294 Commits

Author SHA1 Message Date
Paul E. McKenney
79bce67243 rcu: Prevent initialization-time quiescent-state race
The next step in reducing RCU's grace-period initialization latency on
large systems will make this initialization preemptible.  Unfortunately,
making the grace-period initialization subject to interrupts (let alone
preemption) exposes the following race on systems whose rcu_node tree
contains more than one node:

1.	CPU 31 starts initializing the grace period, including the
    	first leaf rcu_node structures, and is then preempted.

2.	CPU 0 refers to the first leaf rcu_node structure, and notes
    	that a new grace period has started.  It passes through a
    	quiescent state shortly thereafter, and informs the RCU core
    	of this rite of passage.

3.	CPU 0 enters an RCU read-side critical section, acquiring
    	a pointer to an RCU-protected data item.

4.	CPU 31 takes an interrupt whose handler removes the data item
	referenced by CPU 0 from the data structure, and registers an
	RCU callback in order to free it.

5.	CPU 31 resumes initializing the grace period, including its
    	own rcu_node structure.  In invokes rcu_start_gp_per_cpu(),
    	which advances all callbacks, including the one registered
    	in #4 above, to be handled by the current grace period.

6.	The remaining CPUs pass through quiescent states and inform
    	the RCU core, but CPU 0 remains in its RCU read-side critical
    	section, still referencing the now-removed data item.

7.	The grace period completes and all the callbacks are invoked,
    	including the one that frees the data item that CPU 0 is still
    	referencing.  Oops!!!

One way to avoid this race is to remove grace-period acceleration from
rcu_start_gp_per_cpu().  Now, the only reason for this acceleration was
to allow CPUs bringing RCU out of idle state to have their callbacks
invoked after only one grace period, rather than the two grace periods
that would otherwise be required.  But this acceleration does not
work when RCU grace-period initialization is moved to a kthread because
the CPU posting the callback is no longer necessarily the CPU that is
initializing the resulting grace period.

This commit therefore removes this now-pointless (and soon to be dangerous)
grace-period acceleration, thus avoiding the above race.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-09-23 07:41:52 -07:00
Paul E. McKenney
b3dbec76e5 rcu: Move RCU grace-period initialization into a kthread
As the first step towards allowing grace-period initialization to be
preemptible, this commit moves the RCU grace-period initialization
into its own kthread.  This is needed to keep large-system scheduling
latency at reasonable levels.

Also change raw_spin_lock_irqsave() to raw_spin_lock_irq() as suggested
by Peter Zijlstra in review comments.

Reported-by: Mike Galbraith <mgalbraith@suse.de>
Reported-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:52 -07:00
Paul E. McKenney
a10d206ef1 rcu: Fix day-one dyntick-idle stall-warning bug
Each grace period is supposed to have at least one callback waiting
for that grace period to complete.  However, if CONFIG_NO_HZ=n, an
extra callback-free grace period is no big problem -- it will chew up
a tiny bit of CPU time, but it will complete normally.  In contrast,
CONFIG_NO_HZ=y kernels have the potential for all the CPUs to go to
sleep indefinitely, in turn indefinitely delaying completion of the
callback-free grace period.  Given that nothing is waiting on this grace
period, this is also not a problem.

That is, unless RCU CPU stall warnings are also enabled, as they are
in recent kernels.  In this case, if a CPU wakes up after at least one
minute of inactivity, an RCU CPU stall warning will result.  The reason
that no one noticed until quite recently is that most systems have enough
OS noise that they will never remain absolutely idle for a full minute.
But there are some embedded systems with cut-down userspace configurations
that consistently get into this situation.

All this begs the question of exactly how a callback-free grace period
gets started in the first place.  This can happen due to the fact that
CPUs do not necessarily agree on which grace period is in progress.
If a CPU still believes that the grace period that just completed is
still ongoing, it will believe that it has callbacks that need to wait for
another grace period, never mind the fact that the grace period that they
were waiting for just completed.  This CPU can therefore erroneously
decide to start a new grace period.  Note that this can happen in
TREE_RCU and TREE_PREEMPT_RCU even on a single-CPU system:  Deadlock
considerations mean that the CPU that detected the end of the grace
period is not necessarily officially informed of this fact for some time.

