Commit Graph

16 Commits

Author SHA1 Message Date
Lukas Wunner
3b0565c703 crypto: ecdsa - Avoid signed integer overflow on signature decoding
When extracting a signature component r or s from an ASN.1-encoded
integer, ecdsa_get_signature_rs() subtracts the expected length
"bufsize" from the ASN.1 length "vlen" (both of unsigned type size_t)
and stores the result in "diff" (of signed type ssize_t).

This results in a signed integer overflow if vlen > SSIZE_MAX + bufsize.

The kernel is compiled with -fno-strict-overflow, which implies -fwrapv,
meaning signed integer overflow is not undefined behavior.  And the
function does check for overflow:

       if (-diff >= bufsize)
               return -EINVAL;

So the code is fine in principle but not very obvious.  In the future it
might trigger a false-positive with CONFIG_UBSAN_SIGNED_WRAP=y.

Avoid by comparing the two unsigned variables directly and erroring out
if "vlen" is too large.

Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-10-05 13:22:04 +08:00
Lukas Wunner
ef132350a3 crypto: ecdsa - Migrate to sig_alg backend
A sig_alg backend has just been introduced with the intent of moving all
asymmetric sign/verify algorithms to it one by one.

Migrate ecdsa.c to the new backend.

One benefit of the new API is the use of kernel buffers instead of
sglists, which avoids the overhead of copying signature and digest
sglists back into kernel buffers.  ecdsa.c is thus simplified quite
a bit.

Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-10-05 13:22:04 +08:00
Stefan Berger
546ce0bdc9 crypto: ecdsa - Use ecc_digits_from_bytes to convert signature
Since ecc_digits_from_bytes will provide zeros when an insufficient number
of bytes are passed in the input byte array, use it to convert the r and s
components of the signature to digits directly from the input byte
array. This avoids going through an intermediate byte array that has the
first few bytes filled with zeros.

Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-06-07 19:46:39 +08:00
Stefan Berger
2fd2a82ccb crypto: ecdsa - Use ecc_digits_from_bytes to create hash digits array
Since ecc_digits_from_bytes will provide zeros when an insufficient number
of bytes are passed in the input byte array, use it to create the hash
digits directly from the input byte array. This avoids going through an
intermediate byte array (rawhash) that has the first few bytes filled with
zeros.

Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-06-07 19:46:39 +08:00
Jarkko Sakkinen
d7c897a9d8 crypto: ecdsa - Fix the public key format description
Public key blob is not just x and y concatenated. It follows RFC5480
section 2.2. Address this by re-documenting the function with the
correct description of the format.

Link: https://datatracker.ietf.org/doc/html/rfc5480
Fixes: 4e6602916b ("crypto: ecdsa - Add support for ECDSA signature verification")
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-06-07 19:46:38 +08:00
Stefan Berger
a7d45ba77d crypto: ecdsa - Register NIST P521 and extend test suite
Register NIST P521 as an akcipher and extend the testmgr with
NIST P521-specific test vectors.

Add a module alias so the module gets automatically loaded by the crypto
subsystem when the curve is needed.

Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:52 +08:00
Stefan Berger
703ca5cda1 crypto: ecdsa - Rename keylen to bufsize where necessary
In cases where 'keylen' was referring to the size of the buffer used by
a curve's digits, it does not reflect the purpose of the variable anymore
once NIST P521 is used. What it refers to then is the size of the buffer,
which may be a few bytes larger than the size a coordinate of a key.
Therefore, rename keylen to bufsize where appropriate.

Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:52 +08:00
Stefan Berger
dee45a607a crypto: ecdsa - Replace ndigits with nbits where precision is needed
Replace the usage of ndigits with nbits where precise space calculations
are needed, such as in ecdsa_max_size where the length of a coordinate is
determined.

Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:52 +08:00
Stefan Berger
48e8d3a5f4 crypto: ecdsa - Extend res.x mod n calculation for NIST P521
res.x has been calculated by ecc_point_mult_shamir, which uses
'mod curve_prime' on res.x and therefore p > res.x with 'p' being the
curve_prime. Further, it is true that for the NIST curves p > n with 'n'
being the 'curve_order' and therefore the following may be true as well:
p > res.x >= n.

If res.x >= n then res.x mod n can be calculated by iteratively sub-
tracting n from res.x until res.x < n. For NIST P192/256/384 this can be
done in a single subtraction. This can also be done in a single
subtraction for NIST P521.

