mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-06 05:06:29 +00:00
5c00ff742b
1644 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
5c00ff742b |
- The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzwFqgAKCRDdBJ7gKXxA jkeuAQCkl+BmeYHE6uG0hi3pRxkupseR6DEOAYIiTv0/l8/GggD/Z3jmEeqnZaNq xyyenpibWgUoShU2wZ/Ha8FE5WDINwg= =JfWR -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "zram: optimal post-processing target selection" from Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. * tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits) cma: enforce non-zero pageblock_order during cma_init_reserved_mem() mm/kfence: add a new kunit test test_use_after_free_read_nofault() zram: fix NULL pointer in comp_algorithm_show() memcg/hugetlb: add hugeTLB counters to memcg vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount zram: ZRAM_DEF_COMP should depend on ZRAM MAINTAINERS/MEMORY MANAGEMENT: add document files for mm Docs/mm/damon: recommend academic papers to read and/or cite mm: define general function pXd_init() kmemleak: iommu/iova: fix transient kmemleak false positive mm/list_lru: simplify the list_lru walk callback function mm/list_lru: split the lock to per-cgroup scope mm/list_lru: simplify reparenting and initial allocation mm/list_lru: code clean up for reparenting mm/list_lru: don't export list_lru_add mm/list_lru: don't pass unnecessary key parameters kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols ... |
||
Linus Torvalds
|
f41dac3efb |
Performance events changes for v6.13:
- Uprobes: - Add BPF session support (Jiri Olsa) - Switch to RCU Tasks Trace flavor for better performance (Andrii Nakryiko) - Massively increase uretprobe SMP scalability by SRCU-protecting the uretprobe lifetime (Andrii Nakryiko) - Kill xol_area->slot_count (Oleg Nesterov) - Core facilities: - Implement targeted high-frequency profiling by adding the ability for an event to "pause" or "resume" AUX area tracing (Adrian Hunter) - VM profiling/sampling: - Correct perf sampling with guest VMs (Colton Lewis) - New hardware support: - x86/intel: Add PMU support for Intel ArrowLake-H CPUs (Dapeng Mi) - Misc fixes and enhancements: - x86/intel/pt: Fix buffer full but size is 0 case (Adrian Hunter) - x86/amd: Warn only on new bits set (Breno Leitao) - x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init (Jean Delvare) - uprobes: Re-order struct uprobe_task to save some space (Christophe JAILLET) - x86/rapl: Move the pmu allocation out of CPU hotplug (Kan Liang) - x86/rapl: Clean up cpumask and hotplug (Kan Liang) - uprobes: Deuglify xol_get_insn_slot/xol_free_insn_slot paths (Oleg Nesterov) Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmc7eKERHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1i57A/+KQ6TrIoICVTE+BPlDfUw8NU+N3DagVb0 dzoyDxlDRsnsYzeXZipPn+3IitX1w+DrGxBNIojSoiFVCLnHIKgo4uHbj7cVrR7J fBTVSnoJ94SGAk5ySebvLwMLce/YhXBeHK2lx6W/pI6acNcxzDfIabjjETeqltUo g7hmT9lo10pzZEZyuUfYX9khlWBxda1dKHc9pMIq7baeLe4iz/fCGlJ0K4d4M4z3 NPZw239Np6iHUwu3Lcs4gNKe4rcDe7Bt47hpedemHe0Y+7c4s2HaPxbXWxvDtE76 mlsg93i28f8SYxeV83pREn0EOCptXcljhiek+US+GR7NSbltMnV+uUiDfPKIE9+Y vYP/DYF9hx73FsOucEFrHxYYcePorn3pne5/khBYWdQU6TnlrBYWpoLQsjgCKTTR 4JhCFlBZ5cDpc6ihtpwCwVTQ4Q/H7vM1XOlDwx0hPhcIPPHDreaQD/wxo61jBdXf PY0EPAxh3BcQxfPYuDS+XiYjQ8qO8MtXMKz5bZyHBZlbHwccV6T4ExjsLKxFk5As 6BG8pkBWLg7drXAgVdleIY0ux+34w/Zzv7gemdlQxvWLlZrVvpjiG93oU3PTpZeq A2UD9eAOuXVD6+HsF/dmn88sFmcLWbrMskFWujkvhEUmCvSGAnz3YSS/mLEawBiT 2xI8xykNWSY= =ItOT -----END PGP SIGNATURE----- Merge tag 'perf-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull performance events updates from Ingo Molnar: "Uprobes: - Add BPF session support (Jiri Olsa) - Switch to RCU Tasks Trace flavor for better performance (Andrii Nakryiko) - Massively increase uretprobe SMP scalability by SRCU-protecting the uretprobe lifetime (Andrii Nakryiko) - Kill xol_area->slot_count (Oleg Nesterov) Core facilities: - Implement targeted high-frequency profiling by adding the ability for an event to "pause" or "resume" AUX area tracing (Adrian Hunter) VM profiling/sampling: - Correct perf sampling with guest VMs (Colton Lewis) New hardware support: - x86/intel: Add PMU support for Intel ArrowLake-H CPUs (Dapeng Mi) Misc fixes and enhancements: - x86/intel/pt: Fix buffer full but size is 0 case (Adrian Hunter) - x86/amd: Warn only on new bits set (Breno