Once this CPU notices that the earlier grace period completed, it will
invoke its callbacks.  It then won't have any callbacks left.  If no
other CPU has any callbacks, we now have a callback-free grace period.

This commit therefore makes CPUs check more carefully before starting a
new grace period.  This new check relies on an array of tail pointers
into each CPU's list of callbacks.  If the CPU is up to date on which
grace periods have completed, it checks to see if any callbacks follow
the RCU_DONE_TAIL segment, otherwise it checks to see if any callbacks
follow the RCU_WAIT_TAIL segment.  The reason that this works is that
the RCU_WAIT_TAIL segment will be promoted to the RCU_DONE_TAIL segment
as soon as the CPU is officially notified that the old grace period
has ended.

This change is to cpu_needs_another_gp(), which is called in a number
of places.  The only one that really matters is in rcu_start_gp(), where
the root rcu_node structure's ->lock is held, which prevents any
other CPU from starting or completing a grace period, so that the
comparison that determines whether the CPU is missing the completion
of a grace period is stable.

Reported-by: Becky Bruce <bgillbruce@gmail.com>
Reported-by: Subodh Nijsure <snijsure@grid-net.com>
Reported-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Walmsley <paul@pwsan.com>  # OMAP3730, OMAP4430
Cc: stable@vger.kernel.org
2012-09-23 07:31:52 -07:00
Paul E. McKenney
62ab707247 rcu: Use smp_hotplug_thread facility for RCUs per-CPU kthread
Bring RCU into the new-age CPU-hotplug fold by modifying RCU's per-CPU
kthread code to use the new smp_hotplug_thread facility.

[ tglx: Adapted it to use callbacks and to the simplified rcu yield ]
    
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: http://lkml.kernel.org/r/20120716103948.673354828@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-08-13 17:01:08 +02:00
Thomas Gleixner
5d01bbd111 rcu: Yield simpler
The rcu_yield() code is amazing. It's there to avoid starvation of the
system when lots of (boosting) work is to be done.

Now looking at the code it's functionality is:

 Make the thread SCHED_OTHER and very nice, i.e. get it out of the way
 Arm a timer with 2 ticks
 schedule()

Now if the system goes idle the rcu task returns, regains SCHED_FIFO
and plugs on. If the systems stays busy the timer fires and wakes a
per node kthread which in turn makes the per cpu thread SCHED_FIFO and
brings it back on the cpu. For the boosting thread the "make it FIFO"
bit is missing and it just runs some magic boost checks. Now this is a
lot of code with extra threads and complexity.

It's way simpler to let the tasks when they detect overload schedule
away for 2 ticks and defer the normal wakeup as long as they are in
yielded state and the cpu is not idle.

That solves the same problem and the only difference is that when the
cpu goes idle it's not guaranteed that the thread returns right away,
but it won't be longer out than two ticks, so no harm is done. If
that's an issue than it is way simpler just to wake the task from
idle as RCU has callbacks there anyway.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20120716103948.131256723@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-08-13 17:01:06 +02:00
Paul E. McKenney
c701d5d9b3 rcu: Fix code-style issues involving "else"
The Linux kernel coding style says that single-statement blocks should
omit curly braces unless the other leg of the "if" statement has
multiple statements, in which case the curly braces should be included.
This commit fixes RCU's violations of this rule.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-06 06:01:48 -07:00
Paul E. McKenney
02a0677b0b Merge branches 'bigrtm.2012.07.04a', 'doctorture.2012.07.02a', 'fixes.2012.07.06a' and 'fnh.2012.07.02a' into HEAD
bigrtm: First steps towards getting RCU out of the way of
	tens-of-microseconds real-time response on systems compiled
	with NR_CPUS=4096.  Also cleanups for and increased concurrency
	of rcu_barrier() family of primitives.
doctorture: rcutorture and documentation improvements.
fixes:  Miscellaneous fixes.
fnh: RCU_FAST_NO_HZ fixes and improvements.
2012-07-06 05:59:30 -07:00
Paul E. McKenney
cfca927972 rcu: Introduce check for callback list/count mismatch
The recent bug that introduced the RCU callback list/count mismatch
showed the need for a diagnostic to check for this, which this commit
adds.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-06 05:55:16 -07:00
Paul E. McKenney
bf1304e9cd rcu: Dump only the current CPU's buffers for idle-entry/exit warnings
Problems in RCU idle entry and exit are almost always confined to the
offending CPU.  This commit therefore switches ftrace_dump() from
DUMP_ALL to DUMP_ORIG.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Pascal Chapperon <pascal.chapperon@wanadoo.fr>
2012-07-02 12:34:42 -07:00
Paul E. McKenney
cf01537ecf rcu: Add check for CPUs going offline with callbacks queued
If a CPU goes offline with callbacks queued, those callbacks might be
indefinitely postponed, which can result in a system hang.  This commit
therefore inserts warnings for this condition.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-07-02 12:34:25 -07:00
Paul E. McKenney
95f0c1de3e rcu: Disable preemption in rcu_blocking_is_gp()
It is time to optimize CONFIG_TREE_PREEMPT_RCU's synchronize_rcu()
for uniprocessor optimization, which means that rcu_blocking_is_gp()
can no longer rely on RCU read-side critical sections having disabled
preemption.  This commit therefore disables preemption across
rcu_blocking_is_gp()'s scan of the cpu_online_mask.

