mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 22:50:41 +00:00
1288 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
902861e34c |
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx TMNhHfyiHYDTx/GAV9NXW84tasJSDgA= =TG55 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ... |
||
Byungchul Park
|
d221dd5fea |
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
With cache_trim_mode on, reclaim logic doesn't bother reclaiming anon pages. However, it should be more careful to use the mode because it's going to prevent anon pages from being reclaimed even if there are a huge number of anon pages that are cold and should be reclaimed. Even worse, that leads kswapd_failures to reach MAX_RECLAIM_RETRIES and stopping kswapd from functioning until direct reclaim eventually works to resume kswapd. So kswapd needs to retry its scan priority loop with cache_trim_mode off again if the mode doesn't work for reclaim. The problematic behavior can be reproduced by: CONFIG_NUMA_BALANCING enabled sysctl_numa_balancing_mode set to NUMA_BALANCING_MEMORY_TIERING numa node0 (8GB local memory, 16 CPUs) numa node1 (8GB slow tier memory, no CPUs) Sequence: 1) echo 3 > /proc/sys/vm/drop_caches 2) To emulate the system with full of cold memory in local DRAM, run the following dummy program and never touch the region: mmap(0, 8 * 1024 * 1024 * 1024, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_POPULATE, -1, 0); 3) Run any memory intensive work e.g. XSBench. 4) Check if numa balancing is working e.i. promotion/demotion. 5) Iterate 1) ~ 4) until numa balancing stops. With this, you could see that promotion/demotion are not working because kswapd has stopped due to ->kswapd_failures >= MAX_RECLAIM_RETRIES. Interesting vmstat delta's differences between before and after are like: +-----------------------+-------------------------------+ | interesting vmstat | before | after | +-----------------------+-------------------------------+ | nr_inactive_anon | 321935 | 1664772 | | nr_active_anon | 1780700 | 437834 | | nr_inactive_file | 30425 | 40882 | | nr_active_file | 14961 | 3012 | | pgpromote_success | 356 | 1293122 | | pgpromote_candidate | 21953245 | 1824148 | | pgactivate | 1844523 | 3311907 | | pgdeactivate | 50634 | 1554069 | | pgfault | 31100294 | 6518806 | | pgdemote_kswapd | 30856 | 2230821 | | pgscan_kswapd | 1861981 | 7667629 | | pgscan_anon | 1822930 | 7610583 | | pgscan_file | 39051 | 57046 | | pgsteal_anon | 386 | 2192033 | | pgsteal_file | 30470 | 38788 | | pageoutrun | 30 | 412 | | numa_hint_faults | 27418279 | 2875955 | | numa_pages_migrated | 356 | 1293122 | +-----------------------+-------------------------------+ Link: https://lkml.kernel.org/r/20240304082118.20499-1-byungchul@sk.com Signed-off-by: Byungchul Park <byungchul@sk.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
47932e7048 |
mm: remove folio from deferred split list before uncharging it
When freeing a large folio, we must remove it from the deferred split list before we uncharge it as each memcg has its own deferred split list (with associated lock) and removing a folio from the deferred split list while holding the wrong lock will corrupt that list and cause various related problems. Link: https://lore.kernel.org/linux-mm/367a14f7-340e-4b29-90ae-bc3fcefdd5f4@arm.com/ Link: https://lkml.kernel.org/r/20240311191835.312162-1-willy@infradead.org Fixes: f77171d241e3 (mm: allow non-hugetlb large folios to be batch processed) Fixes: 29f3843026cf (mm: free folios directly in move_folios_to_lru()) Fixes: bc2ff4cbc329 (mm: free folios in a batch in shrink_folio_list()) Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Debugged-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
29f3843026 |
mm: free folios directly in move_folios_to_lru()
The few folios which can't be moved to the LRU list (because their refcount dropped to zero) used to be returned to the caller to dispose of. Make this simpler to call by freeing the folios directly through free_unref_folios(). Link: https://lkml.kernel.org/r/20240227174254.710559-13-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
bc2ff4cbc3 |
mm: free folios in a batch in shrink_folio_list()
Use free_unref_page_batch() to free the folios. This may increase the number of IPIs from calling try_to_unmap_flush() more often, but that's going to be very workload-dependent. It may even reduce the number of IPIs as we now batch-free large folios instead of freeing them one at a time. Link: https://lkml.kernel.org/r/20240227174254.710559-12-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Barry Song
|
2864f3d0f5 |
mm: madvise: pageout: ignore references rather than clearing young
While doing MADV_PAGEOUT, the current code will clear PTE young so that vmscan won't read young flags to allow the reclamation of madvised folios to go ahead. It seems we can do it by directly ignoring references, thus we can remove tlb flush in madvise and rmap overhead in vmscan. Regarding the side effect, in the original code, if a parallel thread runs side by side to access the madvised memory with the thread doing madvise, folios will get a chance to be re-activated by vmscan (though the time gap is actually quite small since checking PTEs is done immediately after clearing PTEs young). But with this patch, they will still be reclaimed. But this behaviour doing PAGEOUT and doing access at the same time is quite silly like DoS. So probably, we don't need to care. Or ignoring the new access during the quite small time gap is even better. For DAMON's DAMOS_PAGEOUT based on physical address region, we still keep its behaviour as is since a physical address might be mapped by multiple processes. MADV_PAGEOUT based on virtual address is actually much more aggressive on reclamation. To untouch paddr's DAMOS_PAGEOUT, we simply pass ignore_references as false in reclaim_pages(). A microbench as below has shown 6% decrement on the latency of MADV_PAGEOUT, #define PGSIZE 4096 main() { int i; #define SIZE 512*1024*1024 volatile long *p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); for (i = 0; i < SIZE/sizeof(long); i += PGSIZE / sizeof(long)) p[i] = 0x11; madvise(p, SIZE, MADV_PAGEOUT); } w/o patch w/ patch root@10:~# time ./a.out root@10:~# time ./a.out real 0m49.634s real 0m46.334s user 0m0.637s user 0m0.648s sys 0m47.434s sys 0m44.265s Link: https://lkml.kernel.org/r/20240226005739.24350-1-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: SeongJae Park <sj@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Vlastimil Babka
|
803de9000f |
mm, vmscan: prevent infinite loop for costly GFP_NOIO | __GFP_RETRY_MAYFAIL allocations
