106 Commits

Author SHA1 Message Date
Rafael J. Wysocki
ba1ca654f3 cpufreq: governor: Fix prev_load initialization in cpufreq_governor_start()
The way cpufreq_governor_start() initializes j_cdbs->prev_load is
questionable.

First off, j_cdbs->prev_cpu_wall used as a denominator in the
computation may be zero.  The case this happens is when
get_cpu_idle_time_us() returns -1 and get_cpu_idle_time_jiffy()
used to return that number is called exactly at the jiffies_64
wrap time.  It is rather hard to trigger that error, but it is not
impossible and it will just crash the kernel then.

Second, j_cdbs->prev_load is computed as the average load during
the entire time since the system started and it may not reflect the
load in the previous sampling period (as it is expected to).
That doesn't play well with the way dbs_update() uses that value.
Namely, if the update time delta (wall_time) happens do be greater
than twice the sampling rate on the first invocation of it, the
initial value of j_cdbs->prev_load (which may be completely off) will
be returned to the caller as the current load (unless it is equal to
zero and unless another CPU sharing the same policy object has a
greater load value).

For this reason, notice that the prev_load field of struct cpu_dbs_info
is only used by dbs_update() and only in that one place, so if
cpufreq_governor_start() is modified to always initialize it to 0,
it will make dbs_update() always compute the actual load first time
it checks the update time delta against the doubled sampling rate
(after initialization) and there won't be any side effects of it.

Consequently, modify cpufreq_governor_start() as described.

Fixes: 18b46abd0009 (cpufreq: governor: Be friendly towards latency-sensitive bursty workloads)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-04-25 16:21:34 +02:00
Rafael J. Wysocki
1cbc99dfe5 Merge back cpufreq changes for v4.7. 2016-04-25 15:44:01 +02:00
Rafael J. Wysocki
94862a62df Revert "cpufreq: governor: Fix negative idle_time when configured with CONFIG_HZ_PERIODIC"
Revert commit 0df35026c6a5 (cpufreq: governor: Fix negative idle_time
when configured with CONFIG_HZ_PERIODIC) that introduced a regression
by causing the ondemand cpufreq governor to misbehave for
CONFIG_TICK_CPU_ACCOUNTING unset (the frequency goes up to the max at
one point and stays there indefinitely).

The revert takes subsequent modifications of the code in question into
account.

Fixes: 0df35026c6a5 (cpufreq: governor: Fix negative idle_time when configured with CONFIG_HZ_PERIODIC)
Link: https://bugzilla.kernel.org/show_bug.cgi?id=115261
Reported-and-tested-by: Timo Valtoaho <timo.valtoaho@gmail.com>
Cc: 4.5+ <stable@vger.kernel.org> # 4.5+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-04-25 02:39:20 +02:00
Rafael J. Wysocki
2d0c58ad60 cpufreq: governor: Move abstract gov_attr_set code to seperate file
Move abstract code related to struct gov_attr_set to a separate (new)
file so it can be shared with (future) goverernors that won't share
more code with "ondemand" and "conservative".

No intentional functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-04-02 01:09:01 +02:00
Rafael J. Wysocki
0dd3c1d678 cpufreq: governor: New data type for management part of dbs_data
In addition to fields representing governor tunables, struct dbs_data
contains some fields needed for the management of objects of that
type.  As it turns out, that part of struct dbs_data may be shared
with (future) governors that won't use the common code used by
"ondemand" and "conservative", so move it to a separate struct type
and modify the code using struct dbs_data to follow.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-04-02 01:09:00 +02:00
Rafael J. Wysocki
0bed612be6 cpufreq: sched: Helpers to add and remove update_util hooks
Replace the single helper for adding and removing cpufreq utilization
update hooks, cpufreq_set_update_util_data(), with a pair of helpers,
cpufreq_add_update_util_hook() and cpufreq_remove_update_util_hook(),
and modify the users of cpufreq_set_update_util_data() accordingly.

With the new helpers, the code using them doesn't need to worry
about the internals of struct update_util_data and in particular
it doesn't need to worry about populating the func field in it
properly upfront.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-04-02 01:08:43 +02:00
Rafael J. Wysocki
539a4c4247 cpufreq: governor: Always schedule work on the CPU running update
Modify dbs_irq_work() to always schedule the process-context work
on the current CPU which also ran the dbs_update_util_handler()
that the irq_work being handled came from.

