mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-17 18:56:24 +00:00
69 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Suren Baghdasaryan
|
b3541d912a |
mm: delete unused MMF_OOM_VICTIM flag
With the last usage of MMF_OOM_VICTIM in exit_mmap gone, this flag is now unused and can be removed. [akpm@linux-foundation.org: remove comment about now-removed mm_is_oom_victim()] Link: https://lkml.kernel.org/r/20220531223100.510392-2-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Minchan Kim <minchan@kernel.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christian Brauner (Microsoft) <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Liam Howlett <liam.howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
bf3980c852 |
mm: drop oom code from exit_mmap
The primary reason to invoke the oom reaper from the exit_mmap path used to be a prevention of an excessive oom killing if the oom victim exit races with the oom reaper (see [1] for more details). The invocation has moved around since then because of the interaction with the munlock logic but the underlying reason has remained the same (see [2]). Munlock code is no longer a problem since [3] and there shouldn't be any blocking operation before the memory is unmapped by exit_mmap so the oom reaper invocation can be dropped. The unmapping part can be done with the non-exclusive mmap_sem and the exclusive one is only required when page tables are freed. Remove the oom_reaper from exit_mmap which will make the code easier to read. This is really unlikely to make any observable difference although some microbenchmarks could benefit from one less branch that needs to be evaluated even though it almost never is true. [1] 212925802454 ("mm: oom: let oom_reap_task and exit_mmap run concurrently") [2] 27ae357fa82b ("mm, oom: fix concurrent munlock and oom reaper unmap, v3") [3] a213e5cf71cb ("mm/munlock: delete munlock_vma_pages_all(), allow oomreap") [akpm@linux-foundation.org: restore Suren's mmap_read_lock() optimization] Link: https://lkml.kernel.org/r/20220531223100.510392-1-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christian Brauner (Microsoft) <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
sujiaxun
|
43fe219aa5 |
mm: move oom_kill sysctls to their own file
kernel/sysctl.c is a kitchen sink where everyone leaves their dirty dishes, this makes it very difficult to maintain. To help with this maintenance let's start by moving sysctls to places where they actually belong. The proc sysctl maintainers do not want to know what sysctl knobs you wish to add for your own piece of code, we just care about the core logic. So move the oom_kill sysctls to their own file, mm/oom_kill.c [sfr@canb.auug.org.au: null-terminate the array] Link: https://lkml.kernel.org/r/20220216193202.28838626@canb.auug.org.au Link: https://lkml.kernel.org/r/20220215093203.31032-1-sujiaxun@uniontech.com Signed-off-by: sujiaxun <sujiaxun@uniontech.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Suren Baghdasaryan
|
67197a4f28 |
mm, oom_adj: don't loop through tasks in __set_oom_adj when not necessary
Currently __set_oom_adj loops through all processes in the system to keep oom_score_adj and oom_score_adj_min in sync between processes sharing their mm. This is done for any task with more that one mm_users, which includes processes with multiple threads (sharing mm and signals). However for such processes the loop is unnecessary because their signal structure is shared as well. Android updates oom_score_adj whenever a tasks changes its role (background/foreground/...) or binds to/unbinds from a service, making it more/less important. Such operation can happen frequently. We noticed that updates to oom_score_adj became more expensive and after further investigation found out that the patch mentioned in "Fixes" introduced a regression. Using Pixel 4 with a typical Android workload, write time to oom_score_adj increased from ~3.57us to ~362us. Moreover this regression linearly depends on the number of multi-threaded processes running on the system. Mark the mm with a new MMF_MULTIPROCESS flag bit when task is created with (CLONE_VM && !CLONE_THREAD && !CLONE_VFORK). Change __set_oom_adj to use MMF_MULTIPROCESS instead of mm_users to decide whether oom_score_adj update should be synchronized between multiple processes. To prevent races between clone() and __set_oom_adj(), when oom_score_adj of the process being cloned might be modified from userspace, we use oom_adj_mutex. Its scope is changed to global. The combination of (CLONE_VM && !CLONE_THREAD) is rarely used except for the case of vfork(). To prevent performance regressions of vfork(), we skip taking oom_adj_mutex and setting MMF_MULTIPROCESS when CLONE_VFORK is specified. Clearing the MMF_MULTIPROCESS flag (when the last process sharing the mm exits) is left out of this patch to keep it simple and because it is believed that this threading model is rare. Should there ever be a need for optimizing that case as well, it can be done by hooking into the exit path, likely following the mm_update_next_owner pattern. With the combination of (CLONE_VM && !CLONE_THREAD && !CLONE_VFORK) being quite rare, the regression is gone after the change is applied. [surenb@google.com: v3] Link: https://lkml.kernel.org/r/20200902012558.2335613-1-surenb@google.com Fixes: 44a70adec910 ("mm, oom_adj: make sure processes sharing mm have same view of oom_score_adj") Reported-by: Tim Murray <timmurray@google.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Eugene Syromiatnikov <esyr@redhat.com> Cc: Christian Kellner <christian@kellner.me> Cc: Adrian Reber <areber@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Alexey Gladkov <gladkov.alexey@gmail.com> Cc: Michel Lespinasse <walken@google.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: Bernd Edlinger <bernd.edlinger@hotmail.de> Cc: John Johansen <john.johansen@canonical.com> Cc: Yafang Shao <laoar.shao@gmail.com> Link: https://lkml.kernel.org/r/20200824153036.3201505-1-surenb@google.com Debugged-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
9066e5cfb7 |
mm, oom: make the calculation of oom badness more accurate
