Add a "param_lock" mutex to each module, and update params.c to use
the correct built-in or module mutex while locking kernel params.
Remove the kparam_block_sysfs_r/w() macros, replace them with direct
calls to kernel_param_[un]lock(module).
The kernel param code currently uses a single mutex to protect
modification of any and all kernel params. While this generally works,
there is one specific problem with it; a module callback function
cannot safely load another module, i.e. with request_module() or even
with indirect calls such as crypto_has_alg(). If the module to be
loaded has any of its params configured (e.g. with a /etc/modprobe.d/*
config file), then the attempt will result in a deadlock between the
first module param callback waiting for modprobe, and modprobe trying to
lock the single kernel param mutex to set the new module's param.
This fixes that by using per-module mutexes, so that each individual module
is protected against concurrent changes in its own kernel params, but is
not blocked by changes to other module params. All built-in modules
continue to use the built-in mutex, since they will always be loaded at
runtime and references (e.g. request_module(), crypto_has_alg()) to them
will never cause load-time param changing.
This also simplifies the interface used by modules to block sysfs access
to their params; while there are currently functions to block and unblock
sysfs param access which are split up by read and write and expect a single
kernel param to be passed, their actual operation is identical and applies
to all params, not just the one passed to them; they simply lock and unlock
the global param mutex. They are replaced with direct calls to
kernel_param_[un]lock(THIS_MODULE), which locks THIS_MODULE's param_lock, or
if the module is built-in, it locks the built-in mutex.
Suggested-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Andrew worried about the overhead on small systems; only use the fancy
code when either perf or tracing is enabled.
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Requested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Currently __module_address() is using a linear search through all
modules in order to find the module corresponding to the provided
address. With a lot of modules this can take a lot of time.
One of the users of this is kernel_text_address() which is employed
in many stack unwinders; which in turn are used by perf-callchain and
ftrace (possibly from NMI context).
So by optimizing __module_address() we optimize many stack unwinders
which are used by both perf and tracing in performance sensitive code.
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Currently the RCU usage in module is an inconsistent mess of RCU and
RCU-sched, this is broken for CONFIG_PREEMPT where synchronize_rcu()
does not imply synchronize_sched().
Most usage sites use preempt_{dis,en}able() which is RCU-sched, but
(most of) the modification sites use synchronize_rcu(). With the
exception of the module bug list, which actually uses RCU.
Convert everything over to RCU-sched.
Furthermore add lockdep asserts to all sites, because it's not at all
clear to me the required locking is observed, esp. on exported
functions.
Cc: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
of the TRACE_DEFINE_ENUM() macro that can be used by tracepoints.
Tracepoints have helper functions for the TP_printk() called
__print_symbolic() and __print_flags() that lets a numeric number be
displayed as a a human comprehensible text. What is placed in the
TP_printk() is also shown in the tracepoint format file such that
user space tools like perf and trace-cmd can parse the binary data
and express the values too. Unfortunately, the way the TRACE_EVENT()
macro works, anything placed in the TP_printk() will be shown pretty
much exactly as is. The problem arises when enums are used. That's
because unlike macros, enums will not be changed into their values
by the C pre-processor. Thus, the enum string is exported to the
format file, and this makes it useless for user space tools.
The TRACE_DEFINE_ENUM() solves this by converting the enum strings
in the TP_printk() format into their number, and that is what is
shown to user space. For example, the tracepoint tlb_flush currently
has this in its format file:
__print_symbolic(REC->reason,
{ TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" },
{ TLB_REMOTE_SHOOTDOWN, "remote shootdown" },
{ TLB_LOCAL_SHOOTDOWN, "local shootdown" },
{ TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" })
After adding:
TRACE_DEFINE_ENUM(TLB_FLUSH_ON_TASK_SWITCH);
TRACE_DEFINE_ENUM(TLB_REMOTE_SHOOTDOWN);
TRACE_DEFINE_ENUM(TLB_LOCAL_SHOOTDOWN);
TRACE_DEFINE_ENUM(TLB_LOCAL_MM_SHOOTDOWN);
Its format file will contain this:
__print_symbolic(REC->reason,
{ 0, "flush on task switch" },
{ 1, "remote shootdown" },
{ 2, "local shootdown" },
{ 3, "local mm shootdown" })
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJVLBTuAAoJEEjnJuOKh9ldjHMIALdRS755TXCZGOf0r7O2akOR
wMPeum7C+ae1mH+jCsJKUC0/jUfQKaMt/UxoHlipDgcGg8kD2jtGnGCw4Xlwvdsr
y4rFmcTRSl1mo0zDSsg6ujoupHlVYN0+JPjrd7S3cv/llJoY49zcanNLF7S2XLeM
dZCtWRLWYpBiWO68ai6AqJTnE/eGFIqBI048qb5Eg8dbK243SSeSIf9Ywhb+VsA+
aq6F7cWI/H6j4tbeza8tAN19dcwenDro5EfCDY8ARQHJu1f6Y3+DLf2imjkd6Aiu
JVAoGIjHIpI+djwCZC1u4gi4urjfOqYartrM3Q54tb3YWYqHeNqP2ASI2a4EpYk=
=Ixwt
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"Some clean ups and small fixes, but the biggest change is the addition
of the TRACE_DEFINE_ENUM() macro that can be used by tracepoints.