(Updated from previous version to fix embarrassing bug spotted by
Wu Fengguang.)

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-07-02 12:34:25 -07:00
Paul E. McKenney
29154c57e3 rcu: Split RCU core processing out of __call_rcu()
The __call_rcu() function is a bit overweight, so this commit splits
it into actual enqueuing of and accounting for the callback (__call_rcu())
and associated RCU-core processing (__call_rcu_core()).

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:34:24 -07:00
Paul E. McKenney
a16b7a6934 rcu: Prevent __call_rcu() from invoking RCU core on offline CPUs
The __call_rcu() function will invoke the RCU core, for example, if
it detects that the current CPU has too many callbacks.  However, this
can happen on an offline CPU that is on its way to the idle loop, in
which case it is an error to invoke the RCU core, and the excess callbacks
will be adopted in any case.  This commit therefore adds checks to
__call_rcu() for running on an offline CPU, refraining from invoking
the RCU core in this case.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:34:24 -07:00
Paul E. McKenney
62fde6edf1 rcu: Make __call_rcu() handle invocation from idle
Although __call_rcu() is handled correctly when called from a momentary
non-idle period, if it is called on a CPU that RCU believes to be idle
on RCU_FAST_NO_HZ kernels, the callback might be indefinitely postponed.
This commit therefore ensures that RCU is aware of the new callback and
has a chance to force the CPU out of dyntick-idle mode when a new callback
is posted.

Reported-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:34:24 -07:00
Paul E. McKenney
1d1fb395f6 rcu: Add ACCESS_ONCE() to ->qlen accesses
The _rcu_barrier() function accesses other CPUs' rcu_data structure's
->qlen field without benefit of locking.  This commit therefore adds
the required ACCESS_ONCE() wrappers around accesses and updates that
need it.

ACCESS_ONCE() is not needed when a CPU accesses its own ->qlen, or
in code that cannot run while _rcu_barrier() is sampling ->qlen fields.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:34:22 -07:00
Paul E. McKenney
3f5d3ea64f rcu: Consolidate duplicate callback-list initialization
There are a couple of open-coded initializations of the rcu_data
structure's RCU callback list.  This commit therefore consolidates
them into a new init_callback_list() function.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:34:21 -07:00
Paul E. McKenney
285fe29481 rcu: Fix detection of abruptly-ending stall
The code that attempts to identify stalls that end just as we detect
them is broken by both flavors of initialization failure.  This commit
therefore properly initializes and computes the count of the number
of reasons why the RCU grace period is stalled.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:34:21 -07:00
Paul E. McKenney
ff015030c9 rcu: RCU_SAVE_DYNTICK code no longer ever dead
Before RCU had unified idle, the RCU_SAVE_DYNTICK leg of the switch
statement in force_quiescent_state() was dead code for CONFIG_NO_HZ=n
kernel builds.  With unified idle, the code is never dead.  This commit
therefore removes the "if" statement designed to make gcc aware of when
the code was and was not dead.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:33:24 -07:00
Paul E. McKenney
6ce75a2326 rcu: Introduce for_each_rcu_flavor() and use it
The arrival of TREE_PREEMPT_RCU some years back included some ugly
code involving either #ifdef or #ifdef'ed wrapper functions to iterate
over all non-SRCU flavors of RCU.  This commit therefore introduces
a for_each_rcu_flavor() iterator over the rcu_state structures for each
flavor of RCU to clean up a bit of the ugliness.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-07-02 12:33:24 -07:00
Paul E. McKenney
1bca8cf1a2 rcu: Remove unneeded __rcu_process_callbacks() argument
With the advent of __this_cpu_ptr(), it is no longer necessary to pass
both the rcu_state and rcu_data structures into __rcu_process_callbacks().
This commit therefore computes the rcu_data pointer from the rcu_state
pointer within __rcu_process_callbacks() so that callers can pass in
only the pointer to the rcu_state structure.  This paves the way for
linking the rcu_state structures together and iterating over them.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:33:23 -07:00
Paul E. McKenney
a83eff0a82 rcu: Add tracing for _rcu_barrier()
This commit adds event tracing for _rcu_barrier() execution.  This
is defined only if RCU_TRACE=y.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:33:23 -07:00
Paul E. McKenney
cf3a9c4842 rcu: Increase rcu_barrier() concurrency
The traditional rcu_barrier() implementation has serialized all requests,
regardless of RCU flavor, and also does not coalesce concurrent requests.
In the past, this has been good and sufficient.

