swapcache will reach the below code path in migrate_page_move_mapping,
and swapcache is accounted as NR_FILE_PAGES but it's not accounted as
NR_SHMEM.
Hugh pointed out we must use PageSwapCache instead of comparing
mapping to &swapper_space, to avoid build failure with CONFIG_SWAP=n.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have some users of this function that date back to before the vma
list was doubly linked, and just are silly. These days, you can find
the previous vma by just following the vma->vm_prev pointer.
In some cases you don't need any find_vma() lookup at all, and in other
cases you're better off with the regular "find_vma()" that uses the vma
cache front-end lookup.
Some "find_vma_prev()" users are still valid, though. For example, in
the case of a stack that grows up, it can be the case that we don't find
any 'vma' at all (because we're looking up an address that is past the
last vma), and that the stack that we want to grow is the 'prev' vma.
But that kind of special case aside, we generally should prefer to use
'find_vma()'.
Noticed due to a totally unrelated POWER memory corruption bug that just
happened to hit in 'find_vma_prev()' and made me go "Hmm - why are we
using that function here?".
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrea Righi reported a case where an exiting task can race against
ksmd::scan_get_next_rmap_item (http://lkml.org/lkml/2011/6/1/742) easily
triggering a NULL pointer dereference in ksmd.
ksm_scan.mm_slot == &ksm_mm_head with only one registered mm
CPU 1 (__ksm_exit) CPU 2 (scan_get_next_rmap_item)
list_empty() is false
lock slot == &ksm_mm_head
list_del(slot->mm_list)
(list now empty)
unlock
lock
slot = list_entry(slot->mm_list.next)
(list is empty, so slot is still ksm_mm_head)
unlock
slot->mm == NULL ... Oops
Close this race by revalidating that the new slot is not simply the list
head again.
Andrea's test case:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#define BUFSIZE getpagesize()
int main(int argc, char **argv)
{
void *ptr;
if (posix_memalign(&ptr, getpagesize(), BUFSIZE) < 0) {
perror("posix_memalign");
exit(1);
}
if (madvise(ptr, BUFSIZE, MADV_MERGEABLE) < 0) {
perror("madvise");
exit(1);
}
*(char *)NULL = 0;
return 0;
}
Reported-by: Andrea Righi <andrea@betterlinux.com>
Tested-by: Andrea Righi <andrea@betterlinux.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Asynchronous compaction is used when promoting to huge pages. This is all
very nice but if there are a number of processes in compacting memory, a
large number of pages can be isolated. An "asynchronous" process can
stall for long periods of time as a result with a user reporting that
firefox can stall for 10s of seconds. This patch aborts asynchronous
compaction if too many pages are isolated as it's better to fail a
hugepage promotion than stall a process.
[minchan.kim@gmail.com: return COMPACT_PARTIAL for abort]
Reported-and-tested-by: Ury Stankevich <urykhy@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is unsafe to run page_count during the physical pfn scan because
compound_head could trip on a dangling pointer when reading
page->first_page if the compound page is being freed by another CPU.
[mgorman@suse.de: split out patch]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction works with two scanners, a migration and a free scanner. When
the scanners crossover, migration within the zone is complete. The
location of the scanner is recorded on each cycle to avoid excesive
scanning.
When a zone is small and mostly reserved, it's very easy for the migration
scanner to be close to the end of the zone. Then the following situation
can occurs
o migration scanner isolates some pages near the end of the zone
o free scanner starts at the end of the zone but finds that the
migration scanner is already there
o free scanner gets reinitialised for the next cycle as
cc->migrate_pfn + pageblock_nr_pages
moving the free scanner into the next zone
o migration scanner moves into the next zone
When this happens, NR_ISOLATED accounting goes haywire because some of the
accounting happens against the wrong zone. One zones counter remains
positive while the other goes negative even though the overall global
count is accurate. This was reported on X86-32 with !SMP because !SMP
allows the negative counters to be visible. The fact that it is the bug
should theoritically be possible there.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fragmentation_index() returns -1000 when the allocation might succeed
This doesn't match the comment and code in compaction_suitable(). I
thought compaction_suitable should return COMPACT_PARTIAL in -1000
case, because in this case allocation could succeed depending on
watermarks.