Recently we found an issue on our production environment that when memcg oom is triggered the oom killer doesn't chose the process with largest resident memory but chose the first scanned process. Note that all processes in this memcg have the same oom_score_adj, so the oom killer should chose the process with largest resident memory. Bellow is part of the oom info, which is enough to analyze this issue. [7516987.983223] memory: usage 16777216kB, limit 16777216kB, failcnt 52843037 [7516987.983224] memory+swap: usage 16777216kB, limit 9007199254740988kB, failcnt 0 [7516987.983225] kmem: usage 301464kB, limit 9007199254740988kB, failcnt 0 [...] [7516987.983293] [ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name [7516987.983510] [ 5740] 0 5740 257 1 32768 0 -998 pause [7516987.983574] [58804] 0 58804 4594 771 81920 0 -998 entry_point.bas [7516987.983577] [58908] 0 58908 7089 689 98304 0 -998 cron [7516987.983580] [58910] 0 58910 16235 5576 163840 0 -998 supervisord [7516987.983590] [59620] 0 59620 18074 1395 188416 0 -998 sshd [7516987.983594] [59622] 0 59622 18680 6679 188416 0 -998 python [7516987.983598] [59624] 0 59624 1859266 5161 548864 0 -998 odin-agent [7516987.983600] [59625] 0 59625 707223 9248 983040 0 -998 filebeat [7516987.983604] [59627] 0 59627 416433 64239 774144 0 -998 odin-log-agent [7516987.983607] [59631] 0 59631 180671 15012 385024 0 -998 python3 [7516987.983612] [61396] 0 61396 791287 3189 352256 0 -998 client [7516987.983615] [61641] 0 61641 1844642 29089 946176 0 -998 client [7516987.983765] [ 9236] 0 9236 2642 467 53248 0 -998 php_scanner [7516987.983911] [42898] 0 42898 15543 838 167936 0 -998 su [7516987.983915] [42900] 1000 42900 3673 867 77824 0 -998 exec_script_vr2 [7516987.983918] [42925] 1000 42925 36475 19033 335872 0 -998 python [7516987.983921] [57146] 1000 57146 3673 848 73728 0 -998 exec_script_J2p [7516987.983925] [57195] 1000 57195 186359 22958 491520 0 -998 python2 [7516987.983928] [58376] 1000 58376 275764 14402 290816 0 -998 rosmaster [7516987.983931] [58395] 1000 58395 155166 4449 245760 0 -998 rosout [7516987.983935] [58406] 1000 58406 18285584 3967322 37101568 0 -998 data_sim [7516987.984221] oom-kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=3aa16c9482ae3a6f6b78bda68a55d32c87c99b985e0f11331cddf05af6c4d753,mems_allowed=0-1,oom_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184,task_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184/1f246a3eeea8f70bf91141eeaf1805346a666e225f823906485ea0b6c37dfc3d,task=pause,pid=5740,uid=0 [7516987.984254] Memory cgroup out of memory: Killed process 5740 (pause) total-vm:1028kB, anon-rss:4kB, file-rss:0kB, shmem-rss:0kB [7516988.092344] oom_reaper: reaped process 5740 (pause), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB We can find that the first scanned process 5740 (pause) was killed, but its rss is only one page. That is because, when we calculate the oom badness in oom_badness(), we always ignore the negtive point and convert all of these negtive points to 1. Now as oom_score_adj of all the processes in this targeted memcg have the same value -998, the points of these processes are all negtive value. As a result, the first scanned process will be killed. The oom_socre_adj (-998) in this memcg is set by kubelet, because it is a a Guaranteed pod, which has higher priority to prevent from being killed by system oom. To fix this issue, we should make the calculation of oom point more accurate. We can achieve it by convert the chosen_point from 'unsigned long' to 'long'. [cai@lca.pw: reported a issue in the previous version] [mhocko@suse.com: fixed the issue reported by Cai] [mhocko@suse.com: add the comment in proc_oom_score()] [laoar.shao@gmail.com: v3] Link: http://lkml.kernel.org/r/1594396651-9931-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Link: http://lkml.kernel.org/r/1594309987-9919-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
ac311a14c6 |
oom: decouple mems_allowed from oom_unkillable_task
Commit ef08e3b4981a ("[PATCH] cpusets: confine oom_killer to mem_exclusive cpuset") introduces a heuristic where a potential oom-killer victim is skipped if the intersection of the potential victim and the current (the process triggered the oom) is empty based on the reason that killing such victim most probably will not help the current allocating process. However the commit 7887a3da753e ("[PATCH] oom: cpuset hint") changed the heuristic to just decrease the oom_badness scores of such potential victim based on the reason that the cpuset of such processes might have changed and previously they may have allocated memory on mems where the current allocating process can allocate from. Unintentionally 7887a3da753e ("[PATCH] oom: cpuset hint") introduced a side effect as the oom_badness is also exposed to the user space through /proc/[pid]/oom_score, so, readers with different cpusets can read different oom_score of the same process. Later, commit 6cf86ac6f36b ("oom: filter tasks not sharing the same cpuset") fixed the side effect introduced by 7887a3da753e by moving the cpuset intersection back to only oom-killer context and out of oom_badness. However the combination of ab290adbaf8f ("oom: make oom_unkillable_task() helper function") and 26ebc984913b ("oom: /proc/<pid>/oom_score treat kernel thread honestly") unintentionally brought back the cpuset intersection check into the oom_badness calculation function. Other than doing cpuset/mempolicy intersection from oom_badness, the memcg oom context is also doing cpuset/mempolicy intersection which is quite wrong and is caught by syzcaller with the following report: kasan: CONFIG_KASAN_INLINE enabled kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 28426 Comm: syz-executor.5 Not tainted 5.2.0-rc3-next-20190607 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:__read_once_size include/linux/compiler.h:194 [inline] RIP: 0010:has_intersects_mems_allowed mm/oom_kill.c:84 [inline] RIP: 0010:oom_unkillable_task mm/oom_kill.c:168 [inline] RIP: 0010:oom_unkillable_task+0x180/0x400 mm/oom_kill.c:155 Code: c1 ea 03 80 3c 02 00 0f 85 80 02 00 00 4c 8b a3 10 07 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8d 74 24 10 4c 89 f2 48 c1 ea 03 <80> 3c 02 00 0f 85 67 02 00 00 49 8b 44 24 10 4c 8d a0 68 fa ff ff RSP: 0018:ffff888000127490 EFLAGS: 00010a03 RAX: dffffc0000000000 RBX: ffff8880a4cd5438 RCX: ffffffff818dae9c RDX: 100000000c3cc602 RSI: ffffffff818dac8d RDI: 0000000000000001 RBP: ffff8880001274d0 R08: ffff888000086180 R09: ffffed1015d26be0 R10: ffffed1015d26bdf R11: ffff8880ae935efb R12: 8000000061e63007 R13: 0000000000000000 R14: 8000000061e63017 R15: 1ffff11000024ea6 FS: 00005555561f5940(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000607304 CR3: 000000009237e000 CR4: 00000000001426f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 Call Trace: oom_evaluate_task+0x49/0x520 mm/oom_kill.c:321 mem_cgroup_scan_tasks+0xcc/0x180 