1762 Commits

Author SHA1 Message Date
Linus Torvalds
8dcd175bc3 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:

 - a few misc things

 - ocfs2 updates

 - most of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits)
  tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include
  proc: more robust bulk read test
  proc: test /proc/*/maps, smaps, smaps_rollup, statm
  proc: use seq_puts() everywhere
  proc: read kernel cpu stat pointer once
  proc: remove unused argument in proc_pid_lookup()
  fs/proc/thread_self.c: code cleanup for proc_setup_thread_self()
  fs/proc/self.c: code cleanup for proc_setup_self()
  proc: return exit code 4 for skipped tests
  mm,mremap: bail out earlier in mremap_to under map pressure
  mm/sparse: fix a bad comparison
  mm/memory.c: do_fault: avoid usage of stale vm_area_struct
  writeback: fix inode cgroup switching comment
  mm/huge_memory.c: fix "orig_pud" set but not used
  mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
  mm/memcontrol.c: fix bad line in comment
  mm/cma.c: cma_declare_contiguous: correct err handling
  mm/page_ext.c: fix an imbalance with kmemleak
  mm/compaction: pass pgdat to too_many_isolated() instead of zone
  mm: remove zone_lru_lock() function, access ->lru_lock directly
  ...
2019-03-06 10:31:36 -08:00
Linus Torvalds
45802da05e Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle were:

   - refcount conversions

   - Solve the rq->leaf_cfs_rq_list can of worms for real.

   - improve power-aware scheduling

   - add sysctl knob for Energy Aware Scheduling

   - documentation updates

   - misc other changes"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
  kthread: Do not use TIMER_IRQSAFE
  kthread: Convert worker lock to raw spinlock
  sched/fair: Use non-atomic cpumask_{set,clear}_cpu()
  sched/fair: Remove unused 'sd' parameter from select_idle_smt()
  sched/wait: Use freezable_schedule() when possible
  sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block
  sched/fair: Explain LLC nohz kick condition
  sched/fair: Simplify nohz_balancer_kick()
  sched/topology: Fix percpu data types in struct sd_data & struct s_data
  sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
  sched/fair: Fix O(nr_cgroups) in the load balancing path
  sched/fair: Optimize update_blocked_averages()
  sched/fair: Fix insertion in rq->leaf_cfs_rq_list
  sched/fair: Add tmp_alone_branch assertion
  sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock()
  sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK
  sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity
  sched/fair: Update scale invariance of PELT
  sched/fair: Move the rq_of() helper function
  sched/core: Convert task_struct.stack_refcount to refcount_t
  ...
2019-03-06 08:14:05 -08:00
Aneesh Kumar K.V
d7fefcc8de mm/cma: add PF flag to force non cma alloc
Patch series "mm/kvm/vfio/ppc64: Migrate compound pages out of CMA
region", v8.

ppc64 uses the CMA area for the allocation of guest page table (hash
page table).  We won't be able to start guest if we fail to allocate
hash page table.  We have observed hash table allocation failure because
we failed to migrate pages out of CMA region because they were pinned.
This happen when we are using VFIO.  VFIO on ppc64 pins the entire guest
RAM.  If the guest RAM pages get allocated out of CMA region, we won't
be able to migrate those pages.  The pages are also pinned for the
lifetime of the guest.

Currently we support migration of non-compound pages.  With THP and with
the addition of hugetlb migration we can end up allocating compound
pages from CMA region.  This patch series add support for migrating
compound pages.

This patch (of 4):

Add PF_MEMALLOC_NOCMA which make sure any allocation in that context is
marked non-movable and hence cannot be satisfied by CMA region.

This is useful with get_user_pages_longterm where we want to take a page
pin by migrating pages from CMA region.  Marking the section
PF_MEMALLOC_NOCMA ensures that we avoid unnecessary page migration
later.

Link: http://lkml.kernel.org/r/20190114095438.32470-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Mel Gorman
5e1f0f098b mm, compaction: capture a page under direct compaction
Compaction is inherently race-prone as a suitable page freed during
compaction can be allocated by any parallel task.  This patch uses a
capture_control structure to isolate a page immediately when it is freed
by a direct compactor in the slow path of the page allocator.  The
intent is to avoid redundant scanning.

                                     5.0.0-rc1              5.0.0-rc1
                               selective-v3r17          capture-v3r19
Amean     fault-both-1         0.00 (   0.00%)        0.00 *   0.00%*
Amean     fault-both-3      2582.11 (   0.00%)     2563.68 (   0.71%)
Amean     fault-both-5      4500.26 (   0.00%)     4233.52 (   5.93%)
Amean     fault-both-7      5819.53 (   0.00%)     6333.65 (  -8.83%)
Amean     fault-both-12     9321.18 (   0.00%)     9759.38 (  -4.70%)
Amean     fault-both-18     9782.76 (   0.00%)    10338.76 (  -5.68%)
Amean     fault-both-24    15272.81 (   0.00%)    13379.55 *  12.40%*
Amean     fault-both-30    15121.34 (   0.00%)    16158.25 (  -6.86%)
Amean     fault-both-32    18466.67 (   0.00%)    18971.21 (  -2.73%)

Latency is only moderately affected but the devil is in the details.  A
closer examination indicates that base page fault latency is reduced but
latency of huge pages is increased as it takes creater care to succeed.
Part of the "problem" is that allocation success rates are close to 100%
even when under pressure and compaction gets harder

                                5.0.0-rc1              5.0.0-rc1
                          selective-v3r17          capture-v3r19
Percentage huge-3        96.70 (   0.00%)       98.23 (   1.58%)
Percentage huge-5        96.99 (   0.00%)       95.30 (  -1.75%)
Percentage huge-7        94.19 (   0.00%)       97.24 (   3.24%)
Percentage huge-12       94.95 (   0.00%)       97.35 (   2.53%)
Percentage huge-18       96.74 (   0.00%)       97.30 (   0.58%)
Percentage huge-24       97.07 (   0.00%)       97.55 (   0.50%)
Percentage huge-30       95.69 (   0.00%)       98.50 (   2.95%)
Percentage huge-32       96.70 (   0.00%)       99.27 (   2.65%)

And scan rates are reduced as expected by 6% for the migration scanner
and 29% for the free scanner indicating that there is less redundant
work.

Compaction migrate scanned    20815362    19573286
Compaction free scanned       16352612    11510663

[mgorman@techsingularity.net: remove redundant check]
  Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net
Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Linus Torvalds
edaed168e1 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/pti update from Thomas Gleixner:
 "Just a single change from the anti-performance departement:

   - Add a new PR_SPEC_DISABLE_NOEXEC option which allows to apply the
     speculation protections on a process without inheriting the state
     on exec.

     This remedies a situation where a Java-launcher has speculation
     protections enabled because that's the default for JVMs which
     causes the launched regular harmless processes to inherit the
     protection state which results in unintended performance
     degradation"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/speculation: Add PR_SPEC_DISABLE_NOEXEC
2019-03-05 12:50:34 -08:00
Linus Torvalds
53a41cb7ed Revert "x86/fault: BUG() when uaccess helpers fault on kernel addresses"
This reverts commit 9da3f2b74054406f87dff7101a569217ffceb29b.

It was well-intentioned, but wrong.  Overriding the exception tables for
instructions for random reasons is just wrong, and that is what the new
code did.

It caused problems for tracing, and it caused problems for strncpy_from_user(),
because the new checks made perfectly valid use cases break, rather than
catch things that did bad things.

Unchecked user space accesses are a problem, but that's not a reason to
add invalid checks that then people have to work around with silly flags
(in this case, that 'kernel_uaccess_faults_ok' flag, which is just an
odd way to say "this commit was wrong" and was sprinked into random
places to hide the wrongness).

The real fix to unchecked user space accesses is to get rid of the
special "let's not check __get_user() and __put_user() at all" logic.
Make __{get|put}_user() be just aliases to the regular {get|put}_user()
functions, and make it impossible to access user space without having
the proper checks in places.

The raison d'être of the special double-underscore versions used to be
that the range check was expensive, and if you did multiple user
accesses, you'd do the range check up front (like the signal frame
handling code, for example).  But SMAP (on x86) and PAN (on ARM) have
made that optimization pointless, because the _real_ expense is the "set
CPU flag to allow user space access".