The impact of this is that compaction starts and compact_finished() is
called which rechecks the watermarks and the free lists. It should have
the same result in that compaction should not start but is more expensive.
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages isolated for migration are accounted with the vmstat counters
NR_ISOLATE_[ANON|FILE]. Callers of migrate_pages() are expected to
increment these counters when pages are isolated from the LRU. Once the
pages have been migrated, they are put back on the LRU or freed and the
isolated count is decremented.
Memory failure is not properly accounting for pages it isolates causing
the NR_ISOLATED counters to be negative. On SMP builds, this goes
unnoticed as negative counters are treated as 0 due to expected per-cpu
drift. On UP builds, the counter is treated by too_many_isolated() as a
large value causing processes to enter D state during page reclaim or
compaction. This patch accounts for pages isolated by memory failure
correctly.
[mel@csn.ul.ie: rewrote changelog]
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Andi Kleen <andi@firstfloor.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on Michal Hocko's comment.
We are not draining per cpu cached charges during soft limit reclaim
because background reclaim doesn't care about charges. It tries to free
some memory and charges will not give any.
Cached charges might influence only selection of the biggest soft limit
offender but as the call is done only after the selection has been already
done it makes no change.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For performance, memory cgroup caches some "charge" from res_counter into
per cpu cache. This works well but because it's cache, it needs to be
flushed in some cases. Typical cases are
1. when someone hit limit.
2. when rmdir() is called and need to charges to be 0.
But "1" has problem.
Recently, with large SMP machines, we see many kworker runs because of
flushing memcg's cache. Bad things in implementation are that even if a
cpu contains a cache for memcg not related to a memcg which hits limit,
drain code is called.
This patch does
A) check percpu cache contains a useful data or not.
B) check other asynchronous percpu draining doesn't run.
C) don't call local cpu callback.
(*)This patch avoid changing the calling condition with hard-limit.
When I run "cat 1Gfile > /dev/null" under 300M limit memcg,
[Before]
13767 kamezawa 20 0 98.6m 424 416 D 10.0 0.0 0:00.61 cat
58 root 20 0 0 0 0 S 0.6 0.0 0:00.09 kworker/2:1
60 root 20 0 0 0 0 S 0.6 0.0 0:00.08 kworker/4:1
4 root 20 0 0 0 0 S 0.3 0.0 0:00.02 kworker/0:0
57 root 20 0 0 0 0 S 0.3 0.0 0:00.05 kworker/1:1
61 root 20 0 0 0 0 S 0.3 0.0 0:00.05 kworker/5:1
62 root 20 0 0 0 0 S 0.3 0.0 0:00.05 kworker/6:1
63 root 20 0 0 0 0 S 0.3 0.0 0:00.05 kworker/7:1
[After]
2676 root 20 0 98.6m 416 416 D 9.3 0.0 0:00.87 cat
2626 kamezawa 20 0 15192 1312 920 R 0.3 0.0 0:00.28 top
1 root 20 0 19384 1496 1204 S 0.0 0.0 0:00.66 init
2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
3 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0
4 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0
[akpm@linux-foundation.org: make percpu_charge_mutex static, tweak comments]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hierarchical reclaim doesn't swap out if memsw and resource limits are
thye same (memsw_is_minimum == true) because we would hit mem+swap limit
anyway (during hard limit reclaim).
If it comes to the soft limit we shouldn't consider memsw_is_minimum at
all because it doesn't make much sense. Either the soft limit is bellow
the hard limit and then we cannot hit mem+swap limit or the direct reclaim
takes a precedence.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 21a3c9646873 ("memcg: allocate memory cgroup structures in local
nodes") makes page_cgroup allocation as NUMA aware. But that caused a
problem https://bugzilla.kernel.org/show_bug.cgi?id=36192.
The problem was getting a NID from invalid struct pages, which was not
initialized because it was out-of-node, out of [node_start_pfn,
node_end_pfn)
Now, with sparsemem, page_cgroup_init scans pfn from 0 to max_pfn. But
this may scan a pfn which is not on any node and can access memmap which
is not initialized.