This causes the entire frequency update handling (involving the
"ondemand" or "conservative" governors) to be carried out by the
CPU whose frequency is to be updated and reduces the overall amount
of inter-CPU noise related to cpufreq.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-22 23:13:36 +01:00
Rafael J. Wysocki
adaf9fcd13 cpufreq: Move scheduler-related code to the sched directory
Create cpufreq.c under kernel/sched/ and move the cpufreq code
related to the scheduler to that file and to sched.h.

Redefine cpufreq_update_util() as a static inline function to avoid
function calls at its call sites in the scheduler code (as suggested
by Peter Zijlstra).

Also move the definition of struct update_util_data and declaration
of cpufreq_set_update_util_data() from include/linux/cpufreq.h to
include/linux/sched.h.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-03-10 20:44:47 +01:00
Rafael J. Wysocki
08f511fd41 cpufreq: Reduce cpufreq_update_util() overhead a bit
Use the observation that cpufreq_update_util() is only called
by the scheduler with rq->lock held, so the callers of
cpufreq_set_update_util_data() can use synchronize_sched()
instead of synchronize_rcu() to wait for cpufreq_update_util()
to complete.  Moreover, if they are updated to do that,
rcu_read_(un)lock() calls in cpufreq_update_util() might be
replaced with rcu_read_(un)lock_sched(), respectively, but
those aren't really necessary, because the scheduler calls
that function from RCU-sched read-side critical sections
already.

In addition to that, if cpufreq_set_update_util_data() checks
the func field in the struct update_util_data before setting
the per-CPU pointer to it, the data->func check may be dropped
from cpufreq_update_util() as well.

Make the above changes to reduce the overhead from
cpufreq_update_util() in the scheduler paths invoking it
and to make the cleanup after removing its callbacks less
heavy-weight somewhat.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-03-09 15:07:58 +01:00
Viresh Kumar
f737236b12 cpufreq: governor: Drop unnecessary checks from show() and store()
The show() and store() routines in the cpufreq-governor core don't need
to check if the struct governor_attr they want to use really provides
the callbacks they need as expected (if that's not the case, it means a
bug in the code anyway), so change them to avoid doing that.

Also change the error value to -EBUSY, if the governor is getting
removed and we aren't allowed to store any more changes.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:41:11 +01:00
Rafael J. Wysocki
27de348239 cpufreq: governor: Fix race in dbs_update_util_handler()
There is a scenario that may lead to undesired results in
dbs_update_util_handler().  Namely, if two CPUs sharing a policy
enter the funtion at the same time, pass the sample delay check
and then one of them is stalled until dbs_work_handler() (queued
up by the other CPU) clears the work counter, it may update the
work counter and queue up another work item prematurely.

To prevent that from happening, use the observation that the CPU
queuing up a work item in dbs_update_util_handler() updates the
last sample time.  This means that if another CPU was stalling after
passing the sample delay check and now successfully updated the work
counter as a result of the race described above, it will see the new
value of the last sample time which is different from what it used in
the sample delay check before.  If that happens, the sample delay
check passed previously is not valid any more, so the CPU should not
continue.

Fixes: f17cbb53783c (cpufreq: governor: Avoid atomic operations in hot paths)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:10 +01:00
Rafael J. Wysocki
94ab5e030f cpufreq: governor: Make gov_set_update_util() static
The gov_set_update_util() routine is only used internally by the
common governor code and it doesn't need to be exported, so make
it static.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:10 +01:00
Rafael J. Wysocki
1112e9d83e cpufreq: governor: Narrow down the dbs_data_mutex coverage
Since cpufreq_governor_dbs() is now always called with policy->rwsem
held, it cannot be executed twice in parallel for the same policy.
Thus it is not necessary to hold dbs_data_mutex around the invocations
of cpufreq_governor_start/stop/limits() from it as those functions
never modify any data that can be shared between different policies.

However, cpufreq_governor_dbs() may be executed twice in parallal
for different policies using the same gov->gdbs_data object and
dbs_data_mutex is still necessary to protect that object against
concurrent updates.

For this reason, narrow down the dbs_data_mutex locking to
cpufreq_governor_init/exit() where it is needed and rename the
mutex to gov_dbs_data_mutex to reflect its purpose.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:10 +01:00
Rafael J. Wysocki
e3f5ed9393 cpufreq: governor: Make dbs_data_mutex static
That mutex is only used by cpufreq_governor_dbs() and it doesn't
need to be exported to modules, so make it static and drop the
export incantation.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:09 +01:00
Rafael J. Wysocki
8c8f77fd07 cpufreq: governor: Move per-CPU data to the common code
After previous changes there is only one piece of code in the
ondemand governor making references to per-CPU data structures,
but it can be easily modified to avoid doing that, so modify it
accordingly and move the definition of per-CPU data used by the
ondemand and conservative governors to the common code.  Next,
change that code to access the per-CPU data structures directly
rather than via a governor callback.