Do let's not break the valid cases to catch invalid cases that shouldn't
even exist.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-25 09:10:51 -08:00
Ingo Molnar
c9ba7560c5 Linux 5.0-rc6
-----BEGIN PGP SIGNATURE-----
 
 iQFRBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlxgqNUeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGwsoH+OVXu0NQofwTvVru
 8lgF3BSDG2mhf7mxbBBlBizGVy9jnjRNGCFMC+Jq8IwiFLwprja/G27kaDTkpuF1
 PHC3yfjKvjTeUP5aNdHlmxv6j1sSJfZl0y46DQal4UeTG/Giq8TFTi+Tbz7Wb/WV
 yCx4Lr8okAwTuNhnL8ojUCVIpd3c8QsyR9v6nEQ14Mj+MvEbokyTkMJV0bzOrM38
 JOB+/X1XY4JPZ6o3MoXrBca3bxbAJzMneq+9CWw1U5eiIG3msg4a+Ua3++RQMDNr
 8BP0yCZ6wo32S8uu0PI6HrZaBnLYi5g9Wh7Q7yc0mn1Uh1zWFykA6TtqK90agJeR
 A6Ktjw==
 =scY4
 -----END PGP SIGNATURE-----

Merge tag 'v5.0-rc6' into sched/core, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-11 08:01:50 +01:00
Andrea Parri
c546951d9c sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock()
move_queued_task() synchronizes with task_rq_lock() as follows:

	move_queued_task()		task_rq_lock()

	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
	[S] ->cpu = new_cpu		[L] ->on_rq

where "[L] rq = task_rq()" is ordered before "ACQUIRE (rq->lock)" by an
address dependency and, in turn, "ACQUIRE (rq->lock)" is ordered before
"[L] ->on_rq" by the ACQUIRE itself.

Use READ_ONCE() to load ->cpu in task_rq() (c.f., task_cpu()) to honor
this address dependency.  Also, mark the accesses to ->cpu and ->on_rq
with READ_ONCE()/WRITE_ONCE() to comply with the LKMM.

Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190121155240.27173-1-andrea.parri@amarulasolutions.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Vincent Guittot
2312729688 sched/fair: Update scale invariance of PELT
The current implementation of load tracking invariance scales the
contribution with current frequency and uarch performance (only for
utilization) of the CPU. One main result of this formula is that the
figures are capped by current capacity of CPU. Another one is that the
load_avg is not invariant because not scaled with uarch.

The util_avg of a periodic task that runs r time slots every p time slots
varies in the range :

    U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p)

with U is the max util_avg value = SCHED_CAPACITY_SCALE

At a lower capacity, the range becomes:

    U * C * (1-y^r')/(1-y^p) * y^i' < Utilization <  U * C * (1-y^r')/(1-y^p)

with C reflecting the compute capacity ratio between current capacity and
max capacity.

so C tries to compensate changes in (1-y^r') but it can't be accurate.

Instead of scaling the contribution value of PELT algo, we should scale the
running time. The PELT signal aims to track the amount of computation of
tasks and/or rq so it seems more correct to scale the running time to
reflect the effective amount of computation done since the last update.

In order to be fully invariant, we need to apply the same amount of
running time and idle time whatever the current capacity. Because running
at lower capacity implies that the task will run longer, we have to ensure
that the same amount of idle time will be applied when system becomes idle
and no idle time has been "stolen". But reaching the maximum utilization
value (SCHED_CAPACITY_SCALE) means that the task is seen as an
always-running task whatever the capacity of the CPU (even at max compute
capacity). In this case, we can discard this "stolen" idle times which
becomes meaningless.

In order to achieve this time scaling, a new clock_pelt is created per rq.
The increase of this clock scales with current capacity when something
is running on rq and synchronizes with clock_task when rq is idle. With
this mechanism, we ensure the same running and idle time whatever the
current capacity. This also enables to simplify the pelt algorithm by
removing all references of uarch and frequency and applying the same
contribution to utilization and loads. Furthermore, the scaling is done
only once per update of clock (update_rq_clock_task()) instead of during
each update of sched_entities and cfs/rt/dl_rq of the rq like the current
implementation. This is interesting when cgroup are involved as shown in
the results below:

On a hikey (octo Arm64 platform).
Performance cpufreq governor and only shallowest c-state to remove variance
generated by those power features so we only track the impact of pelt algo.

each test runs 16 times:

	./perf bench sched pipe
	(higher is better)
	kernel	tip/sched/core     + patch
	        ops/seconds        ops/seconds         diff
	cgroup
	root    59652(+/- 0.18%)   59876(+/- 0.24%)    +0.38%
	level1  55608(+/- 0.27%)   55923(+/- 0.24%)    +0.57%
	level2  52115(+/- 0.29%)   52564(+/- 0.22%)    +0.86%

	hackbench -l 1000
	(lower is better)
	kernel	tip/sched/core     + patch
	        duration(sec)      duration(sec)        diff
	cgroup
	root    4.453(+/- 2.37%)   4.383(+/- 2.88%)     -1.57%
	level1  4.859(+/- 8.50%)   4.830(+/- 7.07%)     -0.60%
	level2  5.063(+/- 9.83%)   4.928(+/- 9.66%)     -2.66%

Then, the responsiveness of PELT is improved when CPU is not running at max
capacity with this new algorithm. I have put below some examples of
duration to reach some typical load values according to the capacity of the
CPU with current implementation and with this patch. These values has been
computed based on the geometric series and the half period value:

  Util (%)     max capacity  half capacity(mainline)  half capacity(w/ patch)
  972 (95%)    138ms         not reachable            276ms
  486 (47.5%)  30ms          138ms                     60ms
  256 (25%)    13ms           32ms                     26ms

On my hikey (octo Arm64 platform) with schedutil governor, the time to
reach max OPP when starting from a null utilization, decreases from 223ms
with current scale invariance down to 121ms with the new algorithm.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 09:13:21 +01:00
Elena Reshetova
f0b89d3958 sched/core: Convert task_struct.stack_refcount to refcount_t
atomic_t variables are currently used to implement reference
counters with the following properties:

 - counter is initialized to 1 using atomic_set()
 - a resource is freed upon counter reaching zero
 - once counter reaches zero, its further
   increments aren't allowed
 - counter schema uses basic atomic operations
   (set, inc, inc_not_zero, dec_and_test, etc.)

Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.

The variable task_struct.stack_refcount is used as pure reference counter.
Convert it to refcount_t and fix up the operations.

** Important note for maintainers:

Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.

The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.

Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.

Please double check that you don't have some undocumented
memory guarantees for this variable usage.

For the task_struct.stack_refcount it might make a difference
in following places:

 - try_get_task_stack(): increment in refcount_inc_not_zero() only
   guarantees control dependency on success vs. fully ordered
   atomic counterpart
 - put_task_stack(): decrement in refcount_dec_and_test() only
   provides RELEASE ordering and control dependency on success
   vs. fully ordered atomic counterpart

Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1547814450-18902-6-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 08:53:56 +01:00
Elena Reshetova
ec1d281923 sched/core: Convert task_struct.usage to refcount_t
atomic_t variables are currently used to implement reference
counters with the following properties:

 - counter is initialized to 1 using atomic_set()
 - a resource is freed upon counter reaching zero
 - once counter reaches zero, its further
   increments aren't allowed
 - counter schema uses basic atomic operations
   (set, inc, inc_not_zero, dec_and_test, etc.)

Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.

The variable task_struct.usage is used as pure reference counter.
Convert it to refcount_t and fix up the operations.

** Important note for maintainers:

Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.

The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.

Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.

Please double check that you don't have some undocumented
memory guarantees for this variable usage.

For the task_struct.usage it might make a difference
in following places:

 - put_task_struct(): decrement in refcount_dec_and_test() only
   provides RELEASE ordering and control dependency on success
   vs. fully ordered atomic counterpart

Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1547814450-18902-5-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 08:53:55 +01:00
Linus Torvalds
24b888d8d5 Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
 "A few updates for x86:

   - Fix an unintended sign extension issue in the fault handling code

   - Rename the new resource control config switch so it's less
     confusing

   - Avoid setting up EFI info in kexec when the EFI runtime is
     disabled.

   - Fix the microcode version check in the AMD microcode loader so it
     only loads higher version numbers and never downgrades

   - Set EFER.LME in the 32bit trampoline before returning to long mode
     to handle older AMD/KVM behaviour properly.