This makes page_cgroup_init() for SPARSEMEM node aware and remove a code
to get nid from page->flags. (Then, we'll use valid NID always.)
[akpm@linux-foundation.org: try to fix up comments]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 406eb0c9ba76 ("memcg: add memory.numastat api for numa
statistics") adds memory.numa_stat file for memory cgroup. But the file
permissions are wrong.
[kamezawa@bluextal linux-2.6]$ ls -l /cgroup/memory/A/memory.numa_stat
---------- 1 root root 0 Jun 9 18:36 /cgroup/memory/A/memory.numa_stat
This patch fixes the permission as
[root@bluextal kamezawa]# ls -l /cgroup/memory/A/memory.numa_stat
-r--r--r-- 1 root root 0 Jun 10 16:49 /cgroup/memory/A/memory.numa_stat
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When 1GB hugepages are allocated on a system, free(1) reports less
available memory than what really is installed in the box. Also, if the
total size of hugepages allocated on a system is over half of the total
memory size, CommitLimit becomes a negative number.
The problem is that gigantic hugepages (order > MAX_ORDER) can only be
allocated at boot with bootmem, thus its frames are not accounted to
'totalram_pages'. However, they are accounted to hugetlb_total_pages()
What happens to turn CommitLimit into a negative number is this
calculation, in fs/proc/meminfo.c:
allowed = ((totalram_pages - hugetlb_total_pages())
* sysctl_overcommit_ratio / 100) + total_swap_pages;
A similar calculation occurs in __vm_enough_memory() in mm/mmap.c.
Also, every vm statistic which depends on 'totalram_pages' will render
confusing values, as if system were 'missing' some part of its memory.
Impact of this bug:
When gigantic hugepages are allocated and sysctl_overcommit_memory ==
OVERCOMMIT_NEVER. In a such situation, __vm_enough_memory() goes through
the mentioned 'allowed' calculation and might end up mistakenly returning
-ENOMEM, thus forcing the system to start reclaiming pages earlier than it
would be ususal, and this could cause detrimental impact to overall
system's performance, depending on the workload.
Besides the aforementioned scenario, I can only think of this causing
annoyances with memory reports from /proc/meminfo and free(1).
[akpm@linux-foundation.org: standardize comment layout]
Reported-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Rafael Aquini <aquini@linux.com>
Acked-by: Russ Anderson <rja@sgi.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During memory hotplug we refresh zonelists when we online a page in a new
zone. It means that the node's zonelist is not initialized until pages
are onlined. So for example, "nid" passed by MEM_GOING_ONLINE notifier
will point to NODE_DATA(nid) which has no zone fallback list. Moreover,
if we hot-add cpu-only nodes, alloc_pages() will do no fallback.
This patch makes a zonelist when a new pgdata is available.
Note: in production, at fujitsu, memory should be onlined before cpu
and our server didn't have any memory-less nodes and had no problems.
But recent changes in MEM_GOING_ONLINE+page_cgroup
will access not initialized zonelist of node.
Anyway, there are memory-less node and we need some care.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 56de7263fcf3 ("mm: compaction: direct compact when a high-order
allocation fails") introduced a check for cc->order == -1 in
compact_finished. We should continue compacting in that case because
the request came from userspace and there is no particular order to
compact for. Similar check has been added by 82478fb7 (mm: compaction:
prevent division-by-zero during user-requested compaction) for
compaction_suitable.
The check is, however, done after zone_watermark_ok which uses order as a
right hand argument for shifts. Not only watermark check is pointless if
we can break out without it but it also uses 1 << -1 which is not well
defined (at least from C standard). Let's move the -1 check above
zone_watermark_ok.
