The per-cgroup LRU lists string up 'struct page_cgroup's. To get from
those structures to the page they represent, a lookup is required.
Currently, the lookup is done through a direct pointer in struct
page_cgroup, so a lot of functions down the callchain do this lookup by
themselves instead of receiving the page pointer from their callers.
The next patch removes this pointer, however, and the lookup is no longer
that straight-forward. In preparation for that, this patch only leaves
the non-optional lookups when coming directly from the LRU list and passes
the page down the stack.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is one logical function, no need to have it split up.
Also, get rid of some checks from the inner function that ensured the
sanity of the outer function.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of passing a whole struct page_cgroup to this function, let it
take only what it really needs from it: the struct mem_cgroup and the
page.
This has the advantage that reading pc->mem_cgroup is now done at the same
place where the ordering rules for this pointer are enforced and
explained.
It is also in preparation for removing the pc->page backpointer.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch series removes the direct page pointer from struct page_cgroup,
which saves 20% of per-page memcg memory overhead (Fedora and Ubuntu
enable memcg per default, openSUSE apparently too).
The node id or section number is encoded in the remaining free bits of
pc->flags which allows calculating the corresponding page without the
extra pointer.
I ran, what I think is, a worst-case microbenchmark that just cats a large
sparse file to /dev/null, because it means that walking the LRU list on
behalf of per-cgroup reclaim and looking up pages from page_cgroups is
happening constantly and at a high rate. But it made no measurable
difference. A profile reported a 0.11% share of the new
lookup_cgroup_page() function in this benchmark.
This patch:
All callsites check PCG_USED before passing pc->mem_cgroup, so the latter
is never NULL.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add checks at allocating or freeing a page whether the page is used (iow,
charged) from the view point of memcg.
This check may be useful in debugging a problem and we did similar checks
before the commit 52d4b9ac(memcg: allocate all page_cgroup at boot).
This patch adds some overheads at allocating or freeing memory, so it's
enabled only when CONFIG_DEBUG_VM is enabled.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page_cgroup array is set up before even fork is initialized. I
seriously doubt that this code executes before the array is alloc'd.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No callsite ever passes a NULL pointer for a struct mem_cgroup * to the
committing function. There is no need to check for it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These definitions have been unused since '4b3bde4 memcg: remove the
overhead associated with the root cgroup'.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since transparent huge pages, checking whether memory cgroups are below
their limits is no longer enough, but the actual amount of chargeable
space is important.
To not have more than one limit-checking interface, replace
memory_cgroup_check_under_limit() and memory_cgroup_check_margin() with a
single memory_cgroup_margin() that returns the chargeable space and leaves
the comparison to the callsite.
Soft limits are now checked the other way round, by using the already
existing function that returns the amount by which soft limits are
exceeded: res_counter_soft_limit_excess().
Also remove all the corresponding functions on the res_counter side that
are now no longer used.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Soft limit reclaim continues until the usage is below the current soft
limit, but the documented semantics are actually that soft limit reclaim
will push usage back until the soft limits are met again.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove initialization of vaiable in caller of memory cgroup function.
Actually, it's return value of memcg function but it's initialized in
caller.
Some memory cgroup uses following style to bring the result of start
function to the end function for avoiding races.
mem_cgroup_start_A(&(*ptr))
/* Something very complicated can happen here. */
mem_cgroup_end_A(*ptr)
In some calls, *ptr should be initialized to NULL be caller. But it's
ugly. This patch fixes that *ptr is initialized by _start function.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, if a mm_walk has either ->pte_entry or ->pmd_entry set, it will
unconditionally split any transparent huge pages it runs in to. In
practice, that means that anyone doing a
cat /proc/$pid/smaps
will unconditionally break down every huge page in the process and depend
on khugepaged to re-collapse it later. This is fairly suboptimal.
This patch changes that behavior. It teaches each ->pmd_entry handler
(there are five) that they must break down the THPs themselves. Also, the
_generic_ code will never break down a THP unless a ->pte_entry handler is
actually set.
This means that the ->pmd_entry handlers can now choose to deal with THPs
without breaking them down.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Tested-by: Eric B Munson <emunson@mgebm.net>
Cc: Michael J Wolf <mjwolf@us.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The rotate_reclaimable_page function moves just written out pages, which
the VM wanted to reclaim, to the end of the inactive list. That way the
VM will find those pages first next time it needs to free memory.
This patch applies the rule in memcg. It can help to prevent unnecessary
working page eviction of memcg.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function basically does:
remove_from_page_cache(old);
page_cache_release(old);
add_to_page_cache_locked(new);
Except it does this atomically, so there's no possibility for the "add" to
fail because of a race.