Tracepoints have helper functions for the TP_printk() called
__print_symbolic() and __print_flags() that lets a numeric number be
displayed as a a human comprehensible text. What is placed in the
TP_printk() is also shown in the tracepoint format file such that user
space tools like perf and trace-cmd can parse the binary data and
express the values too. Unfortunately, the way the TRACE_EVENT()
macro works, anything placed in the TP_printk() will be shown pretty
much exactly as is. The problem arises when enums are used. That's
because unlike macros, enums will not be changed into their values by
the C pre-processor. Thus, the enum string is exported to the format
file, and this makes it useless for user space tools.
The TRACE_DEFINE_ENUM() solves this by converting the enum strings in
the TP_printk() format into their number, and that is what is shown to
user space. For example, the tracepoint tlb_flush currently has this
in its format file:
__print_symbolic(REC->reason,
{ TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" },
{ TLB_REMOTE_SHOOTDOWN, "remote shootdown" },
{ TLB_LOCAL_SHOOTDOWN, "local shootdown" },
{ TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" })
After adding:
TRACE_DEFINE_ENUM(TLB_FLUSH_ON_TASK_SWITCH);
TRACE_DEFINE_ENUM(TLB_REMOTE_SHOOTDOWN);
TRACE_DEFINE_ENUM(TLB_LOCAL_SHOOTDOWN);
TRACE_DEFINE_ENUM(TLB_LOCAL_MM_SHOOTDOWN);
Its format file will contain this:
__print_symbolic(REC->reason,
{ 0, "flush on task switch" },
{ 1, "remote shootdown" },
{ 2, "local shootdown" },
{ 3, "local mm shootdown" })"
* tag 'trace-v4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (27 commits)
tracing: Add enum_map file to show enums that have been mapped
writeback: Export enums used by tracepoint to user space
v4l: Export enums used by tracepoints to user space
SUNRPC: Export enums in tracepoints to user space
mm: tracing: Export enums in tracepoints to user space
irq/tracing: Export enums in tracepoints to user space
f2fs: Export the enums in the tracepoints to userspace
net/9p/tracing: Export enums in tracepoints to userspace
x86/tlb/trace: Export enums in used by tlb_flush tracepoint
tracing/samples: Update the trace-event-sample.h with TRACE_DEFINE_ENUM()
tracing: Allow for modules to convert their enums to values
tracing: Add TRACE_DEFINE_ENUM() macro to map enums to their values
tracing: Update trace-event-sample with TRACE_SYSTEM_VAR documentation
tracing: Give system name a pointer
brcmsmac: Move each system tracepoints to their own header
iwlwifi: Move each system tracepoints to their own header
mac80211: Move message tracepoints to their own header
tracing: Add TRACE_SYSTEM_VAR to xhci-hcd
tracing: Add TRACE_SYSTEM_VAR to kvm-s390
tracing: Add TRACE_SYSTEM_VAR to intel-sst
...
Update the infrastructure such that modules that declare TRACE_DEFINE_ENUM()
will have those enums converted into their values in the tracepoint
print fmt strings.
Link: http://lkml.kernel.org/r/87vbhjp74q.fsf@rustcorp.com.au
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull livepatching fix from Jiri Kosina:
- fix for potential race with module loading, from Petr Mladek.