This causes the ->get_cpu_cdbs governor callback to become
unnecessary, so drop it along with the macro and function
definitions related to it.

Finally, drop the definitions of struct od_cpu_dbs_info_s and
struct cs_cpu_dbs_info_s that aren't necessary any more.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:09 +01:00
Rafael J. Wysocki
7d5a9956af cpufreq: governor: Make governor private data per-policy
Some fields in struct od_cpu_dbs_info_s and struct cs_cpu_dbs_info_s
are only used for a limited set of CPUs.  Namely, if a policy is
shared between multiple CPUs, those fields will only be used for one
of them (policy->cpu).  This means that they really are per-policy
rather than per-CPU and holding room for them in per-CPU data
structures is generally wasteful.  Also moving those fields into
per-policy data structures will allow some significant simplifications
to be made going forward.

For this reason, introduce struct cs_policy_dbs_info and
struct od_policy_dbs_info to hold those fields.  Define each of the
new structures as an extension of struct policy_dbs_info (such that
struct policy_dbs_info is embedded in each of them) and introduce
new ->alloc and ->free governor callbacks to allocate and free
those structures, respectively, such that ->alloc() will return
a pointer to the struct policy_dbs_info embedded in the allocated
data structure and ->free() will take that pointer as its argument.

With that, modify the code accessing the data fields in question
in per-CPU data objects to look for them in the new structures
via the struct policy_dbs_info pointer available to it and drop
them from struct od_cpu_dbs_info_s and struct cs_cpu_dbs_info_s.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:08 +01:00
Rafael J. Wysocki
a33cce1c6c cpufreq: governor: Fix CPU load information updates via ->store
The ->store() callbacks of some tunable sysfs attributes of the
ondemand and conservative governors trigger immediate updates of
the CPU load information for all CPUs "governed" by the given
dbs_data by walking the cpu_dbs_info structures for all online
CPUs in the system and updating them.

This is questionable for two reasons.  First, it may lead to a lot of
extra overhead on a system with many CPUs if the given dbs_data is
only associated with a few of them.  Second, if governor tunables are
per-policy, the CPUs associated with the other sets of governor
tunables should not be updated.

To address this issue, use the observation that in all of the places
in question the update operation may be carried out in the same way
(because all of the tunables involved are now located in struct
dbs_data and readily available to the common code) and make the
code in those places invoke the same (new) helper function that
will carry out the update correctly.

That new function always checks the ignore_nice_load tunable value
and updates the CPUs' prev_cpu_nice data fields if that's set, which
wasn't done by the original code in store_io_is_busy(), but it
should have been done in there too.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:08 +01:00
Rafael J. Wysocki
702c9e542a cpufreq: governor: Add a ->start callback for governors
To avoid having to check the governor type explicitly in the common
code in order to initialize data structures specific to the governor
type properly, add a ->start callback to struct dbs_governor and
use it to initialize those data structures for the ondemand and
conservative governors.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:07 +01:00
Rafael J. Wysocki
8847e038c1 cpufreq: governor: Move io_is_busy to struct dbs_data
The io_is_busy governor tunable is only used by the ondemand governor
and is located in the ondemand-specific data structure, but it is
looked at by the common governor code that has to do ugly things to
get to that value, so move it to struct dbs_data and modify ondemand
accordingly.

Since the conservative governor never touches that field, it will
be always 0 for that governor and it won't have any effect on the
results of computations in that case.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:06 +01:00
Rafael J. Wysocki
574ef14d5d cpufreq: governor: Close dbs_data update race condition
It is possible for a dbs_data object to be updated after its
usage counter has become 0.  That may happen if governor_store()
runs (via a govenor tunable sysfs attribute write) in parallel
with cpufreq_governor_exit() called for the last cpufreq policy
associated with the dbs_data in question.  In that case, if
governor_store() acquires dbs_data->mutex right after
cpufreq_governor_exit() has released it, the ->store() callback
invoked by it may operate on dbs_data with no users.  Although
sysfs will cause the kobject_put() in cpufreq_governor_exit() to
block until governor_store() has returned, that situation may
lead to some unexpected results, depending on the implementation
of the ->store callback, and therefore it should be avoided.