Sven reports an infinite loop in __alloc_pages_slowpath() for costly order __GFP_RETRY_MAYFAIL allocations that are also GFP_NOIO. Such combination can happen in a suspend/resume context where a GFP_KERNEL allocation can have __GFP_IO masked out via gfp_allowed_mask. Quoting Sven: 1. try to do a "costly" allocation (order > PAGE_ALLOC_COSTLY_ORDER) with __GFP_RETRY_MAYFAIL set. 2. page alloc's __alloc_pages_slowpath tries to get a page from the freelist. This fails because there is nothing free of that costly order. 3. page alloc tries to reclaim by calling __alloc_pages_direct_reclaim, which bails out because a zone is ready to be compacted; it pretends to have made a single page of progress. 4. page alloc tries to compact, but this always bails out early because __GFP_IO is not set (it's not passed by the snd allocator, and even if it were, we are suspending so the __GFP_IO flag would be cleared anyway). 5. page alloc believes reclaim progress was made (because of the pretense in item 3) and so it checks whether it should retry compaction. The compaction retry logic thinks it should try again, because: a) reclaim is needed because of the early bail-out in item 4 b) a zonelist is suitable for compaction 6. goto 2. indefinite stall. (end quote) The immediate root cause is confusing the COMPACT_SKIPPED returned from __alloc_pages_direct_compact() (step 4) due to lack of __GFP_IO to be indicating a lack of order-0 pages, and in step 5 evaluating that in should_compact_retry() as a reason to retry, before incrementing and limiting the number of retries. There are however other places that wrongly assume that compaction can happen while we lack __GFP_IO. To fix this, introduce gfp_compaction_allowed() to abstract the __GFP_IO evaluation and switch the open-coded test in try_to_compact_pages() to use it. Also use the new helper in: - compaction_ready(), which will make reclaim not bail out in step 3, so there's at least one attempt to actually reclaim, even if chances are small for a costly order - in_reclaim_compaction() which will make should_continue_reclaim() return false and we don't over-reclaim unnecessarily - in __alloc_pages_slowpath() to set a local variable can_compact, which is then used to avoid retrying reclaim/compaction for costly allocations (step 5) if we can't compact and also to skip the early compaction attempt that we do in some cases Link: https://lkml.kernel.org/r/20240221114357.13655-2-vbabka@suse.cz Fixes: 3250845d0526 ("Revert "mm, oom: prevent premature OOM killer invocation for high order request"") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Sven van Ashbrook <svenva@chromium.org> Closes: https://lore.kernel.org/all/CAG-rBihs_xMKb3wrMO1%2B-%2Bp4fowP9oy1pa_OTkfxBzPUVOZF%2Bg@mail.gmail.com/ Tested-by: Karthikeyan Ramasubramanian <kramasub@chromium.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Curtis Malainey <cujomalainey@chromium.org> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Takashi Iwai <tiwai@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kinsey Ho
|
4acef5694e |
mm/mglru: improve swappiness handling
The reclaimable number of anon pages used to set initial reclaim priority is only based on get_swappiness(). Use can_reclaim_anon_pages() to include NUMA node demotion. Also move the swappiness handling of when !__GFP_IO in try_to_shrink_lruvec() into isolate_folios(). Link: https://lkml.kernel.org/r/20240214060538.3524462-6-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kinsey Ho
|
cc25bbe10a |
mm/mglru: improve struct lru_gen_mm_walk
Rename max_seq to seq in struct lru_gen_mm_walk to keep consistent with struct lru_gen_mm_state. Note that seq is not always up to date with max_seq from lru_gen_folio. No functional changes. Link: https://lkml.kernel.org/r/20240214060538.3524462-5-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kinsey Ho
|
2d823764fa |
mm/mglru: improve reset_mm_stats()
struct lruvec* is already a field of struct lru_gen_mm_walk. Remove the parameter struct lruvec* into functions that already have access to struct lru_gen_mm_walk*. Also, we do not need to handle reset histogram stats when !should_walk_mmu(). Remove the call to reset_mm_stats() in iterate_mm_list_nowalk(). Link: https://lkml.kernel.org/r/20240214060538.3524462-4-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kinsey Ho
|
51973cc9e5 |
mm/mglru: improve should_run_aging()
scan_control *sc does not need to be passed into should_run_aging(), as it provides only the reclaim priority. This can be moved to get_nr_to_scan(). Refactor should_run_aging() and get_nr_to_scan() to improve code readability. No functional changes. Link: https://lkml.kernel.org/r/20240214060538.3524462-3-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kinsey Ho
|
1ce2292c14 |
mm/mglru: drop unused parameter
Patch series "mm/mglru: code cleanup and refactoring" This provides MGLRU code cleanup and refactoring for better readability. This patch (of 5): struct scan_control *sc is currently passed into try_to_inc_max_seq() and run_aging(). This parameter is not used. Drop the unused parameter struct scan_control *sc. No functional change. Link: https://lkml.kernel.org/r/20240214060538.3524462-1-kinseyho@google.com Link: https://lkml.kernel.org/r/20240214060538.3524462-2-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Hao Ge
|
9814171852 |
mm/vmscan: make too_many_isolated return bool
too_many_isolated() should return bool as does the similar too_many_isolated() in mm/compaction.c. Link: https://lkml.kernel.org/r/20240205042618.108140-1-gehao@kylinos.cn Signed-off-by: Hao Ge <gehao@kylinos.cn> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Hao Ge
|
e321d7c934 |
mm/vmscan: change the type of file from int to bool
Change the type of file from int to bool because is_file_lru return bool Link: https://lkml.kernel.org/r/20240131103802.122920-1-gehao@kylinos.cn Signed-off-by: Hao Ge <gehao@kylinos.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Levi Yun
|
96200c9150 |
kswapd: replace try_to_freeze() with kthread_freezable_should_stop()
Instead of using try_to_freeze, use kthread_freezable_should_stop in kswapd. By this, we can avoid unnecessary freezing when kswapd should stop. Link: https://lkml.kernel.org/r/20240126152556.58791-1-ppbuk5246@gmail.com Signed-off-by: Levi Yun <ppbuk5246@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
fb46e22a9e |
Many singleton patches against the MM code. The patch series which
are included in this merge do the following: - Peng Zhang has done some mapletree maintainance work in the series "maple_tree: add mt_free_one() and mt_attr() helpers" "Some cleanups of maple tree" - In the series "mm: use memmap_on_memory semantics for dax/kmem" Vishal Verma has altered the interworking between memory-hotplug and dax/kmem so that newly added 'device memory' can more easily have its memmap placed within that newly added memory. - Matthew Wilcox continues folio-related work (including a few fixes) in the patch series "Add folio_zero_tail() and folio_fill_tail()" "Make folio_start_writeback return void" "Fix fault handler's handling of poisoned tail pages" "Convert aops->error_remove_page to ->error_remove_folio" "Finish two folio conversions" "More swap folio conversions" - Kefeng Wang has also contributed folio-related work in the series "mm: cleanup and use more folio in page fault" - Jim Cromie has improved the kmemleak reporting output in the series "tweak kmemleak report format". - In the series "stackdepot: allow evicting stack traces" Andrey Konovalov to permits clients (in this case KASAN) to cause eviction of no longer needed stack traces. - Charan Teja Kalla has fixed some accounting issues in the page allocator's atomic reserve calculations in the series "mm: page_alloc: fixes for high atomic reserve caluculations". - Dmitry Rokosov has added to the samples/ dorectory some sample code for a userspace memcg event listener application. See the series "samples: introduce cgroup events listeners". - Some mapletree maintanance work from Liam Howlett in the series "maple_tree: iterator state changes". - Nhat Pham has improved zswap's approach to writeback in the series "workload-specific