The race is very unlikely to be seen in real world and has been found
by code inspection, but should be fixed for 4.0 anyway.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch: Fix subtle race with coming and going modules
There is a notifier that handles live patches for coming and going modules.
It takes klp_mutex lock to avoid races with coming and going patches but
it does not keep the lock all the time. Therefore the following races are
possible:
1. The notifier is called sometime in STATE_MODULE_COMING. The module
is visible by find_module() in this state all the time. It means that
new patch can be registered and enabled even before the notifier is
called. It might create wrong order of stacked patches, see below
for an example.
2. New patch could still see the module in the GOING state even after
the notifier has been called. It will try to initialize the related
object structures but the module could disappear at any time. There
will stay mess in the structures. It might even cause an invalid
memory access.
This patch solves the problem by adding a boolean variable into struct module.
The value is true after the coming and before the going handler is called.
New patches need to be applied when the value is true and they need to ignore
the module when the value is false.
Note that we need to know state of all modules on the system. The races are
related to new patches. Therefore we do not know what modules will get
patched.
Also note that we could not simply ignore going modules. The code from the
module could be called even in the GOING state until mod->exit() finishes.
If we start supporting patches with semantic changes between function
calls, we need to apply new patches to any still usable code.
See below for an example.
Finally note that the patch solves only the situation when a new patch is
registered. There are no such problems when the patch is being removed.
It does not matter who disable the patch first, whether the normal
disable_patch() or the module notifier. There is nothing to do
once the patch is disabled.
Alternative solutions:
======================
+ reject new patches when a patched module is coming or going; this is ugly
+ wait with adding new patch until the module leaves the COMING and GOING
states; this might be dangerous and complicated; we would need to release
kgr_lock in the middle of the patch registration to avoid a deadlock
with the coming and going handlers; also we might need a waitqueue for
each module which seems to be even bigger overhead than the boolean
+ stop modules from entering COMING and GOING states; wait until modules
leave these states when they are already there; looks complicated; we would
need to ignore the module that asked to stop the others to avoid a deadlock;
also it is unclear what to do when two modules asked to stop others and
both are in COMING state (situation when two new patches are applied)
+ always register/enable new patches and fix up the potential mess (registered
patches order) in klp_module_init(); this is nasty and prone to regressions
in the future development
+ add another MODULE_STATE where the kallsyms are visible but the module is not
used yet; this looks too complex; the module states are checked on "many"
locations
Example of patch stacking breakage:
===================================
The notifier could _not_ _simply_ ignore already initialized module objects.
For example, let's have three patches (P1, P2, P3) for functions a() and b()
where a() is from vmcore and b() is from a module M. Something like:
a() b()
P1 a1() b1()
P2 a2() b2()
P3 a3() b3(3)
If you load the module M after all patches are registered and enabled.
The ftrace ops for function a() and b() has listed the functions in this
order:
ops_a->func_stack -> list(a3,a2,a1)
ops_b->func_stack -> list(b3,b2,b1)
, so the pointer to b3() is the first and will be used.
Then you might have the following scenario. Let's start with state when patches
P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace
ops for b() does not exist. Then we get into the following race:
CPU0 CPU1
load_module(M)
complete_formation()
mod->state = MODULE_STATE_COMING;
mutex_unlock(&module_mutex);
klp_register_patch(P3);
klp_enable_patch(P3);
# STATE 1
klp_module_notify(M)
klp_module_notify_coming(P1);
klp_module_notify_coming(P2);
klp_module_notify_coming(P3);
# STATE 2
The ftrace ops for a() and b() then looks:
STATE1:
ops_a->func_stack -> list(a3,a2,a1);
ops_b->func_stack -> list(b3);
STATE2:
ops_a->func_stack -> list(a3,a2,a1);
ops_b->func_stack -> list(b2,b1,b3);
therefore, b2() is used for the module but a3() is used for vmcore
because they were the last added.
Example of the race with going modules:
=======================================
CPU0 CPU1
delete_module() #SYSCALL
try_stop_module()
mod->state = MODULE_STATE_GOING;
mutex_unlock(&module_mutex);
klp_register_patch()
klp_enable_patch()
#save place to switch universe
b() # from module that is going
a() # from core (patched)
mod->exit();
Note that the function b() can be called until we call mod->exit().