To that end, modify governor_store() to check the dbs_data's
usage count before invoking the ->store() callback and return
an error if it is 0 at that point.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:06 +01:00
Rafael J. Wysocki
07aa4402a0 cpufreq: governor: Use microseconds in sample delay computations
Do not convert microseconds to jiffies and the other way around
in governor computations related to the sampling rate and sample
delay and drop delay_for_sampling_rate() which isn't of any use
then.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:05 +01:00
Rafael J. Wysocki
57dc3bcd45 cpufreq: governor: Move rate_mult to struct policy_dbs
The rate_mult field in struct od_cpu_dbs_info_s is used by the code
shared with the conservative governor and to access it that code
has to do an ugly governor type check.  However, first of all it
is ever only used for policy->cpu, so it is per-policy rather than
per-CPU and second, it is initialized to 1 by cpufreq_governor_start(),
so if the conservative governor never modifies it, it will have no
effect on the results of any computations.

For these reasons, move rate_mult to struct policy_dbs_info (as a
common field).

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:04 +01:00
Rafael J. Wysocki
78347cdb89 cpufreq: governor: Reset sample delay in store_sampling_rate()
If store_sampling_rate() updates the sample delay when the ondemand
governor is in the middle of its high/low dance (OD_SUB_SAMPLE sample
type is set), the governor will still do the bottom half of the
previous sample which may take too much time.

To prevent that from happening, change store_sampling_rate() to always
reset the sample delay to 0 which also is consistent with the new
behavior of cpufreq_governor_limits().

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:04 +01:00
Rafael J. Wysocki
4cccf75557 cpufreq: governor: Get rid of the ->gov_check_cpu callback
The way the ->gov_check_cpu governor callback is used by the ondemand
and conservative governors is not really straightforward.  Namely, the
governor calls dbs_check_cpu() that updates the load information for
the policy and the invokes ->gov_check_cpu() for the governor.

To get rid of that entanglement, notice that cpufreq_governor_limits()
doesn't need to call dbs_check_cpu() directly.  Instead, it can simply
reset the sample delay to 0 which will cause a sample to be taken
immediately.  The result of that is practically equivalent to calling
dbs_check_cpu() except that it will trigger a full update of governor
internal state and not just the ->gov_check_cpu() part.

Following that observation, make cpufreq_governor_limits() reset
the sample delay and turn dbs_check_cpu() into a function that will
simply evaluate the load and return the result called dbs_update().

That function can now be called by governors from the routines that
previously were pointed to by ->gov_check_cpu and those routines
can be called directly by each governor instead of dbs_check_cpu().
This way ->gov_check_cpu becomes unnecessary, so drop it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:04 +01:00
Rafael J. Wysocki
57eb832f90 cpufreq: governor: Clean up load-related computations
Clean up some load-related computations in dbs_check_cpu() and
cpufreq_governor_start() to get rid of unnecessary operations and
type casts and make the code easier to read.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:03 +01:00
Rafael J. Wysocki
679b8fe43a cpufreq: governor: Fix nice contribution computation in dbs_check_cpu()
The contribution of the CPU nice time to the idle time in dbs_check_cpu()
is computed in a bogus way, as the code may subtract current and previous
nice values for different CPUs.

That doesn't matter for cases when cpufreq policies are not shared,
but may lead to problems otherwise.

Fix the computation and simplify it to avoid taking unnecessary steps.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:03 +01:00
Rafael J. Wysocki
e4db2813d2 cpufreq: governor: Avoid atomic operations in hot paths
Rework the handling of work items by dbs_update_util_handler() and
dbs_work_handler() so the former (which is executed in scheduler
paths) only uses atomic operations when absolutely necessary.  That
is, when the policy is shared and dbs_update_util_handler() has
already decided that this is the time to queue up a work item.

In particular, this avoids the atomic ops entirely on platforms where
policy objects are never shared.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:03 +01:00
Rafael J. Wysocki
f62b93740c cpufreq: governor: Simplify gov_cancel_work() slightly
The atomic work counter incrementation in gov_cancel_work() is not
necessary any more, because work items won't be queued up after
gov_clear_update_util() anyway, so drop it along with the comment
about how it may be missed by the gov_clear_update_util().

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:41:02 +01:00
Rafael J. Wysocki
b9db42730a cpufreq: governor: Avoid irq_work_queue_on() crash on non-SMP ARM
As it turns out, irq_work_queue_on() will crash if invoked on
non-SMP ARM platforms, but in fact it is not necessary to use that
function in the cpufreq governor code (as it doesn't matter to that
code which CPU will handle the irq_work), so change it to always use
irq_work_queue().

Fixes: 8fb47ff100af (cpufreq: governor: Replace timers with utilization update callbacks)
Reported-and-tested-by: Guenter Roeck <linux@roeck-us.net>
Reported-and-tested-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:41:02 +01:00
Viresh Kumar
aded387b94 cpufreq: conservative: Update sample_delay_ns immediately
The ondemand governor already updates sample_delay_ns immediately on
updates to the sampling rate, but conservative doesn't do that.