and memory pressure-driven zswap writeback". - DAMON/DAMOS feature and maintenance work from SeongJae Park in the series "mm/damon: let users feed and tame/auto-tune DAMOS" "selftests/damon: add Python-written DAMON functionality tests" "mm/damon: misc updates for 6.8" - Yosry Ahmed has improved memcg's stats flushing in the series "mm: memcg: subtree stats flushing and thresholds". - In the series "Multi-size THP for anonymous memory" Ryan Roberts has added a runtime opt-in feature to transparent hugepages which improves performance by allocating larger chunks of memory during anonymous page faults. - Matthew Wilcox has also contributed some cleanup and maintenance work against eh buffer_head code int he series "More buffer_head cleanups". - Suren Baghdasaryan has done work on Andrea Arcangeli's series "userfaultfd move option". UFFDIO_MOVE permits userspace heap compaction algorithms to move userspace's pages around rather than UFFDIO_COPY'a alloc/copy/free. - Stefan Roesch has developed a "KSM Advisor", in the series "mm/ksm: Add ksm advisor". This is a governor which tunes KSM's scanning aggressiveness in response to userspace's current needs. - Chengming Zhou has optimized zswap's temporary working memory use in the series "mm/zswap: dstmem reuse optimizations and cleanups". - Matthew Wilcox has performed some maintenance work on the writeback code, both code and within filesystems. The series is "Clean up the writeback paths". - Andrey Konovalov has optimized KASAN's handling of alloc and free stack traces for secondary-level allocators, in the series "kasan: save mempool stack traces". - Andrey also performed some KASAN maintenance work in the series "kasan: assorted clean-ups". - David Hildenbrand has gone to town on the rmap code. Cleanups, more pte batching, folio conversions and more. See the series "mm/rmap: interface overhaul". - Kinsey Ho has contributed some maintenance work on the MGLRU code in the series "mm/mglru: Kconfig cleanup". - Matthew Wilcox has contributed lruvec page accounting code cleanups in the series "Remove some lruvec page accounting functions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27 Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU= =0NHs -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Peng Zhang has done some mapletree maintainance work in the series 'maple_tree: add mt_free_one() and mt_attr() helpers' 'Some cleanups of maple tree' - In the series 'mm: use memmap_on_memory semantics for dax/kmem' Vishal Verma has altered the interworking between memory-hotplug and dax/kmem so that newly added 'device memory' can more easily have its memmap placed within that newly added memory. - Matthew Wilcox continues folio-related work (including a few fixes) in the patch series 'Add folio_zero_tail() and folio_fill_tail()' 'Make folio_start_writeback return void' 'Fix fault handler's handling of poisoned tail pages' 'Convert aops->error_remove_page to ->error_remove_folio' 'Finish two folio conversions' 'More swap folio conversions' - Kefeng Wang has also contributed folio-related work in the series 'mm: cleanup and use more folio in page fault' - Jim Cromie has improved the kmemleak reporting output in the series 'tweak kmemleak report format'. - In the series 'stackdepot: allow evicting stack traces' Andrey Konovalov to permits clients (in this case KASAN) to cause eviction of no longer needed stack traces. - Charan Teja Kalla has fixed some accounting issues in the page allocator's atomic reserve calculations in the series 'mm: page_alloc: fixes for high atomic reserve caluculations'. - Dmitry Rokosov has added to the samples/ dorectory some sample code for a userspace memcg event listener application. See the series 'samples: introduce cgroup events listeners'. - Some mapletree maintanance work from Liam Howlett in the series 'maple_tree: iterator state changes'. - Nhat Pham has improved zswap's approach to writeback in the series 'workload-specific and memory pressure-driven zswap writeback'. - DAMON/DAMOS feature and maintenance work from SeongJae Park in the series 'mm/damon: let users feed and tame/auto-tune DAMOS' 'selftests/damon: add Python-written DAMON functionality tests' 'mm/damon: misc updates for 6.8' - Yosry Ahmed has improved memcg's stats flushing in the series 'mm: memcg: subtree stats flushing and thresholds'. - In the series 'Multi-size THP for anonymous memory' Ryan Roberts has added a runtime opt-in feature to transparent hugepages which improves performance by allocating larger chunks of memory during anonymous page faults. - Matthew Wilcox has also contributed some cleanup and maintenance work against eh buffer_head code int he series 'More buffer_head cleanups'. - Suren Baghdasaryan has done work on Andrea Arcangeli's series 'userfaultfd move option'. UFFDIO_MOVE permits userspace heap compaction algorithms to move userspace's pages around rather than UFFDIO_COPY'a alloc/copy/free. - Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm: Add ksm advisor'. This is a governor which tunes KSM's scanning aggressiveness in response to userspace's current needs. - Chengming Zhou has optimized zswap's temporary working memory use in the series 'mm/zswap: dstmem reuse optimizations and cleanups'. - Matthew Wilcox has performed some maintenance work on the writeback code, both code and within filesystems. The series is 'Clean up the writeback paths'. - Andrey Konovalov has optimized KASAN's handling of alloc and free stack traces for secondary-level allocators, in the series 'kasan: save mempool stack traces'. - Andrey also performed some KASAN maintenance work in the series 'kasan: assorted clean-ups'. - David Hildenbrand has gone to town on the rmap code. Cleanups, more pte batching, folio conversions and more. See the series 'mm/rmap: interface overhaul'. - Kinsey Ho has contributed some maintenance work on the MGLRU code in the series 'mm/mglru: Kconfig cleanup'. - Matthew Wilcox has contributed lruvec page accounting code cleanups in the series 'Remove some lruvec page accounting functions'" * tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits) mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER mm, treewide: introduce NR_PAGE_ORDERS selftests/mm: add separate UFFDIO_MOVE test for PMD splitting selftests/mm: skip test if application doesn't has root privileges selftests/mm: conform test to TAP format output selftests: mm: hugepage-mmap: conform to TAP format output selftests/mm: gup_test: conform test to TAP format output mm/selftests: hugepage-mremap: conform test to TAP format output mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large mm/memcontrol: remove __mod_lruvec_page_state() mm/khugepaged: use a folio more in collapse_file() slub: use a folio in __kmalloc_large_node slub: use folio APIs in free_large_kmalloc() slub: use alloc_pages_node() in alloc_slab_page() mm: remove inc/dec lruvec page state functions mm: ratelimit stat flush from workingset shrinker kasan: stop leaking stack trace handles mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE mm/mglru: add dummy pmd_dirty() ... |
||
Kirill A. Shutemov
|
5e0a760b44 |
mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has changed the definition of MAX_ORDER to be inclusive. This has caused issues with code that was not yet upstream and depended on the previous definition. To draw attention to the altered meaning of the define, rename MAX_ORDER to MAX_PAGE_ORDER. Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Li Zhijian