However, systems are getting larger and use of rcu_barrier() has been
increasing.  This commit therefore introduces a counter-based scheme
that allows _rcu_barrier() calls for the same flavor of RCU to take
advantage of each others' work.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-07-02 12:33:23 -07:00
Paul E. McKenney
cfed0a85da rcu: Remove needless initialization
For global variables, C defaults all fields to zero.  The initialization
of the rcu_state structure's ->n_force_qs and ->n_force_qs_ngp fields
is therefore redundant, so this commit removes these initializations.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-07-02 12:33:22 -07:00
Paul E. McKenney
7be7f0be90 rcu: Move rcu_barrier_mutex to rcu_state structure
In order to allow each RCU flavor to concurrently execute its
rcu_barrier() function, it is necessary to move the relevant
state to the rcu_state structure.  This commit therefore moves the
rcu_barrier_mutex global variable to a new ->barrier_mutex field
in the rcu_state structure.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-07-02 12:33:22 -07:00
Paul E. McKenney
7db74df88b rcu: Move rcu_barrier_completion to rcu_state structure
In order to allow each RCU flavor to concurrently execute its
rcu_barrier() function, it is necessary to move the relevant
state to the rcu_state structure.  This commit therefore moves the
rcu_barrier_completion global variable to a new ->barrier_completion
field in the rcu_state structure.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:33:22 -07:00
Paul E. McKenney
24ebbca8ec rcu: Move rcu_barrier_cpu_count to rcu_state structure
In order to allow each RCU flavor to concurrently execute its rcu_barrier()
function, it is necessary to move the relevant state to the rcu_state
structure.  This commit therefore moves the rcu_barrier_cpu_count global
variable to a new ->barrier_cpu_count field in the rcu_state structure.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:33:22 -07:00
Paul E. McKenney
06668efa91 rcu: Move _rcu_barrier()'s rcu_head structures to rcu_data structures
In order for multiple flavors of RCU to each concurrently run one
rcu_barrier(), each flavor needs its own per-CPU set of rcu_head
structures.  This commit therefore moves _rcu_barrier()'s set of
per-CPU rcu_head structures from per-CPU variables to the existing
per-CPU and per-RCU-flavor rcu_data structures.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:33:21 -07:00
Paul E. McKenney
037b64ed0b rcu: Place pointer to call_rcu() in rcu_data structure
This is a preparatory commit for increasing rcu_barrier()'s concurrency.
It adds a pointer in the rcu_data structure to the corresponding call_rcu()
function.  This allows a pointer to the rcu_data structure to imply the
function pointer, which allows _rcu_barrier() state to be placed in the
rcu_state structure.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:33:21 -07:00
Paul E. McKenney
6c90cc7bf0 rcu: Prevent excessive line length in RCU_STATE_INITIALIZER()
Upcoming rcu_barrier() concurrency commits will result in line lengths
greater than 80 characters in the RCU_STATE_INITIALIZER(), so this commit
shortens the name of the macro's argument to prevent this.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-07-02 12:33:21 -07:00
Paul E. McKenney
cca6f39319 rcu: Size rcu_node tree from nr_cpu_ids rather than NR_CPUS
The rcu_node tree array is sized based on compile-time constants,
including NR_CPUS.  Although this approach has worked well in the past,
the recent trend by many distros to define NR_CPUS=4096 results in
excessive grace-period-initialization latencies.