mm/memcontrol.c:1169 select_bad_process mm/oom_kill.c:374 [inline] out_of_memory mm/oom_kill.c:1088 [inline] out_of_memory+0x6b2/0x1280 mm/oom_kill.c:1035 mem_cgroup_out_of_memory+0x1ca/0x230 mm/memcontrol.c:1573 mem_cgroup_oom mm/memcontrol.c:1905 [inline] try_charge+0xfbe/0x1480 mm/memcontrol.c:2468 mem_cgroup_try_charge+0x24d/0x5e0 mm/memcontrol.c:6073 mem_cgroup_try_charge_delay+0x1f/0xa0 mm/memcontrol.c:6088 do_huge_pmd_wp_page_fallback+0x24f/0x1680 mm/huge_memory.c:1201 do_huge_pmd_wp_page+0x7fc/0x2160 mm/huge_memory.c:1359 wp_huge_pmd mm/memory.c:3793 [inline] __handle_mm_fault+0x164c/0x3eb0 mm/memory.c:4006 handle_mm_fault+0x3b7/0xa90 mm/memory.c:4053 do_user_addr_fault arch/x86/mm/fault.c:1455 [inline] __do_page_fault+0x5ef/0xda0 arch/x86/mm/fault.c:1521 do_page_fault+0x71/0x57d arch/x86/mm/fault.c:1552 page_fault+0x1e/0x30 arch/x86/entry/entry_64.S:1156 RIP: 0033:0x400590 Code: 06 e9 49 01 00 00 48 8b 44 24 10 48 0b 44 24 28 75 1f 48 8b 14 24 48 8b 7c 24 20 be 04 00 00 00 e8 f5 56 00 00 48 8b 74 24 08 <89> 06 e9 1e 01 00 00 48 8b 44 24 08 48 8b 14 24 be 04 00 00 00 8b RSP: 002b:00007fff7bc49780 EFLAGS: 00010206 RAX: 0000000000000001 RBX: 0000000000760000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000000002000cffc RDI: 0000000000000001 RBP: fffffffffffffffe R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000075 R11: 0000000000000246 R12: 0000000000760008 R13: 00000000004c55f2 R14: 0000000000000000 R15: 00007fff7bc499b0 Modules linked in: ---[ end trace a65689219582ffff ]--- RIP: 0010:__read_once_size include/linux/compiler.h:194 [inline] RIP: 0010:has_intersects_mems_allowed mm/oom_kill.c:84 [inline] RIP: 0010:oom_unkillable_task mm/oom_kill.c:168 [inline] RIP: 0010:oom_unkillable_task+0x180/0x400 mm/oom_kill.c:155 Code: c1 ea 03 80 3c 02 00 0f 85 80 02 00 00 4c 8b a3 10 07 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8d 74 24 10 4c 89 f2 48 c1 ea 03 <80> 3c 02 00 0f 85 67 02 00 00 49 8b 44 24 10 4c 8d a0 68 fa ff ff RSP: 0018:ffff888000127490 EFLAGS: 00010a03 RAX: dffffc0000000000 RBX: ffff8880a4cd5438 RCX: ffffffff818dae9c RDX: 100000000c3cc602 RSI: ffffffff818dac8d RDI: 0000000000000001 RBP: ffff8880001274d0 R08: ffff888000086180 R09: ffffed1015d26be0 R10: ffffed1015d26bdf R11: ffff8880ae935efb R12: 8000000061e63007 R13: 0000000000000000 R14: 8000000061e63017 R15: 1ffff11000024ea6 FS: 00005555561f5940(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b2f823000 CR3: 000000009237e000 CR4: 00000000001426f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 The fix is to decouple the cpuset/mempolicy intersection check from oom_unkillable_task() and make sure cpuset/mempolicy intersection check is only done in the global oom context. [shakeelb@google.com: change function name and update comment] Link: http://lkml.kernel.org/r/20190628152421.198994-3-shakeelb@google.com Link: http://lkml.kernel.org/r/20190624212631.87212-3-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reported-by: syzbot+d0fc9d3c166bc5e4a94b@syzkaller.appspotmail.com Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
6ba749ee78 |
mm, oom: remove redundant task_in_mem_cgroup() check
oom_unkillable_task() can be called from three different contexts i.e. global OOM, memcg OOM and oom_score procfs interface. At the moment oom_unkillable_task() does a task_in_mem_cgroup() check on the given process. Since there is no reason to perform task_in_mem_cgroup() check for global OOM and oom_score procfs interface, those contexts provide NULL memcg and skips the task_in_mem_cgroup() check. However for memcg OOM context, the oom_unkillable_task() is always called from mem_cgroup_scan_tasks() and thus task_in_mem_cgroup() check becomes redundant and effectively dead code. So, just remove the task_in_mem_cgroup() check altogether. Link: http://lkml.kernel.org/r/20190624212631.87212-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Jackson <pj@sgi.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
yuzhoujian
|
ef8444ea01 |
mm, oom: reorganize the oom report in dump_header
OOM report contains several sections. The first one is the allocation context that has triggered the OOM. Then we have cpuset context followed by the stack trace of the OOM path. The tird one is the OOM memory information. Followed by the current memory state of all system tasks. At last, we will show oom eligible tasks and the information about the chosen oom victim. One thing that makes parsing more awkward than necessary is that we do not have a single and easily parsable line about the oom context. This patch is reorganizing the oom report to 1) who invoked oom and what was the allocation request [ 515.902945] tuned invoked oom-killer: gfp_mask=0x6200ca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=0 2) OOM stack trace [ 515.904273] CPU: 24 PID: 1809 Comm: tuned Not tainted 4.20.0-rc3+ #3 [ 515.905518] Hardware name: Inspur SA5212M4/YZMB-00370-107, BIOS 4.1.10 11/14/2016 [ 515.906821] Call Trace: [ 515.908062] dump_stack+0x5a/0x73 [ 515.909311] dump_header+0x55/0x28c [ 515.914260] oom_kill_process+0x2d8/0x300 [ 515.916708] out_of_memory+0x145/0x4a0 [ 515.917932] __alloc_pages_slowpath+0x7d2/0xa16 [ 515.919157] __alloc_pages_nodemask+0x277/0x290 [ 515.920367] filemap_fault+0x3d0/0x6c0 [ 515.921529] ? filemap_map_pages+0x2b8/0x420 [ 515.922709] ext4_filemap_fault+0x2c/0x40 [ext4] [ 515.923884] __do_fault+0x20/0x80 [ 515.925032] __handle_mm_fault+0xbc0/0xe80 [ 515.926195] handle_mm_fault+0xfa/0x210 [ 515.927357] __do_page_fault+0x233/0x4c0 [ 515.928506] do_page_fault+0x32/0x140 [ 515.929646] ? page_fault+0x8/0x30 [ 515.930770] page_fault+0x1e/0x30 3) OOM memory information [ 515.958093] Mem-Info: [ 515.959647] active_anon:26501758 inactive_anon:1179809 isolated_anon:0 active_file:4402672 inactive_file:483963 isolated_file:1344 unevictable:0 dirty:4886753 writeback:0 unstable:0 slab_reclaimable:148442 slab_unreclaimable:18741 mapped:1347 shmem:1347 pagetables:58669 bounce:0 free:88663 free_pcp:0 free_cma:0 ... 4) current memory state of all system tasks [ 516.079544] [ 744] 0 744 9211 1345 114688 82 0 systemd-journal [ 516.082034] [ 787] 0 787 31764 0 143360 92 0 lvmetad [ 516.084465] [ 792] 0 792 10930 1 110592 208 -1000 systemd-udevd [ 516.086865] [ 1199] 0 1199 13866 0 131072 112 -1000 auditd [ 516.089190] [ 1222] 0 1222 31990 1 110592 157 0 smartd [ 516.091477] [ 1225] 0 1225 4864 85 81920 43 0 irqbalance [ 516.093712] [ 1226] 0 1226 52612 0 258048 426 0 abrtd [ 516.112128] [ 1280] 0 1280 109774 55 299008 400 0 NetworkManager [ 516.113998] [ 1295] 0 1295 28817 37 69632 24 0 ksmtuned [ 516.144596] [ 10718] 0 10718 2622484 1721372 15998976 267219 0 panic [ 516.145792] [ 10719] 0 10719 2622484 1164767 9818112 53576 0 panic [ 516.146977] [ 10720] 0 10720 2622484 1174361 9904128 53709 0 panic [ 516.148163] [ 10721] 0 10721 2622484 1209070 10194944 54824 0 panic [ 516.149329] [ 10722] 0 10722 2622484 1745799 14774272 91138 0 panic 5) oom context (contrains and the chosen victim). oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=/,mems_allowed=0-1,task=panic,pid=10737,uid=0 An admin can easily get the full oom context at a single line which makes parsing much easier. Link: http://lkml.kernel.org/r/1542799799-36184-1-git-send-email-ufo19890607@gmail.com Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Yang Shi <yang.s@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Souptick Joarder