   - Add Darren and Andy as x86/platform reviewers"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/resctrl: Avoid confusion over the new X86_RESCTRL config
  x86/kexec: Don't setup EFI info if EFI runtime is not enabled
  x86/microcode/amd: Don't falsely trick the late loading mechanism
  MAINTAINERS: Add Andy and Darren as arch/x86/platform/ reviewers
  x86/fault: Fix sign-extend unintended sign extension
  x86/boot/compressed/64: Set EFER.LME=1 in 32-bit trampoline before returning to long mode
  x86/cpu: Add Atom Tremont (Jacobsville)
2019-02-03 09:08:12 -08:00
Johannes Weiner
e6d429313e x86/resctrl: Avoid confusion over the new X86_RESCTRL config
"Resource Control" is a very broad term for this CPU feature, and a term
that is also associated with containers, cgroups etc. This can easily
cause confusion.

Make the user prompt more specific. Match the config symbol name.

 [ bp: In the future, the corresponding ARM arch-specific code will be
   under ARM_CPU_RESCTRL and the arch-agnostic bits will be carved out
   under the CPU_RESCTRL umbrella symbol. ]

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: linux-doc@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190130195621.GA30653@cmpxchg.org
2019-02-02 10:34:52 +01:00
Waiman Long
71368af902 x86/speculation: Add PR_SPEC_DISABLE_NOEXEC
With the default SPEC_STORE_BYPASS_SECCOMP/SPEC_STORE_BYPASS_PRCTL mode,
the TIF_SSBD bit will be inherited when a new task is fork'ed or cloned.
It will also remain when a new program is execve'ed.

Only certain class of applications (like Java) that can run on behalf of
multiple users on a single thread will require disabling speculative store
bypass for security purposes. Those applications will call prctl(2) at
startup time to disable SSB. They won't rely on the fact the SSB might have
been disabled. Other applications that don't need SSBD will just move on
without checking if SSBD has been turned on or not.

The fact that the TIF_SSBD is inherited across execve(2) boundary will
cause performance of applications that don't need SSBD but their
predecessors have SSBD on to be unwittingly impacted especially if they
write to memory a lot.

To remedy this problem, a new PR_SPEC_DISABLE_NOEXEC argument for the
PR_SET_SPECULATION_CTRL option of prctl(2) is added to allow applications
to specify that the SSBD feature bit on the task structure should be
cleared whenever a new program is being execve'ed.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-doc@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: KarimAllah Ahmed <karahmed@amazon.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: https://lkml.kernel.org/r/1547676096-3281-1-git-send-email-longman@redhat.com
2019-01-29 22:11:49 +01:00
Thomas Gleixner
15917dc028 sched: Remove stale PF_MUTEX_TESTER bit
The RTMUTEX tester was removed long ago but the PF bit stayed
around. Remove it and free up the space.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-01-29 20:14:28 +01:00
Linus Torvalds
e8746440bf Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Pull networking fixes from David Miller:

 1) Fix regression in multi-SKB responses to RTM_GETADDR, from Arthur
    Gautier.

 2) Fix ipv6 frag parsing in openvswitch, from Yi-Hung Wei.

 3) Unbounded recursion in ipv4 and ipv6 GUE tunnels, from Stefano
    Brivio.

 4) Use after free in hns driver, from Yonglong Liu.

 5) icmp6_send() needs to handle the case of NULL skb, from Eric
    Dumazet.

 6) Missing rcu read lock in __inet6_bind() when operating on mapped
    addresses, from David Ahern.

 7) Memory leak in tipc-nl_compat_publ_dump(), from Gustavo A. R. Silva.

 8) Fix PHY vs r8169 module loading ordering issues, from Heiner
    Kallweit.

 9) Fix bridge vlan memory leak, from Ido Schimmel.

10) Dev refcount leak in AF_PACKET, from Jason Gunthorpe.

11) Infoleak in ipv6_local_error(), flow label isn't completely
    initialized. From Eric Dumazet.

12) Handle mv88e6390 errata, from Andrew Lunn.

13) Making vhost/vsock CID hashing consistent, from Zha Bin.

14) Fix lack of UMH cleanup when it unexpectedly exits, from Taehee Yoo.

15) Bridge forwarding must clear skb->tstamp, from Paolo Abeni.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (87 commits)
  bnxt_en: Fix context memory allocation.
  bnxt_en: Fix ring checking logic on 57500 chips.
  mISDN: hfcsusb: Use struct_size() in kzalloc()
  net: clear skb->tstamp in bridge forwarding path
  net: bpfilter: disallow to remove bpfilter module while being used
  net: bpfilter: restart bpfilter_umh when error occurred
  net: bpfilter: use cleanup callback to release umh_info
  umh: add exit routine for UMH process
  isdn: i4l: isdn_tty: Fix some concurrency double-free bugs
  vhost/vsock: fix vhost vsock cid hashing inconsistent
  net: stmmac: Prevent RX starvation in stmmac_napi_poll()
  net: stmmac: Fix the logic of checking if RX Watchdog must be enabled
  net: stmmac: Check if CBS is supported before configuring
  net: stmmac: dwxgmac2: Only clear interrupts that are active
  net: stmmac: Fix PCI module removal leak
  tools/bpf: fix bpftool map dump with bitfields
  tools/bpf: test btf bitfield with >=256 struct member offset
  bpf: fix bpffs bitfield pretty print
  net: ethernet: mediatek: fix warning in phy_start_aneg
  tcp: change txhash on SYN-data timeout
  ...
2019-01-16 05:13:36 +12:00
Taehee Yoo
73ab1cb2de umh: add exit routine for UMH process
A UMH process which is created by the fork_usermode_blob() such as
bpfilter needs to release members of the umh_info when process is
terminated.
But the do_exit() does not release members of the umh_info. hence module
which uses UMH needs own code to detect whether UMH process is
terminated or not.
But this implementation needs extra code for checking the status of
UMH process. it eventually makes the code more complex.

The new PF_UMH flag is added and it is used to identify UMH processes.
The exit_umh() does not release members of the umh_info.
Hence umh_info->cleanup callback should release both members of the
umh_info and the private data.

Suggested-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Taehee Yoo <ap420073@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-11 18:05:40 -08:00
Borislav Petkov
90802938f7 x86/cache: Rename config option to CONFIG_X86_RESCTRL
CONFIG_RESCTRL is too generic. The final goal is to have a generic
option called like this which is selected by the arch-specific ones
CONFIG_X86_RESCTRL and CONFIG_ARM64_RESCTRL. The generic one will
cover the resctrl filesystem and other generic and shared bits of
functionality.

Signed-off-by: Borislav Petkov <bp@suse.de>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Babu Moger <babu.moger@amd.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Morse <james.morse@arm.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20190108171401.GC12235@zn.tnic
2019-01-09 10:29:03 +01:00
Linus Torvalds
17bf423a1f Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle were:

   - Introduce "Energy Aware Scheduling" - by Quentin Perret.

     This is a coherent topology description of CPUs in cooperation with
     the PM subsystem, with the goal to schedule more energy-efficiently
     on asymetric SMP platform - such as waking up tasks to the more
     energy-efficient CPUs first, as long as the system isn't
     oversubscribed.

     For details of the design, see:

        https://lore.kernel.org/lkml/20180724122521.22109-1-quentin.perret@arm.com/

   - Misc cleanups and smaller enhancements"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  sched/fair: Select an energy-efficient CPU on task wake-up
  sched/fair: Introduce an energy estimation helper function
  sched/fair: Add over-utilization/tipping point indicator
  sched/fair: Clean-up update_sg_lb_stats parameters
  sched/toplogy: Introduce the 'sched_energy_present' static key
  sched/topology: Make Energy Aware Scheduling depend on schedutil
  sched/topology: Disable EAS on inappropriate platforms
  sched/topology: Add lowest CPU asymmetry sched_domain level pointer
  sched/topology: Reference the Energy Model of CPUs when available
  PM: Introduce an Energy Model management framework
  sched/cpufreq: Prepare schedutil for Energy Aware Scheduling
  sched/topology: Relocate arch_scale_cpu_capacity() to the internal header
  sched/core: Remove unnecessary unlikely() in push_*_task()
  sched/topology: Remove the ::smt_gain field from 'struct sched_domain'
  sched: Fix various typos in comments
  sched/core: Clean up the #ifdef block in add_nr_running()
  sched/fair: Make some variables static
  sched/core: Create task_has_idle_policy() helper
  sched/fair: Add lsub_positive() and use it consistently
  sched/fair: Mask UTIL_AVG_UNCHANGED usages
  ...
2018-12-26 14:56:10 -08:00
Linus Torvalds
792bf4d871 Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
 "The biggest RCU changes in this cycle were:

   - Convert RCU's BUG_ON() and similar calls to WARN_ON() and similar.