It was left out earlier as the code was really too complex to get
that done easily.  Things are sorted out very well now, however, and
the conservative governor can be modified to follow ondemand in that
respect.

Moreover, since the code needed to implement that in the
conservative governor would be identical to the corresponding
ondemand governor's code, make that code common and change both
governors to use it.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:41:01 +01:00
Viresh Kumar
581c214b21 cpufreq: governor: No need to manage state machine now
The cpufreq core now guarantees that policy->rwsem won't be dropped
while running the ->governor callback for the CPUFREQ_GOV_POLICY_EXIT
event and will be held acquired until the complete sequence of governor
state changes has finished.

This allows governor state machine checks to be dropped from multiple
functions in cpufreq_governor.c.

This also means that policy_dbs->policy can be initialized upfront, so
the entire initialization of struct policy_dbs can be carried out in
one place.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:41:01 +01:00
Viresh Kumar
c54df07184 cpufreq: governor: Create and traverse list of policy_dbs to avoid deadlock
The dbs_data_mutex lock is currently used in two places.  First,
cpufreq_governor_dbs() uses it to guarantee mutual exclusion between
invocations of governor operations from the core.  Second, it is used by
ondemand governor's update_sampling_rate() to ensure the stability of
data structures walked by it.

The second usage is quite problematic, because update_sampling_rate() is
called from a governor sysfs attribute's ->store callback and that leads
to a deadlock scenario involving cpufreq_governor_exit() which runs
under dbs_data_mutex.  Thus it is better to rework the code so
update_sampling_rate() doesn't need to acquire dbs_data_mutex.

To that end, rework update_sampling_rate() to walk a list of policy_dbs
objects supported by the dbs_data one it has been called for (instead of
walking cpu_dbs_info object for all CPUs).  The list manipulation is
protected with dbs_data->mutex which also is held around the execution
of update_sampling_rate(), it is not necessary to hold dbs_data_mutex in
that function any more.

Reported-by: Juri Lelli <juri.lelli@arm.com>
Reported-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Subject & changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:40:59 +01:00
Viresh Kumar
c443563036 cpufreq: governor: New sysfs show/store callbacks for governor tunables
The ondemand and conservative governors use the global-attr or freq-attr
structures to represent sysfs attributes corresponding to their tunables
(which of them is actually used depends on whether or not different
policy objects can use the same governor with different tunables at the
same time and, consequently, on where those attributes are located in
sysfs).

Unfortunately, in the freq-attr case, the standard cpufreq show/store
sysfs attribute callbacks are applied to the governor tunable attributes
and they always acquire the policy->rwsem lock before carrying out the
operation.  That may lead to an ABBA deadlock if governor tunable
attributes are removed under policy->rwsem while one of them is being
accessed concurrently (if sysfs attributes removal wins the race, it
will wait for the access to complete with policy->rwsem held while the
attribute callback will block on policy->rwsem indefinitely).

We attempted to address this issue by dropping policy->rwsem around
governor tunable attributes removal (that is, around invocations of the
->governor callback with the event arg equal to CPUFREQ_GOV_POLICY_EXIT)
in cpufreq_set_policy(), but that opened up race conditions that had not
been possible with policy->rwsem held all the time.  Therefore
policy->rwsem cannot be dropped in cpufreq_set_policy() at any point,
but the deadlock situation described above must be avoided too.

To that end, use the observation that in principle governor tunables may
be represented by the same data type regardless of whether the governor
is system-wide or per-policy and introduce a new structure, struct
governor_attr, for representing them and new corresponding macros for
creating show/store sysfs callbacks for them.  Also make their parent
kobject use a new kobject type whose default show/store callbacks are
not related to the standard core cpufreq ones in any way (and they don't
acquire policy->rwsem in particular).