If we do not apply patch against b() because it is in MODULE_STATE_GOING,
it will call patched a() with modified semantic and things might get wrong.
[jpoimboe@redhat.com: use one boolean instead of two]
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
MODULE_DEVICE_TABLE() macro used to create aliases to device tables.
Normally alias should have the same type as aliased symbol.
Device tables are arrays, so they have 'struct type##_device_id[x]'
types. Alias created by MODULE_DEVICE_TABLE() will have non-array type -
'struct type##_device_id'.
This inconsistency confuses compiler, it could make a wrong assumption
about variable's size which leads KASan to produce a false positive report
about out of bounds access.
For every global variable compiler calls __asan_register_globals() passing
information about global variable (address, size, size with redzone, name
...) __asan_register_globals() poison symbols redzone to detect possible
out of bounds accesses.
When symbol has an alias __asan_register_globals() will be called as for
symbol so for alias. Compiler determines size of variable by size of
variable's type. Alias and symbol have the same address, so if alias have
the wrong size part of memory that actually belongs to the symbol could be
poisoned as redzone of alias symbol.
By fixing type of alias symbol we will fix size of it, so
__asan_register_globals() will not poison valid memory.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
James Bottomley points out that it will be -1 during unload. It's
only used for diagnostics, so let's not hide that as it could be a
clue as to what's gone wrong.
Cc: Jason Wessel <jason.wessel@windriver.com>
Acked-and-documention-added-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Masami Hiramatsu <maasami.hiramatsu.pt@hitachi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Replace module_ref per-cpu complex reference counter with
an atomic_t simple refcnt. This is for code simplification.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The within_module*() functions return only true or false. Let's use bool as
the return type.
Note that it should not change kABI because these are inline functions.
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It is just a small optimization that allows to replace few
occurrences of within_module_init() || within_module_core()
with a single call.
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
a staging driver; fix included. Greg KH said he'd take the patch
but hadn't as the merge window opened, so it's included here
to avoid breaking build.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQIcBAABAgAGBQJTQMH9AAoJENkgDmzRrbjxo4UP/jwlenP44v+RFpo/dn8Z8E2n
SREQscU5ZZKvuyFD6kUdvOz8YC/nTrJvXoVkMUF05GVbuvb8/8UPtT9ECVemd0rW
xNy4aFfv9rbrqRLBLpLK9LAgTuhwlbTgGxgL78zRn3hWmf1hBZWCY+cEvKM8l/+9
oEQdORL0sUpZh7iryAeGqbOrXT4gqJEvSLOFwiYTSo6ryzWIilmdXSUAh6s8MIEX
PR1+oH9J8B6J29lcXKMf8/sDI1EBUeSLdBmMCuN5Y7xpYxsQLroVx94kPbdBY+XK
ZRoYuUGSUJfGRZY46cFKApIGeF07z1DGoyXghbSWEQrI+23TMUmrKUg47LSukE4Y
yCUf8HAtqIA3gVc9GKDdSp/2UpkAhTTv5ogKgnIzs1InWtOIBdDRSVUQXDosFEXw
6ZZe1pQs2zfXyXxO4j0Wq36K4RgI0aqOVw+dcC+w5BidjVylgnYRV0PSDd72tid7
bIfnjDbUBo+o4LanPNGYK474KyO7AslgTE50w6zwbJzgdwCQ36hCpKqScBZzm60a
42LrgTVoIHHWAL1tDzWL/LzWflZGdJAezzNje0/f2Q3bGMiNHWoljAvUphkTZ7qt
E8+jWqmM+riH3e8Y5wKpO1BKt7NGHISEy//bUlnqTwisjIzVILZ6VjfugQ1AI+0x
llTXPBotFvfvXqxunBg7
=yzUO
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
"Nothing major: the stricter permissions checking for sysfs broke a
staging driver; fix included. Greg KH said he'd take the patch but
hadn't as the merge window opened, so it's included here to avoid
breaking build"
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux:
staging: fix up speakup kobject mode
Use 'E' instead of 'X' for unsigned module taint flag.