   - Replace calls of RCU-bh and RCU-sched update-side functions to
     their vanilla RCU counterparts. This series is a step towards
     complete removal of the RCU-bh and RCU-sched update-side functions.

     ( Note that some of these conversions are going upstream via their
       respective maintainers. )

   - Documentation updates, including a number of flavor-consolidation
     updates from Joel Fernandes.

   - Miscellaneous fixes.

   - Automate generation of the initrd filesystem used for rcutorture
     testing.

   - Convert spin_is_locked() assertions to instead use lockdep.

     ( Note that some of these conversions are going upstream via their
       respective maintainers. )

   - SRCU updates, especially including a fix from Dennis Krein for a
     bag-on-head-class bug.

   - RCU torture-test updates"

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (112 commits)
  rcutorture: Don't do busted forward-progress testing
  rcutorture: Use 100ms buckets for forward-progress callback histograms
  rcutorture: Recover from OOM during forward-progress tests
  rcutorture: Print forward-progress test age upon failure
  rcutorture: Print time since GP end upon forward-progress failure
  rcutorture: Print histogram of CB invocation at OOM time
  rcutorture: Print GP age upon forward-progress failure
  rcu: Print per-CPU callback counts for forward-progress failures
  rcu: Account for nocb-CPU callback counts in RCU CPU stall warnings
  rcutorture: Dump grace-period diagnostics upon forward-progress OOM
  rcutorture: Prepare for asynchronous access to rcu_fwd_startat
  torture: Remove unnecessary "ret" variables
  rcutorture: Affinity forward-progress test to avoid housekeeping CPUs
  rcutorture: Break up too-long rcu_torture_fwd_prog() function
  rcutorture: Remove cbflood facility
  torture: Bring any extra CPUs online during kernel startup
  rcutorture: Add call_rcu() flooding forward-progress tests
  rcutorture/formal: Replace synchronize_sched() with synchronize_rcu()
  tools/kernel.h: Replace synchronize_sched() with synchronize_rcu()
  net/decnet: Replace rcu_barrier_bh() with rcu_barrier()
  ...
2018-12-26 13:07:19 -08:00
Linus Torvalds
a52fb43a5f Merge branch 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cache control updates from Borislav Petkov:

 - The generalization of the RDT code to accommodate the addition of
   AMD's very similar implementation of the cache monitoring feature.

   This entails a subsystem move into a separate and generic
   arch/x86/kernel/cpu/resctrl/ directory along with adding
   vendor-specific initialization and feature detection helpers.

   Ontop of that is the unification of user-visible strings, both in the
   resctrl filesystem error handling and Kconfig.

   Provided by Babu Moger and Sherry Hurwitz.

 - Code simplifications and error handling improvements by Reinette
   Chatre.

* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/resctrl: Fix rdt_find_domain() return value and checks
  x86/resctrl: Remove unnecessary check for cbm_validate()
  x86/resctrl: Use rdt_last_cmd_puts() where possible
  MAINTAINERS: Update resctrl filename patterns
  Documentation: Rename and update intel_rdt_ui.txt to resctrl_ui.txt
  x86/resctrl: Introduce AMD QOS feature
  x86/resctrl: Fixup the user-visible strings
  x86/resctrl: Add AMD's X86_FEATURE_MBA to the scattered CPUID features
  x86/resctrl: Rename the config option INTEL_RDT to RESCTRL
  x86/resctrl: Add vendor check for the MBA software controller
  x86/resctrl: Bring cbm_validate() into the resource structure
  x86/resctrl: Initialize the vendor-specific resource functions
  x86/resctrl: Move all the macros to resctrl/internal.h
  x86/resctrl: Re-arrange the RDT init code
  x86/resctrl: Rename the RDT functions and definitions
  x86/resctrl: Rename and move rdt files to a separate directory
2018-12-26 12:17:43 -08:00
Ingo Molnar
4bbfd7467c Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull RCU changes from Paul E. McKenney:

- Convert RCU's BUG_ON() and similar calls to WARN_ON() and similar.

- Replace calls of RCU-bh and RCU-sched update-side functions
  to their vanilla RCU counterparts.  This series is a step
  towards complete removal of the RCU-bh and RCU-sched update-side
  functions.

  ( Note that some of these conversions are going upstream via their
    respective maintainers. )

- Documentation updates, including a number of flavor-consolidation
  updates from Joel Fernandes.

- Miscellaneous fixes.

- Automate generation of the initrd filesystem used for
  rcutorture testing.

- Convert spin_is_locked() assertions to instead use lockdep.

  ( Note that some of these conversions are going upstream via their
    respective maintainers. )

- SRCU updates, especially including a fix from Dennis Krein
  for a bag-on-head-class bug.

- RCU torture-test updates.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-04 07:52:30 +01:00
Ingo Molnar
dfcb245e28 sched: Fix various typos in comments
Go over the scheduler source code and fix common typos
in comments - and a typo in an actual variable name.

No change in functionality intended.

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-12-03 11:55:42 +01:00
Linus Torvalds
4b78317679 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull STIBP fallout fixes from Thomas Gleixner:
 "The performance destruction department finally got it's act together
  and came up with a cure for the STIPB regression:

   - Provide a command line option to control the spectre v2 user space
     mitigations. Default is either seccomp or prctl (if seccomp is
     disabled in Kconfig). prctl allows mitigation opt-in, seccomp
     enables the migitation for sandboxed processes.

   - Rework the code to handle the conditional STIBP/IBPB control and
     remove the now unused ptrace_may_access_sched() optimization
     attempt

   - Disable STIBP automatically when SMT is disabled

   - Optimize the switch_to() logic to avoid MSR writes and invocations
     of __switch_to_xtra().

   - Make the asynchronous speculation TIF updates synchronous to
     prevent stale mitigation state.

  As a general cleanup this also makes retpoline directly depend on
  compiler support and removes the 'minimal retpoline' option which just
  pretended to provide some form of security while providing none"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
  x86/speculation: Provide IBPB always command line options
  x86/speculation: Add seccomp Spectre v2 user space protection mode
  x86/speculation: Enable prctl mode for spectre_v2_user
  x86/speculation: Add prctl() control for indirect branch speculation
  x86/speculation: Prepare arch_smt_update() for PRCTL mode
  x86/speculation: Prevent stale SPEC_CTRL msr content
  x86/speculation: Split out TIF update
  ptrace: Remove unused ptrace_may_access_sched() and MODE_IBRS
  x86/speculation: Prepare for conditional IBPB in switch_mm()
  x86/speculation: Avoid __switch_to_xtra() calls
  x86/process: Consolidate and simplify switch_to_xtra() code
  x86/speculation: Prepare for per task indirect branch speculation control
  x86/speculation: Add command line control for indirect branch speculation
  x86/speculation: Unify conditional spectre v2 print functions
  x86/speculataion: Mark command line parser data __initdata
  x86/speculation: Mark string arrays const correctly
  x86/speculation: Reorder the spec_v2 code
  x86/l1tf: Show actual SMT state
  x86/speculation: Rework SMT state change
  sched/smt: Expose sched_smt_present static key
  ...
2018-12-01 12:35:48 -08:00
Thomas Gleixner
9137bb27e6 x86/speculation: Add prctl() control for indirect branch speculation
Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and
PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of
indirect branch speculation via STIBP and IBPB.

Invocations:
 Check indirect branch speculation status with
 - prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0);

 Enable indirect branch speculation with
 - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0);

 Disable indirect branch speculation with
 - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0);

 Force disable indirect branch speculation with
 - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0);

See Documentation/userspace-api/spec_ctrl.rst.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.de
2018-11-28 11:57:13 +01:00
Steven Rostedt (VMware)
39eb456dac function_graph: Use new curr_ret_depth to manage depth instead of curr_ret_stack
Currently, the depth of the ret_stack is determined by curr_ret_stack index.
The issue is that there's a race between setting of the curr_ret_stack and
calling of the callback attached to the return of the function.

Commit 03274a3ffb44 ("tracing/fgraph: Adjust fgraph depth before calling
trace return callback") moved the calling of the callback to after the
setting of the curr_ret_stack, even stating that it was safe to do so, when
in fact, it was the reason there was a barrier() there (yes, I should have
commented that barrier()).

Not only does the curr_ret_stack keep track of the current call graph depth,
it also keeps the ret_stack content from being overwritten by new data.

The function profiler, uses the "subtime" variable of ret_stack structure
and by moving the curr_ret_stack, it allows for interrupts to use the same
structure it was using, corrupting the data, and breaking the profiler.