Leitao) - x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init (Jean Delvare) - uprobes: Re-order struct uprobe_task to save some space (Christophe JAILLET) - x86/rapl: Move the pmu allocation out of CPU hotplug (Kan Liang) - x86/rapl: Clean up cpumask and hotplug (Kan Liang) - uprobes: Deuglify xol_get_insn_slot/xol_free_insn_slot paths (Oleg Nesterov)" * tag 'perf-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) perf/core: Correct perf sampling with guest VMs perf/x86: Refactor misc flag assignments perf/powerpc: Use perf_arch_instruction_pointer() perf/core: Hoist perf_instruction_pointer() and perf_misc_flags() perf/arm: Drop unused functions uprobes: Re-order struct uprobe_task to save some space perf/x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init perf/x86/intel: Do not enable large PEBS for events with aux actions or aux sampling perf/x86/intel/pt: Add support for pause / resume perf/core: Add aux_pause, aux_resume, aux_start_paused perf/x86/intel/pt: Fix buffer full but size is 0 case uprobes: SRCU-protect uretprobe lifetime (with timeout) uprobes: allow put_uprobe() from non-sleepable softirq context perf/x86/rapl: Clean up cpumask and hotplug perf/x86/rapl: Move the pmu allocation out of CPU hotplug uprobe: Add support for session consumer uprobe: Add data pointer to consumer handlers perf/x86/amd: Warn only on new bits set uprobes: fold xol_take_insn_slot() into xol_get_insn_slot() uprobes: kill xol_area->slot_count ... |
||
Linus Torvalds
|
0f25f0e4ef |
the bulk of struct fd memory safety stuff
Making sure that struct fd instances are destroyed in the same scope where they'd been created, getting rid of reassignments and passing them by reference, converting to CLASS(fd{,_pos,_raw}). We are getting very close to having the memory safety of that stuff trivial to verify. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZzdikAAKCRBZ7Krx/gZQ 69nJAQCmbQHK3TGUbQhOw6MJXOK9ezpyEDN3FZb4jsu38vTIdgEA6OxAYDO2m2g9 CN18glYmD3wRyU6Bwl4vGODouSJvDgA= =gVH3 -----END PGP SIGNATURE----- Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull 'struct fd' class updates from Al Viro: "The bulk of struct fd memory safety stuff Making sure that struct fd instances are destroyed in the same scope where they'd been created, getting rid of reassignments and passing them by reference, converting to CLASS(fd{,_pos,_raw}). We are getting very close to having the memory safety of that stuff trivial to verify" * tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (28 commits) deal with the last remaing boolean uses of fd_file() css_set_fork(): switch to CLASS(fd_raw, ...) memcg_write_event_control(): switch to CLASS(fd) assorted variants of irqfd setup: convert to CLASS(fd) do_pollfd(): convert to CLASS(fd) convert do_select() convert vfs_dedupe_file_range(). convert cifs_ioctl_copychunk() convert media_request_get_by_fd() convert spu_run(2) switch spufs_calls_{get,put}() to CLASS() use convert cachestat(2) convert do_preadv()/do_pwritev() fdget(), more trivial conversions fdget(), trivial conversions privcmd_ioeventfd_assign(): don't open-code eventfd_ctx_fdget() o2hb_region_dev_store(): avoid goto around fdget()/fdput() introduce "fd_pos" class, convert fdget_pos() users to it. fdget_raw() users: switch to CLASS(fd_raw) convert vmsplice() to CLASS(fd) ... |
||
Colton Lewis
|
2c47e7a74f |
perf/core: Correct perf sampling with guest VMs
Previously any PMU overflow interrupt that fired while a VCPU was loaded was recorded as a guest event whether it truly was or not. This resulted in nonsense perf recordings that did not honor perf_event_attr.exclude_guest and recorded guest IPs where it should have recorded host IPs. Rework the sampling logic to only record guest samples for events with exclude_guest = 0. This way any host-only events with exclude_guest set will never see unexpected guest samples. The behaviour of events with exclude_guest = 0 is unchanged. Note that events configured to sample both host and guest may still misattribute a PMI that arrived in the host as a guest event depending on KVM arch and vendor behavior. Signed-off-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20241113190156.2145593-6-coltonlewis@google.com |
||
Colton Lewis
|
04782e6391 |
perf/core: Hoist perf_instruction_pointer() and perf_misc_flags()