This commit therefore substitutes the run-time computed nr_cpu_ids for
the compile-time NR_CPUS when building the tree.  This can result in
much of the compile-time-allocated rcu_node array being unused.  If
this is a major problem, you are in a specialized situation anyway,
so you can manually adjust the NR_CPUS, RCU_FANOUT, and RCU_FANOUT_LEAF
kernel config parameters.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-07-02 12:33:21 -07:00
Paul E. McKenney
f885b7f2b2 rcu: Control RCU_FANOUT_LEAF from boot-time parameter
Although making RCU_FANOUT_LEAF a kernel configuration parameter rather
than a fixed constant makes it easier for people to decrease cache-miss
overhead for large systems, it is of little help for people who must
run a single pre-built kernel binary.

This commit therefore allows the value of RCU_FANOUT_LEAF to be
increased (but not decreased!) via a boot-time parameter named
rcutree.rcu_fanout_leaf.

Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-07-02 12:33:20 -07:00
Paul E. McKenney
cba6d0d64e Revert "rcu: Move PREEMPT_RCU preemption to switch_to() invocation"
This reverts commit 616c310e83b872024271c915c1b9ab505b9efad9.
(Move PREEMPT_RCU preemption to switch_to() invocation).
Testing by Sasha Levin <levinsasha928@gmail.com> showed that this
can result in deadlock due to invoking the scheduler when one of
the runqueue locks is held.  Because this commit was simply a
performance optimization, revert it.

Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Sasha Levin <levinsasha928@gmail.com>
2012-07-02 11:39:19 -07:00
Paul E. McKenney
b41772abeb rcu: Stop rcu_do_batch() from multiplexing the "count" variable
Commit b1420f1c (Make rcu_barrier() less disruptive) rearranged the
code in rcu_do_batch(), moving the ->qlen manipulation to follow
the requeueing of the callbacks.  Unfortunately, this rearrangement
clobbered the value of the "count" local variable before the value
of rdp->qlen was adjusted, resulting in the value of rdp->qlen being
inaccurate.  This commit therefore introduces an index variable "i",
avoiding the inadvertent multiplexing.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-06-25 12:35:25 -07:00
Paul E. McKenney
8f5af6f1f2 rcu: RCU_FAST_NO_HZ detection of callback adoption
In the present implementations of CPU hotplug, the outgoing CPU is
guaranteed to run its stop-machine process on the way out, which
will guarantee that RCU_FAST_NO_HZ forces the CPU out of dyntick-idle
mode.

However, new versions of CPU hotplug might not work this way.  This
commit therefore removes this design constraint by explicitly notifying
CPUs when they adopt non-lazy RCU callbacks.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Pascal Chapperon <pascal.chapperon@wanadoo.fr>
2012-06-06 20:43:27 -07:00
Ingo Molnar
2d84e023cb Merge branch 'rcu/next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull the v3.5 RCU tree from Paul E. McKenney:

 1)	A set of improvements and fixes to the RCU_FAST_NO_HZ feature
	(with more on the way for 3.6).  Posted to LKML:
	https://lkml.org/lkml/2012/4/23/324 (commits 1-3 and 5),
	https://lkml.org/lkml/2012/4/16/611 (commit 4),
	https://lkml.org/lkml/2012/4/30/390 (commit 6), and
	https://lkml.org/lkml/2012/5/4/410 (commit 7, combined with
	the other commits for the convenience of the tester).

 2)	Changes to make rcu_barrier() avoid disrupting execution of CPUs
	that have no RCU callbacks.  Posted to LKML:
	https://lkml.org/lkml/2012/4/23/322.

 3)	A couple of commits that improve the efficiency of the interaction
	between preemptible RCU and the scheduler, these two being all
	that survived an abortive attempt to allow preemptible RCU's
	__rcu_read_lock() to be inlined.  The full set was posted to
	LKML at https://lkml.org/lkml/2012/4/14/143, and the first and
	third patches of that set remain.