To fix this, there needs to be two variables to handle the call stack depth
and the pointer to where the ret_stack is being used, as they need to change
at two different locations.

Cc: stable@kernel.org
Fixes: 03274a3ffb449 ("tracing/fgraph: Adjust fgraph depth before calling trace return callback")
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-11-27 20:31:54 -05:00
Babu Moger
6fe07ce35e x86/resctrl: Rename the config option INTEL_RDT to RESCTRL
The resource control feature is supported by both Intel and AMD. So,
rename CONFIG_INTEL_RDT to the vendor-neutral CONFIG_RESCTRL.

Now CONFIG_RESCTRL will be used for both Intel and AMD to enable
Resource Control support. Update the texts in config and condition
accordingly.

 [ bp: Simplify Kconfig text. ]

Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: David Miller <davem@davemloft.net>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dmitry Safonov <dima@arista.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <linux-doc@vger.kernel.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: <qianyue.zj@alibaba-inc.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Rian Hunter <rian@alum.mit.edu>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: <xiaochen.shen@intel.com>
Link: https://lkml.kernel.org/r/20181121202811.4492-9-babu.moger@amd.com
2018-11-22 20:16:19 +01:00
Paul E. McKenney
05f415715c rcu: Speed up expedited GPs when interrupting RCU reader
In PREEMPT kernels, an expedited grace period might send an IPI to a
CPU that is executing an RCU read-side critical section.  In that case,
it would be nice if the rcu_read_unlock() directly interacted with the
RCU core code to immediately report the quiescent state.  And this does
happen in the case where the reader has been preempted.  But it would
also be a nice performance optimization if immediate reporting also
happened in the preemption-free case.

This commit therefore adds an ->exp_hint field to the task_struct structure's
->rcu_read_unlock_special field.  The IPI handler sets this hint when
it has interrupted an RCU read-side critical section, and this causes
the outermost rcu_read_unlock() call to invoke rcu_read_unlock_special(),
which, if preemption is enabled, reports the quiescent state immediately.
If preemption is disabled, then the report is required to be deferred
until preemption (or bottom halves or interrupts or whatever) is re-enabled.

Because this is a hint, it does nothing for more complicated cases.  For
example, if the IPI interrupts an RCU reader, but interrupts are disabled
across the rcu_read_unlock(), but another rcu_read_lock() is executed
before interrupts are re-enabled, the hint will already have been cleared.
If you do crazy things like this, reporting will be deferred until some
later RCU_SOFTIRQ handler, context switch, cond_resched(), or similar.

Reported-by: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2018-11-12 09:03:59 -08:00
Linus Torvalds
2d6bb6adb7 New gcc plugin: stackleak
- Introduces the stackleak gcc plugin ported from grsecurity by Alexander
   Popov, with x86 and arm64 support.
 -----BEGIN PGP SIGNATURE-----
 Comment: Kees Cook <kees@outflux.net>
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlvQvn4WHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpSfD/sErFreuPT1beSw994Lr9Zx4k9v
 ERsuXxWBENaJOJXbOOHMfVEcEeG/1uhPSp7hlw/dpHfh0anATTrcYqm8RNKbfK+k
 o06+JK14OJfpm5Ghq/7OizhdNLCMT8wMU3XZtWfy65VSJGjEFx8Y48vMeQtpWtUK
 ylSzi9JV6j2iUBF9oibtiT53+yqsqAtX80X1G7HRCgv9kxuKMhZr+Q5oGV6+ViyQ
 Azj8mNn06iRnhHKd17WxDJr0GjSibzz4weS/9XgP3t3EcNWJo1EgBlD2KV3tOfP5
 nzmqfqTqrcjxs/tyjdh6vVCSlYucNtyCQGn63qyShQYSg6mZwclR2fY8YSTw6PWw
 GfYWFOWru9z+qyQmwFkQ9bSQS2R+JIT0oBCj9VmtF9XmPCy7K2neJsQclzSPBiCW
 wPgXVQS4IA4684O5CmDOVMwmDpGvhdBNUR6cqSzGLxQOHY1csyXubMNUsqU3g9xk
 Ob4pEy/xrrIw4WpwHcLHSEW5gV1/OLhsT0fGRJJiC947L3cN5s9EZp7FLbIS0zlk
 qzaXUcLmn6AgcfkYwg5cI3RMLaN2V0eDCMVTWZJ1wbrmUV9chAaOnTPTjNqLOTht
 v3b1TTxXG4iCpMmOFf59F8pqgAwbBDlfyNSbySZ/Pq5QH69udz3Z9pIUlYQnSJHk
 u6q++2ReDpJXF81rBw==
 =Ks6B
 -----END PGP SIGNATURE-----

Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull stackleak gcc plugin from Kees Cook:
 "Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin
  was ported from grsecurity by Alexander Popov. It provides efficient
  stack content poisoning at syscall exit. This creates a defense
  against at least two classes of flaws:

   - Uninitialized stack usage. (We continue to work on improving the
     compiler to do this in other ways: e.g. unconditional zero init was
     proposed to GCC and Clang, and more plugin work has started too).

   - Stack content exposure. By greatly reducing the lifetime of valid
     stack contents, exposures via either direct read bugs or unknown
     cache side-channels become much more difficult to exploit. This
     complements the existing buddy and heap poisoning options, but
     provides the coverage for stacks.

  The x86 hooks are included in this series (which have been reviewed by
  Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already
  been merged through the arm64 tree (written by Laura Abbott and
  reviewed by Mark Rutland and Will Deacon).

  With VLAs having been removed this release, there is no need for
  alloca() protection, so it has been removed from the plugin"

* tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  arm64: Drop unneeded stackleak_check_alloca()
  stackleak: Allow runtime disabling of kernel stack erasing
  doc: self-protection: Add information about STACKLEAK feature
  fs/proc: Show STACKLEAK metrics in the /proc file system
  lkdtm: Add a test for STACKLEAK
  gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack
  x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
2018-11-01 11:46:27 -07:00
Shakeel Butt
85cfb24506 memcg: remove memcg_kmem_skip_account
The flag memcg_kmem_skip_account was added during the era of opt-out kmem
accounting.  There is no need for such flag in the opt-in world as there
aren't any __GFP_ACCOUNT allocations within memcg_create_cache_enqueue().

Link: http://lkml.kernel.org/r/20180919004501.178023-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Johannes Weiner
eb414681d5 psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills.  In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.

In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.

A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively.  Stall states are aggregate versions of the per-task delay
accounting delays:

       cpu: some tasks are runnable but not executing on a CPU
       memory: tasks are reclaiming, or waiting for swapin or thrashing cache
       io: tasks are waiting for io completions

These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit.  They can also indicate when the system
is approaching lockup scenarios and OOMs.

To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states.  Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime.  A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).

[hannes@cmpxchg.org: doc fixlet, per Randy]
  Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
  Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
  Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
  Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:32 -07:00
Linus Torvalds
ba9f6f8954 Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo updates from Eric Biederman:
 "I have been slowly sorting out siginfo and this is the culmination of
  that work.

  The primary result is in several ways the signal infrastructure has
  been made less error prone. The code has been updated so that manually
  specifying SEND_SIG_FORCED is never necessary. The conversion to the
  new siginfo sending functions is now complete, which makes it
  difficult to send a signal without filling in the proper siginfo
  fields.

  At the tail end of the patchset comes the optimization of decreasing
  the size of struct siginfo in the kernel from 128 bytes to about 48
  bytes on 64bit. The fundamental observation that enables this is by
  definition none of the known ways to use struct siginfo uses the extra
  bytes.

  This comes at the cost of a small user space observable difference.
  For the rare case of siginfo being injected into the kernel only what
  can be copied into kernel_siginfo is delivered to the destination, the
  rest of the bytes are set to 0. For cases where the signal and the
  si_code are known this is safe, because we know those bytes are not
  used. For cases where the signal and si_code combination is unknown
  the bits that won't fit into struct kernel_siginfo are tested to
  verify they are zero, and the send fails if they are not.

  I made an extensive search through userspace code and I could not find
  anything that would break because of the above change. If it turns out
  I did break something it will take just the revert of a single change
  to restore kernel_siginfo to the same size as userspace siginfo.

  Testing did reveal dependencies on preferring the signo passed to
  sigqueueinfo over si->signo, so bit the bullet and added the
  complexity necessary to handle that case.