For clarity, rename the arch-specific definitions of these functions to perf_arch_* to denote they are arch-specifc. Define the generic-named functions in one place where they can call the arch-specific ones as needed. Signed-off-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Thomas Richter <tmricht@linux.ibm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Madhavan Srinivasan <maddy@linux.ibm.com> Acked-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lore.kernel.org/r/20241113190156.2145593-3-coltonlewis@google.com |
||
Nanyong Sun
|
f2f484085e |
mm: move mm flags to mm_types.h
The types of mm flags are now far beyond the core dump related features. This patch moves mm flags from linux/sched/coredump.h to linux/mm_types.h. The linux/sched/coredump.h has include the mm_types.h, so the C files related to coredump does not need to change head file inclusion. In addition, the inclusion of sched/coredump.h now can be deleted from the C files that irrelevant to core dump. Link: https://lkml.kernel.org/r/20240926074922.2721274-1-sunnanyong@huawei.com Signed-off-by: Nanyong Sun <sunnanyong@huawei.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Adrian Hunter
|
18d92bb57c |
perf/core: Add aux_pause, aux_resume, aux_start_paused
Hardware traces, such as instruction traces, can produce a vast amount of trace data, so being able to reduce tracing to more specific circumstances can be useful. The ability to pause or resume tracing when another event happens, can do that. Add ability for an event to "pause" or "resume" AUX area tracing. Add aux_pause bit to perf_event_attr to indicate that, if the event happens, the associated AUX area tracing should be paused. Ditto aux_resume. Do not allow aux_pause and aux_resume to be set together. Add aux_start_paused bit to perf_event_attr to indicate to an AUX area event that it should start in a "paused" state. Add aux_paused to struct hw_perf_event for AUX area events to keep track of the "paused" state. aux_paused is initialized to aux_start_paused. Add PERF_EF_PAUSE and PERF_EF_RESUME modes for ->stop() and ->start() callbacks. Call as needed, during __perf_event_output(). Add aux_in_pause_resume to struct perf_buffer to prevent races with the NMI handler. Pause/resume in NMI context will miss out if it coincides with another pause/resume. To use aux_pause or aux_resume, an event must be in a group with the AUX area event as the group leader. Example (requires Intel PT and tools patches also): $ perf record --kcore -e intel_pt/aux-action=start-paused/k,syscalls:sys_enter_newuname/aux-action=resume/,syscalls:sys_exit_newuname/aux-action=pause/ uname Linux [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.043 MB perf.data ] $ perf script --call-trace uname 30805 [000] 24001.058782799: name: 0x7ffc9c1865b0 uname 30805 [000] 24001.058784424: psb offs: 0 uname 30805 [000] 24001.058784424: cbr: 39 freq: 3904 MHz (139%) uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __x64_sys_newuname uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) down_read uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __cond_resched uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) in_lock_functions uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_sub uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) up_read uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) in_lock_functions uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) preempt_count_sub uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) _copy_to_user uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_to_user_mode uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_work uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) perf_syscall_exit uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_alloc uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_get_recursion_context uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_tp_event uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_update uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) tracing_gen_ctx_irq_test uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_event uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __perf_event_account_interrupt uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __this_cpu_preempt_check uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_output_forward uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_aux_pause uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) ring_buffer_get uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_lock uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_unlock uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) pt_event_stop uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) native_write_msr uname 30805 [000] 24001.058785463: ([kernel.kallsyms]) native_write_msr uname 30805 [000] 24001.058785639: 0x0 Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: James Clark <james.clark@arm.com> Link: https://lkml.kernel.org/r/20241022155920.17511-3-adrian.hunter@intel.com |