|
2b74030354 |
mm: Change return type int to vm_fault_t for fault handlers
Use new return type vm_fault_t for fault handler. For now, this is just documenting that the function returns a VM_FAULT value rather than an errno. Once all instances are converted, vm_fault_t will become a distinct type. Ref-> commit 1c8f422059ae ("mm: change return type to vm_fault_t") The aim is to change the return type of finish_fault() and handle_mm_fault() to vm_fault_t type. As part of that clean up return type of all other recursively called functions have been changed to vm_fault_t type. The places from where handle_mm_fault() is getting invoked will be change to vm_fault_t type but in a separate patch. vmf_error() is the newly introduce inline function in 4.17-rc6. [akpm@linux-foundation.org: don't shadow outer local `ret' in __do_huge_pmd_anonymous_page()] Link: http://lkml.kernel.org/r/20180604171727.GA20279@jordon-HP-15-Notebook-PC Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
93065ac753 |
mm, oom: distinguish blockable mode for mmu notifiers
There are several blockable mmu notifiers which might sleep in mmu_notifier_invalidate_range_start and that is a problem for the oom_reaper because it needs to guarantee a forward progress so it cannot depend on any sleepable locks. Currently we simply back off and mark an oom victim with blockable mmu notifiers as done after a short sleep. That can result in selecting a new oom victim prematurely because the previous one still hasn't torn its memory down yet. We can do much better though. Even if mmu notifiers use sleepable locks there is no reason to automatically assume those locks are held. Moreover majority of notifiers only care about a portion of the address space and there is absolutely zero reason to fail when we are unmapping an unrelated range. Many notifiers do really block and wait for HW which is harder to handle and we have to bail out though. This patch handles the low hanging fruit. __mmu_notifier_invalidate_range_start gets a blockable flag and callbacks are not allowed to sleep if the flag is set to false. This is achieved by using trylock instead of the sleepable lock for most callbacks and continue as long as we do not block down the call chain. I think we can improve that even further because there is a common pattern to do a range lookup first and then do something about that. The first part can be done without a sleeping lock in most cases AFAICS. The oom_reaper end then simply retries if there is at least one notifier which couldn't make any progress in !blockable mode. A retry loop is already implemented to wait for the mmap_sem and this is basically the same thing. The simplest way for driver developers to test this code path is to wrap userspace code which uses these notifiers into a memcg and set the hard limit to hit the oom. This can be done e.g. after the test faults in all the mmu notifier managed memory and set the hard limit to something really small. Then we are looking for a proper process tear down. [akpm@linux-foundation.org: coding style fixes] [akpm@linux-foundation.org: minor code simplification] Link: http://lkml.kernel.org/r/20180716115058.5559-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Christian König <christian.koenig@amd.com> # AMD notifiers Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx and umem_odp Reported-by: David Rientjes <rientjes@google.com> Cc: "David (ChunMing) Zhou" <David1.Zhou@amd.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Doug Ledford <dledford@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Mike Marciniszyn <mike.marciniszyn@intel.com> Cc: Dennis Dalessandro <dennis.dalessandro@intel.com> Cc: Sudeep Dutt <sudeep.dutt@intel.com> Cc: Ashutosh Dixit <ashutosh.dixit@intel.com> Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Felix Kuehling <felix.kuehling@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
27ae357fa8 |
mm, oom: fix concurrent munlock and oom reaper unmap, v3
Since exit_mmap() is done without the protection of mm->mmap_sem, it is possible for the oom reaper to concurrently operate on an mm until MMF_OOM_SKIP is set. This allows munlock_vma_pages_all() to concurrently run while the oom reaper is operating on a vma. Since munlock_vma_pages_range() depends on clearing VM_LOCKED from vm_flags before actually doing the munlock to determine if any other vmas are locking the same memory, the check for VM_LOCKED in the oom reaper is racy. This is especially noticeable on architectures such as powerpc where clearing a huge pmd requires serialize_against_pte_lookup(). If the pmd is zapped by the oom reaper during follow_page_mask() after the check for pmd_none() is bypassed, this ends up deferencing a NULL ptl or a kernel oops. Fix this by manually freeing all possible memory from the mm before doing the munlock and then setting MMF_OOM_SKIP. The oom reaper can not run on the mm anymore so the munlock is safe to do in exit_mmap(). It also matches the logic that the oom reaper currently uses for determining when to set MMF_OOM_SKIP itself, so there's no new risk of excessive oom killing. This issue fixes CVE-2018-1000200. Link: http://lkml.kernel.org/r/alpine.DEB.2.21.1804241526320.238665@chino.kir.corp.google.com Fixes: 212925802454 ("mm: oom: let oom_reap_task and exit_mmap run concurrently") Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
4837fe37ad |
mm, oom_reaper: fix memory corruption