  Testing also revealed bad things can happen if a negative signal
  number is passed into the system calls. Something no sane application
  will do but something a malicious program or a fuzzer might do. So I
  have fixed the code that performs the bounds checks to ensure negative
  signal numbers are handled"

* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (80 commits)
  signal: Guard against negative signal numbers in copy_siginfo_from_user32
  signal: Guard against negative signal numbers in copy_siginfo_from_user
  signal: In sigqueueinfo prefer sig not si_signo
  signal: Use a smaller struct siginfo in the kernel
  signal: Distinguish between kernel_siginfo and siginfo
  signal: Introduce copy_siginfo_from_user and use it's return value
  signal: Remove the need for __ARCH_SI_PREABLE_SIZE and SI_PAD_SIZE
  signal: Fail sigqueueinfo if si_signo != sig
  signal/sparc: Move EMT_TAGOVF into the generic siginfo.h
  signal/unicore32: Use force_sig_fault where appropriate
  signal/unicore32: Generate siginfo in ucs32_notify_die
  signal/unicore32: Use send_sig_fault where appropriate
  signal/arc: Use force_sig_fault where appropriate
  signal/arc: Push siginfo generation into unhandled_exception
  signal/ia64: Use force_sig_fault where appropriate
  signal/ia64: Use the force_sig(SIGSEGV,...) in ia64_rt_sigreturn
  signal/ia64: Use the generic force_sigsegv in setup_frame
  signal/arm/kvm: Use send_sig_mceerr
  signal/arm: Use send_sig_fault where appropriate
  signal/arm: Use force_sig_fault where appropriate
  ...
2018-10-24 11:22:39 +01:00
Linus Torvalds
0200fbdd43 Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking and misc x86 updates from Ingo Molnar:
 "Lots of changes in this cycle - in part because locking/core attracted
  a number of related x86 low level work which was easier to handle in a
  single tree:

   - Linux Kernel Memory Consistency Model updates (Alan Stern, Paul E.
     McKenney, Andrea Parri)

   - lockdep scalability improvements and micro-optimizations (Waiman
     Long)

   - rwsem improvements (Waiman Long)

   - spinlock micro-optimization (Matthew Wilcox)

   - qspinlocks: Provide a liveness guarantee (more fairness) on x86.
     (Peter Zijlstra)

   - Add support for relative references in jump tables on arm64, x86
     and s390 to optimize jump labels (Ard Biesheuvel, Heiko Carstens)

   - Be a lot less permissive on weird (kernel address) uaccess faults
     on x86: BUG() when uaccess helpers fault on kernel addresses (Jann
     Horn)

   - macrofy x86 asm statements to un-confuse the GCC inliner. (Nadav
     Amit)

   - ... and a handful of other smaller changes as well"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
  locking/lockdep: Make global debug_locks* variables read-mostly
  locking/lockdep: Fix debug_locks off performance problem
  locking/pvqspinlock: Extend node size when pvqspinlock is configured
  locking/qspinlock_stat: Count instances of nested lock slowpaths
  locking/qspinlock, x86: Provide liveness guarantee
  x86/asm: 'Simplify' GEN_*_RMWcc() macros
  locking/qspinlock: Rework some comments
  locking/qspinlock: Re-order code
  locking/lockdep: Remove duplicated 'lock_class_ops' percpu array
  x86/defconfig: Enable CONFIG_USB_XHCI_HCD=y
  futex: Replace spin_is_locked() with lockdep
  locking/lockdep: Make class->ops a percpu counter and move it under CONFIG_DEBUG_LOCKDEP=y
  x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs
  x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs
  x86/extable: Macrofy inline assembly code to work around GCC inlining bugs
  x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops
  x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs
  x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs
  x86/refcount: Work around GCC inlining bug
  x86/objtool: Use asm macros to work around GCC inlining bugs
  ...
2018-10-23 13:08:53 +01:00
Eric W. Biederman
ae7795bc61 signal: Distinguish between kernel_siginfo and siginfo
Linus recently observed that if we did not worry about the padding
member in struct siginfo it is only about 48 bytes, and 48 bytes is
much nicer than 128 bytes for allocating on the stack and copying
around in the kernel.

The obvious thing of only adding the padding when userspace is
including siginfo.h won't work as there are sigframe definitions in
the kernel that embed struct siginfo.

So split siginfo in two; kernel_siginfo and siginfo.  Keeping the
traditional name for the userspace definition.  While the version that
is used internally to the kernel and ultimately will not be padded to
128 bytes is called kernel_siginfo.

The definition of struct kernel_siginfo I have put in include/signal_types.h

A set of buildtime checks has been added to verify the two structures have
the same field offsets.

To make it easy to verify the change kernel_siginfo retains the same
size as siginfo.  The reduction in size comes in a following change.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-03 16:47:43 +02:00
Alexander Popov
c8d126275a fs/proc: Show STACKLEAK metrics in the /proc file system
Introduce CONFIG_STACKLEAK_METRICS providing STACKLEAK information about
tasks via the /proc file system. In particular, /proc/<pid>/stack_depth
shows the maximum kernel stack consumption for the current and previous
syscalls. Although this information is not precise, it can be useful for
estimating the STACKLEAK performance impact for your workloads.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-09-04 10:35:48 -07:00
Alexander Popov
afaef01c00 x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
The STACKLEAK feature (initially developed by PaX Team) has the following
benefits:

1. Reduces the information that can be revealed through kernel stack leak
   bugs. The idea of erasing the thread stack at the end of syscalls is
   similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel
   crypto, which all comply with FDP_RIP.2 (Full Residual Information
   Protection) of the Common Criteria standard.

2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712,
   CVE-2010-2963). That kind of bugs should be killed by improving C
   compilers in future, which might take a long time.

This commit introduces the code filling the used part of the kernel
stack with a poison value before returning to userspace. Full
STACKLEAK feature also contains the gcc plugin which comes in a
separate commit.

The STACKLEAK feature is ported from grsecurity/PaX. More information at:
  https://grsecurity.net/
  https://pax.grsecurity.net/

This code is modified from Brad Spengler/PaX Team's code in the last
public patch of grsecurity/PaX based on our understanding of the code.
Changes or omissions from the original code are ours and don't reflect
the original grsecurity/PaX code.

Performance impact:

Hardware: Intel Core i7-4770, 16 GB RAM

Test #1: building the Linux kernel on a single core
        0.91% slowdown

Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P
        4.2% slowdown

So the STACKLEAK description in Kconfig includes: "The tradeoff is the
performance impact: on a single CPU system kernel compilation sees a 1%
slowdown, other systems and workloads may vary and you are advised to
test this feature on your expected workload before deploying it".

Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-09-04 10:35:47 -07:00
Jann Horn
9da3f2b740 x86/fault: BUG() when uaccess helpers fault on kernel addresses
There have been multiple kernel vulnerabilities that permitted userspace to
pass completely unchecked pointers through to userspace accessors:

 - the waitid() bug - commit 96ca579a1ecc ("waitid(): Add missing
   access_ok() checks")
 - the sg/bsg read/write APIs
 - the infiniband read/write APIs

These don't happen all that often, but when they do happen, it is hard to
test for them properly; and it is probably also hard to discover them with
fuzzing. Even when an unmapped kernel address is supplied to such buggy
code, it just returns -EFAULT instead of doing a proper BUG() or at least
WARN().

Try to make such misbehaving code a bit more visible by refusing to do a
fixup in the pagefault handler code when a userspace accessor causes a #PF
on a kernel address and the current context isn't whitelisted.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: dvyukov@google.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180828201421.157735-7-jannh@google.com
2018-09-03 15:12:09 +02:00
Paul E. McKenney
fcc878e4df rcu: Remove now-unused ->b.exp_need_qs field from the rcu_special union
The ->b.exp_need_qs field is now set only to false, so this commit
removes it.  The job this field used to do is now done by the rcu_data
structure's ->deferred_qs field, which is a consequence of a better
split between task-based (the rcu_node structure's ->exp_tasks field) and
CPU-based (the aforementioned rcu_data structure's ->deferred_qs field)
tracking of quiescent states for RCU-preempt expedited grace periods.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-08-30 16:02:36 -07:00
Linus Torvalds
cd9b44f907 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:

 - the rest of MM

 - procfs updates

 - various misc things

 - more y2038 fixes

 - get_maintainer updates

 - lib/ updates

 - checkpatch updates

 - various epoll updates

 - autofs updates

 - hfsplus

 - some reiserfs work

 - fatfs updates

 - signal.c cleanups

 - ipc/ updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (166 commits)
  ipc/util.c: update return value of ipc_getref from int to bool
  ipc/util.c: further variable name cleanups
  ipc: simplify ipc initialization
  ipc: get rid of ids->tables_initialized hack
  lib/rhashtable: guarantee initial hashtable allocation
  lib/rhashtable: simplify bucket_table_alloc()
  ipc: drop ipc_lock()
  ipc/util.c: correct comment in ipc_obtain_object_check
  ipc: rename ipcctl_pre_down_nolock()
  ipc/util.c: use ipc_rcu_putref() for failues in ipc_addid()
  ipc: reorganize initialization of kern_ipc_perm.seq
  ipc: compute kern_ipc_perm.id under the ipc lock
  init/Kconfig: remove EXPERT from CHECKPOINT_RESTORE
  fs/sysv/inode.c: use ktime_get_real_seconds() for superblock stamp
  adfs: use timespec64 for time conversion
  kernel/sysctl.c: fix typos in comments
  drivers/rapidio/devices/rio_mport_cdev.c: remove redundant pointer md
  fork: don't copy inconsistent signal handler state to child
  signal: make get_signal() return bool
  signal: make sigkill_pending() return bool
  ...
2018-08-22 12:34:08 -07:00
Dmitry Vyukov
a2e5144538 kernel/hung_task.c: allow to set checking interval separately from timeout
Currently task hung checking interval is equal to timeout, as the result
hung is detected anywhere between timeout and 2*timeout.  This is fine for
most interactive environments, but this hurts automated testing setups
(syzbot).  In an automated setup we need to strictly order CPU lockup <
RCU stall < workqueue lockup < task hung < silent loss, so that RCU stall
is not detected as task hung and task hung is not detected as silent
machine loss.  The large variance in task hung detection timeout requires
setting silent machine loss timeout to a very large value (e.g.  if task
hung is 3 mins, then silent loss need to be set to ~7 mins).  The
additional 3 minutes significantly reduce testing efficiency because
usually we crash kernel within a minute, and this can add hours to bug
localization process as it needs to do dozens of tests.

Allow setting checking interval separately from timeout.  This allows to
set timeout to, say, 3 minutes, but checking interval to 10 secs.

The interval is controlled via a new hung_task_check_interval_secs sysctl,
similar to the existing hung_task_timeout_secs sysctl.  The default value
of 0 results in the current behavior: checking interval is equal to
timeout.

[akpm@linux-foundation.org: update hung_task_timeout_max's comment]
Link: http://lkml.kernel.org/r/20180611111004.203513-1-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:47 -07:00
Linus Torvalds
0214f46b3a Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull core signal handling updates from Eric Biederman:
 "It was observed that a periodic timer in combination with a
  sufficiently expensive fork could prevent fork from every completing.
  This contains the changes to remove the need for that restart.

  This set of changes is split into several parts:

   - The first part makes PIDTYPE_TGID a proper pid type instead
     something only for very special cases. The part starts using
     PIDTYPE_TGID enough so that in __send_signal where signals are
     actually delivered we know if the signal is being sent to a a group
     of processes or just a single process.

   - With that prep work out of the way the logic in fork is modified so
     that fork logically makes signals received while it is running
     appear to be received after the fork completes"

* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (22 commits)
  signal: Don't send signals to tasks that don't exist
  signal: Don't restart fork when signals come in.
  fork: Have new threads join on-going signal group stops
  fork: Skip setting TIF_SIGPENDING in ptrace_init_task
  signal: Add calculate_sigpending()
  fork: Unconditionally exit if a fatal signal is pending
  fork: Move and describe why the code examines PIDNS_ADDING
  signal: Push pid type down into complete_signal.
  signal: Push pid type down into __send_signal
  signal: Push pid type down into send_signal
  signal: Pass pid type into do_send_sig_info
  signal: Pass pid type into send_sigio_to_task & send_sigurg_to_task
  signal: Pass pid type into group_send_sig_info
  signal: Pass pid and pid type into send_sigqueue
  posix-timers: Noralize good_sigevent
  signal: Use PIDTYPE_TGID to clearly store where file signals will be sent
  pid: Implement PIDTYPE_TGID
  pids: Move the pgrp and session pid pointers from task_struct to signal_struct
  kvm: Don't open code task_pid in kvm_vcpu_ioctl
  pids: Compute task_tgid using signal->leader_pid
  ...
2018-08-21 13:47:29 -07:00
Kirill Tkhai
84c07d11aa mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB
Introduce new config option, which is used to replace repeating
CONFIG_MEMCG && !CONFIG_SLOB pattern.  Next patches add a little more
memcg+kmem related code, so let's keep the defines more clearly.

Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Michal Hocko
29ef680ae7 memcg, oom: move out_of_memory back to the charge path
Commit 3812c8c8f395 ("mm: memcg: do not trap chargers with full
callstack on OOM") has changed the ENOMEM semantic of memcg charges.
Rather than invoking the oom killer from the charging context it delays
the oom killer to the page fault path (pagefault_out_of_memory).  This
in turn means that many users (e.g.  slab or g-u-p) will get ENOMEM when
the corresponding memcg hits the hard limit and the memcg is is OOM.
This is behavior is inconsistent with !memcg case where the oom killer
is invoked from the allocation context and the allocator keeps retrying
until it succeeds.

The difference in the behavior is user visible.  mmap(MAP_POPULATE)
might result in not fully populated ranges while the mmap return code
doesn't tell that to the userspace.  Random syscalls might fail with
ENOMEM etc.

The primary motivation of the different memcg oom semantic was the
deadlock avoidance.  Things have changed since then, though.  We have an
async oom teardown by the oom reaper now and so we do not have to rely
on the victim to tear down its memory anymore.  Therefore we can return
to the original semantic as long as the memcg oom killer is not handed
over to the users space.

There is still one thing to be careful about here though.  If the oom
killer is not able to make any forward progress - e.g.  because there is
no eligible task to kill - then we have to bail out of the charge path
to prevent from same class of deadlocks.  We have basically two options
here.  Either we fail the charge with ENOMEM or force the charge and
allow overcharge.  The first option has been considered more harmful
than useful because rare inconsistencies in the ENOMEM behavior is hard
to test for and error prone.  Basically the same reason why the page
allocator doesn't fail allocations under such conditions.  The later
might allow runaways but those should be really unlikely unless somebody
misconfigures the system.  E.g.  allowing to migrate tasks away from the
memcg to a different unlimited memcg with move_charge_at_immigrate
disabled.

Link: http://lkml.kernel.org/r/20180628151101.25307-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Shakeel Butt
d46eb14b73 fs: fsnotify: account fsnotify metadata to kmemcg
Patch series "Directed kmem charging", v8.

The Linux kernel's memory cgroup allows limiting the memory usage of the
jobs running on the system to provide isolation between the jobs.  All
the kernel memory allocated in the context of the job and marked with
__GFP_ACCOUNT will also be included in the memory usage and be limited
by the job's limit.

The kernel memory can only be charged to the memcg of the process in
whose context kernel memory was allocated.  However there are cases
where the allocated kernel memory should be charged to the memcg
different from the current processes's memcg.  This patch series
contains two such concrete use-cases i.e.  fsnotify and buffer_head.

The fsnotify event objects can consume a lot of system memory for large
or unlimited queues if there is either no or slow listener.  The events
are allocated in the context of the event producer.  However they should
be charged to the event consumer.  Similarly the buffer_head objects can
be allocated in a memcg different from the memcg of the page for which
buffer_head objects are being allocated.

To solve this issue, this patch series introduces mechanism to charge
kernel memory to a given memcg.  In case of fsnotify events, the memcg
of the consumer can be used for charging and for buffer_head, the memcg
of the page can be charged.  For directed charging, the caller can use
the scope API memalloc_[un]use_memcg() to specify the memcg to charge
for all the __GFP_ACCOUNT allocations within the scope.

This patch (of 2):

A lot of memory can be consumed by the events generated for the huge or
unlimited queues if there is either no or slow listener.  This can cause
system level memory pressure or OOMs.  So, it's better to account the
fsnotify kmem caches to the memcg of the listener.

However the listener can be in a different memcg than the memcg of the
producer and these allocations happen in the context of the event
producer.  This patch introduces remote memcg charging API which the
producer can use to charge the allocations to the memcg of the listener.

There are seven fsnotify kmem caches and among them allocations from
dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and
inotify_inode_mark_cachep happens in the context of syscall from the
listener.  So, SLAB_ACCOUNT is enough for these caches.

The objects from fsnotify_mark_connector_cachep are not accounted as
they are small compared to the notification mark or events and it is
unclear whom to account connector to since it is shared by all events
attached to the inode.