VERIFY_OCTAL_PERMISSIONS: stricter checking for sysfs perms.
kallsyms: fix percpu vars on x86-64 with relocation.
kallsyms: generalize address range checking
module: LLVMLinux: Remove unused function warning from __param_check macro
Fix: module signature vs tracepoints: add new TAINT_UNSIGNED_MODULE
module: remove MODULE_GENERIC_TABLE
module: allow multiple calls to MODULE_DEVICE_TABLE() per module
module: use pr_cont
MODULE_DEVICE_TABLE() calles MODULE_GENERIC_TABLE(); make it do the
work directly. This also removes a wart introduced in the last patch,
where the alias is defined to be an unknown struct type "struct
type##__##name##_device_id" instead of "struct type##_device_id" (it's
an extern so GCC doesn't care, but it's wrong).
The other user of MODULE_GENERIC_TABLE (ISAPNP_CARD_TABLE) is unused,
so delete it.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Commit 78551277e4df5: "Input: i8042 - add PNP modaliases" had a bug, where the
second call to MODULE_DEVICE_TABLE() overrode the first resulting in not all
the modaliases being exposed.
This fixes the problem by including the name of the device_id table in the
__mod_*_device_table alias, allowing us to export several device_id tables
per module.
Suggested-by: Kay Sievers <kay@vrfy.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Tom Gundersen <teg@jklm.no>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There's nothing in the module.h header that requires tracepoint.h to be
included, and there may be cases that tracepoint.h may need to include
module.h, which will cause recursive header issues.
But module.h requires seeing HAVE_JUMP_LABEL which is set in jump_label.h
which it just coincidentally gets from tracepoint.h.
Link: http://lkml.kernel.org/r/20140307084712.5c68641a@gandalf.local.home
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The option to wait for a module reference count to reach zero was in
the initial module implementation, but it was never supported in
modprobe (you had to use rmmod --wait). After discussion with Lucas,
It has been deprecated (with a 10 second sleep) in kmod for the last
year.
This finally removes it: the flag will evoke a printk warning and a
normal (non-blocking) remove attempt.
Cc: Lucas De Marchi <lucas.de.marchi@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Additional and optional dependencies not found while building the kernel and
modules, can now be declared explicitly.
Signed-off-by: Andreas Robinson <andr345@gmail.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We have CONFIG_SYMBOL_PREFIX, which three archs define to the string
"_". But Al Viro broke this in "consolidate cond_syscall and
SYSCALL_ALIAS declarations" (in linux-next), and he's not the first to
do so.
Using CONFIG_SYMBOL_PREFIX is awkward, since we usually just want to
prefix it so something. So various places define helpers which are
defined to nothing if CONFIG_SYMBOL_PREFIX isn't set:
1) include/asm-generic/unistd.h defines __SYMBOL_PREFIX.
2) include/asm-generic/vmlinux.lds.h defines VMLINUX_SYMBOL(sym)
3) include/linux/export.h defines MODULE_SYMBOL_PREFIX.
4) include/linux/kernel.h defines SYMBOL_PREFIX (which differs from #7)
5) kernel/modsign_certificate.S defines ASM_SYMBOL(sym)
6) scripts/modpost.c defines MODULE_SYMBOL_PREFIX
7) scripts/Makefile.lib defines SYMBOL_PREFIX on the commandline if
CONFIG_SYMBOL_PREFIX is set, so that we have a non-string version
for pasting.
(arch/h8300/include/asm/linkage.h defines SYMBOL_NAME(), too).
Let's solve this properly:
1) No more generic prefix, just CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX.
2) Make linux/export.h usable from asm.
3) Define VMLINUX_SYMBOL() and VMLINUX_SYMBOL_STR().
4) Make everyone use them.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Tested-by: James Hogan <james.hogan@imgtec.com> (metag)
These helper functions just check a set intersection with a range, and
don't actually modify struct module.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
You should never look at such a module, so it's excised from all paths
which traverse the modules list.
We add the state at the end, to avoid gratuitous ABI break (ksplice).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We do a very simple search for a particular string appended to the module
(which is cache-hot and about to be SHA'd anyway). There's both a config
option and a boot parameter which control whether we accept or fail with
unsigned modules and modules that are signed with an unknown key.
If module signing is enabled, the kernel will be tainted if a module is
loaded that is unsigned or has a signature for which we don't have the
key.
(Useful feedback and tweaks by David Howells <dhowells@redhat.com>)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
module_ref contains two "unsigned int" fields.