 4)	Lai Jiangshan's algorithmic implementation of SRCU, which includes
	call_srcu() and srcu_barrier().  A major feature of this new
	implementation is that synchronize_srcu() no longer disturbs
	the execution of other CPUs.  This work is based on earlier
	implementations by Peter Zijlstra and Paul E. McKenney.  Posted to
	LKML: https://lkml.org/lkml/2012/2/22/82.

 5)	A number of miscellaneous bug fixes and improvements which were
	posted to LKML at: https://lkml.org/lkml/2012/4/23/353 with
	subsequent updates posted to LKML.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-05-14 08:41:46 +02:00
Paul E. McKenney
dc36be4419 Merge branches 'barrier.2012.05.09a', 'fixes.2012.04.26a', 'inline.2012.05.02b' and 'srcu.2012.05.07b' into HEAD
barrier:  Reduce the amount of disturbance by rcu_barrier() to the rest of
    	the system.  This branch also includes improvements to
    	RCU_FAST_NO_HZ, which are included here due to conflicts.
fixes:  Miscellaneous fixes.
inline:  Remaining changes from an abortive attempt to inline
    	preemptible RCU's __rcu_read_lock().  These are (1) making
    	exit_rcu() avoid unnecessary work and (2) avoiding having
    	preemptible RCU record a blocked thread when the scheduler
    	declines to do a context switch.
srcu:	Lai Jiangshan's algorithmic implementation of SRCU, including
    	call_srcu().
2012-05-11 10:14:21 -07:00
Paul E. McKenney
b1420f1c8b rcu: Make rcu_barrier() less disruptive
The rcu_barrier() primitive interrupts each and every CPU, registering
a callback on every CPU.  Once all of these callbacks have been invoked,
rcu_barrier() knows that every callback that was registered before
the call to rcu_barrier() has also been invoked.

However, there is no point in registering a callback on a CPU that
currently has no callbacks, most especially if that CPU is in a
deep idle state.  This commit therefore makes rcu_barrier() avoid
interrupting CPUs that have no callbacks.  Doing this requires reworking
the handling of orphaned callbacks, otherwise callbacks could slip through
rcu_barrier()'s net by being orphaned from a CPU that rcu_barrier() had
not yet interrupted to a CPU that rcu_barrier() had already interrupted.
This reworking was needed anyway to take a first step towards weaning
RCU from the CPU_DYING notifier's use of stop_cpu().

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-05-09 14:27:54 -07:00
Paul E. McKenney
616c310e83 rcu: Move PREEMPT_RCU preemption to switch_to() invocation
Currently, PREEMPT_RCU readers are enqueued upon entry to the scheduler.
This is inefficient because enqueuing is required only if there is a
context switch, and entry to the scheduler does not guarantee a context
switch.

The commit therefore moves the enqueuing to immediately precede the
call to switch_to() from the scheduler.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-02 14:43:23 -07:00
Paul E. McKenney
c57afe80db rcu: Make RCU_FAST_NO_HZ account for pauses out of idle
Both Steven Rostedt's new idle-capable trace macros and the RCU_NONIDLE()
macro can cause RCU to momentarily pause out of idle without the rest
of the system being involved.  This can cause rcu_prepare_for_idle()
to run through its state machine too quickly, which can in turn result
in needless scheduling-clock interrupts.

This commit therefore adds code to enable rcu_prepare_for_idle() to
distinguish between an initial entry to idle on the one hand (which needs
to advance the rcu_prepare_for_idle() state machine) and an idle reentry
due to idle-capable trace macros and RCU_NONIDLE() on the other hand
(which should avoid advancing the rcu_prepare_for_idle() state machine).
Additional state is maintained to allow the timer to be correctly reposted
when returning after a momentary pause out of idle, and even more state
is maintained to detect when new non-lazy callbacks have been enqueued
(which may require re-evaluation of the approach to idleness).

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-04-24 20:55:20 -07:00
Paul E. McKenney
6d8133919b rcu: Document why rcu_blocking_is_gp() is safe
The rcu_blocking_is_gp() function tests to see if there is only one
online CPU, and if so, synchronize_sched() and friends become no-ops.
However, for larger systems, num_online_cpus() scans a large vector,
and might be preempted while doing so.  While preempted, any number
of CPUs might come online and go offline, potentially resulting in
num_online_cpus() returning 1 when there never had only been one
CPU online.  This could result in a too-short RCU grace period, which
could in turn result in total failure, except that the only way that
the grace period is too short is if there is an RCU read-side critical
section spanning it.  For RCU-sched and RCU-bh (which are the only
cases using rcu_blocking_is_gp()), RCU read-side critical sections
have either preemption or bh disabled, which prevents CPUs from going
offline.  This in turn prevents actual failures from occurring.