The mathematical reason why a single subtraction is sufficient is due to
the values of 'p' and 'n' of the NIST curves where the following holds
true:

   note: max(res.x) = p - 1

   max(res.x) - n < n
       p - 1  - n < n
       p - 1      < 2n  => holds true for the NIST curves

Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:52 +08:00
Stefan Berger
dcee6068d4 crypto: ecdsa - Adjust tests on length of key parameters
In preparation for support of NIST P521, adjust the basic tests on the
length of the provided key parameters to only ensure that the length of the
x plus y coordinates parameter array is not an odd number and that each
coordinate fits into an array of 'ndigits' digits. Mathematical tests on
the key's parameters are then done in ecc_is_pubkey_valid_full rejecting
invalid keys.

The change is necessary since NIST P521 keys do not have keys with
coordinates that each require 'full' digits (= all bits in u64 used).
NIST P521 only requires 2 bytes (9 bits) in the most significant digit
unlike NIST P192/256/384 that each require multiple 'full' digits.

Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:52 +08:00
Stefan Berger
d67c96fb97 crypto: ecdsa - Convert byte arrays with key coordinates to digits
For NIST P192/256/384 the public key's x and y parameters could be copied
directly from a given array since both parameters filled 'ndigits' of
digits (a 'digit' is a u64). For support of NIST P521 the key parameters
need to have leading zeros prepended to the most significant digit since
only 2 bytes of the most significant digit are provided.

Therefore, implement ecc_digits_from_bytes to convert a byte array into an
array of digits and use this function in ecdsa_set_pub_key where an input
byte array needs to be converted into digits.

Suggested-by: Lukas Wunner <lukas@wunner.de>
Tested-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-12 15:07:51 +08:00
Stefan Berger
48e4fd6d54 crypto: ecdsa - Fix module auto-load on add-key
Add module alias with the algorithm cra_name similar to what we have for
RSA-related and other algorithms.

The kernel attempts to modprobe asymmetric algorithms using the names
"crypto-$cra_name" and "crypto-$cra_name-all." However, since these
aliases are currently missing, the modules are not loaded. For instance,
when using the `add_key` function, the hash algorithm is typically
loaded automatically, but the asymmetric algorithm is not.

Steps to test:

1. Create certificate

  openssl req -x509 -sha256 -newkey ec \
  -pkeyopt "ec_paramgen_curve:secp384r1" -keyout key.pem -days 365 \
  -subj '/CN=test' -nodes -outform der -out nist-p384.der

2. Optionally, trace module requests with: trace-cmd stream -e module &

3. Trigger add_key call for the cert:

   # keyctl padd asymmetric "" @u < nist-p384.der
   641069229
   # lsmod | head -2
   Module                  Size  Used by
   ecdsa_generic          16384  0

Fixes: c12d448ba9 ("crypto: ecdsa - Register NIST P384 and extend test suite")
Cc: stable@vger.kernel.org
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Vitaly Chikunov <vt@altlinux.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-02 10:49:38 +08:00
Xiu Jianfeng
33837be333 crypto: add __init/__exit annotations to init/exit funcs
Add missing __init/__exit annotations to init/exit funcs.

Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-09-24 16:14:43 +08:00
Daniele Alessandrelli
a745d3ace3 crypto: ecc - Move ecc.h to include/crypto/internal
Move ecc.h header file to 'include/crypto/internal' so that it can be
easily imported from everywhere in the kernel tree.

This change is done to allow crypto device drivers to re-use the symbols
exported by 'crypto/ecc.c', thus avoiding code duplication.

Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-10-29 21:04:03 +08:00
Saulo Alessandre
c12d448ba9 crypto: ecdsa - Register NIST P384 and extend test suite
Register NIST P384 as an akcipher and extend the testmgr with
NIST P384-specific test vectors.

Summary of changes:

* crypto/ecdsa.c
  - add ecdsa_nist_p384_init_tfm
  - register and unregister P384 tfm

* crypto/testmgr.c
  - add test vector for P384 on vector of tests

* crypto/testmgr.h
  - add test vector params for P384(sha1, sha224, sha256, sha384
    and sha512)

Signed-off-by: Saulo Alessandre <saulo.alessandre@tse.jus.br>
Tested-by: Stefan Berger <stefanb@linux.ibm.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-03-26 19:41:58 +11:00
Stefan Berger
4e6602916b crypto: ecdsa - Add support for ECDSA signature verification
Add support for parsing the parameters of a NIST P256 or NIST P192 key.
Enable signature verification using these keys. The new module is
enabled with CONFIG_ECDSA:
  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
  is A NIST cryptographic standard algorithm. Only signature verification
  is implemented.

Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-03-26 19:41:58 +11:00