If memory cgroups are enabled, then the memory cgroup charge is also moved
from the old page to the new.
This function is currently used by fuse to move pages into the page cache
on read, instead of copying the page contents.
[minchan.kim@gmail.com: add freepage() hook to replace_page_cache_page()]
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Changes in e401f1761 ("memcg: modify accounting function for supporting
THP better") adds nr_pages to support multiple page size in
memory_cgroup_charge_statistics.
But counting the number of event nees abs(nr_pages) for increasing
counters. This patch fixes event counting.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge page coverage should obviously have less priority than the continued
execution of a process.
Never kill a process when charging it a huge page fails. Instead, give up
after the first failed reclaim attempt and fall back to regular pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If reclaim after a failed charging was unsuccessful, the limits are
checked again, just in case they settled by means of other tasks.
This is all fine as long as every charge is of size PAGE_SIZE, because in
that case, being below the limit means having at least PAGE_SIZE bytes
available.
But with transparent huge pages, we may end up in an endless loop where
charging and reclaim fail, but we keep going because the limits are not
yet exceeded, although not allowing for a huge page.
Fix this up by explicitely checking for enough room, not just whether we
are within limits.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The charging code can encounter a charge size that is bigger than a
regular page in two situations: one is a batched charge to fill the
per-cpu stocks, the other is a huge page charge.
This code is distributed over two functions, however, and only the outer
one is aware of huge pages. In case the charging fails, the inner
function will tell the outer function to retry if the charge size is
bigger than regular pages--assuming batched charging is the only case.
And the outer function will retry forever charging a huge page.
This patch makes sure the inner function can distinguish between batch
charging and a single huge page charge. It will only signal another
attempt if batch charging failed, and go into regular reclaim when it is
called on behalf of a huge page.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
noswapaccount couldn't be used to control memsw for both on/off cases so
we have added swapaccount[=0|1] parameter. This way we can turn the
feature in two ways noswapaccount resp. swapaccount=0. We have kept the
original noswapaccount but I think we should remove it after some time as
it just makes more command line parameters without any advantages and also
the code to handle parameters is uglier if we want both parameters.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Requested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__setup based kernel command line parameters handlers which are handled in
obsolete_checksetup are provided with the parameter value including =
(more precisely everything right after the parameter name).
This means that the current implementation of swapaccount[=1|0] doesn't
work at all because if there is a value for the parameter then we are
testing for "0" resp. "1" but we are getting "=0" resp. "=1" and if
there is no parameter value we are getting an empty string rather than
NULL.
The original noswapccount parameter, which doesn't care about the value,
works correctly.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A fix up mem_cgroup_move_parent() which use compound_order() in
asynchronous manner. This compound_order() may return unknown value
because we don't take lock. Use PageTransHuge() and HPAGE_SIZE instead
of it.
Also clean up for mem_cgroup_move_parent().
- remove unnecessary initialization of local variable.
- rename charge_size -> page_size
- remove unnecessary (wrong) comment.
- added a comment about THP.
Note:
Current design take compound_page_lock() in caller of move_account().
This should be revisited when we implement direct move_task of hugepage
without splitting.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_disabled() should be checked at splitting. If disabled, no
heavy work is necesary.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In mm/memcontrol.c::mem_cgroup_move_parent() there's a path that jumps
to the 'put_back' label
ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, charge);
if (ret || !parent)
goto put_back;
where we'll
if (charge > PAGE_SIZE)
compound_unlock_irqrestore(page, flags);
but, we have not assigned anything to 'flags' at this point, nor have we
called 'compound_lock_irqsave()' (which is what sets 'flags'). The
'put_back' label should be moved below the call to
compound_unlock_irqrestore() as per this patch.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The placement of the read-side barrier is confused: the writer first
sets pc->mem_cgroup, then PCG_USED. The read-side barrier has to be
between testing PCG_USED and reading pc->mem_cgroup.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, when THP is enabled, memcg's rmdir() function is broken because
move_account() for THP page is not supported.
This will cause account leak or -EBUSY issue at rmdir().
This patch fixes the issue by supporting move_account() THP pages.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memory cgroup's LRU stat should take care of size of pages because
Transparent Hugepage inserts hugepage into LRU. If this value is the
number wrong, memory reclaim will not work well.
Note: only head page of THP's huge page is linked into LRU.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, under THP:
at charge:
- PageCgroupUsed bit is set to all page_cgroup on a hugepage.
....set to 512 pages.
at uncharge
- PageCgroupUsed bit is unset on the head page.