|
b805ab3c69 |
mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
Demotion can work well without CONFIG_NUMA_BALANCING. But the commit 23e9f0138963 ("mm/vmstat: move pgdemote_* to per-node stats") wrongly hid it behind CONFIG_NUMA_BALANCING. Fix it by moving them out of CONFIG_NUMA_BALANCING. Link: https://lkml.kernel.org/r/20231229022651.3229174-1-lizhijian@fujitsu.com Fixes: 23e9f0138963 ("mm/vmstat: move pgdemote_* to per-node stats") Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kinsey Ho
|
7eb2d01a1b |
mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
Improve code readability by removing CONFIG_TRANSPARENT_HUGEPAGE, since the compiler should be able to automatically optimize out the code that promotes THPs during page table walks. No functional changes. Link: https://lkml.kernel.org/r/20231227141205.2200125-6-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Co-developed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Tested-by: Donet Tom <donettom@linux.vnet.ibm.com> Acked-by: Yu Zhao <yuzhao@google.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kinsey Ho
|
745b13e647 |
mm/mglru: remove CONFIG_MEMCG
Remove CONFIG_MEMCG in a refactoring to improve code readability at the cost of a few bytes in struct lru_gen_folio per node when CONFIG_MEMCG=n. Link: https://lkml.kernel.org/r/20231227141205.2200125-4-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Co-developed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Tested-by: Donet Tom <donettom@linux.vnet.ibm.com> Acked-by: Yu Zhao <yuzhao@google.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kinsey Ho
|
61dd3f246b |
mm/mglru: add CONFIG_LRU_GEN_WALKS_MMU
Add CONFIG_LRU_GEN_WALKS_MMU such that if disabled, the code that walks page tables to promote pages into the youngest generation will not be built. Also improves code readability by adding two helper functions get_mm_state() and get_next_mm(). Link: https://lkml.kernel.org/r/20231227141205.2200125-3-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Co-developed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Tested-by: Donet Tom <donettom@linux.vnet.ibm.com> Acked-by: Yu Zhao <yuzhao@google.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
c28ac3c7eb |
mm/mglru: skip special VMAs in lru_gen_look_around()
Special VMAs like VM_PFNMAP can contain anon pages from COW. There isn't much profit in doing lookaround on them. Besides, they can trigger the pte_special() warning in get_pte_pfn(). Skip them in lru_gen_look_around(). Link: https://lkml.kernel.org/r/20231223045647.1566043-1-yuzhao@google.com Fixes: 018ee47f1489 ("mm: multi-gen LRU: exploit locality in rmap") Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: syzbot+03fd9b3f71641f0ebf2d@syzkaller.appspotmail.com Closes: https://lore.kernel.org/000000000000f9ff00060d14c256@google.com/ Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yosry Ahmed
|
7d7ef0a468 |
mm: memcg: restore subtree stats flushing
Stats flushing for memcg currently follows the following rules: - Always flush the entire memcg hierarchy (i.e. flush the root). - Only one flusher is allowed at a time. If someone else tries to flush concurrently, they skip and return immediately. - A periodic flusher flushes all the stats every 2 seconds. The reason this approach is followed is because all flushes are serialized by a global rstat spinlock. On the memcg side, flushing is invoked from userspace reads as well as in-kernel flushers (e.g. reclaim, refault, etc). This approach aims to avoid serializing all flushers on the global lock, which can cause a significant performance hit under high concurrency. This approach has the following problems: - Occasionally a userspace read of the stats of a non-root cgroup will be too expensive as it has to flush the entire hierarchy [1]. - Sometimes the stats accuracy are compromised if there is an ongoing flush, and we skip and return before the subtree of interest is actually flushed, yielding stale stats (by up to 2s due to periodic flushing). This is more visible when reading stats from userspace, but can also affect in-kernel flushers. The latter problem is particulary a concern when userspace reads stats after an event occurs, but gets stats from before the event. Examples: - When memory usage / pressure spikes, a userspace OOM handler may look at the stats of different memcgs to select a victim based on various heuristics (e.g. how much private memory will be freed by killing this). Reading stale stats from before the usage spike in this case may cause a wrongful OOM kill. - A proactive reclaimer may read the stats after writing to memory.reclaim to measure the success of the reclaim operation. Stale stats from before reclaim may give a false negative. - Reading the stats of a parent and a child memcg may be inconsistent (child larger than parent), if the flush doesn't happen when the parent is read, but happens when the child is read. As for in-kernel flushers, they will occasionally get stale stats. No regressions are currently known from this, but if there are regressions, they would be very difficult to debug and link to the source of the problem. This patch aims to fix these problems by restoring subtree flushing, and removing the unified/coalesced flushing logic that skips flushing if there is an ongoing flush. This change would introduce a significant regression with global stats flushing thresholds. With per-memcg stats flushing thresholds, this seems to perform really well. The thresholds protect the underlying lock from unnecessary contention. This patch was tested in two ways to ensure the latency of flushing is up to par, on a machine with 384 cpus: - A synthetic test with 5000 concurrent workers in 500 cgroups doing allocations and reclaim, as well as 1000 readers for memory.stat (variation of [2]). No regressions were noticed in the total runtime. Note that significant regressions in this test are observed with global stats thresholds, but not with per-memcg thresholds. - A synthetic stress test for concurrently reading memcg stats while memory allocation/freeing workers are running in the background, provided by Wei Xu [3]. With 250k threads reading the stats every 100ms in 50k cgroups, 99.9% of reads take <= 50us. Less than 0.01% of reads take more than 1ms, and no reads take more than 100ms. [1] https://lore.kernel.org/lkml/CABWYdi0c6__rh-K7dcM_pkf9BJdTRtAU08M43KO9ME4-dsgfoQ@mail.gmail.com/ [2] https://lore.kernel.org/lkml/CAJD7tka13M-zVZTyQJYL1iUAYvuQ1fcHbCjcOBZcz6POYTV-4g@mail.gmail.com/ [3] https://lore.kernel.org/lkml/CAAPL-u9D2b=iF5Lf_cRnKxUfkiEe0AMDTu6yhrUAzX0b6a6rDg@mail.gmail.com/ [akpm@linux-foundation.org: fix mm/zswap.c] [yosryahmed@google.com: remove stats flushing mutex] Link: https://lkml.kernel.org/r/CAJD7tkZgP3m-VVPn+fF_YuvXeQYK=tZZjJHj=dzD=CcSSpp2qg@mail.gmail.com Link: https://lkml.kernel.org/r/20231129032154.3710765-6-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Tested-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Chris Li <chrisl@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: Ivan Babrou <ivan@cloudflare.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutny <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Wei Xu <weixugc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Andrew Morton
|