David Rientjes has reported the following memory corruption while the oom reaper tries to unmap the victims address space BUG: Bad page map in process oom_reaper pte:6353826300000000 pmd:00000000 addr:00007f50cab1d000 vm_flags:08100073 anon_vma:ffff9eea335603f0 mapping: (null) index:7f50cab1d file: (null) fault: (null) mmap: (null) readpage: (null) CPU: 2 PID: 1001 Comm: oom_reaper Call Trace: unmap_page_range+0x1068/0x1130 __oom_reap_task_mm+0xd5/0x16b oom_reaper+0xff/0x14c kthread+0xc1/0xe0 Tetsuo Handa has noticed that the synchronization inside exit_mmap is insufficient. We only synchronize with the oom reaper if tsk_is_oom_victim which is not true if the final __mmput is called from a different context than the oom victim exit path. This can trivially happen from context of any task which has grabbed mm reference (e.g. to read /proc/<pid>/ file which requires mm etc.). The race would look like this oom_reaper oom_victim task mmget_not_zero do_exit mmput __oom_reap_task_mm mmput __mmput exit_mmap remove_vma unmap_page_range Fix this issue by providing a new mm_is_oom_victim() helper which operates on the mm struct rather than a task. Any context which operates on a remote mm struct should use this helper in place of tsk_is_oom_victim. The flag is set in mark_oom_victim and never cleared so it is stable in the exit_mmap path. Debugged by Tetsuo Handa. Link: http://lkml.kernel.org/r/20171210095130.17110-1-mhocko@kernel.org Fixes: 212925802454 ("mm: oom: let oom_reap_task and exit_mmap run concurrently") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: David Rientjes <rientjes@google.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Argangeli <andrea@kernel.org> Cc: <stable@vger.kernel.org> [4.14] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Michal Hocko
|
6b31d5955c |
mm, oom: fix potential data corruption when oom_reaper races with writer
Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ingo Molnar
|
3f07c01441 |
sched/headers: Prepare for new header dependencies before moving code to <linux/sched/signal.h>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/signal.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Tetsuo Handa
|
38531201c1 |
mm, oom: enforce exit_oom_victim on current task
There are no users of exit_oom_victim on !current task anymore so enforce the API to always work on the current. Link: http://lkml.kernel.org/r/1472119394-11342-8-git-send-email-mhocko@kernel.org Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
7d2e7a22cf |
oom, suspend: fix oom_killer_disable vs. pm suspend properly
Commit 74070542099c ("oom, suspend: fix oom_reaper vs. oom_killer_disable race") has workaround an existing race between oom_killer_disable and oom_reaper by adding another round of try_to_freeze_tasks after the oom killer was disabled. This was the easiest thing to do for a late 4.7 fix. Let's fix it properly now. After "oom: keep mm of the killed task available" we no longer have to call exit_oom_victim from the oom reaper because we have stable mm available and hide the oom_reaped mm by MMF_OOM_SKIP flag. So let's remove exit_oom_victim and the race described in the above commit doesn't exist anymore if. Unfortunately this alone is not sufficient for the oom_killer_disable usecase because now we do not have any reliable way to reach exit_oom_victim (the victim might get stuck on a way to exit for an unbounded amount of time). OOM killer can cope with that by checking mm flags and move on to another victim but we cannot do the same for oom_killer_disable as we would lose the guarantee of no further interference of the victim with the rest of the system. What we can do instead is to cap the maximum time the oom_killer_disable waits for victims. The only current user of this function (pm suspend) already has a concept of timeout for back off so we can reuse the same value there. Let's drop set_freezable for the oom_reaper kthread because it is no longer needed as the reaper doesn't wake or thaw any processes. Link: http://lkml.kernel.org/r/1472119394-11342-7-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Oleg Nesterov <oleg@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
862e3073b3 |
mm, oom: get rid of signal_struct::oom_victims
After "oom: keep mm of the killed task available" we can safely detect an oom victim by checking task->signal->oom_mm so we do not need the signal_struct counter anymore so let's get rid of it. This alone wouldn't be sufficient for nommu archs because exit_oom_victim doesn't hide the process from the oom killer anymore. We can, however, mark the mm with a MMF flag in __mmput. We can reuse MMF_OOM_REAPED and rename it to a more generic MMF_OOM_SKIP. Link: http://lkml.kernel.org/r/1472119394-11342-6-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Oleg Nesterov <oleg@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
7c5f64f844 |
mm: oom: deduplicate victim selection code for memcg and global oom
When selecting an oom victim, we use the same heuristic for both memory cgroup and global oom. The only difference is the scope of tasks to select the victim from. So we could just export an iterator over all memcg tasks and keep all oom related logic in oom_kill.c, but instead we duplicate pieces of it in memcontrol.c reusing some initially private functions of oom_kill.c in order to not duplicate all of it. That looks ugly and error prone, because any modification of select_bad_process should also be propagated to mem_cgroup_out_of_memory. Let's rework this as follows: keep all oom heuristic related code private to oom_kill.c and make oom_kill.c use exported memcg functions when it's really necessary (like in case of iterating over memcg tasks). Link: http://lkml.kernel.org/r/1470056933-7505-1-git-send-email-vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
1af8bb4326 |
mm, oom: fortify task_will_free_mem()
task_will_free_mem is rather weak. It doesn't really tell whether the task has chance to drop its mm. 98748bd72200 ("oom: consider multi-threaded tasks in task_will_free_mem") made a first step into making it more robust for multi-threaded applications so now we know that the whole process is going down and probably drop the mm. This patch builds on top for more complex scenarios where mm is shared between different processes - CLONE_VM without CLONE_SIGHAND, or in kernel use_mm(). Make sure that all processes sharing the mm are killed or exiting. This will allow us to replace try_oom_reaper by wake_oom_reaper because task_will_free_mem implies the task is reapable now. Therefore all paths which bypass the oom killer are now reapable and so they shouldn't lock up the oom killer. Link: http://lkml.kernel.org/r/1466426628-15074-8-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
fbe84a09da |
mm,oom: remove unused argument from oom_scan_process_thread().