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Subject & changelog + rebase ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:40:58 +01:00
Viresh Kumar
ff4b17895e cpufreq: governor: Move common tunables to 'struct dbs_data'
There are a few common tunables shared between the ondemand and
conservative governors.  Move them to struct dbs_data to simplify
code.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Juri Lelli <juri.lelli@arm.com>
Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09 14:40:58 +01:00
Rafael J. Wysocki
fafd5e8ab2 cpufreq: governor: Drop pointless goto from cpufreq_governor_init()
It is silly to jump around "return 0", so don't do that.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:57 +01:00
Rafael J. Wysocki
686cc637c9 cpufreq: governor: Rename skip_work to work_count
The skip_work field in struct policy_dbs_info technically is a
counter, so give it a new name to reflect that.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:57 +01:00
Rafael J. Wysocki
cea6a9e772 cpufreq: governor: Symmetrize cpu_dbs_info initialization and cleanup
Make the initialization of struct cpu_dbs_info objects in
alloc_policy_dbs_info() and the code that cleans them up in
free_policy_dbs_info() more symmetrical.  In particular,
set/clear the update_util.func field in those functions along
with the policy_dbs field.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:56 +01:00
Rafael J. Wysocki
bc505475b8 cpufreq: governor: Rearrange governor data structures
The struct policy_dbs_info objects representing per-policy governor
data are not accessible directly from the corresponding policy
objects.  To access them, one has to get a pointer to the
struct cpu_dbs_info of policy->cpu and use the policy_dbs field of
that which isn't really straightforward.

To address that rearrange the governor data structures so the
governor_data pointer in struct cpufreq_policy will point to
struct policy_dbs_info (instead of struct dbs_data) and that will
contain a pointer to struct dbs_data.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:56 +01:00
Rafael J. Wysocki
e975189400 cpufreq: governor: Simplify cpufreq_governor_limits()
Use the observation that cpufreq_governor_limits() doesn't have to
get to the policy object it wants to manipulate by walking the
reference chain cdbs->policy_dbs->policy, as the final pointer is
actually equal to its argument, and make it access the policy
object directy via its argument.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:56 +01:00
Rafael J. Wysocki
d10b5eb5fc cpufreq: governor: Drop cpu argument from dbs_check_cpu()
Since policy->cpu is always passed as the second argument to
dbs_check_cpu(), it is not really necessary to pass it, because
the function can obtain that value via its first argument just fine.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:55 +01:00
Rafael J. Wysocki
e40e7b255e cpufreq: governor: Rename cpu_common_dbs_info to policy_dbs_info
The struct cpu_common_dbs_info structure represents the per-policy
part of the governor data (for the ondemand and conservative
governors), but its name doesn't reflect its purpose.

Rename it to struct policy_dbs_info and rename variables related to
it accordingly.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:55 +01:00
Rafael J. Wysocki
ea59ee0dc9 cpufreq: governor: Drop the gov pointer from struct dbs_data
Since it is possible to obtain a pointer to struct dbs_governor
from a pointer to the struct governor embedded in it with the help
of container_of(), the additional gov pointer in struct dbs_data
isn't really necessary.

Drop that pointer and make the code using it reach the dbs_governor
object via policy->governor.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:55 +01:00
Rafael J. Wysocki
906a6e5aae cpufreq: governor: Rework cpufreq_governor_dbs()
Since it is possible to obtain a pointer to struct dbs_governor
from a pointer to the struct governor embedded in it via
container_of(), the second argument of cpufreq_governor_init()
is not necessary.  Accordingly, cpufreq_governor_dbs() doesn't
need its second argument either and the ->governor callbacks
for both the ondemand and conservative governors may be set
to cpufreq_governor_dbs() directly.  Make that happen.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:54 +01:00
Rafael J. Wysocki
7bdad34d08 cpufreq: governor: Rename some data types and variables
The ondemand and conservative governors are represented by
struct common_dbs_data whose name doesn't reflect the purpose it
is used for, so rename it to struct dbs_governor and rename
variables of that type accordingly.

No functional changes.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:54 +01:00
Rafael J. Wysocki
5da3dd1e00 cpufreq: governor: Avoid passing dbs_data pointers around unnecessarily
Do not pass struct dbs_data pointers to the family of functions
implementing governor operations in cpufreq_governor.c as they can
take that pointer from policy->governor by themselves.

The cpufreq_governor_init() case is slightly more complicated, since
policy->governor may be NULL when it is invoked, but then it can reach
the pointer in question via its cdata argument just fine.

While at it, rework cpufreq_governor_dbs() to avoid a pointless
policy_governor check in the CPUFREQ_GOV_POLICY_INIT case.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:53 +01:00
Rafael J. Wysocki
2bb8d94fb0 cpufreq: governor: Use common mutex for dbs_data protection
Every governor relying on the common code in cpufreq_governor.c
has to provide its own mutex in struct common_dbs_data.  However,
there actually is no need to have a separate mutex per governor
for this purpose, they may be using the same global mutex just
fine.  Accordingly, introduce a single common mutex for that and
drop the mutex field from struct common_dbs_data.

That at least will ensure that the mutex is always present and
initialized regardless of what the particular governors do.