a721aeac8b | sync mm-stable with mm-hotfixes-stable to pick up depended-upon changes | ||
Yu Zhao
|
4376807bf2 |
mm/mglru: reclaim offlined memcgs harder
In the effort to reduce zombie memcgs [1], it was discovered that the memcg LRU doesn't apply enough pressure on offlined memcgs. Specifically, instead of rotating them to the tail of the current generation (MEMCG_LRU_TAIL) for a second attempt, it moves them to the next generation (MEMCG_LRU_YOUNG) after the first attempt. Not applying enough pressure on offlined memcgs can cause them to build up, and this can be particularly harmful to memory-constrained systems. On Pixel 8 Pro, launching apps for 50 cycles: Before After Change Zombie memcgs 45 35 -22% [1] https://lore.kernel.org/CABdmKX2M6koq4Q0Cmp_-=wbP0Qa190HdEGGaHfxNS05gAkUtPA@mail.gmail.com/ Link: https://lkml.kernel.org/r/20231208061407.2125867-4-yuzhao@google.com Fixes: e4dde56cd208 ("mm: multi-gen LRU: per-node lru_gen_folio lists") Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: T.J. Mercier <tjmercier@google.com> Tested-by: T.J. Mercier <tjmercier@google.com> Cc: Charan Teja Kalla <quic_charante@quicinc.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com> Cc: Kairui Song <ryncsn@gmail.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
8aa4206179 |
mm/mglru: respect min_ttl_ms with memcgs
While investigating kswapd "consuming 100% CPU" [1] (also see "mm/mglru: try to stop at high watermarks"), it was discovered that the memcg LRU can breach the thrashing protection imposed by min_ttl_ms. Before the memcg LRU: kswapd() shrink_node_memcgs() mem_cgroup_iter() inc_max_seq() // always hit a different memcg lru_gen_age_node() mem_cgroup_iter() check the timestamp of the oldest generation After the memcg LRU: kswapd() shrink_many() restart: iterate the memcg LRU: inc_max_seq() // occasionally hit the same memcg if raced with lru_gen_rotate_memcg(): goto restart lru_gen_age_node() mem_cgroup_iter() check the timestamp of the oldest generation Specifically, when the restart happens in shrink_many(), it needs to stick with the (memcg LRU) generation it began with. In other words, it should neither re-read memcg_lru->seq nor age an lruvec of a different generation. Otherwise it can hit the same memcg multiple times without giving lru_gen_age_node() a chance to check the timestamp of that memcg's oldest generation (against min_ttl_ms). [1] https://lore.kernel.org/CAK8fFZ4DY+GtBA40Pm7Nn5xCHy+51w3sfxPqkqpqakSXYyX+Wg@mail.gmail.com/ Link: https://lkml.kernel.org/r/20231208061407.2125867-3-yuzhao@google.com Fixes: e4dde56cd208 ("mm: multi-gen LRU: per-node lru_gen_folio lists") Signed-off-by: Yu Zhao <yuzhao@google.com> Tested-by: T.J. Mercier <tjmercier@google.com> Cc: Charan Teja Kalla <quic_charante@quicinc.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com> Cc: Kairui Song <ryncsn@gmail.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
5095a2b239 |
mm/mglru: try to stop at high watermarks
The initial MGLRU patchset didn't include the memcg LRU support, and it relied on should_abort_scan(), added by commit f76c83378851 ("mm: multi-gen LRU: optimize multiple memcgs"), to "backoff to avoid overshooting their aggregate reclaim target by too much". Later on when the memcg LRU was added, should_abort_scan() was deemed unnecessary, and the test results [1] showed no side effects after it was removed by commit a579086c99ed ("mm: multi-gen LRU: remove eviction fairness safeguard"). However, that test used memory.reclaim, which sets nr_to_reclaim to SWAP_CLUSTER_MAX. So it can overshoot only by SWAP_CLUSTER_MAX-1 pages, i.e., from nr_reclaimed=nr_to_reclaim-1 to nr_reclaimed=nr_to_reclaim+SWAP_CLUSTER_MAX-1. Compared with the batch size kswapd sets to nr_to_reclaim, SWAP_CLUSTER_MAX is tiny. Therefore that test isn't able to reproduce the worst case scenario, i.e., kswapd overshooting GBs on large systems and "consuming 100% CPU" (see the Closes tag). Bring back a simplified version of should_abort_scan() on top of the memcg LRU, so that kswapd stops when all eligible zones are above their respective high watermarks plus a small delta to lower the chance of KSWAPD_HIGH_WMARK_HIT_QUICKLY. Note that this only applies to order-0 reclaim, meaning compaction-induced reclaim can still run wild (which is a different problem). On Android, launching 55 apps sequentially: Before After Change pgpgin 838377172 802955040 -4% pgpgout 38037080 34336300 -10% [1] https://lore.kernel.org/20221222041905.2431096-1-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20231208061407.2125867-2-yuzhao@google.com Fixes: a579086c99ed ("mm: multi-gen LRU: remove eviction fairness safeguard") Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: Charan Teja Kalla <quic_charante@quicinc.com> Reported-by: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com> Closes: https://lore.kernel.org/CAK8fFZ4DY+GtBA40Pm7Nn5xCHy+51w3sfxPqkqpqakSXYyX+Wg@mail.gmail.com/ Tested-by: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com> Tested-by: Kalesh Singh <kaleshsingh@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Kairui Song <ryncsn@gmail.com> Cc: T.J. Mercier <tjmercier@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
081488051d |
mm/mglru: fix underprotected page cache
Unmapped folios accessed through file descriptors can be underprotected. Those folios are added to the oldest generation based on: 1. The fact that they are less costly to reclaim (no need to walk the rmap and flush the TLB) and have less impact on performance (don't cause major PFs and can be non-blocking if needed again). 2. The observation that they are likely to be single-use. E.g., for client use cases like Android, its apps parse configuration files and store the data in heap (anon); for server use cases like MySQL, it reads from InnoDB files and holds the cached data for tables in buffer pools (anon). However, the oldest generation can be very short lived, and if so, it doesn't provide the PID controller with enough time to respond to a surge of refaults. (Note that the PID controller uses weighted refaults and those from evicted generations only take a half of the whole weight.) In other words, for a short lived generation, the moving average smooths out the spike quickly. To fix the problem: 1. For folios that are already on LRU, if they can be beyond the tracking range of tiers, i.e., five accesses through file descriptors, move them to the second oldest generation to give them more time to age. (Note that tiers are used by the PID controller to statistically determine whether folios accessed multiple times through file descriptors are worth protecting.) 2. When adding unmapped folios to LRU, adjust the placement of them so that they are not too close to the tail. The effect of this is similar to the above. On Android, launching 55 apps sequentially: Before After Change workingset_refault_anon 25641024 25598972 0% workingset_refault_file 115016834 106178438 -8% Link: https://lkml.kernel.org/r/20231208061407.2125867-1-yuzhao@google.com Fixes: ac35a4902374 ("mm: multi-gen LRU: minimal implementation") Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: Charan Teja Kalla <quic_charante@quicinc.com> Tested-by: Kalesh Singh <kaleshsingh@google.com> Cc: T.J. Mercier <tjmercier@google.com> Cc: Kairui Song <ryncsn@gmail.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jaroslav Pulchart <jaroslav.pulchart@gooddata.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Li Zhijian