oom_scan_process_thread() does not use totalpages argument. oom_badness() uses it. Link: http://lkml.kernel.org/r/1463796041-7889-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
2a966b77ae |
mm: oom: add memcg to oom_control
It's a part of oom context just like allocation order and nodemask, so let's move it to oom_control instead of passing it in the argument list. Link: http://lkml.kernel.org/r/40e03fd7aaf1f55c75d787128d6d17c5a71226c2.1464358556.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
c96fc2d85f |
signal: make oom_flags a bool
Currently the size of "struct signal_struct"->oom_flags member is sizeof(unsigned) bytes, but only one flag OOM_FLAG_ORIGIN which is updated by current thread is defined. We can convert OOM_FLAG_ORIGIN into a bool, and reuse the saved bytes for updating from the OOM killer and/or the OOM reaper thread. By the way, do we care about a race window between run_store() and swapoff() because it would be theoretically possible that two threads sharing the "struct signal_struct" concurrently call respective functions? If we care, we can make oom_flags an atomic_t. Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
98748bd722 |
oom: consider multi-threaded tasks in task_will_free_mem
task_will_free_mem is a misnomer for a more complex PF_EXITING test for early break out from the oom killer because it is believed that such a task would release its memory shortly and so we do not have to select an oom victim and perform a disruptive action. Currently we make sure that the given task is not participating in the core dumping because it might get blocked for a long time - see commit d003f371b270 ("oom: don't assume that a coredumping thread will exit soon"). The check can still do better though. We shouldn't consider the task unless the whole thread group is going down. This is rather unlikely but not impossible. A single exiting thread would surely leave all the address space behind. If we are really unlucky it might get stuck on the exit path and keep its TIF_MEMDIE and so block the oom killer. Link: http://lkml.kernel.org/r/1460452756-15491-1-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
3ef22dfff2 |
oom, oom_reaper: try to reap tasks which skip regular OOM killer path
If either the current task is already killed or PF_EXITING or a selected task is PF_EXITING then the oom killer is suppressed and so is the oom reaper. This patch adds try_oom_reaper which checks the given task and queues it for the oom reaper if that is safe to be done meaning that the task doesn't share the mm with an alive process. This might help to release the memory pressure while the task tries to exit. [akpm@linux-foundation.org: fix nommu build] Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Raushaniya Maksudova <rmaksudova@parallels.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
aaf4fb712b |
include/linux/oom.h: remove undefined oom_kills_count()/note_oom_kill()
A leftover from commit c32b3cbe0d06 ("oom, PM: make OOM detection in the freezer path raceless"). Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
36324a990c |
oom: clear TIF_MEMDIE after oom_reaper managed to unmap the address space
When oom_reaper manages to unmap all the eligible vmas there shouldn't be much of the freable memory held by the oom victim left anymore so it makes sense to clear the TIF_MEMDIE flag for the victim and allow the OOM killer to select another task. The lack of TIF_MEMDIE also means that the victim cannot access memory reserves anymore but that shouldn't be a problem because it would get the access again if it needs to allocate and hits the OOM killer again due to the fatal_signal_pending resp. PF_EXITING check. We can safely hide the task from the OOM killer because it is clearly not a good candidate anymore as everyhing reclaimable has been torn down already. This patch will allow to cap the time an OOM victim can keep TIF_MEMDIE and thus hold off further global OOM killer actions granted the oom reaper is able to take mmap_sem for the associated mm struct. This is not guaranteed now but further steps should make sure that mmap_sem for write should be blocked killable which will help to reduce such a lock contention. This is not done by this patch. Note that exit_oom_victim might be called on a remote task from __oom_reap_task now so we have to check and clear the flag atomically otherwise we might race and underflow oom_victims or wake up waiters too early. Signed-off-by: Michal Hocko <mhocko@suse.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
8989e4c7d4 |
mm, oom: add description of struct oom_control
Describe the purpose of struct oom_control and what each member does. Also make gfp_mask and order const since they are never manipulated or passed to functions that discard the qualifier. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
54e9e29132 |
mm, oom: pass an oom order of -1 when triggered by sysrq
The force_kill member of struct oom_control isn't needed if an order of -1 is used instead. This is the same as order == -1 in struct compact_control which requires full memory compaction. This patch introduces no functional change. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
6e0fc46dc2 |
mm, oom: organize oom context into struct
There are essential elements to an oom context that are passed around to multiple functions. Organize these elements into a new struct, struct oom_control, that specifies the context for an oom condition. This patch introduces no functional change. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
dc56401fc9 |
mm: oom_kill: simplify OOM killer locking
The zonelist locking and the oom_sem are two overlapping locks that are used to serialize global OOM killing against different things. The historical zonelist locking serializes OOM kills from allocations with overlapping zonelists against each other to prevent killing more tasks than necessary in the same memory domain. Only when neither tasklists nor zonelists from two concurrent OOM kills overlap (tasks in separate memcgs bound to separate nodes) are OOM kills allowed to execute in parallel. The younger oom_sem is a read-write lock to serialize OOM killing against the PM code trying to disable the OOM killer altogether. However, the OOM killer is a fairly cold error path, there is really no reason to optimize for highly performant and concurrent OOM kills. And the oom_sem is just flat-out redundant. Replace both locking schemes with a single global mutex serializing OOM kills regardless of context. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
16e951966f |
mm: oom_kill: clean up victim marking and exiting interfaces
Rename unmark_oom_victim() to exit_oom_victim(). Marking and unmarking are related in functionality, but the interface is not symmetrical at all: one is an internal OOM killer function used during the killing, the other is for an OOM victim to signal its own death on exit later on. This has locking implications, see follow-up changes. While at it, rename mark_tsk_oom_victim() to mark_oom_victim(), which is easier on the eye. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Balasubramani Vivekanandan
|
2415b9f5cb |
memcg: print cgroup information when system panics due to panic_on_oom
If kernel panics due to oom, caused by a cgroup reaching its limit, when 'compulsory panic_on_oom' is enabled, then we will only see that the OOM happened because of "compulsory panic_on_oom is enabled" but this doesn't tell the difference between mempolicy and memcg. And dumping system wide information is plain wrong and more confusing. This patch provides the information of the cgroup whose limit triggerred panic Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
c32b3cbe0d |
oom, PM: make OOM detection in the freezer path raceless