So, some pages will remain with "Used" bit.
This patch fixes that Used bit is set only to the head page.
Used bits for tail pages will be set at splitting if necessary.
This patch adds this lock order:
compound_lock() -> page_cgroup_move_lock().
[akpm@linux-foundation.org: fix warning]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_charge_statisics() was designed for charging a page but now, we
have transparent hugepage. To fix problems (in following patch) it's
required to change the function to get the number of pages as its
arguments.
The new function gets following as argument.
- type of page rather than 'pc'
- size of page which is accounted.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current implementation mem_cgroup_end_migration() decides whether
the page migration has succeeded or not by checking "oldpage->mapping".
But if we are tring to migrate a shmem swapcache, the page->mapping of it
is NULL from the begining, so the check would be invalid. As a result,
mem_cgroup_end_migration() assumes the migration has succeeded even if
it's not, so "newpage" would be freed while it's not uncharged.
This patch fixes it by passing mem_cgroup_end_migration() the result of
the page migration.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In mem_cgroup_alloc() we currently do either kmalloc() or vmalloc() then
followed by memset() to zero the memory. This can be more efficiently
achieved by using kzalloc() and vzalloc(). There's also one situation
where we can use kzalloc_node() - this is what's new in this version of
the patch.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b1dd693e ("memcg: avoid deadlock between move charge and
try_charge()") can cause another deadlock about mmap_sem on task migration
if cpuset and memcg are mounted onto the same mount point.
After the commit, cgroup_attach_task() has sequence like:
cgroup_attach_task()
ss->can_attach()
cpuset_can_attach()
mem_cgroup_can_attach()
down_read(&mmap_sem) (1)
ss->attach()
cpuset_attach()
mpol_rebind_mm()
down_write(&mmap_sem) (2)
up_write(&mmap_sem)
cpuset_migrate_mm()
do_migrate_pages()
down_read(&mmap_sem)
up_read(&mmap_sem)
mem_cgroup_move_task()
mem_cgroup_clear_mc()
up_read(&mmap_sem)
We can cause deadlock at (2) because we've already aquire the mmap_sem at (1).
But the commit itself is necessary to fix deadlocks which have existed
before the commit like:
Ex.1)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() | down_write(&mmap_sem)
mc.moving_task = current | ..
mem_cgroup_precharge_mc() | __mem_cgroup_try_charge()
mem_cgroup_count_precharge() | prepare_to_wait()
down_read(&mmap_sem) | if (mc.moving_task)
-> cannot aquire the lock | -> true
| schedule()
| -> move charge should wake it up
Ex.2)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() |
mc.moving_task = current |
mem_cgroup_precharge_mc() |
mem_cgroup_count_precharge() |
down_read(&mmap_sem) |
.. |
up_read(&mmap_sem) |
| down_write(&mmap_sem)
mem_cgroup_move_task() | ..
mem_cgroup_move_charge() | __mem_cgroup_try_charge()
down_read(&mmap_sem) | prepare_to_wait()
-> cannot aquire the lock | if (mc.moving_task)
| -> true
| schedule()
| -> move charge should wake it up
This patch fixes all of these problems by:
1. revert the commit.
2. To fix the Ex.1, we set mc.moving_task after mem_cgroup_count_precharge()
has released the mmap_sem.
3. To fix the Ex.2, we use down_read_trylock() instead of down_read() in
mem_cgroup_move_charge() and, if it has failed to aquire the lock, cancel
all extra charges, wake up all waiters, and retry trylock.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reported-by: Ben Blum <bblum@andrew.cmu.edu>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Paul Menage <menage@google.com>
Cc: Hiroyuki Kamezawa <kamezawa.hiroyuki@gmail.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adding the number of swap pages to the byte limit of a memory control
group makes no sense. Convert the pages to bytes before adding them.
The only user of this code is the OOM killer, and the way it is used means
that the error results in a higher OOM badness value. Since the cgroup
limit is the same for all tasks in the cgroup, the error should have no
practical impact at the moment.
But let's not wait for future or changing users to trip over it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a new bit spin lock, PCG_MOVE_LOCK, to synchronize the page
accounting and migration code. This reworks the locking scheme of
_update_stat() and _move_account() by adding new lock bit PCG_MOVE_LOCK,
which is always taken under IRQ disable.
1. If pages are being migrated from a memcg, then updates to that
memcg page statistics are protected by grabbing PCG_MOVE_LOCK using
move_lock_page_cgroup(). In an upcoming commit, memcg dirty page
accounting will be updating memcg page accounting (specifically: num
writeback pages) from IRQ context (softirq). Avoid a deadlocking
nested spin lock attempt by disabling irq on the local processor when
grabbing the PCG_MOVE_LOCK.