[minchan.kim@gmail.com> - caught compaction_suitable]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hioryu@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Running a ktest.pl test, I hit the following bug on x86_32:
------------[ cut here ]------------
WARNING: at arch/x86/mm/highmem_32.c:81 __kunmap_atomic+0x64/0xc1()
Hardware name:
Modules linked in:
Pid: 93, comm: sh Not tainted 2.6.39-test+ #1
Call Trace:
[<c04450da>] warn_slowpath_common+0x7c/0x91
[<c042f5df>] ? __kunmap_atomic+0x64/0xc1
[<c042f5df>] ? __kunmap_atomic+0x64/0xc1^M
[<c0445111>] warn_slowpath_null+0x22/0x24
[<c042f5df>] __kunmap_atomic+0x64/0xc1
[<c04d4a22>] unmap_vmas+0x43a/0x4e0
[<c04d9065>] exit_mmap+0x91/0xd2
[<c0443057>] mmput+0x43/0xad
[<c0448358>] exit_mm+0x111/0x119
[<c044855f>] do_exit+0x1ff/0x5fa
[<c0454ea2>] ? set_current_blocked+0x3c/0x40
[<c0454f24>] ? sigprocmask+0x7e/0x8e
[<c0448b55>] do_group_exit+0x65/0x88
[<c0448b90>] sys_exit_group+0x18/0x1c
[<c0c3915f>] sysenter_do_call+0x12/0x38
---[ end trace 8055f74ea3c0eb62 ]---
Running a ktest.pl git bisect, found the culprit: commit e303297e6c3a
("mm: extended batches for generic mmu_gather")
But although this was the commit triggering the bug, it was not the one
originally responsible for the bug. That was commit d16dfc550f53 ("mm:
mmu_gather rework").
The code in zap_pte_range() has something that looks like the following:
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
do {
[...]
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_unmap_unlock(pte - 1, ptl);
The pte starts off pointing at the first element in the page table
directory that was returned by the pte_offset_map_lock(). When it's done
with the page, pte will be pointing to anything between the next entry and
the first entry of the next page inclusive. By doing a pte - 1, this puts
the pte back onto the original page, which is all that pte_unmap_unlock()
needs.
In most archs (64 bit), this is not an issue as the pte is ignored in the
pte_unmap_unlock(). But on 32 bit archs, where things may be kmapped, it
is essential that the pte passed to pte_unmap_unlock() resides on the same
page that was given by pte_offest_map_lock().
The problem came in d16dfc55 ("mm: mmu_gather rework") where it introduced
a "break;" from the while loop. This alone did not seem to easily trigger
the bug. But the modifications made by e303297e6 caused that "break;" to
be hit on the first iteration, before the pte++.
The pte not being incremented will now cause pte_unmap_unlock(pte - 1) to
be pointing to the previous page. This will cause the wrong page to be
unmapped, and also trigger the warning above.
The simple solution is to just save the pointer given by
pte_offset_map_lock() and use it in the unlock.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While testing for memcg aware swap token, I observed a swap token was
often grabbed an intermittent running process (eg init, auditd) and they
never release a token.
Why?
Some processes (eg init, auditd, audispd) wake up when a process exiting.
And swap token can be get first page-in process when a process exiting
makes no swap token owner. Thus such above intermittent running process
often get a token.
And currently, swap token priority is only decreased at page fault path.
Then, if the process sleep immediately after to grab swap token, the swap
token priority never be decreased. That's obviously undesirable.
This patch implement very poor (and lightweight) priority aging. It only
be affect to the above corner case and doesn't change swap tendency
workload performance (eg multi process qsbench load)
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, memcg reclaim can disable swap token even if the swap token mm
doesn't belong in its memory cgroup. It's slightly risky. If an admin
creates very small mem-cgroup and silly guy runs contentious heavy memory
pressure workload, every tasks are going to lose swap token and then
system may become unresponsive. That's bad.
This patch adds 'memcg' parameter into disable_swap_token(). and if the
parameter doesn't match swap token, VM doesn't disable it.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel<riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix new kernel-doc warnings in mm/memory.c:
Warning(mm/memory.c:1327): No description found for parameter 'tlb'
Warning(mm/memory.c:1327): Excess function parameter 'tlbp' description in 'unmap_vmas'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes noticed the vmstat update is already taken care of by
khugepaged_alloc_hugepage() internally. The only places that are required
to update the vmstat are the callers of alloc_hugepage (callers of
khugepaged_alloc_hugepage aren't).