Thats now too small, since some machines can open more than 2^32 files.
Check commit 518de9b39e8 (fs: allow for more than 2^31 files) for
reference.
We can add an aligned(2 * sizeof(unsigned long)) attribute to force
alloc_percpu() allocating module_ref areas in single cache lines.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
CC: Rusty Russell <rusty@rustcorp.com.au>
CC: Tejun Heo <tj@kernel.org>
CC: Robin Holt <holt@sgi.com>
CC: David Miller <davem@davemloft.net>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There are files which use module_param and MODULE_PARM_DESC
back to back. They only include moduleparam.h which makes sense,
but the implicit presence of module.h everywhere hid the fact
that MODULE_PARM_DESC wasn't in moduleparam.h at all. Relocate
the macro to moduleparam.h so that the moduleparam infrastructure
can be used independently of module.h
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
A lot of files pull in module.h when all they are really
looking for is the basic EXPORT_SYMBOL functionality. The
recent data from Ingo[1] shows that this is one of several
instances that has a significant impact on compile times,
and it should be targeted for factoring out (as done here).
Note that several commonly used header files in include/*
directly include <linux/module.h> themselves (some 34 of them!)
The most commonly used ones of these will have to be made
independent of module.h before the full benefit of this change
can be realized.
We also transition THIS_MODULE from module.h to export.h,
since there are lots of files with subsystem structs that
in turn will have a struct module *owner and only be doing:
.owner = THIS_MODULE;
and absolutely nothing else modular. So, we also want to have
the THIS_MODULE definition present in the lightweight header.
[1] https://lkml.org/lkml/2011/5/23/76
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Copy the information needed from struct module into a local module list
held within tracepoint.c from within the module coming/going notifier.
This vastly simplifies locking of tracepoint registration /
unregistration, because we don't have to take the module mutex to
register and unregister tracepoints anymore. Steven Rostedt ran into
dependency problems related to modules mutex vs kprobes mutex vs ftrace
mutex vs tracepoint mutex that seems to be hard to fix without removing
this dependency between tracepoint and module mutex. (note: it should be
investigated whether kprobes could benefit of being dissociated from the
modules mutex too.)
This also fixes module handling of tracepoint list iterators, because it
was expecting the list to be sorted by pointer address. Given we have
control on our own list now, it's OK to sort this list which has
tracepoints as its only purpose. The reason why this sorting is required
is to handle the fact that seq files (and any read() operation from
user-space) cannot hold the tracepoint mutex across multiple calls, so
list entries may vanish between calls. With sorting, the tracepoint
iterator becomes usable even if the list don't contain the exact item
pointed to by the iterator anymore.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Jason Baron <jbaron@redhat.com>
CC: Ingo Molnar <mingo@elte.hu>
CC: Lai Jiangshan <laijs@cn.fujitsu.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20110810191839.GC8525@Krystal
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Userspace wants to manage module parameters with udev rules.
This currently only works for loaded modules, but not for
built-in ones.
To allow access to the built-in modules we need to
re-trigger all module load events that happened before any
userspace was running. We already do the same thing for all
devices, subsystems(buses) and drivers.
This adds the currently missing /sys/module/<name>/uevent files
to all module entries.
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (split & trivial fix)
This simplifies the next patch, where we have an attribute on a
builtin module (ie. module == NULL).
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (split into 2)
This patch places every exported symbol in its own section
(i.e. "___ksymtab+printk"). Thus the linker will use its SORT() directive
to sort and finally merge all symbol in the right and final section
(i.e. "__ksymtab").
The symbol prefixed archs use an underscore as prefix for symbols.
To avoid collision we use a different character to create the temporary
section names.
This work was supported by a hardware donation from the CE Linux Forum.
Signed-off-by: Alessio Igor Bogani <abogani@kernel.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (folded in '+' fixup)
Tested-by: Dirk Behme <dirk.behme@googlemail.com>
Instead of having a callback function for each symbol in the kernel,
have a callback for each array of symbols.
This eases the logic when we move to sorted symbols and binary search.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Alessio Igor Bogani <abogani@kernel.org>
Reorder struct module to remove 24 bytes of alignment padding on 64 bit
builds when the CONFIG_TRACE options are selected. This allows the
structure to fit into one fewer cache lines, and its size drops from 592
to 568 on x86_64.