||
Al Viro
|
6348be02ee |
fdget(), trivial conversions
fdget() is the first thing done in scope, all matching fdput() are immediately followed by leaving the scope. Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Al Viro
|
4dd53b84ff |
get rid of perf_fget_light(), convert kernel/events/core.c to CLASS(fd)
Lift fdget() and fdput() out of perf_fget_light(), turning it into is_perf_file(struct fd f). The life gets easier in both callers if we do fdget() unconditionally, including the case when we are given -1 instead of a descriptor - that avoids a reassignment in perf_event_open(2) and it avoids a nasty temptation in _perf_ioctl() where we must *not* lift output_event out of scope for output. Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Andrii Nakryiko
|
dd1a756778 |
uprobes: SRCU-protect uretprobe lifetime (with timeout)
Avoid taking refcount on uprobe in prepare_uretprobe(), instead take uretprobe-specific SRCU lock and keep it active as kernel transfers control back to user space. Given we can't rely on user space returning from traced function within reasonable time period, we need to make sure not to keep SRCU lock active for too long, though. To that effect, we employ a timer callback which is meant to terminate SRCU lock region after predefined timeout (currently set to 100ms), and instead transfer underlying struct uprobe's lifetime protection to refcounting. This fallback to less scalable refcounting after 100ms is a fine tradeoff from uretprobe's scalability and performance perspective, because uretprobing *long running* user functions inherently doesn't run into scalability issues (there is just not enough frequency to cause noticeable issues with either performance or scalability). The overall trick is in ensuring synchronization between current thread and timer's callback fired on some other thread. To cope with that with minimal logic complications, we add hprobe wrapper which is used to contain all the synchronization related issues behind a small number of basic helpers: hprobe_expire() for "downgrading" uprobe from SRCU-protected state to refcounted state, and a hprobe_consume() and hprobe_finalize() pair of single-use consuming helpers. Other than that, whatever current thread's logic is there stays the same, as timer thread cannot modify return_instance state (or add new/remove old return_instances). It only takes care of SRCU unlock and uprobe refcounting, which is hidden from the higher-level uretprobe handling logic. We use atomic xchg() in hprobe_consume(), which is called from performance critical handle_uretprobe_chain() function run in the current context. When uncontended, this xchg() doesn't seem to hurt performance as there are no other competing CPUs fighting for the same cache line. We also mark struct return_instance as ____cacheline_aligned to ensure no false sharing can happen. Another technical moment. We need to make sure that the list of return instances can be safely traversed under RCU from timer callback, so we delay return_instance freeing with kfree_rcu() and make sure that list modifications use RCU-aware operations. Also, given SRCU lock survives transition from kernel to user space and back we need to use lower-level __srcu_read_lock() and __srcu_read_unlock() to avoid lockdep complaining. Just to give an impression of a kind of performance improvements this change brings, below are benchmarking results with and without these SRCU changes, assuming other uprobe optimizations (mainly RCU Tasks Trace for entry uprobes, lockless RB-tree lookup, and lockless VMA to uprobe lookup) are left intact: WITHOUT SRCU for uretprobes =========================== uretprobe-nop ( 1 cpus): 2.197 ± 0.002M/s ( 