This commit therefore adds a large block comment to rcu_blocking_is_gp()
documenting why it is safe.  This commit also moves rcu_blocking_is_gp()
into kernel/rcutree.c, which should help prevent unwary developers from
mistaking it for a generally useful function.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-04-24 20:54:53 -07:00
Paul E. McKenney
8932a63d5e rcu: Reduce cache-miss initialization latencies for large systems
Commit #0209f649 (rcu: limit rcu_node leaf-level fanout) set an upper
limit of 16 on the leaf-level fanout for the rcu_node tree.  This was
needed to reduce lock contention that was induced by the synchronization
of scheduling-clock interrupts, which was in turn needed to improve
energy efficiency for moderate-sized lightly loaded servers.

However, reducing the leaf-level fanout means that there are more
leaf-level rcu_node structures in the tree, which in turn means that
RCU's grace-period initialization incurs more cache misses.  This is
not a problem on moderate-sized servers with only a few tens of CPUs,
but becomes a major source of real-time latency spikes on systems with
many hundreds of CPUs.  In addition, the workloads running on these large
systems tend to be CPU-bound, which eliminates the energy-efficiency
advantages of synchronizing scheduling-clock interrupts.  Therefore,
these systems need maximal values for the rcu_node leaf-level fanout.

This commit addresses this problem by introducing a new kernel parameter
named RCU_FANOUT_LEAF that directly controls the leaf-level fanout.
This parameter defaults to 16 to handle the common case of a moderate
sized lightly loaded servers, but may be set higher on larger systems.

Reported-by: Mike Galbraith <efault@gmx.de>
Reported-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-04-24 20:54:52 -07:00
Paul E. McKenney
92c38702e9 rcu: Permit call_rcu() from CPU_DYING notifiers
As of:

  29494be71afe ("rcu,cleanup: simplify the code when cpu is dying")

RCU adopts callbacks from the dying CPU in its CPU_DYING notifier,
which means that any callbacks posted by later CPU_DYING notifiers
are ignored until the CPU comes back online.

A WARN_ON_ONCE() was added to __call_rcu() by:

  e56014000816 ("rcu: Simplify offline processing")

to check for this condition.  Although this condition did not trigger
(at least as far as I know) during -next testing, it did recently
trigger in mainline:

  https://lkml.org/lkml/2012/4/2/34

What is needed longer term is for RCU's CPU_DEAD notifier to adopt any
callbacks that were posted by CPU_DYING notifiers, however, the Linux
kernel has been running with this sort of thing happening for quite
some time.  So the only thing that qualifies as a regression is the
WARN_ON_ONCE(), which this commit removes.

Making RCU's CPU_DEAD notifier adopt callbacks posted by CPU_DYING
notifiers is a topic for the 3.5 release of the Linux kernel.

Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-04-17 07:30:54 -07:00
Hugh Dickins
1cc85961e2 rcu: Stop spurious warnings from synchronize_sched_expedited
synchronize_sched_expedited() is spamming CONFIG_DEBUG_PREEMPT=y
users with an unintended warning from the cpu_is_offline() check: use
raw_smp_processor_id() instead of smp_processor_id() there.

Because the warning is under a get_online_cpus(), it is not possible
for any CPUs to go offline, though it is quite possible that the
task might migrate between the raw_smp_processor_id() and the check
of cpu_is_offline().  This is not a problem because the task cannot
migrate from an offline CPU to an online one or vice versa.  The point
of the check is to verify that synchronize_sched_expedited() is not
called from an offline CPU, for example, from a CPU_DYING notifier, or,
more important, from an outgoing CPU making its way from its CPU_DYING
notifiers to the idle loop.

Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-02-21 15:33:34 -08:00
Paul E. McKenney
8a2ecf474d rcu: Add RCU_NONIDLE() for idle-loop RCU read-side critical sections
RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
in the inner idle loop, that is, between the rcu_idle_enter() and the
rcu_idle_exit() -- RCU will happily ignore any such read-side critical
sections.  However, things like powertop need tracepoints in the inner
idle loop.