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
SLAB: Record actual last user of freed objects.
slub: always align cpu_slab to honor cmpxchg_double requirement
* 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6:
vfs: make unlink() and rmdir() return ENOENT in preference to EROFS
lmLogOpen() broken failure exit
usb: remove bad dput after dentry_unhash
more conservative S_NOSEC handling
Al Viro observes that in the hugetlb case, handle_mm_fault() may return
a value of the kind ENOSPC when its caller is expecting a value of the
kind VM_FAULT_SIGBUS: fix alloc_huge_page()'s failure returns.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Caching "we have already removed suid/caps" was overenthusiastic as merged.
On network filesystems we might have had suid/caps set on another client,
silently picked by this client on revalidate, all of that *without* clearing
the S_NOSEC flag.
AFAICS, the only reasonably sane way to deal with that is
* new superblock flag; unless set, S_NOSEC is not going to be set.
* local block filesystems set it in their ->mount() (more accurately,
mount_bdev() does, so does btrfs ->mount(), users of mount_bdev() other than
local block ones clear it)
* if any network filesystem (or a cluster one) wants to use S_NOSEC,
it'll need to set MS_NOSEC in sb->s_flags *AND* take care to clear S_NOSEC when
inode attribute changes are picked from other clients.
It's not an earth-shattering hole (anybody that can set suid on another client
will almost certainly be able to write to the file before doing that anyway),
but it's a bug that needs fixing.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently, when using CONFIG_DEBUG_SLAB, we put in kfree() or
kmem_cache_free() as the last user of free objects, which is not
very useful, so change it to the caller of those functions instead.
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
On an architecture without CMPXCHG_LOCAL but with DEBUG_VM enabled,
the VM_BUG_ON() in __pcpu_double_call_return_bool() will cause an early
panic during boot unless we always align cpu_slab properly.
In principle we could remove the alignment-testing VM_BUG_ON() for
architectures that don't have CMPXCHG_LOCAL, but leaving it in means
that new code will tend not to break x86 even if it is introduced
on another platform, and it's low cost to require alignment.
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This reverts commit a197b59ae6e8bee56fcef37ea2482dc08414e2ac.
As rmk says:
"Commit a197b59ae6e8 (mm: fail GFP_DMA allocations when ZONE_DMA is not
configured) is causing regressions on ARM with various drivers which
use GFP_DMA.
The behaviour up until now has been to silently ignore that flag when
CONFIG_ZONE_DMA is not enabled, and to allocate from the normal zone.
However, as a result of the above commit, such allocations now fail
which causes drivers to fail. These are regressions compared to the
previous kernel version."
so just revert it.
Requested-by: Russell King <linux@arm.linux.org.uk>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Inspired by an analysis from Hugh on why again all this doesn't explode
in our face.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On one machine I've been getting hangs, a page fault's anon_vma_prepare()
waiting in anon_vma_lock(), other processes waiting for that page's lock.
This is a replay of last year's f18194275c39 "mm: fix hang on
anon_vma->root->lock".
The new page_lock_anon_vma() places too much faith in its refcount: when
it has acquired the mutex_trylock(), it's possible that a racing task in
anon_vma_alloc() has just reallocated the struct anon_vma, set refcount
to 1, and is about to reset its anon_vma->root.
Fix this by saving anon_vma->root, and relying on the usual page_mapped()
check instead of a refcount check: if page is still mapped, the anon_vma
is still ours; if page is not still mapped, we're no longer interested.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've hit the "address >= vma->vm_end" check in do_page_add_anon_rmap()
just once. The stack showed khugepaged allocation trying to compact
pages: the call to page_add_anon_rmap() coming from remove_migration_pte().
That path holds anon_vma lock, but does not hold mmap_sem: it can
therefore race with a split_vma(), and in commit 5f70b962ccc2 "mmap:
avoid unnecessary anon_vma lock" we just took away the anon_vma lock
protection when adjusting vma->vm_end.