2.197M/s/cpu) uretprobe-nop ( 2 cpus): 3.325 ± 0.001M/s ( 1.662M/s/cpu) uretprobe-nop ( 3 cpus): 4.129 ± 0.002M/s ( 1.376M/s/cpu) uretprobe-nop ( 4 cpus): 6.180 ± 0.003M/s ( 1.545M/s/cpu) uretprobe-nop ( 8 cpus): 7.323 ± 0.005M/s ( 0.915M/s/cpu) uretprobe-nop (16 cpus): 6.943 ± 0.005M/s ( 0.434M/s/cpu) uretprobe-nop (32 cpus): 5.931 ± 0.014M/s ( 0.185M/s/cpu) uretprobe-nop (64 cpus): 5.145 ± 0.003M/s ( 0.080M/s/cpu) uretprobe-nop (80 cpus): 4.925 ± 0.005M/s ( 0.062M/s/cpu) WITH SRCU for uretprobes ======================== uretprobe-nop ( 1 cpus): 1.968 ± 0.001M/s ( 1.968M/s/cpu) uretprobe-nop ( 2 cpus): 3.739 ± 0.003M/s ( 1.869M/s/cpu) uretprobe-nop ( 3 cpus): 5.616 ± 0.003M/s ( 1.872M/s/cpu) uretprobe-nop ( 4 cpus): 7.286 ± 0.002M/s ( 1.822M/s/cpu) uretprobe-nop ( 8 cpus): 13.657 ± 0.007M/s ( 1.707M/s/cpu) uretprobe-nop (32 cpus): 45.305 ± 0.066M/s ( 1.416M/s/cpu) uretprobe-nop (64 cpus): 42.390 ± 0.922M/s ( 0.662M/s/cpu) uretprobe-nop (80 cpus): 47.554 ± 2.411M/s ( 0.594M/s/cpu) Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241024044159.3156646-3-andrii@kernel.org |
||
Andrii Nakryiko
|
2bf8e5acef |
uprobes: allow put_uprobe() from non-sleepable softirq context
Currently put_uprobe() might trigger mutex_lock()/mutex_unlock(), which makes it unsuitable to be called from more restricted context like softirq. Let's make put_uprobe() agnostic to the context in which it is called, and use work queue to defer the mutex-protected clean up steps. RB tree removal step is also moved into work-deferred callback to avoid potential deadlock between softirq-based timer callback, added in the next patch, and the rest of uprobe code. We can rework locking altogher as a follow up, but that's significantly more tricky, so warrants its own patch set. For now, we need to make sure that changes in the next patch that add timer thread work correctly with existing approach, while concentrating on SRCU + timeout logic. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241024044159.3156646-2-andrii@kernel.org |
||
Jiri Olsa
|
4d756095d3 |
uprobe: Add support for session consumer
This change allows the uprobe consumer to behave as session which means that 'handler' and 'ret_handler' callbacks are connected in a way that allows to: - control execution of 'ret_handler' from 'handler' callback - share data between 'handler' and 'ret_handler' callbacks The session concept fits to our common use case where we do filtering on entry uprobe and based on the result we decide to run the return uprobe (or not). It's also convenient to share the data between session callbacks. To achive this we are adding new return value the uprobe consumer can return from 'handler' callback: UPROBE_HANDLER_IGNORE - Ignore 'ret_handler' callback for this consumer. And store cookie and pass it to 'ret_handler' when consumer has both 'handler' and 'ret_handler' callbacks defined. We store shared data in the return_consumer object array as part of the return_instance object. This way the handle_uretprobe_chain can find related return_consumer and its shared data. We also store entry handler return value, for cases when there are multiple consumers on single uprobe and some of them are ignored and some of them not, in which case the return probe gets installed and we need to have a way to find out which consumer needs to be ignored. The tricky part is when consumer is registered 'after' the uprobe entry handler is hit. In such case this consumer's 'ret_handler' gets executed as well, but it won't have the proper data pointer set, so we can filter it out. Suggested-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241018202252.693462-3-jolsa@kernel.org |
||
Jiri Olsa
|
da09a9e0c3 |
uprobe: Add data pointer to consumer handlers
Adding data pointer to both entry and exit consumer handlers and all its users. The functionality itself is coming in following change. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241018202252.693462-2-jolsa@kernel.org |
||
Kan Liang
|
e3dfd64c1f |
perf: Fix missing RCU reader protection in perf_event_clear_cpumask()
Running rcutorture scenario TREE05, the below warning is triggered.
[ 32.604594] WARNING: suspicious RCU usage
[ 32.605928] 6.11.0-rc5-00040-g4ba4f1afb6a9 #55238 Not tainted
[ 32.607812] -----------------------------
[ 32.609140] kernel/events/core.c:13946 RCU-list traversed in non-reader section!!