The allocations from the event caches happen in the context of the event
producer.  For such caches we will need to remote charge the allocations
to the listener's memcg.  Thus we save the memcg reference in the
fsnotify_group structure of the listener.

This patch has also moved the members of fsnotify_group to keep the size
same, at least for 64 bit build, even with additional member by filling
the holes.

[shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it]
  Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Linus Torvalds
73ba2fb33c for-4.19/block-20180812
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAltwvasQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpv65EACTq5gSLnJBI6ZPr1RAHruVDnjfzO2Veitl
 tUtjm0XfWmnEiwQ3dYvnyhy99xbyaG3900d9BClCTlH6xaUdSiQkDpcKG/R2F36J
 5mZitYukQcpFAQJWF8YKsTTE7JPl4VglCIDqYiC4+C3rOSVi8lrKn2qp4J4MMCFn
 thRg3jCcq7c5s9Eigsop1pXWQSasubkXfk55Krcp4oybKYpYRKXXf74Mj14QAbwJ
 QHN3VisyAUWoBRg7UQZo1Npe2oPk6bbnJypnjf8M0M2EnlvddEkIlHob91sodka8
 6p4APOEu5cbyXOBCAQsw/koff14mb8aEadqeQA68WvXfIdX9ZjfxCX0OoC3sBEXk
 yqJhZ0C980AM13zIBD8ejv4uasGcPca8W+47mE5P8sRiI++5kBsFWDZPCtUBna0X
 2Kh24NsmEya9XRR5vsB84dsIPQ3tLMkxg/IgQRVDaSnfJz0c/+zm54xDyKRaFT4l
 5iERk2WSkm9+8jNfVmWG0edrv6nRAXjpGwFfOCPh6/LCSCi4xQRULYN7sVzsX8ZK
 FRjt24HftBI8mJbh4BtweJvg+ppVe1gAk3IO3HvxAQhv29Hz+uvFYe9kL+3N8LJA
 Qosr9n9O4+wKYizJcDnw+5iPqCHfAwOm9th4pyedR+R7SmNcP3yNC8AbbheNBiF5
 Zolos5H+JA==
 =b9ib
 -----END PGP SIGNATURE-----

Merge tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:
 "First pull request for this merge window, there will also be a
  followup request with some stragglers.

  This pull request contains:

   - Fix for a thundering heard issue in the wbt block code (Anchal
     Agarwal)

   - A few NVMe pull requests:
      * Improved tracepoints (Keith)
      * Larger inline data support for RDMA (Steve Wise)
      * RDMA setup/teardown fixes (Sagi)
      * Effects log suppor for NVMe target (Chaitanya Kulkarni)
      * Buffered IO suppor for NVMe target (Chaitanya Kulkarni)
      * TP4004 (ANA) support (Christoph)
      * Various NVMe fixes

   - Block io-latency controller support. Much needed support for
     properly containing block devices. (Josef)

   - Series improving how we handle sense information on the stack
     (Kees)

   - Lightnvm fixes and updates/improvements (Mathias/Javier et al)

   - Zoned device support for null_blk (Matias)

   - AIX partition fixes (Mauricio Faria de Oliveira)

   - DIF checksum code made generic (Max Gurtovoy)

   - Add support for discard in iostats (Michael Callahan / Tejun)

   - Set of updates for BFQ (Paolo)

   - Removal of async write support for bsg (Christoph)

   - Bio page dirtying and clone fixups (Christoph)

   - Set of bcache fix/changes (via Coly)

   - Series improving blk-mq queue setup/teardown speed (Ming)

   - Series improving merging performance on blk-mq (Ming)

   - Lots of other fixes and cleanups from a slew of folks"

* tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block: (190 commits)
  blkcg: Make blkg_root_lookup() work for queues in bypass mode
  bcache: fix error setting writeback_rate through sysfs interface
  null_blk: add lock drop/acquire annotation
  Blk-throttle: reduce tail io latency when iops limit is enforced
  block: paride: pd: mark expected switch fall-throughs
  block: Ensure that a request queue is dissociated from the cgroup controller
  block: Introduce blk_exit_queue()
  blkcg: Introduce blkg_root_lookup()
  block: Remove two superfluous #include directives
  blk-mq: count the hctx as active before allocating tag
  block: bvec_nr_vecs() returns value for wrong slab
  bcache: trivial - remove tailing backslash in macro BTREE_FLAG
  bcache: make the pr_err statement used for ENOENT only in sysfs_attatch section
  bcache: set max writeback rate when I/O request is idle
  bcache: add code comments for bset.c
  bcache: fix mistaken comments in request.c
  bcache: fix mistaken code comments in bcache.h
  bcache: add a comment in super.c
  bcache: avoid unncessary cache prefetch bch_btree_node_get()
  bcache: display rate debug parameters to 0 when writeback is not running
  ...
2018-08-14 10:23:25 -07:00
Linus Torvalds
de5d1b39ea Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking/atomics update from Thomas Gleixner:
 "The locking, atomics and memory model brains delivered:

   - A larger update to the atomics code which reworks the ordering
     barriers, consolidates the atomic primitives, provides the new
     atomic64_fetch_add_unless() primitive and cleans up the include
     hell.

   - Simplify cmpxchg() instrumentation and add instrumentation for
     xchg() and cmpxchg_double().

   - Updates to the memory model and documentation"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
  locking/atomics: Rework ordering barriers
  locking/atomics: Instrument cmpxchg_double*()
  locking/atomics: Instrument xchg()
  locking/atomics: Simplify cmpxchg() instrumentation
  locking/atomics/x86: Reduce arch_cmpxchg64*() instrumentation
  tools/memory-model: Rename litmus tests to comply to norm7
  tools/memory-model/Documentation: Fix typo, smb->smp
  sched/Documentation: Update wake_up() & co. memory-barrier guarantees
  locking/spinlock, sched/core: Clarify requirements for smp_mb__after_spinlock()
  sched/core: Use smp_mb() in wake_woken_function()
  tools/memory-model: Add informal LKMM documentation to MAINTAINERS
  locking/atomics/Documentation: Describe atomic_set() as a write operation
  tools/memory-model: Make scripts executable
  tools/memory-model: Remove ACCESS_ONCE() from model
  tools/memory-model: Remove ACCESS_ONCE() from recipes
  locking/memory-barriers.txt/kokr: Update Korean translation to fix broken DMA vs. MMIO ordering example
  MAINTAINERS: Add Daniel Lustig as an LKMM reviewer
  tools/memory-model: Fix ISA2+pooncelock+pooncelock+pombonce name
  tools/memory-model: Add litmus test for full multicopy atomicity
  locking/refcount: Always allow checked forms
  ...
2018-08-13 12:23:39 -07:00
Srikar Dronamraju
6e30396767 sched/numa: Remove redundant field
'numa_entry' is a struct list_head defined in task_struct, but never used.

No functional change.

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-2-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:06 +02:00
Eric W. Biederman
6883f81aac pid: Implement PIDTYPE_TGID
Everywhere except in the pid array we distinguish between a tasks pid and
a tasks tgid (thread group id).  Even in the enumeration we want that
distinction sometimes so we have added __PIDTYPE_TGID.  With leader_pid
we almost have an implementation of PIDTYPE_TGID in struct signal_struct.

Add PIDTYPE_TGID as a first class member of the pid_type enumeration and
into the pids array.  Then remove the __PIDTYPE_TGID special case and the
leader_pid in signal_struct.

The net size increase is just an extra pointer added to struct pid and
an extra pair of pointers of an hlist_node added to task_struct.

The effect on code maintenance is the removal of a number of special
cases today and the potential to remove many more special cases as
PIDTYPE_TGID gets used to it's fullest.  The long term potential
is allowing zombie thread group leaders to exit, which will remove
a lot more special cases in the code.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-07-21 10:43:12 -05:00
Eric W. Biederman
2c4704756c pids: Move the pgrp and session pid pointers from task_struct to signal_struct
To access these fields the code always has to go to group leader so
going to signal struct is no loss and is actually a fundamental simplification.

This saves a little bit of memory by only allocating the pid pointer array
once instead of once for every thread, and even better this removes a
few potential races caused by the fact that group_leader can be changed
by de_thread, while signal_struct can not.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-07-21 10:43:12 -05:00
Eric W. Biederman
7a36094d61 pids: Compute task_tgid using signal->leader_pid
The cost is the the same and this removes the need
to worry about complications that come from de_thread
and group_leader changing.

__task_pid_nr_ns has been updated to take advantage of this change.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-07-21 10:43:12 -05:00