Another benefit is that the common code does not need a pointer to
a governor-related structure to get to the mutex which sometimes
helps.

Finally, it makes the code generally easier to follow.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:53 +01:00
Rafael J. Wysocki
9be4fd2c77 cpufreq: governor: Replace timers with utilization update callbacks
Instead of using a per-CPU deferrable timer for queuing up governor
work items, register a utilization update callback that will be
invoked from the scheduler on utilization changes.

The sampling rate is still the same as what was used for the
deferrable timers and the added irq_work overhead should be offset by
the eliminated timers overhead, so in theory the functional impact of
this patch should not be significant.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
2016-03-09 14:40:53 +01:00
Viresh Kumar
e4b133cc4b cpufreq: Fix NULL reference crash while accessing policy->governor_data
There is a race discovered by Juri, where we are able to:
- create and read a sysfs file before policy->governor_data is being set
  to a non NULL value.
  OR
- set policy->governor_data to NULL, and reading a file before being
  destroyed.

And so such a crash is reported:

Unable to handle kernel NULL pointer dereference at virtual address 0000000c
pgd = edfc8000
[0000000c] *pgd=bfc8c835
Internal error: Oops: 17 [#1] SMP ARM
Modules linked in:
CPU: 4 PID: 1730 Comm: cat Not tainted 4.5.0-rc1+ #463
Hardware name: ARM-Versatile Express
task: ee8e8480 ti: ee930000 task.ti: ee930000
PC is at show_ignore_nice_load_gov_pol+0x24/0x34
LR is at show+0x4c/0x60
pc : [<c058f1bc>]    lr : [<c058ae88>]    psr: a0070013
sp : ee931dd0  ip : ee931de0  fp : ee931ddc
r10: ee4bc290  r9 : 00001000  r8 : ef2cb000
r7 : ee4bc200  r6 : ef2cb000  r5 : c0af57b0  r4 : ee4bc2e0
r3 : 00000000  r2 : 00000000  r1 : c0928df4  r0 : ef2cb000
Flags: NzCv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  Segment none
Control: 10c5387d  Table: adfc806a  DAC: 00000051
Process cat (pid: 1730, stack limit = 0xee930210)
Stack: (0xee931dd0 to 0xee932000)
1dc0:                                     ee931dfc ee931de0 c058ae88 c058f1a4
1de0: edce3bc0 c07bfca4 edce3ac0 00001000 ee931e24 ee931e00 c01fcb90 c058ae48
1e00: 00000001 edce3bc0 00000000 00000001 ee931e50 ee8ff480 ee931e34 ee931e28
1e20: c01fb33c c01fcb0c ee931e8c ee931e38 c01a5210 c01fb314 ee931e9c ee931e48
1e40: 00000000 edce3bf0 befe4a00 ee931f78 00000000 00000000 000001e4 00000000
1e60: c00545a8 edce3ac0 00001000 00001000 befe4a00 ee931f78 00000000 00001000
1e80: ee931ed4 ee931e90 c01fbed8 c01a5038 ed085a58 00020000 00000000 00000000
1ea0: c0ad72e4 ee931f78 ee8ff488 ee8ff480 c077f3fc 00001000 befe4a00 ee931f78
1ec0: 00000000 00001000 ee931f44 ee931ed8 c017c328 c01fbdc4 00001000 00000000
1ee0: ee8ff480 00001000 ee931f44 ee931ef8 c017c65c c03deb10 ee931fac ee931f08
1f00: c0009270 c001f290 c0a8d968 ef2cb000 ef2cb000 ee8ff480 00000020 ee8ff480
1f20: ee8ff480 befe4a00 00001000 ee931f78 00000000 00000000 ee931f74 ee931f48
1f40: c017d1ec c017c2f8 c019c724 c019c684 ee8ff480 ee8ff480 00001000 befe4a00
1f60: 00000000 00000000 ee931fa4 ee931f78 c017d2a8 c017d160 00000000 00000000
1f80: 000a9f20 00001000 befe4a00 00000003 c000ffe4 ee930000 00000000 ee931fa8
1fa0: c000fe40 c017d264 000a9f20 00001000 00000003 befe4a00 00001000 00000000
Unable to handle kernel NULL pointer dereference at virtual address 0000000c
1fc0: 000a9f20 00001000 befe4a00 00000003 00000000 00000000 00000003 00000001
pgd = edfc4000
[0000000c] *pgd=bfcac835
1fe0: 00000000 befe49dc 000197f8 b6e35dfc 60070010 00000003 3065b49d 134ac2c9