|
23e9f01389 |
mm/vmstat: move pgdemote_* to per-node stats
Demotion will migrate pages across nodes. Previously, only the global demotion statistics were accounted for. Changed them to per-node statistics, making it easier to observe where demotion occurs on each node. This will help to identify which nodes are under pressure. This patch also make pgdemote_* behind CONFIG_NUMA_BALANCING, since demotion is not available for !CONFIG_NUMA_BALANCING With this patch, here is a sample where node0 node1 are DRAM, node3 is PMEM: Global stats: $ grep demote /proc/vmstat pgdemote_kswapd 254288 pgdemote_direct 113497 pgdemote_khugepaged 0 Per-node stats: $ grep demote /sys/devices/system/node/node0/vmstat # demotion source pgdemote_kswapd 68454 pgdemote_direct 83431 pgdemote_khugepaged 0 $ grep demote /sys/devices/system/node/node1/vmstat # demotion source pgdemote_kswapd 185834 pgdemote_direct 30066 pgdemote_khugepaged 0 $ grep demote /sys/devices/system/node/node3/vmstat # demotion target pgdemote_kswapd 0 pgdemote_direct 0 pgdemote_khugepaged 0 Link: https://lkml.kernel.org/r/20231103031450.1456523-1-lizhijian@fujitsu.com Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Acked-by: "Huang, Ying" <ying.huang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Jaewon Kim
|
8c2214fc9a |
mm: multi-gen LRU: reuse some legacy trace events
As the legacy lru provides, the mglru needs some trace events for debugging. Let's reuse following legacy events for the mglru. trace_mm_vmscan_lru_isolate trace_mm_vmscan_lru_shrink_inactive Here's an example mm_vmscan_lru_isolate: classzone=2 order=0 nr_requested=4096 nr_scanned=64 nr_skipped=0 nr_taken=64 lru=inactive_file mm_vmscan_lru_shrink_inactive: nid=0 nr_scanned=64 nr_reclaimed=63 nr_dirty=0 nr_writeback=0 nr_congested=0 nr_immediate=0 nr_activate_anon=0 nr_activate_file=1 nr_ref_keep=0 nr_unmap_fail=0 priority=2 flags=RECLAIM_WB_FILE|RECLAIM_WB_ASYNC Link: https://lkml.kernel.org/r/20231003114155.21869-1-jaewon31.kim@samsung.com Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com> Acked-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: SeongJae Park <sj@kernel.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: T.J. Mercier <tjmercier@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
liwenyu
|
76a0fb4fd5 |
delayacct: add memory reclaim delay in get_page_from_freelist
The current memory reclaim delay statistics only count the direct memory reclaim of the task in do_try_to_free_pages(). In systems with NUMA open, some tasks occasionally experience slower response times, but the total count of reclaim does not increase, using ftrace can show that node_reclaim has occurred. The memory reclaim occurring in get_page_from_freelist() is also due to heavy memory load. To get the impact of tasks in memory reclaim, this patch adds the statistics of the memory reclaim delay statistics for __node_reclaim(). Link: https://lkml.kernel.org/r/181C946095F0252B+7cc60eca-1abf-4502-aad3-ffd8ef89d910@ex.bilibili.com Signed-off-by: Wen Yu Li <wenyuli@ex.bilibili.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: <wangyun@bilibili.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Vlastimil Babka
|
3dfbb555c9 |
mm, vmscan: remove ISOLATE_UNMAPPED
This isolate_mode_t flag is effectively unused since 89f6c88a6ab4 ("mm: __isolate_lru_page_prepare() in isolate_migratepages_block()") as sc->may_unmap is now checked directly (and only node_reclaim has a mode that sets it to 0). The last remaining place is mm_vmscan_lru_isolate tracepoint for the isolate_mode parameter. That one was mainly used to indicate the active/inactive mode, which the trace-vmscan-postprocess.pl script consumed, but that got silently broken. After fixing the script by the previous patch, it does not need the isolate_mode anymore. So just remove the parameter and with that the whole ISOLATE_UNMAPPED flag. Link: https://lkml.kernel.org/r/20230914131637.12204-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Xin Hao
|
811244a501 |
mm: memcg: add THP swap out info for anonymous reclaim
At present, we support per-memcg reclaim strategy, however we do not know the number of transparent huge pages being reclaimed, as we know the transparent huge pages need to be splited before reclaim them, and they will bring some performance bottleneck effect. for example, when two memcg (A & B) are doing reclaim for anonymous pages at same time, and 'A' memcg is reclaiming a large number of transparent huge pages, we can better analyze that the performance bottleneck will be caused by 'A' memcg. therefore, in order to better analyze such problems, there add THP swap out info for per-memcg. [akpm@linux-foundation.orgL fix swap_writepage_fs(), per Johannes] Link: https://lkml.kernel.org/r/20230913213343.GB48476@cmpxchg.org Link: https://lkml.kernel.org/r/20230913164938.16918-1-vernhao@tencent.com Signed-off-by: Xin Hao <vernhao@tencent.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
liujinlong
|
ed547ab6f4 |
mm: vmscan: modify an easily misunderstood function name
When looking at the code in the memory part, I found that the purpose of the function prepare_scan_countis very different from the function name. It is easy to misunderstand when reading.The function prepare_scan_count mainly completes the assignment of the scan_control structure.Therefore, I suggest that the function name can be changed to prepare_scan_control, which is easier to understand. Link: https://lkml.kernel.org/r/20230912085923.27238-1-liujinlong@kylinos.cn Signed-off-by: liujinlong <liujinlong@kylinos.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Qi Zheng
|
96f7b2b9bb |
mm: vmscan: move shrinker-related code into a separate file
The mm/vmscan.c file is too large, so separate the shrinker-related code from it into a separate file. No functional changes. Link: https://lkml.kernel.org/r/20230911092517.64141-3-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian König <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Steven Price <steven.price@arm.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Coly Li <colyli@suse.de> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Huang Rui <ray.huang@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Neil Brown <neilb@suse.de> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Sean Paul <sean@poorly.run> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Tom Talpey <tom@talpey.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Angus Chen
|
037dd8f902 |
mm/vmscan: print err before panic
If panic is enable,the err information will not be printed before bugon, So swap it. Print the return value of PTR_ERR(pgdat->kswapd) also. Link: https://lkml.kernel.org/r/20230906083700.181-1-angus.chen@jaguarmicro.com Signed-off-by: Angus Chen <angus.chen@jaguarmicro.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Vern Hao
|
97144ce008 |
mm/vmscan: use folio_migratetype() instead of get_pageblock_migratetype()
In skip_cma(), we can use folio_migratetype() to replace get_pageblock_migratetype(). Link: https://lkml.kernel.org/r/20230825075735.52436-1-user@VERNHAO-MC1 Signed-off-by: Vern Hao <vernhao@tencent.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Zhaoyang Huang <zhaoyang.huang@unisoc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Hildenbrand
|
3d2c908768 |
mm/swap: inline folio_set_swap_entry() and folio_swap_entry()