2. lock for update_page_stat is used only for avoiding race with
move_account(). So, IRQ awareness of lock_page_cgroup() itself is not
a problem. The problem is between mem_cgroup_update_page_stat() and
mem_cgroup_move_account_page().
Trade-off:
* Changing lock_page_cgroup() to always disable IRQ (or
local_bh) has some impacts on performance and I think
it's bad to disable IRQ when it's not necessary.
* adding a new lock makes move_account() slower. Score is
here.
Performance Impact: moving a 8G anon process.
Before:
real 0m0.792s
user 0m0.000s
sys 0m0.780s
After:
real 0m0.854s
user 0m0.000s
sys 0m0.842s
This score is bad but planned patches for optimization can reduce
this impact.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Andrea Righi <arighi@develer.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace usage of the mem_cgroup_update_file_mapped() memcg
statistic update routine with two new routines:
* mem_cgroup_inc_page_stat()
* mem_cgroup_dec_page_stat()
As before, only the file_mapped statistic is managed. However, these more
general interfaces allow for new statistics to be more easily added. New
statistics are added with memcg dirty page accounting.
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrea Righi <arighi@develer.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Count each transparent hugepage as HPAGE_PMD_NR pages in the LRU
statistics, so the Active(anon) and Inactive(anon) statistics in
/proc/meminfo are correct.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By this patch, when a transparent hugepage is charged, not only the head
page but also all the tail pages are committed, IOW pc->mem_cgroup and
pc->flags of tail pages are set.
Without this patch:
- Tail pages are not linked to any memcg's LRU at splitting. This causes many
problems, for example, the charged memcg's directory can never be rmdir'ed
because it doesn't have enough pages to scan to make the usage decrease to 0.
- "rss" field in memory.stat would be incorrect. Moreover, usage_in_bytes in
root cgroup is calculated by the stat not by res_counter(since 2.6.32),
it would be incorrect too.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At __mem_cgroup_try_charge(), VM_BUG_ON(!mm->owner) is checked.
But as commented in mem_cgroup_from_task(), mm->owner can be NULL
in some racy case. This check of VM_BUG_ON() is bad.
A possible story to hit this is at swapoff()->try_to_unuse(). It passes
mm_struct to mem_cgroup_try_charge_swapin() while mm->owner is NULL. If we
can't get proper mem_cgroup from swap_cgroup information, mm->owner is used
as charge target and we see NULL.
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reported-by: Hugh Dickins <hughd@google.com>
Reported-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap accounting can be configured by CONFIG_CGROUP_MEM_RES_CTLR_SWAP
configuration option and then it is turned on by default. There is a boot
option (noswapaccount) which can disable this feature.
This makes it hard for distributors to enable the configuration option as
this feature leads to a bigger memory consumption and this is a no-go for
general purpose distribution kernel. On the other hand swap accounting
may be very usuful for some workloads.
This patch adds a new configuration option which controls the default
behavior (CGROUP_MEM_RES_CTLR_SWAP_ENABLED). If the option is selected
then the feature is turned on by default.
It also adds a new boot parameter swapaccount[=1|0] which enhances the
original noswapaccount parameter semantic by means of enable/disable logic
(defaults to 1 if no value is provided to be still consistent with
noswapaccount).
The default behavior is unchanged (if CONFIG_CGROUP_MEM_RES_CTLR_SWAP is
enabled then CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED is enabled as well)
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__mem_cgroup_try_charge() can be called under down_write(&mmap_sem)(e.g.
mlock does it). This means it can cause deadlock if it races with move charge:
Ex.1)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() | down_write(&mmap_sem)
mc.moving_task = current | ..
mem_cgroup_precharge_mc() | __mem_cgroup_try_charge()
mem_cgroup_count_precharge() | prepare_to_wait()
down_read(&mmap_sem) | if (mc.moving_task)
-> cannot aquire the lock | -> true
| schedule()
Ex.2)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() |
mc.moving_task = current |
mem_cgroup_precharge_mc() |
mem_cgroup_count_precharge() |
down_read(&mmap_sem) |
.. |
up_read(&mmap_sem) |
| down_write(&mmap_sem)
mem_cgroup_move_task() | ..
mem_cgroup_move_charge() | __mem_cgroup_try_charge()
down_read(&mmap_sem) | prepare_to_wait()
-> cannot aquire the lock | if (mc.moving_task)
| -> true
| schedule()
To avoid this deadlock, we do all the move charge works (both can_attach() and
attach()) under one mmap_sem section.