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Doing so prevents the following warning from sparse:
CHECK kernel/params.c
kernel/params.c:817:9: warning: symbol '__modver_version_show' was not
declared. Should it be static?
since kernel/params.c is never compiled with MODULE being set.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
On m68k natural alignment is 2-byte boundary but we are trying to
align structures in __modver section on sizeof(void *) boundary.
This causes trouble when we try to access elements in this section
in array-like fashion when create "version" attributes for built-in
modules.
Moreover, as DaveM said, we can't reliably put structures into
independent objects, put them into a special section, and then expect
array access over them (via the section boundaries) after linking the
objects together to just "work" due to variable alignment choices in
different situations. The only solution that seems to work reliably
is to make an array of plain pointers to the objects in question and
put those pointers in the special section.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We force particular alignment when we generate attribute structures
when generation MODULE_VERSION() data and we need to make sure that
this alignment is followed when we iterate over these structures,
otherwise we may crash on platforms whose natural alignment is not
sizeof(void *), such as m68k.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
[ There are more issues here, but the fixes are incredibly ugly - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the tracepoints more robust, making them solid enough to handle compiler
changes by not relying on anything based on compiler-specific behavior with
respect to structure alignment. Implement an approach proposed by David Miller:
use an array of const pointers to refer to the individual structures, and export
this pointer array through the linker script rather than the structures per se.
It will consume 32 extra bytes per tracepoint (24 for structure padding and 8
for the pointers), but are less likely to break due to compiler changes.
History:
commit 7e066fb8 tracepoints: add DECLARE_TRACE() and DEFINE_TRACE()
added the aligned(32) type and variable attribute to the tracepoint structures
to deal with gcc happily aligning statically defined structures on 32-byte
multiples.
One attempt was to use a 8-byte alignment for tracepoint structures by applying
both the variable and type attribute to tracepoint structures definitions and
declarations. It worked fine with gcc 4.5.1, but broke with gcc 4.4.4 and 4.4.5.
The reason is that the "aligned" attribute only specify the _minimum_ alignment
for a structure, leaving both the compiler and the linker free to align on
larger multiples. Because tracepoint.c expects the structures to be placed as an
array within each section, up-alignment cause NULL-pointer exceptions due to the
extra unexpected padding.
(this patch applies on top of -tip)
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: David S. Miller <davem@davemloft.net>
LKML-Reference: <20110126222622.GA10794@Krystal>
CC: Frederic Weisbecker <fweisbec@gmail.com>
CC: Ingo Molnar <mingo@elte.hu>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently the trace_event structures are placed in the _ftrace_events
section, and at link time, the linker makes one large array of all
the trace_event structures. On boot up, this array is read (much like
the initcall sections) and the events are processed.
The problem is that there is no guarantee that gcc will place complex
structures nicely together in an array format. Two structures in the
same file may be placed awkwardly, because gcc has no clue that they
are suppose to be in an array.
A hack was used previous to force the alignment to 4, to pack the
structures together. But this caused alignment issues with other
architectures (sparc).
Instead of packing the structures into an array, the structures' addresses
are now put into the _ftrace_event section. As pointers are always the
natural alignment, gcc should always pack them tightly together
(otherwise initcall, extable, etc would also fail).
By having the pointers to the structures in the section, we can still
iterate the trace_events without causing unnecessary alignment problems
with other architectures, or depending on the current behaviour of
gcc that will likely change in the future just to tick us kernel developers
off a little more.
The _ftrace_event section is also moved into the .init.data section
as it is now only needed at boot up.
Suggested-by: David Miller <davem@davemloft.net>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
lib/built-in.o:(__modver+0x8): undefined reference to `__modver_version_show'
lib/built-in.o:(__modver+0x2c): undefined reference to `__modver_version_show'
Simplest to just not emit anything: if they've disabled SYSFS they probably
want the smallest kernel possible.
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Currently only drivers that are built as modules have their versions
shown in /sys/module/<module_name>/version, but this information might
also be useful for built-in drivers as well. This especially important
for drivers that do not define any parameters - such drivers, if
built-in, are completely invisible from userspace.