Commit 5695be142e20 ("OOM, PM: OOM killed task shouldn't escape PM suspend") has left a race window when OOM killer manages to note_oom_kill after freeze_processes checks the counter. The race window is quite small and really unlikely and partial solution deemed sufficient at the time of submission. Tejun wasn't happy about this partial solution though and insisted on a full solution. That requires the full OOM and freezer's task freezing exclusion, though. This is done by this patch which introduces oom_sem RW lock and turns oom_killer_disable() into a full OOM barrier. oom_killer_disabled check is moved from the allocation path to the OOM level and we take oom_sem for reading for both the check and the whole OOM invocation. oom_killer_disable() takes oom_sem for writing so it waits for all currently running OOM killer invocations. Then it disable all the further OOMs by setting oom_killer_disabled and checks for any oom victims. Victims are counted via mark_tsk_oom_victim resp. unmark_oom_victim. The last victim wakes up all waiters enqueued by oom_killer_disable(). Therefore this function acts as the full OOM barrier. The page fault path is covered now as well although it was assumed to be safe before. As per Tejun, "We used to have freezing points deep in file system code which may be reacheable from page fault." so it would be better and more robust to not rely on freezing points here. Same applies to the memcg OOM killer. out_of_memory tells the caller whether the OOM was allowed to trigger and the callers are supposed to handle the situation. The page allocation path simply fails the allocation same as before. The page fault path will retry the fault (more on that later) and Sysrq OOM trigger will simply complain to the log. Normally there wouldn't be any unfrozen user tasks after try_to_freeze_tasks so the function will not block. But if there was an OOM killer racing with try_to_freeze_tasks and the OOM victim didn't finish yet then we have to wait for it. This should complete in a finite time, though, because - the victim cannot loop in the page fault handler (it would die on the way out from the exception) - it cannot loop in the page allocator because all the further allocation would fail and __GFP_NOFAIL allocations are not acceptable at this stage - it shouldn't be blocked on any locks held by frozen tasks (try_to_freeze expects lockless context) and kernel threads and work queues are not frozen yet Signed-off-by: Michal Hocko <mhocko@suse.cz> Suggested-by: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
49550b6055 |
oom: add helpers for setting and clearing TIF_MEMDIE
This patchset addresses a race which was described in the changelog for 5695be142e20 ("OOM, PM: OOM killed task shouldn't escape PM suspend"): : PM freezer relies on having all tasks frozen by the time devices are : getting frozen so that no task will touch them while they are getting : frozen. But OOM killer is allowed to kill an already frozen task in order : to handle OOM situtation. In order to protect from late wake ups OOM : killer is disabled after all tasks are frozen. This, however, still keeps : a window open when a killed task didn't manage to die by the time : freeze_processes finishes. The original patch hasn't closed the race window completely because that would require a more complex solution as it can be seen by this patchset. The primary motivation was to close the race condition between OOM killer and PM freezer _completely_. As Tejun pointed out, even though the race condition is unlikely the harder it would be to debug weird bugs deep in the PM freezer when the debugging options are reduced considerably. I can only speculate what might happen when a task is still runnable unexpectedly. On a plus side and as a side effect the oom enable/disable has a better (full barrier) semantic without polluting hot paths. I have tested the series in KVM with 100M RAM: - many small tasks (20M anon mmap) which are triggering OOM continually - s2ram which resumes automatically is triggered in a loop echo processors > /sys/power/pm_test while true do echo mem > /sys/power/state sleep 1s done - simple module which allocates and frees 20M in 8K chunks. If it sees freezing(current) then it tries another round of allocation before calling try_to_freeze - debugging messages of PM stages and OOM killer enable/disable/fail added and unmark_oom_victim is delayed by 1s after it clears TIF_MEMDIE and before it wakes up waiters. - rebased on top of the current mmotm which means some necessary updates in mm/oom_kill.c. mark_tsk_oom_victim is now called under task_lock but I think this should be OK because __thaw_task shouldn't interfere with any locking down wake_up_process. Oleg? As expected there are no OOM killed tasks after oom is disabled and allocations requested by the kernel thread are failing after all the tasks are frozen and OOM disabled. I wasn't able to catch a race where oom_killer_disable would really have to wait but I kinda expected the race is really unlikely. [ 242.609330] Killed process 2992 (mem_eater) total-vm:24412kB, anon-rss:2164kB, file-rss:4kB [ 243.628071] Unmarking 2992 OOM victim. oom_victims: 1 [ 243.636072] (elapsed 2.837 seconds) done. [ 243.641985] Trying to disable OOM killer [ 243.643032] Waiting for concurent OOM victims [ 243.644342] OOM killer disabled [ 243.645447] Freezing remaining freezable tasks ... (elapsed 0.005 seconds) done. [ 243.652983] Suspending console(s) (use no_console_suspend to debug) [ 243.903299] kmem_eater: page allocation failure: order:1, mode:0x204010 [...] [ 243.992600] PM: suspend of devices complete after 336.667 msecs [ 243.993264] PM: late suspend of devices complete after 0.660 msecs [ 243.994713] PM: noirq suspend of devices complete after 1.446 msecs [ 243.994717] ACPI: Preparing to enter system sleep state S3 [ 243.994795] PM: Saving platform NVS memory [ 243.994796] Disabling non-boot CPUs ... The first 2 patches are simple cleanups for OOM. They should go in regardless the rest IMO. Patches 3 and 4 are trivial printk -> pr_info conversion and they should go in ditto. The main patch is the last one and I would appreciate acks from Tejun and Rafael. I think the OOM part should be OK (except for __thaw_task vs. task_lock where a look from Oleg would appreciated) but I am not so sure I haven't screwed anything in the freezer code. I have found several surprises there. This patch (of 5): This patch is just a preparatory and it doesn't introduce any functional change. Note: I am utterly unhappy about lowmemory killer abusing TIF_MEMDIE just to wait for the oom victim and to prevent from new killing. This is just a side effect of the flag. The primary meaning is to give the oom victim access to the memory reserves and that shouldn't be necessary here. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
9879de7373 |
mm: page_alloc: embed OOM killing naturally into allocation slowpath
The OOM killing invocation does a lot of duplicative checks against the task's allocation context. Rework it to take advantage of the existing checks in the allocator slowpath. The OOM killer is invoked when the allocator is unable to reclaim any pages but the allocation has to keep looping. Instead of having a check for __GFP_NORETRY hidden in oom_gfp_allowed(), just move the OOM invocation to the true branch of should_alloc_retry(). The __GFP_FS check from oom_gfp_allowed() can then be moved into the OOM avoidance branch in __alloc_pages_may_oom(), along with the PF_DUMPCORE test. __alloc_pages_may_oom() can then signal to the caller whether the OOM killer was invoked, instead of requiring it to duplicate the order and high_zoneidx checks to guess this when deciding whether to continue. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Oleg Nesterov
|
d003f371b2 |
oom: don't assume that a coredumping thread will exit soon
oom_kill.c assumes that PF_EXITING task should exit and free the memory soon. This is wrong in many ways and one important case is the coredump. A task can sleep in exit_mm() "forever" while the coredumping sub-thread can need more memory. Change the PF_EXITING checks to take SIGNAL_GROUP_COREDUMP into account, we add the new trivial helper for that. Note: this is only the first step, this patch doesn't try to solve other problems. The SIGNAL_GROUP_COREDUMP check is obviously racy, a task can participate in coredump after it was already observed in PF_EXITING state, so TIF_MEMDIE (which also blocks oom-killer) still can be wrongly set. fatal_signal_pending() can be true because of SIGNAL_GROUP_COREDUMP so out_of_memory() and mem_cgroup_out_of_memory() shouldn't blindly trust it. And even the name/usage of the new helper is confusing, an exiting thread can only free its ->mm if it is the only/last task in thread group. [akpm@linux-foundation.org: add comment] Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
5695be142e |
OOM, PM: OOM killed task shouldn't escape PM suspend