And after this patch, we set/clear mc.moving_task outside mc.lock, because we
use the lock only to check mc.from/to.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original code had a null dereference if alloc_percpu() failed. This
was introduced in commit 711d3d2c9bc3 ("memcg: cpu hotplug aware percpu
count updates")
Signed-off-by: Dan Carpenter <error27@gmail.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch extracts the core logic from mem_cgroup_update_file_mapped() as
mem_cgroup_update_file_stat() and adds a wrapper.
As a planned future update, memory cgroup has to count dirty pages to
implement dirty_ratio/limit. And more, the number of dirty pages is
required to kick flusher thread to start writeback. (Now, no kick.)
This patch is preparation for it and makes other statistics implementation
clearer. Just a clean up.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An event counter MEM_CGROUP_ON_MOVE is used for quick check whether file
stat update can be done in async manner or not. Now, it use percpu
counter and for_each_possible_cpu to update.
This patch replaces for_each_possible_cpu to for_each_online_cpu and adds
necessary synchronization logic at CPU HOTPLUG.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, memcgroup's per cpu coutner uses for_each_possible_cpu() to get the
value. It's better to use for_each_online_cpu() and a cpu hotplug
handler.
This patch only handles statistics counter. MEM_CGROUP_ON_MOVE will be
handled in another patch.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In memory cgroup management, we sometimes have to walk through
subhierarchy of cgroup to gather informaiton, or lock something, etc.
Now, to do that, mem_cgroup_walk_tree() function is provided. It calls
given callback function per cgroup found. But the bad thing is that it
has to pass a fixed style function and argument, "void*" and it adds much
type casting to memcontrol.c.
To make the code clean, this patch replaces walk_tree() with
for_each_mem_cgroup_tree(iter, root)
An iterator style call. The good point is that iterator call doesn't have
to assume what kind of function is called under it. A bad point is that
it may cause reference-count leak if a caller use "break" from the loop by
mistake.
I think the benefit is larger. The modified code seems straigtforward and
easy to read because we don't have misterious callbacks and pointer cast.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At accounting file events per memory cgroup, we need to find memory cgroup
via page_cgroup->mem_cgroup. Now, we use lock_page_cgroup() for guarantee
pc->mem_cgroup is not overwritten while we make use of it.
But, considering the context which page-cgroup for files are accessed,
we can use alternative light-weight mutual execusion in the most case.
At handling file-caches, the only race we have to take care of is "moving"
account, IOW, overwriting page_cgroup->mem_cgroup. (See comment in the
patch)
Unlike charge/uncharge, "move" happens not so frequently. It happens only when
rmdir() and task-moving (with a special settings.)
This patch adds a race-checker for file-cache-status accounting v.s. account
moving. The new per-cpu-per-memcg counter MEM_CGROUP_ON_MOVE is added.
The routine for account move
1. Increment it before start moving
2. Call synchronize_rcu()
3. Decrement it after the end of moving.
By this, file-status-counting routine can check it needs to call
lock_page_cgroup(). In most case, I doesn't need to call it.
Following is a perf data of a process which mmap()/munmap 32MB of file cache
in a minute.
Before patch:
28.25% mmap mmap [.] main
22.64% mmap [kernel.kallsyms] [k] page_fault
9.96% mmap [kernel.kallsyms] [k] mem_cgroup_update_file_mapped
3.67% mmap [kernel.kallsyms] [k] filemap_fault
3.50% mmap [kernel.kallsyms] [k] unmap_vmas
2.99% mmap [kernel.kallsyms] [k] __do_fault
2.76% mmap [kernel.kallsyms] [k] find_get_page
After patch:
30.00% mmap mmap [.] main
23.78% mmap [kernel.kallsyms] [k] page_fault
5.52% mmap [kernel.kallsyms] [k] mem_cgroup_update_file_mapped
3.81% mmap [kernel.kallsyms] [k] unmap_vmas
3.26% mmap [kernel.kallsyms] [k] find_get_page
3.18% mmap [kernel.kallsyms] [k] __do_fault
3.03% mmap [kernel.kallsyms] [k] filemap_fault
2.40% mmap [kernel.kallsyms] [k] handle_mm_fault
2.40% mmap [kernel.kallsyms] [k] do_page_fault
This patch reduces memcg's cost to some extent.
(mem_cgroup_update_file_mapped is called by both of map/unmap)
Note: It seems some more improvements are required..but no idea.
maybe removing set/unset flag is required.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>