Let's simply work on the folio directly and remove the helpers. Link: https://lkml.kernel.org/r/20230821160849.531668-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Chris Li <chrisl@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Andrew Morton
|
5994eabf3b | merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes | ||
Charan Teja Kalla
|
b7108d6631 |
Multi-gen LRU: skip CMA pages when they are not eligible
This patch is based on the commit 5da226dbfce3("mm: skip CMA pages when they are not available") which skips cma pages reclaim when they are not eligible for the current allocation context. In mglru, such pages are added to the tail of the immediate generation to maintain better LRU order, which is unlike the case of conventional LRU where such pages are directly added to the head of the LRU list(akin to adding to head of the youngest generation in mglru). No observable issue without this patch on MGLRU, but logically it make sense to skip the CMA page reclaim when those pages can't be satisfied for the current allocation context. Link: https://lkml.kernel.org/r/1691568344-13475-1-git-send-email-quic_charante@quicinc.com Fixes: ac35a4902374 ("mm: multi-gen LRU: minimal implementation") Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zhaoyang Huang <zhaoyang.huang@unisoc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kalesh Singh
|
a3235ea2a8 |
Multi-gen LRU: fix can_swap in lru_gen_look_around()
walk->can_swap might be invalid since it's not guaranteed to be initialized for the particular lruvec. Instead deduce it from the folio type (anon/file). Link: https://lkml.kernel.org/r/20230802025606.346758-3-kaleshsingh@google.com Fixes: 018ee47f1489 ("mm: multi-gen LRU: exploit locality in rmap") Signed-off-by: Kalesh Singh <kaleshsingh@google.com> Tested-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> [mediatek] Tested-by: Charan Teja Kalla <quic_charante@quicinc.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Aneesh Kumar K V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Steven Barrett <steven@liquorix.net> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kalesh Singh
|
bb5e7f234e |
Multi-gen LRU: avoid race in inc_min_seq()
inc_max_seq() will try to inc_min_seq() if nr_gens == MAX_NR_GENS. This is because the generations are reused (the last oldest now empty generation will become the next youngest generation). inc_min_seq() is retried until successful, dropping the lru_lock and yielding the CPU on each failure, and retaking the lock before trying again: while (!inc_min_seq(lruvec, type, can_swap)) { spin_unlock_irq(&lruvec->lru_lock); cond_resched(); spin_lock_irq(&lruvec->lru_lock); } However, the initial condition that required incrementing the min_seq (nr_gens == MAX_NR_GENS) is not retested. This can change by another call to inc_max_seq() from run_aging() with force_scan=true from the debugfs interface. Since the eviction stalls when the nr_gens == MIN_NR_GENS, avoid unnecessarily incrementing the min_seq by rechecking the number of generations before each attempt. This issue was uncovered in previous discussion on the list by Yu Zhao and Aneesh Kumar [1]. [1] https://lore.kernel.org/linux-mm/CAOUHufbO7CaVm=xjEb1avDhHVvnC8pJmGyKcFf2iY_dpf+zR3w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20230802025606.346758-2-kaleshsingh@google.com Fixes: d6c3af7d8a2b ("mm: multi-gen LRU: debugfs interface") Signed-off-by: Kalesh Singh <kaleshsingh@google.com> Tested-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> [mediatek] Tested-by: Charan Teja Kalla <quic_charante@quicinc.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Aneesh Kumar K V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Steven Barrett <steven@liquorix.net> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kalesh Singh
|
669281ee7e |
Multi-gen LRU: fix per-zone reclaim
MGLRU has a LRU list for each zone for each type (anon/file) in each generation: long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; The min_seq (oldest generation) can progress independently for each type but the max_seq (youngest generation) is shared for both anon and file. This is to maintain a common frame of reference. In order for eviction to advance the min_seq of a type, all the per-zone lists in the oldest generation of that type must be empty. The eviction logic only considers pages from eligible zones for eviction or promotion. scan_folios() { ... for (zone = sc->reclaim_idx; zone >= 0; zone--) { ... sort_folio(); // Promote ... isolate_folio(); // Evict } ... } Consider the system has the movable zone configured and default 4 generations. The current state of the system is as shown below (only illustrating one type for simplicity): Type: ANON Zone DMA32 Normal Movable Device Gen 0 0 0 4GB 0 Gen 1 0 1GB 1MB 0 Gen 2 1MB 4GB 1MB 0 Gen 3 1MB 1MB 1MB 0 Now consider there is a GFP_KERNEL allocation request (eligible zone index <= Normal), evict_folios() will return without doing any work since there are no pages to scan in the eligible zones of the oldest generation. Reclaim won't make progress until triggered from a ZONE_MOVABLE allocation request; which may not happen soon if there is a lot of free memory in the movable zone. This can lead to OOM kills, although there is 1GB pages in the Normal zone of Gen 1 that we have not yet tried to reclaim. This issue is not seen in the conventional active/inactive LRU since there are no per-zone lists. If there are no (not enough) folios to scan in the eligible zones, move folios from ineligible zone (zone_index > reclaim_index) to the next generation. This allows for the progression of min_seq and reclaiming from the next generation (Gen 1). Qualcomm, Mediatek and raspberrypi [1] discovered this issue independently. [1] https://github.com/raspberrypi/linux/issues/5395 Link: https://lkml.kernel.org/r/20230802025606.346758-1-kaleshsingh@google.com Fixes: ac35a4902374 ("mm: multi-gen LRU: minimal implementation") Signed-off-by: Kalesh Singh <kaleshsingh@google.com> Reported-by: Charan Teja Kalla <quic_charante@quicinc.com> Reported-by: Lecopzer Chen <lecopzer.chen@mediatek.com> Tested-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> [mediatek] Tested-by: Charan Teja Kalla <quic_charante@quicinc.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Barry Song <baohua@kernel.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Steven Barrett <steven@liquorix.net> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Aneesh Kumar K V <aneesh.kumar@linux.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
T.J. Mercier
|
6867c7a332 |
mm: multi-gen LRU: don't spin during memcg release
When a memcg is in the process of being released mem_cgroup_tryget will fail because its reference count has already reached 0. This can happen during reclaim if the memcg has already been offlined, and we reclaim all remaining pages attributed to the offlined memcg. shrink_many attempts to skip the empty memcg in this case, and continue reclaiming from the remaining memcgs in the old generation. If there is only one memcg remaining, or if all remaining memcgs are in the process of being released then shrink_many will spin until all memcgs have finished being released. The release occurs through a workqueue, so it can take a while before kswapd is able to make any further progress. This fix results in reductions in kswapd activity and direct reclaim in a test where 28 apps (working set size > total memory) are repeatedly launched in a random sequence: A B delta ratio(%) allocstall_movable 5962 3539 -2423 -40.64 allocstall_normal 2661 2417 -244 -9.17 kswapd_high_wmark_hit_quickly 53152 7594 -45558 -85.71 pageoutrun 57365 11750 -45615 -79.52 Link: https://lkml.kernel.org/r/20230814151636.1639123-1-tjmercier@google.com Fixes: e4dde56cd208 ("mm: multi-gen LRU: per-node lru_gen_folio lists") Signed-off-by: T.J. Mercier <tjmercier@google.com> Acked-by: Yu Zhao <yuzhao@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Suren Baghdasaryan