I don't think that particular BUG_ON ever caught anything interesting,
so better replace it by a comment, than reinstate the anon_vma locking.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While running fsx on tmpfs with a memhog then swapoff, swapoff was hanging
(interruptibly), repeatedly failing to locate the owner of a 0xff entry in
the swap_map.
Although shmem_writepage() does abandon when it sees incoming page index
is beyond eof, there was still a window in which shmem_truncate_range()
could come in between writepage's dropping lock and updating swap_map,
find the half-completed swap_map entry, and in trying to free it,
leave it in a state that swap_shmem_alloc() could not correct.
Arguably a bug in __swap_duplicate()'s and swap_entry_free()'s handling
of the different cases, but easiest to fix by moving swap_shmem_alloc()
under cover of the lock.
More interesting than the bug: it's been there since 2.6.33, why could
I not see it with earlier kernels? The mmotm of two weeks ago seems to
have some magic for generating races, this is just one of three I found.
With yesterday's git I first saw this in mainline, bisected in search of
that magic, but the easy reproducibility evaporated. Oh well, fix the bug.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (36 commits)
Cache xattr security drop check for write v2
fs: block_page_mkwrite should wait for writeback to finish
mm: Wait for writeback when grabbing pages to begin a write
configfs: remove unnecessary dentry_unhash on rmdir, dir rename
fat: remove unnecessary dentry_unhash on rmdir, dir rename
hpfs: remove unnecessary dentry_unhash on rmdir, dir rename
minix: remove unnecessary dentry_unhash on rmdir, dir rename
fuse: remove unnecessary dentry_unhash on rmdir, dir rename
coda: remove unnecessary dentry_unhash on rmdir, dir rename
afs: remove unnecessary dentry_unhash on rmdir, dir rename
affs: remove unnecessary dentry_unhash on rmdir, dir rename
9p: remove unnecessary dentry_unhash on rmdir, dir rename
ncpfs: fix rename over directory with dangling references
ncpfs: document dentry_unhash usage
ecryptfs: remove unnecessary dentry_unhash on rmdir, dir rename
hostfs: remove unnecessary dentry_unhash on rmdir, dir rename
hfsplus: remove unnecessary dentry_unhash on rmdir, dir rename
hfs: remove unnecessary dentry_unhash on rmdir, dir rename
omfs: remove unnecessary dentry_unhash on rmdir, dir rneame
udf: remove unnecessary dentry_unhash from rmdir, dir rename
...
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (25 commits)
perf: Fix SIGIO handling
perf top: Don't stop if no kernel symtab is found
perf top: Handle kptr_restrict
perf top: Remove unused macro
perf events: initialize fd array to -1 instead of 0
perf tools: Make sure kptr_restrict warnings fit 80 col terms
perf tools: Fix build on older systems
perf symbols: Handle /proc/sys/kernel/kptr_restrict
perf: Remove duplicate headers
ftrace: Add internal recursive checks
tracing: Update btrfs's tracepoints to use u64 interface
tracing: Add __print_symbolic_u64 to avoid warnings on 32bit machine
ftrace: Set ops->flag to enabled even on static function tracing
tracing: Have event with function tracer check error return
ftrace: Have ftrace_startup() return failure code
jump_label: Check entries limit in __jump_label_update
ftrace/recordmcount: Avoid STT_FUNC symbols as base on ARM
scripts/tags.sh: Add magic for trace-events for etags too
scripts/tags.sh: Fix ctags for DEFINE_EVENT()
x86/ftrace: Fix compiler warning in ftrace.c
...
Some recent benchmarking on btrfs showed that a major scaling bottleneck
on large systems on btrfs is currently the xattr lookup on every write.
Why xattr lookup on every write I hear you ask?
write wants to drop suid and security related xattrs that could set o
capabilities for executables. To do that it currently looks up
security.capability on EVERY write (even for non executables) to decide
whether to drop it or not.
In btrfs this causes an additional tree walk, hitting some per file system
locks and quite bad scalability. In a simple read workload on a 8S
system I saw over 90% CPU time in spinlocks related to that.
Chris Mason tells me this is also a problem in ext4, where it hits
the global mbcache lock.