This patch changes MODULE_VERSION() macro so that in case when we are
compiling built-in module, version information is stored in a separate
section. Kernel then uses this data to create 'version' sysfs attribute
in the same fashion it creates attributes for module parameters.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Commit 9bea7f23952d5948f8e5dfdff4de09bb9981fb5f renamed use_module to
ref_module (and changed its return value), but forgot to update this
prototype in module.h.
Signed-off-by: Anders Kaseorg <andersk@ksplice.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This patch is a logical extension of the protection provided by
CONFIG_DEBUG_RODATA to LKMs. The protection is provided by
splitting module_core and module_init into three logical parts
each and setting appropriate page access permissions for each
individual section:
1. Code: RO+X
2. RO data: RO+NX
3. RW data: RW+NX
In order to achieve proper protection, layout_sections() have
been modified to align each of the three parts mentioned above
onto page boundary. Next, the corresponding page access
permissions are set right before successful exit from
load_module(). Further, free_module() and sys_init_module have
been modified to set module_core and module_init as RW+NX right
before calling module_free().
By default, the original section layout and access flags are
preserved. When compiled with CONFIG_DEBUG_SET_MODULE_RONX=y,
the patch will page-align each group of sections to ensure that
each page contains only one type of content and will enforce
RO/NX for each group of pages.
-v1: Initial proof-of-concept patch.
-v2: The patch have been re-written to reduce the number of #ifdefs
and to make it architecture-agnostic. Code formatting has also
been corrected.
-v3: Opportunistic RO/NX protection is now unconditional. Section
page-alignment is enabled when CONFIG_DEBUG_RODATA=y.
-v4: Removed most macros and improved coding style.
-v5: Changed page-alignment and RO/NX section size calculation
-v6: Fixed comments. Restricted RO/NX enforcement to x86 only
-v7: Introduced CONFIG_DEBUG_SET_MODULE_RONX, added
calls to set_all_modules_text_rw() and set_all_modules_text_ro()
in ftrace
-v8: updated for compatibility with linux 2.6.33-rc5
-v9: coding style fixes
-v10: more coding style fixes
-v11: minor adjustments for -tip
-v12: minor adjustments for v2.6.35-rc2-tip
-v13: minor adjustments for v2.6.37-rc1-tip
Signed-off-by: Siarhei Liakh <sliakh.lkml@gmail.com>
Signed-off-by: Xuxian Jiang <jiang@cs.ncsu.edu>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dave Jones <davej@redhat.com>
Cc: Kees Cook <kees.cook@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <4CE2F914.9070106@free.fr>
[ minor cleanliness edits, -v14: build failure fix ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With all the recent module loading cleanups, we've minimized the code
that sits under module_mutex, fixing various deadlocks and making it
possible to do most of the module loading in parallel.
However, that whole conversion totally missed the rather obscure code
that adds a new module to the list for BUG() handling. That code was
doubly obscure because (a) the code itself lives in lib/bugs.c (for
dubious reasons) and (b) it gets called from the architecture-specific
"module_finalize()" rather than from generic code.
Calling it from arch-specific code makes no sense what-so-ever to begin
with, and is now actively wrong since that code isn't protected by the
module loading lock any more.
So this commit moves the "module_bug_{finalize,cleanup}()" calls away
from the arch-specific code, and into the generic code - and in the
process protects it with the module_mutex so that the list operations
are now safe.
Future fixups:
- move the module list handling code into kernel/module.c where it
belongs.
- get rid of 'module_bug_list' and just use the regular list of modules
(called 'modules' - imagine that) that we already create and maintain
for other reasons.
Reported-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Adrian Bunk <bunk@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
base patch to implement 'jump labeling'. Based on a new 'asm goto' inline
assembly gcc mechanism, we can now branch to labels from an 'asm goto'
statment. This allows us to create a 'no-op' fastpath, which can subsequently
be patched with a jump to the slowpath code. This is useful for code which
might be rarely used, but which we'd like to be able to call, if needed.
Tracepoints are the current usecase that these are being implemented for.
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jason Baron <jbaron@redhat.com>
LKML-Reference: <ee8b3595967989fdaf84e698dc7447d315ce972a.1284733808.git.jbaron@redhat.com>
[ cleaned up some formating ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
These were placed in the header in ef665c1a06 to get the various
SYSFS/MODULE config combintations to compile.
That may have been necessary then, but it's not now. These functions
are all local to module.c.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Randy Dunlap <randy.dunlap@oracle.com>