This commit therefore provides an RCU_NONIDLE() macro that can be used to
wrap code in the idle loop that requires RCU read-side critical sections.

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
2012-02-21 09:06:13 -08:00
Paul E. McKenney
29e37d8141 rcu: Allow nesting of rcu_idle_enter() and rcu_idle_exit()
Use of RCU in the idle loop is incorrect, quite a few instances of
just that have made their way into mainline, primarily event tracing.
The problem with RCU read-side critical sections on CPUs that RCU believes
to be idle is that RCU is completely ignoring the CPU, along with any
attempts and RCU read-side critical sections.

The approaches of eliminating the offending uses and of pushing the
definition of idle down beyond the offending uses have both proved
impractical.  The new approach is to encapsulate offending uses of RCU
with rcu_idle_exit() and rcu_idle_enter(), but this requires nesting
for code that is invoked both during idle and and during normal execution.
Therefore, this commit modifies rcu_idle_enter() and rcu_idle_exit() to
permit nesting.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
2012-02-21 09:06:12 -08:00
Paul E. McKenney
236fefafe5 rcu: Call out dangers of expedited RCU primitives
The expedited RCU primitives can be quite useful, but they have some
high costs as well.  This commit updates and creates docbook comments
calling out the costs, and updates the RCU documentation as well.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-02-21 09:06:08 -08:00
Paul E. McKenney
2036d94a7b rcu: Rework detection of use of RCU by offline CPUs
Because newly offlined CPUs continue executing after completing the
CPU_DYING notifiers, they legitimately enter the scheduler and use
RCU while appearing to be offline.  This calls for a more sophisticated
approach as follows:

1.	RCU marks the CPU online during the CPU_UP_PREPARE phase.

2.	RCU marks the CPU offline during the CPU_DEAD phase.

3.	Diagnostics regarding use of read-side RCU by offline CPUs use
	RCU's accounting rather than the cpu_online_map.  (Note that
	__call_rcu() still uses cpu_online_map to detect illegal
	invocations within CPU_DYING notifiers.)

4.	Offline CPUs are prevented from hanging the system by
	force_quiescent_state(), which pays attention to cpu_online_map.
	Some additional work (in a later commit) will be needed to
	guarantee that force_quiescent_state() waits a full jiffy before
	assuming that a CPU is offline, for example, when called from
	idle entry.  (This commit also makes the one-jiffy wait
	explicit, since the old-style implicit wait can now be defeated
	by RCU_FAST_NO_HZ and by rcutorture.)

This approach avoids the false positives encountered when attempting to
use more exact classification of CPU online/offline state.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-02-21 09:06:07 -08:00
Paul E. McKenney
3d3b7db0a2 rcu: Move synchronize_sched_expedited() to rcutree.c
Now that TREE_RCU and TREE_PREEMPT_RCU no longer do anything different
for the single-CPU case, there is no need for multiple definitions of
synchronize_sched_expedited().  It is no longer in any sense a plug-in,
so move it from kernel/rcutree_plugin.h to kernel/rcutree.c.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-02-21 09:06:04 -08:00
Paul E. McKenney
c0d6d01bff rcu: Check for illegal use of RCU from offlined CPUs
Although it is legal to use RCU during early boot, it is anything
but legal to use RCU at runtime from an offlined CPU.  After all, RCU
explicitly ignores offlined CPUs.  This commit therefore adds checks
for runtime use of RCU from offlined CPUs.

These checks are not perfect, in particular, they can be subverted
through use of things like rcu_dereference_raw().  Note that it is not
possible to put checks in rcu_read_lock() and friends due to the fact
that these primitives are used in code that might be used under either
RCU or lock-based protection, which means that checking rcu_read_lock()
gets you fat piles of false positives.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-02-21 09:06:03 -08:00
Paul E. McKenney
a858af2875 rcu: Print scheduling-clock information on RCU CPU stall-warning messages
There have been situations where RCU CPU stall warnings were caused by
issues in scheduling-clock timer initialization.  To make it easier to
track these down, this commit causes the RCU CPU stall-warning messages
to print out the number of scheduling-clock interrupts taken in the
current grace period for each stalled CPU.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-02-21 09:03:49 -08:00