[ 32.611595] other info that might help us debug this:
[ 32.614247] rcu_scheduler_active = 2, debug_locks = 1
[ 32.616392] 3 locks held by cpuhp/4/35:
[ 32.617687] #0: ffffffffb666a650 (cpu_hotplug_lock){++++}-{0:0}, at: cpuhp_thread_fun+0x4e/0x200
[ 32.620563] #1: ffffffffb666cd20 (cpuhp_state-down){+.+.}-{0:0}, at: cpuhp_thread_fun+0x4e/0x200
[ 32.623412] #2: ffffffffb677c288 (pmus_lock){+.+.}-{3:3}, at: perf_event_exit_cpu_context+0x32/0x2f0
In perf_event_clear_cpumask(), uses list_for_each_entry_rcu() without an
obvious RCU read-side critical section.
Either pmus_srcu or pmus_lock is good enough to protect the pmus list.
In the current context, pmus_lock is already held. The
list_for_each_entry_rcu() is not required.
Fixes:
|
||
Peter Zijlstra
|
cd9626e9eb |
sched/fair: Fix external p->on_rq users
Sean noted that ever since commit |
||
Oleg Nesterov
|
6c74ca7aa8 |
uprobes: fold xol_take_insn_slot() into xol_get_insn_slot()
After the previous change xol_take_insn_slot() becomes trivial, kill it. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241001142503.GA13633@redhat.com |
||
Oleg Nesterov
|
7a166094bd |
uprobes: kill xol_area->slot_count
Add the new helper, xol_get_slot_nr() which does find_first_zero_bit() + test_and_set_bit(). xol_take_insn_slot() can wait for the "xol_get_slot_nr() < UINSNS_PER_PAGE" event instead of "area->slot_count < UINSNS_PER_PAGE". So we can kill area->slot_count and avoid atomic_inc() + atomic_dec(), this simplifies the code and can slightly improve the performance. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241001142458.GA13629@redhat.com |
||
Oleg Nesterov
|
c16e2fdd74 |
uprobes: deny mremap(xol_vma)
kernel/events/uprobes.c assumes that xol_area->vaddr is always correct but a malicious application can remap its "[uprobes]" vma to another adress to confuse the kernel. Introduce xol_mremap() to make this impossible. With this change utask->xol_vaddr in xol_free_insn_slot() can't be invalid, we can turn the offset check into WARN_ON_ONCE(offset >= PAGE_SIZE). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144258.GA9492@redhat.com |
||
Oleg Nesterov
|
c5356ab1db |
uprobes: pass utask to xol_get_insn_slot() and xol_free_insn_slot()
Add the "struct uprobe_task *utask" argument to xol_get_insn_slot() and xol_free_insn_slot(), their callers already have it so we can avoid the unnecessary dereference and simplify the code. Kill the "tsk" argument of xol_free_insn_slot(), it is always current. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144253.GA9487@redhat.com |
||
Oleg Nesterov
|
1cee988c1d |
uprobes: move the initialization of utask->xol_vaddr from pre_ssout() to xol_get_insn_slot()
This simplifies the code and makes xol_get_insn_slot() symmetric with xol_free_insn_slot() which clears utask->xol_vaddr. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144248.GA9483@redhat.com |
||
Oleg Nesterov
|
6ffe8c7d87 |
uprobes: simplify xol_take_insn_slot() and its caller
The do / while (slot_nr >= UINSNS_PER_PAGE) loop in xol_take_insn_slot() makes no sense, the checked condition is always true. Change this code to use the "for (;;)" loop, this way we do not need to change slot_nr if test_and_set_bit() fails. Also, kill the unnecessary xol_vaddr != NULL check in xol_get_insn_slot(), xol_take_insn_slot() never returns NULL. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144244.GA9480@redhat.com |