PM freezer relies on having all tasks frozen by the time devices are getting frozen so that no task will touch them while they are getting frozen. But OOM killer is allowed to kill an already frozen task in order to handle OOM situtation. In order to protect from late wake ups OOM killer is disabled after all tasks are frozen. This, however, still keeps a window open when a killed task didn't manage to die by the time freeze_processes finishes. Reduce the race window by checking all tasks after OOM killer has been disabled. This is still not race free completely unfortunately because oom_killer_disable cannot stop an already ongoing OOM killer so a task might still wake up from the fridge and get killed without freeze_processes noticing. Full synchronization of OOM and freezer is, however, too heavy weight for this highly unlikely case. Introduce and check oom_kills counter which gets incremented early when the allocator enters __alloc_pages_may_oom path and only check all the tasks if the counter changes during the freezing attempt. The counter is updated so early to reduce the race window since allocator checked oom_killer_disabled which is set by PM-freezing code. A false positive will push the PM-freezer into a slow path but that is not a big deal. Changes since v1 - push the re-check loop out of freeze_processes into check_frozen_processes and invert the condition to make the code more readable as per Rafael Fixes: f660daac474c6f (oom: thaw threads if oom killed thread is frozen before deferring) Cc: 3.2+ <stable@vger.kernel.org> # 3.2+ Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
||
David Rientjes
|
e972a070e2 |
mm, oom: rename zonelist locking functions
try_set_zonelist_oom() and clear_zonelist_oom() are not named properly to imply that they require locking semantics to avoid out_of_memory() being reordered. zone_scan_lock is required for both functions to ensure that there is proper locking synchronization. Rename try_set_zonelist_oom() to oom_zonelist_trylock() and rename clear_zonelist_oom() to oom_zonelist_unlock() to imply there is proper locking semantics. At the same time, convert oom_zonelist_trylock() to return bool instead of int since only success and failure are tested. Signed-off-by: David Rientjes <rientjes@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qiang Huang
|
b9921ecdee |
mm: add a helper function to check may oom condition
Use helper function to check if we need to deal with oom condition. Signed-off-by: Qiang Huang <h.huangqiang@huawei.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
e1e12d2f31 |
mm, oom: fix race when specifying a thread as the oom origin
test_set_oom_score_adj() and compare_swap_oom_score_adj() are used to specify that current should be killed first if an oom condition occurs in between the two calls. The usage is short oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); ... compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); to store the thread's oom_score_adj, temporarily change it to the maximum score possible, and then restore the old value if it is still the same. This happens to still be racy, however, if the user writes OOM_SCORE_ADJ_MAX to /proc/pid/oom_score_adj in between the two calls. The compare_swap_oom_score_adj() will then incorrectly reset the old value prior to the write of OOM_SCORE_ADJ_MAX. To fix this, introduce a new oom_flags_t member in struct signal_struct that will be used for per-thread oom killer flags. KSM and swapoff can now use a bit in this member to specify that threads should be killed first in oom conditions without playing around with oom_score_adj. This also allows the correct oom_score_adj to always be shown when reading /proc/pid/oom_score. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
a9c58b907d |
mm, oom: change type of oom_score_adj to short
The maximum oom_score_adj is 1000 and the minimum oom_score_adj is -1000, so this range can be represented by the signed short type with no functional change. The extra space this frees up in struct signal_struct will be used for per-thread oom kill flags in the next patch. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
19965460e3 |
mm, memcg: make mem_cgroup_out_of_memory() static
mem_cgroup_out_of_memory() is only referenced from within file scope, so it can be marked static. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Howells
|
607ca46e97 |
UAPI: (Scripted) Disintegrate include/linux
Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michael Kerrisk <mtk.manpages@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Dave Jones <davej@redhat.com> |
||
Davidlohr Bueso
|
01dc52ebdf |
oom: remove deprecated oom_adj
The deprecated /proc/<pid>/oom_adj is scheduled for removal this month. Signed-off-by: Davidlohr Bueso <dave@gnu.org> Acked-by: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
876aafbfd9 |
mm, memcg: move all oom handling to memcontrol.c
By globally defining check_panic_on_oom(), the memcg oom handler can be moved entirely to mm/memcontrol.c. This removes the ugly #ifdef in the oom killer and cleans up the code. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Oleg Nesterov <oleg@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
9cbb78bb31 |
mm, memcg: introduce own oom handler to iterate only over its own threads
The global oom killer is serialized by the per-zonelist try_set_zonelist_oom() which is used in the page allocator. Concurrent oom kills are thus a rare event and only occur in systems using mempolicies and with a large number of nodes. Memory controller oom kills, however, can frequently be concurrent since there is no serialization once the oom killer is called for oom conditions in several different memcgs in parallel. This creates a massive contention on tasklist_lock since the oom killer requires the readside for the tasklist iteration. If several memcgs are calling the oom killer, this lock can be held for a substantial amount of time, especially if threads continue to enter it as other threads are exiting. Since the exit path grabs the writeside of the lock with irqs disabled in a few different places, this can cause a soft lockup on cpus as a result of tasklist_lock starvation. The kernel lacks unfair writelocks, and successful calls to the oom killer usually result in at least one thread entering the exit path, so an alternative solution is needed. This patch introduces a seperate oom handler for memcgs so that they do not require tasklist_lock for as much time. Instead, it iterates only over the threads attached to the oom memcg and grabs a reference to the selected thread before calling oom_kill_process() to ensure it doesn't prematurely exit. This still requires tasklist_lock for the tasklist dump, iterating children of the selected process, and killing all other threads on the system sharing the same memory as the selected victim. So while this isn't a complete solution to tasklist_lock starvation, it significantly reduces the amount of time that it is held. Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Sha Zhengju <handai.szj@taobao.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
62ce1c706f |
mm, oom: move declaration for mem_cgroup_out_of_memory to oom.h
mem_cgroup_out_of_memory() is defined in mm/oom_kill.c, so declare it in linux/oom.h rather than linux/memcontrol.h. Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
a7f638f999 |
mm, oom: normalize oom scores to oom_score_adj scale only for userspace
The oom_score_adj scale ranges from -1000 to 1000 and represents the proportion of memory available to the process at allocation time. This means an oom_score_adj value of 300, for example, will bias a process as though it was using an extra 30.0% of available memory and a value of -350 will discount 35.0% of available memory from its usage. The oom killer badness heuristic also uses this scale to report the oom score for each eligible process in determining the "best" process to kill. Thus, it can only differentiate each process's memory usage by 0.1% of system RAM. On large systems, this can end up being a large amount of memory: 256MB on 256GB systems, for example. This can be fixed by having the badness heuristic to use the actual memory usage in scoring threads and then normalizing it to the oom_score_adj scale for userspace. This results in better comparison between eligible threads for kill and no change from the userspace perspective. Suggested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Tested-by: Dave Jones <davej@redhat.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
08ab9b10d4 |
mm, oom: force oom kill on sysrq+f
The oom killer chooses not to kill a thread if: - an eligible thread has already been oom killed and has yet to exit, and - an eligible thread is exiting but has yet to free all its memory and is not the thread attempting to currently allocate memory. SysRq+F manually invokes the global oom killer to kill a memory-hogging task. This is normally done as a last resort to free memory when no progress is being made or to test the oom killer itself. For both uses, we always want to kill a thread and never defer. This patch causes SysRq+F to always kill an eligible thread and can be used to force a kill even if another oom killed thread has failed to exit. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Pekka Enberg <penberg@kernel.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |