched_ext interface change. - v2: Use atomic_long_t instead of atomic64_t for scx_kick_cpus_pnt_seqs to accommodate 32bit archs. Signed-off-by: Tejun Heo <tj@kernel.org> Suggested-by: Barret Rhoden <brho@google.com> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> |
||
David Vernet
|
8a010b81b3 |
sched_ext: Implement runnable task stall watchdog
The most common and critical way that a BPF scheduler can misbehave is by failing to run runnable tasks for too long. This patch implements a watchdog. * All tasks record when they become runnable. * A watchdog work periodically scans all runnable tasks. If any task has stayed runnable for too long, the BPF scheduler is aborted. * scheduler_tick() monitors whether the watchdog itself is stuck. If so, the BPF scheduler is aborted. Because the watchdog only scans the tasks which are currently runnable and usually very infrequently, the overhead should be negligible. scx_qmap is updated so that it can be told to stall user and/or kernel tasks. A detected task stall looks like the following: sched_ext: BPF scheduler "qmap" errored, disabling sched_ext: runnable task stall (dbus-daemon[953] failed to run for 6.478s) scx_check_timeout_workfn+0x10e/0x1b0 process_one_work+0x287/0x560 worker_thread+0x234/0x420 kthread+0xe9/0x100 ret_from_fork+0x1f/0x30 A detected watchdog stall: sched_ext: BPF scheduler "qmap" errored, disabling sched_ext: runnable task stall (watchdog failed to check in for 5.001s) scheduler_tick+0x2eb/0x340 update_process_times+0x7a/0x90 tick_sched_timer+0xd8/0x130 __hrtimer_run_queues+0x178/0x3b0 hrtimer_interrupt+0xfc/0x390 __sysvec_apic_timer_interrupt+0xb7/0x2b0 sysvec_apic_timer_interrupt+0x90/0xb0 asm_sysvec_apic_timer_interrupt+0x1b/0x20 default_idle+0x14/0x20 arch_cpu_idle+0xf/0x20 default_idle_call+0x50/0x90 do_idle+0xe8/0x240 cpu_startup_entry+0x1d/0x20 kernel_init+0x0/0x190 start_kernel+0x0/0x392 start_kernel+0x324/0x392 x86_64_start_reservations+0x2a/0x2c x86_64_start_kernel+0x104/0x109 secondary_startup_64_no_verify+0xce/0xdb Note that this patch exposes scx_ops_error[_type]() in kernel/sched/ext.h to inline scx_notify_sched_tick(). v4: - While disabling, cancel_delayed_work_sync(&scx_watchdog_work) was being called before forward progress was guaranteed and thus could lead to system lockup. Relocated. - While enabling, it was comparing msecs against jiffies without conversion leading to spurious load failures on lower HZ kernels. Fixed. - runnable list management is now used by core bypass logic and moved to the patch implementing sched_ext core. v3: - bpf_scx_init_member() was incorrectly comparing ops->timeout_ms against SCX_WATCHDOG_MAX_TIMEOUT which is in jiffies without conversion leading to spurious load failures in lower HZ kernels. Fixed. v2: - Julia Lawall noticed that the watchdog code was mixing msecs and jiffies. Fix by using jiffies for everything. Signed-off-by: David Vernet <dvernet@meta.com> Reviewed-by: Tejun Heo <tj@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Cc: Julia Lawall <julia.lawall@inria.fr> |
||
Tejun Heo
|
2a52ca7c98 |
sched_ext: Add scx_simple and scx_example_qmap example schedulers
Add two simple example BPF schedulers - simple and qmap. * simple: In terms of scheduling, it behaves identical to not having any operation implemented at all. The two operations it implements are only to improve visibility and exit handling. On certain homogeneous configurations, this actually can perform pretty well. * qmap: A fixed five level priority scheduler to demonstrate queueing PIDs on BPF maps for scheduling. While not very practical, this is useful as a simple example and will be used to demonstrate different features. v7: - Compat helpers stripped out in prepartion of upstreaming as the upstreamed patchset will be the baselinfe. Utility macros that can be used to implement compat features are kept. - Explicitly disable map autoattach on struct_ops to avoid trying to attach twice while maintaining compatbility with older libbpf. v6: - Common header files reorganized and cleaned up. Compat helpers are added to demonstrate how schedulers can maintain backward compatibility with older kernels while making use of newly added features. - simple_select_cpu() added to keep track of the number of local dispatches. This is needed because the default ops.select_cpu() implementation is updated to dispatch directly and won't call ops.enqueue(). - Updated to reflect the sched_ext API changes. Switching all tasks is the default behavior now and scx_qmap supports partial switching when `-p` is specified. - tools/sched_ext/Kconfig dropped. This will be included in the doc instead. v5: - Improve Makefile. Build artifects are now collected into a separate dir which change be changed. Install and help targets are added and clean actually cleans everything. - MEMBER_VPTR() improved to improve access to structs. ARRAY_ELEM_PTR() and RESIZEABLE_ARRAY() are added to support resizable arrays in .bss. - Add scx_common.h which provides common utilities to user code such as SCX_BUG[_ON]() and RESIZE_ARRAY(). - Use SCX_BUG[_ON]() to simplify error handling. v4: - Dropped _example prefix from scheduler names. v3: - Rename scx_example_dummy to scx_example_simple and restructure a bit to ease later additions. Comment updates. - Added declarations for BPF inline iterators. In the future, hopefully, these will be consolidated into a generic BPF header so that they don't need to be replicated here. v2: - Updated with the generic BPF cpumask helpers. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> |