[<c058f1bc>] (show_ignore_nice_load_gov_pol) from [<c058ae88>] (show+0x4c/0x60)
[<c058ae88>] (show) from [<c01fcb90>] (sysfs_kf_seq_show+0x90/0xfc)
[<c01fcb90>] (sysfs_kf_seq_show) from [<c01fb33c>] (kernfs_seq_show+0x34/0x38)
[<c01fb33c>] (kernfs_seq_show) from [<c01a5210>] (seq_read+0x1e4/0x4e4)
[<c01a5210>] (seq_read) from [<c01fbed8>] (kernfs_fop_read+0x120/0x1a0)
[<c01fbed8>] (kernfs_fop_read) from [<c017c328>] (__vfs_read+0x3c/0xe0)
[<c017c328>] (__vfs_read) from [<c017d1ec>] (vfs_read+0x98/0x104)
[<c017d1ec>] (vfs_read) from [<c017d2a8>] (SyS_read+0x50/0x90)
[<c017d2a8>] (SyS_read) from [<c000fe40>] (ret_fast_syscall+0x0/0x1c)
Code: e5903044 e1a00001 e3081df4 e34c1092 (e593300c)
---[ end trace 5994b9a5111f35ee ]---

Fix that by making sure, policy->governor_data is updated at the right
places only.

Cc: 4.2+ <stable@vger.kernel.org> # 4.2+
Reported-and-tested-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-27 23:13:53 +01:00
Chen Yu
0df35026c6 cpufreq: governor: Fix negative idle_time when configured with CONFIG_HZ_PERIODIC
It is reported that, with CONFIG_HZ_PERIODIC=y cpu stays at the
lowest frequency even if the usage goes to 100%, neither ondemand
nor conservative governor works, however performance and
userspace work as expected. If set with CONFIG_NO_HZ_FULL=y,
everything goes well.

This problem is caused by improper calculation of the idle_time
when the load is extremely high(near 100%). Firstly, cpufreq_governor
uses get_cpu_idle_time to get the total idle time for specific cpu, then:

1.If the system is configured with CONFIG_NO_HZ_FULL, the idle time is
  returned by ktime_get, which is always increasing, it's OK.
2.However, if the system is configured with CONFIG_HZ_PERIODIC,
  get_cpu_idle_time might not guarantee to be always increasing,
  because it will leverage get_cpu_idle_time_jiffy to calculate the
  idle_time, consider the following scenario:

At T1:
idle_tick_1 = total_tick_1 - user_tick_1

sample period(80ms)...

At T2: ( T2 = T1 + 80ms):
idle_tick_2 = total_tick_2 - user_tick_2

Currently the algorithm is using (idle_tick_2 - idle_tick_1) to
get the delta idle_time during the past sample period, however
it CAN NOT guarantee that idle_tick_2 >= idle_tick_1, especially
when cpu load is high.
(Yes, total_tick_2 >= total_tick_1, and user_tick_2 >= user_tick_1,
but how about idle_tick_2 and idle_tick_1? No guarantee.)
So governor might get a negative value of idle_time during the past
sample period, which might mislead the system that the idle time is
very big(converted to unsigned int), and the busy time is nearly zero,
which causes the governor to always choose the lowest cpufreq,
then cause this problem.

In theory there are two solutions:

1.The logic should not rely on the idle tick during every sample period,
  but be based on the busy tick directly, as this is how 'top' is
  implemented.

2.Or the logic must make sure that the idle_time is strictly increasing
  during each sample period, then there would be no negative idle_time
  anymore. This solution requires minimum modification to current code
  and this patch uses method 2.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=69821
Reported-by: Jan Fikar <j.fikar@gmail.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-05 02:01:32 +01:00
Rafael J. Wysocki
2dd3e724b4 cpufreq: governor: Use lockless timer function
It is possible to get rid of the timer_lock spinlock used by the
governor timer function for synchronization, but a couple of races
need to be avoided.

The first race is between multiple dbs_timer_handler() instances
that may be running in parallel with each other on different
CPUs.  Namely, one of them has to queue up the work item, but it
cannot be queued up more than once.  To achieve that,
atomic_inc_return() can be used on the skip_work field of
struct cpu_common_dbs_info.

The second race is between an already running dbs_timer_handler()
and gov_cancel_work().  In that case the dbs_timer_handler() might
not notice the skip_work incrementation in gov_cancel_work() and
it might queue up its work item after gov_cancel_work() had
returned (and that work item would corrupt skip_work going
forward).  To prevent that from happening, gov_cancel_work()
can be made wait for the timer function to complete (on all CPUs)
right after skip_work has been incremented.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2015-12-09 22:26:13 +01:00