|
49b0638502 |
mm: enable page walking API to lock vmas during the walk
walk_page_range() and friends often operate under write-locked mmap_lock. With introduction of vma locks, the vmas have to be locked as well during such walks to prevent concurrent page faults in these areas. Add an additional member to mm_walk_ops to indicate locking requirements for the walk. The change ensures that page walks which prevent concurrent page faults by write-locking mmap_lock, operate correctly after introduction of per-vma locks. With per-vma locks page faults can be handled under vma lock without taking mmap_lock at all, so write locking mmap_lock would not stop them. The change ensures vmas are properly locked during such walks. A sample issue this solves is do_mbind() performing queue_pages_range() to queue pages for migration. Without this change a concurrent page can be faulted into the area and be left out of migration. Link: https://lkml.kernel.org/r/20230804152724.3090321-2-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org> Suggested-by: Jann Horn <jannh@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Michel Lespinasse <michel@lespinasse.org> Cc: Peter Xu <peterx@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
David Howells
|
0201ebf274 |
mm: merge folio_has_private()/filemap_release_folio() call pairs
Patch series "mm, netfs, fscache: Stop read optimisation when folio removed from pagecache", v7. This fixes an optimisation in fscache whereby we don't read from the cache for a particular file until we know that there's data there that we don't have in the pagecache. The problem is that I'm no longer using PG_fscache (aka PG_private_2) to indicate that the page is cached and so I don't get a notification when a cached page is dropped from the pagecache. The first patch merges some folio_has_private() and filemap_release_folio() pairs and introduces a helper, folio_needs_release(), to indicate if a release is required. The second patch is the actual fix. Following Willy's suggestions[1], it adds an AS_RELEASE_ALWAYS flag to an address_space that will make filemap_release_folio() always call ->release_folio(), even if PG_private/PG_private_2 aren't set. folio_needs_release() is altered to add a check for this. This patch (of 2): Make filemap_release_folio() check folio_has_private(). Then, in most cases, where a call to folio_has_private() is immediately followed by a call to filemap_release_folio(), we can get rid of the test in the pair. There are a couple of sites in mm/vscan.c that this can't so easily be done. In shrink_folio_list(), there are actually three cases (something different is done for incompletely invalidated buffers), but filemap_release_folio() elides two of them. In shrink_active_list(), we don't have have the folio lock yet, so the check allows us to avoid locking the page unnecessarily. A wrapper function to check if a folio needs release is provided for those places that still need to do it in the mm/ directory. This will acquire additional parts to the condition in a future patch. After this, the only remaining caller of folio_has_private() outside of mm/ is a check in fuse. Link: https://lkml.kernel.org/r/20230628104852.3391651-1-dhowells@redhat.com Link: https://lkml.kernel.org/r/20230628104852.3391651-2-dhowells@redhat.com Reported-by: Rohith Surabattula <rohiths.msft@gmail.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Signed-off-by: David Howells <dhowells@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steve French <sfrench@samba.org> Cc: Shyam Prasad N <nspmangalore@gmail.com> Cc: Rohith Surabattula <rohiths.msft@gmail.com> Cc: Dave Wysochanski <dwysocha@redhat.com> Cc: Dominique Martinet <asmadeus@codewreck.org> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Xiubo Li <xiubli@redhat.com> Cc: Jingbo Xu <jefflexu@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yosry Ahmed
|
1bc545bff4 |
mm/vmscan: fix root proactive reclaim unthrottling unbalanced node
When memory.reclaim was introduced, it became the first case where cgroup_reclaim() is true for the root cgroup. Johannes concluded [1] that for most cases this is okay, except for one case. Historically, kswapd would throttle reclaim on a node if a lot of pages marked for reclaim are under writeback (aka the node is congested). This occurred by setting LRUVEC_CONGESTED bit in lruvec->flags. The bit would be cleared when the node is balanced. Similarly, cgroup reclaim would set the same bit when an lruvec is congested, and clear it on the way out of reclaim (to throttle local reclaimers). Before the introduction of memory.reclaim, the root memcg was the only target of kswapd reclaim, and non-root memcgs were the only targets of cgroup reclaim, so they would never interfere. Using the same bit for both was fine. After memory.reclaim, it is possible for cgroup reclaim on the root cgroup to clear the bit set by kswapd. This would result in reclaim on the node to be unthrottled before the node is balanced. Fix this by introducing separate bits for cgroup-level and node-level congestion. kswapd can unthrottle an lruvec that is marked as congested by cgroup reclaim (as the entire node should no longer be congested), but not vice versa (to prevent premature unthrottling before the entire node is balanced). [1]https://lore.kernel.org/lkml/20230405200150.GA35884@cmpxchg.org/ Link: https://lkml.kernel.org/r/20230621023101.432780-1-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Reported-by: Johannes Weiner <hannes@cmpxchg.org> Closes: https://lore.kernel.org/lkml/20230405200150.GA35884@cmpxchg.org/ Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yosry Ahmed
|
7a704474b3 |
mm: memcg: rename and document global_reclaim()
Evidently, global_reclaim() can be a confusing name. Especially that it used to exist before with a subtly different definition (removed by commit b5ead35e7e1d ("mm: vmscan: naming fixes: global_reclaim() and sane_reclaim()"). It can be interpreted as non-cgroup reclaim, even though it returns true for cgroup reclaim on the root memcg (through memory.reclaim). Rename it to root_reclaim() in an attempt to make it less ambiguous, and add documentation to it as well as cgroup_reclaim. Link: https://lkml.kernel.org/r/20230621023053.432374-1-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Reported-by: Johannes Weiner <hannes@cmpxchg.org> Closes: https://lore.kernel.org/lkml/20230405200150.GA35884@cmpxchg.org/ Acked-by: Yu Zhao <yuzhao@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
e0b72c14d8 |
mm: remove check_move_unevictable_pages()
All callers have now been converted to call check_move_unevictable_folios(). Link: https://lkml.kernel.org/r/20230621164557.3510324-7-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Andrew Morton
|
63773d2b59 | Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes. |