This patch adds a simple per inode to avoid this problem. We only
do the lookup once per file and then if there is no xattr cache
the decision. All xattr changes clear the flag.
I also used the same flag to avoid the suid check, although
that one is pretty cheap.
A file system can also set this flag when it creates the inode,
if it has a cheap way to do so. This is done for some common file systems
in followon patches.
With this patch a major part of the lock contention disappears
for btrfs. Some testing on smaller systems didn't show significant
performance changes, but at least it helps the larger systems
and is generally more efficient.
v2: Rename is_sgid. add file system helper.
Cc: chris.mason@oracle.com
Cc: josef@redhat.com
Cc: viro@zeniv.linux.org.uk
Cc: agruen@linbit.com
Cc: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When grabbing a page for a buffered IO write, the mm should wait for writeback
on the page to complete so that the page does not become writable during the IO
operation. This change is needed to provide page stability during writes for
all filesystems.
Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'upstream/tidy-xen-mmu-2.6.39' of git://git.kernel.org/pub/scm/linux/kernel/git/jeremy/xen:
xen: fix compile without CONFIG_XEN_DEBUG_FS
Use arbitrary_virt_to_machine() to deal with ioremapped pud updates.
Use arbitrary_virt_to_machine() to deal with ioremapped pmd updates.
xen/mmu: remove all ad-hoc stats stuff
xen: use normal virt_to_machine for ptes
xen: make a pile of mmu pvop functions static
vmalloc: remove vmalloc_sync_all() from alloc_vm_area()
xen: condense everything onto xen_set_pte
xen: use mmu_update for xen_set_pte_at()
xen: drop all the special iomap pte paths.
Two new stats in per-memcg memory.stat which tracks the number of page
faults and number of major page faults.
"pgfault"
"pgmajfault"
They are different from "pgpgin"/"pgpgout" stat which count number of
pages charged/discharged to the cgroup and have no meaning of reading/
writing page to disk.
It is valuable to track the two stats for both measuring application's
performance as well as the efficiency of the kernel page reclaim path.
Counting pagefaults per process is useful, but we also need the aggregated
value since processes are monitored and controlled in cgroup basis in
memcg.
Functional test: check the total number of pgfault/pgmajfault of all
memcgs and compare with global vmstat value:
$ cat /proc/vmstat | grep fault
pgfault 1070751
pgmajfault 553
$ cat /dev/cgroup/memory.stat | grep fault
pgfault 1071138
pgmajfault 553
total_pgfault 1071142
total_pgmajfault 553
$ cat /dev/cgroup/A/memory.stat | grep fault
pgfault 199
pgmajfault 0
total_pgfault 199
total_pgmajfault 0
Performance test: run page fault test(pft) wit 16 thread on faulting in
15G anon pages in 16G container. There is no regression noticed on the
"flt/cpu/s"
Sample output from pft:
TAG pft:anon-sys-default:
Gb Thr CLine User System Wall flt/cpu/s fault/wsec
15 16 1 0.67s 233.41s 14.76s 16798.546 266356.260
+-------------------------------------------------------------------------+
N Min Max Median Avg Stddev
x 10 16682.962 17344.027 16913.524 16928.812 166.5362
+ 10 16695.568 16923.896 16820.604 16824.652 84.816568
No difference proven at 95.0% confidence
[akpm@linux-foundation.org: fix build]
[hughd@google.com: shmem fix]
Signed-off-by: Ying Han <yinghan@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The new API exports numa_maps per-memcg basis. This is a piece of useful
information where it exports per-memcg page distribution across real numa
nodes.
One of the usecases is evaluating application performance by combining
this information w/ the cpu allocation to the application.
The output of the memory.numastat tries to follow w/ simiar format of
numa_maps like:
total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
And we have per-node:
total = file + anon + unevictable
$ cat /dev/cgroup/memory/memory.numa_stat
total=250020 N0=87620 N1=52367 N2=45298 N3=64735
file=225232 N0=83402 N1=46160 N2=40522 N3=55148
anon=21053 N0=3424 N1=6207 N2=4776 N3=6646
unevictable=3735 N0=794 N1=0 N2=0 N3=2941
Signed-off-by: Ying Han <yinghan@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The caller of the function has been renamed to zone_nr_lru_pages(), and
this is just fixing up in the memcg code. The current name is easily to
be mis-read as zone's total number of pages.
Signed-off-by: Ying Han <yinghan@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the memcg reclaim code detects the target memcg below its limit it
exits and returns a guaranteed non-zero value so that the charge is
retried.
Nowadays, the charge side checks the memcg limit itself and does not rely
on this non-zero return value trick.
This patch removes it. The reclaim code will now always return the true
number of pages it reclaimed on its own.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel<riel@redhat.com>
Acked-by: Ying Han<yinghan@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During memory reclaim we determine the number of pages to be scanned per
zone as
(anon + file) >> priority.
Assume
scan = (anon + file) >> priority.
If scan < SWAP_CLUSTER_MAX, the scan will be skipped for this time and
priority gets higher. This has some problems.
1. This increases priority as 1 without any scan.
To do scan in this priority, amount of pages should be larger than 512M.
If pages>>priority < SWAP_CLUSTER_MAX, it's recorded and scan will be
batched, later. (But we lose 1 priority.)
If memory size is below 16M, pages >> priority is 0 and no scan in
DEF_PRIORITY forever.
2. If zone->all_unreclaimabe==true, it's scanned only when priority==0.
So, x86's ZONE_DMA will never be recoverred until the user of pages
frees memory by itself.
3. With memcg, the limit of memory can be small. When using small memcg,
it gets priority < DEF_PRIORITY-2 very easily and need to call
wait_iff_congested().
For doing scan before priorty=9, 64MB of memory should be used.
Then, this patch tries to scan SWAP_CLUSTER_MAX of pages in force...when
1. the target is enough small.
2. it's kswapd or memcg reclaim.
Then we can avoid rapid priority drop and may be able to recover
all_unreclaimable in a small zones. And this patch removes nr_saved_scan.
This will allow scanning in this priority even when pages >> priority is
very small.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Ying Han <yinghan@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, memory cgroup's direct reclaim frees memory from the current
node. But this has some troubles. Usually when a set of threads works in
a cooperative way, they tend to operate on the same node. So if they hit
limits under memcg they will reclaim memory from themselves, damaging the
active working set.
For example, assume 2 node system which has Node 0 and Node 1 and a memcg
which has 1G limit. After some work, file cache remains and the usages
are
Node 0: 1M
Node 1: 998M.
and run an application on Node 0, it will eat its foot before freeing
unnecessary file caches.
This patch adds round-robin for NUMA and adds equal pressure to each node.
When using cpuset's spread memory feature, this will work very well.
But yes, a better algorithm is needed.
[akpm@linux-foundation.org: comment editing]
[kamezawa.hiroyu@jp.fujitsu.com: fix time comparisons]
Signed-off-by: Ying Han <yinghan@google.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move page-freeing code out of swap_cgroup_mutex in the hope that it could
reduce few of theoretical contentions between swapons and/or swapoffs.
This is just a cleanup, no functional changes.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It allocated one more page than necessary if @max_pages was a multiple of
SC_PER_PAGE.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ca371c0d7e23 ("memcg: fix page_cgroup fatal error in FLATMEM")
removes call to alloc_bootmem() in the function so that it can be marked
as __meminit to reduce memory usage when MEMORY_HOTPLUG=n.
Also as the new helper function alloc_page_cgroup() is called only in the
function, it should be marked too.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
next_mz is assigned to NULL if __mem_cgroup_largest_soft_limit_node
selects the same mz. This doesn't make much sense as we assign to the
variable right in the next loop.
Compiler will probably optimize this out but it is little bit confusing
for the code reading.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We recently added the change in global background reclaim which counts the
return value of soft_limit reclaim. Now this patch adds the similar logic
on global direct reclaim.
We should skip scanning global LRU on shrink_zone if soft_limit reclaim
does enough work. This is the first step where we start with counting the
nr_scanned and nr_reclaimed from soft_limit reclaim into global
scan_control.
Signed-off-by: Ying Han <yinghan@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>