||
Oleg Nesterov
|
430af825ba |
uprobes: kill the unnecessary put_uprobe/xol_free_insn_slot in uprobe_free_utask()
If pre_ssout() succeeds and sets utask->active_uprobe and utask->xol_vaddr the task must not exit until it calls handle_singlestep() which does the necessary put_uprobe() and xol_free_insn_slot(). Remove put_uprobe() and xol_free_insn_slot() from uprobe_free_utask(). With this change xol_free_insn_slot() can't hit xol_area/utask/xol_vaddr == NULL, we can kill the unnecessary checks checks and simplify this function more. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144239.GA9475@redhat.com |
||
Oleg Nesterov
|
c7b4133c48 |
uprobes: sanitiize xol_free_insn_slot()
1. Clear utask->xol_vaddr unconditionally, even if this addr is not valid, xol_free_insn_slot() should never return with utask->xol_vaddr != NULL. 2. Add a comment to explain why do we need to validate slot_addr. 3. Simplify the validation above. We can simply check offset < PAGE_SIZE, unsigned underflows are fine, it should work if slot_addr < area->vaddr. 4. Kill the unnecessary "slot_nr >= UINSNS_PER_PAGE" check, slot_nr must be valid if offset < PAGE_SIZE. The next patches will cleanup this function even more. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144235.GA9471@redhat.com |
||
Oleg Nesterov
|
b302d5a6ff |
uprobes: don't abuse get_utask() in pre_ssout() and prepare_uretprobe()
handle_swbp() calls get_utask() before prepare_uretprobe() or pre_ssout() can be called, they can simply use current->utask which can't be NULL. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144230.GA9468@redhat.com |
||
Andrii Nakryiko
|
87195a1ee3 |
uprobes: switch to RCU Tasks Trace flavor for better performance
This patch switches uprobes SRCU usage to RCU Tasks Trace flavor, which is optimized for more lightweight and quick readers (at the expense of slower writers, which for uprobes is a fine tradeof) and has better performance and scalability with number of CPUs. Similarly to baseline vs SRCU, we've benchmarked SRCU-based implementation vs RCU Tasks Trace implementation. SRCU ==== uprobe-nop ( 1 cpus): 3.276 ± 0.005M/s ( 3.276M/s/cpu) uprobe-nop ( 2 cpus): 4.125 ± 0.002M/s ( 2.063M/s/cpu) uprobe-nop ( 4 cpus): 7.713 ± 0.002M/s ( 1.928M/s/cpu) uprobe-nop ( 8 cpus): 8.097 ± 0.006M/s ( 1.012M/s/cpu) uprobe-nop (16 cpus): 6.501 ± 0.056M/s ( 0.406M/s/cpu) uprobe-nop (32 cpus): 4.398 ± 0.084M/s ( 0.137M/s/cpu) uprobe-nop (64 cpus): 6.452 ± 0.000M/s ( 0.101M/s/cpu) uretprobe-nop ( 1 cpus): 2.055 ± 0.001M/s ( 2.055M/s/cpu) uretprobe-nop ( 2 cpus): 2.677 ± 0.000M/s ( 1.339M/s/cpu) uretprobe-nop ( 4 cpus): 4.561 ± 0.003M/s ( 1.140M/s/cpu) uretprobe-nop ( 8 cpus): 5.291 ± 0.002M/s ( 0.661M/s/cpu) uretprobe-nop (16 cpus): 5.065 ± 0.019M/s ( 0.317M/s/cpu) uretprobe-nop (32 cpus): 3.622 ± 0.003M/s ( 0.113M/s/cpu) uretprobe-nop (64 cpus): 3.723 ± 0.002M/s ( 0.058M/s/cpu) RCU Tasks Trace =============== uprobe-nop ( 1 cpus): 3.396 ± 0.002M/s ( 3.396M/s/cpu) uprobe-nop ( 2 cpus): 4.271 ± 0.006M/s ( 2.135M/s/cpu) uprobe-nop ( 4 cpus): 8.499 ± 0.015M/s ( 2.125M/s/cpu) uprobe-nop ( 8 cpus): 10.355 ± 0.028M/s ( 1.294M/s/cpu) uprobe-nop (16 cpus): 7.615 ± 0.099M/s ( 0.476M/s/cpu) uprobe-nop (32 cpus): 4.430 ± 0.007M/s ( 0.138M/s/cpu) uprobe-nop (64 cpus): 6.887 ± 0.020M/s ( 0.108M/s/cpu) uretprobe-nop ( 1 cpus): 2.174 ± 0.001M/s ( 2.174M/s/cpu) uretprobe-nop ( 2 cpus): 2.853 ± 0.001M/s ( 1.426M/s/cpu) uretprobe-nop ( 4 cpus): 4.913 ± 0.002M/s ( 1.228M/s/cpu) uretprobe-nop ( 8 cpus): 5.883 ± 0.002M/s ( 0.735M/s/cpu) uretprobe-nop (16 cpus): 5.147 ± 0.001M/s ( 0.322M/s/cpu) uretprobe-nop (32 cpus): 3.738 ± 0.008M/s ( 0.117M/s/cpu) uretprobe-nop (64 cpus): 4.397 ± 0.002M/s ( 0.069M/s/cpu) Peak throughput for uprobes increases from 8 mln/s to 10.3 mln/s (+28%!), and for uretprobes from 5.3 mln/s to 5.8 mln/s (+11%), as we have more work to do on uretprobes side. Even single-thread (no contention) performance is slightly better: 3.276 mln/s to 3.396 mln/s (+3.5%) for uprobes, and 2.055 mln/s to 2.174 mln/s (+5.8%) for uretprobes. We also select TASKS_TRACE_RCU for UPROBES in Kconfig due to the new dependency. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20240910174312.3646590-1-andrii@kernel.org |
||
Oleg Nesterov
|
34820304cc |
uprobes: fix kernel info leak via "[uprobes]" vma
xol_add_vma() maps the uninitialized page allocated by __create_xol_area()
into userspace. On some architectures (x86) this memory is readable even
without VM_READ, VM_EXEC results in the same pgprot_t as VM_EXEC|VM_READ,
although this doesn't really matter, debugger can read this memory anyway.
Link: https://lore.kernel.org/all/20240929162047.GA12611@redhat.com/
Reported-by: Will Deacon <will@kernel.org>
Fixes:
|
||
Al Viro
|
cb787f4ac0 |
[tree-wide] finally take no_llseek out
no_llseek had been defined to NULL two years ago, in commit
|
||
Linus Torvalds
|
f8ffbc365f |
struct fd layout change (and conversion to accessor helpers)
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZvDNmgAKCRBZ7Krx/gZQ 63zrAP9vI0rf55v27twiabe9LnI7aSx5ckoqXxFIFxyT3dOYpQD/bPmoApnWDD3d 592+iDgLsema/H/0/CqfqlaNtDNY8Q0= =HUl5 -----END PGP SIGNATURE----- Merge tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull 'struct fd' updates from Al Viro: "Just the 'struct fd' layout change, with conversion to accessor helpers" * tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: add struct fd constructors, get rid of __to_fd() struct fd: representation change introduce fd_file(), convert all accessors to it. |
||
Kan Liang
|
673a5009cf |
perf: Fix topology_sibling_cpumask check warning on ARM
The below warning is triggered when building with arm
multi_v7_defconfig.
kernel/events/core.c: In function 'perf_event_setup_cpumask':
kernel/events/core.c:14012:13: warning: the comparison will always evaluate as 'true' for the address of 'thread_sibling' will never be NULL [-Waddress]
14012 | if (!topology_sibling_cpumask(cpu)) {
The perf_event_init_cpu() may be invoked at the early boot stage, while
the topology_*_cpumask hasn't been initialized yet. The check is to
specially handle the case, and initialize the perf_online_<domain>_masks
on the boot CPU.
X86 uses a per-cpu cpumask pointer, which could be NULL at the early
boot stage. However, ARM uses a global variable, which never be NULL.
Use perf_online_mask as an indicator instead. Only initialize the
perf_online_<domain>_masks when perf_online_mask is empty.
Fix a typo as well.
Fixes:
|
||
Linus Torvalds
|
440b652328 |
bpf-next-6.12
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmbk/nIACgkQ6rmadz2v bTqxuBAAnqW81Rr0nORIxeJMbyo4EiFuYHGk6u5BYP9NPzqHroUPCLVmSP7Hp/Ta CJjsiZeivZsGa6Qlc3BCa4hHNpqP5WE1C/73svSDn7/99EfxdSBtirpMVFUPsUtn DDb5chNpvnxKNS8Mw5Ty8wBrdbXHMlSx+IfaFHpv0Yn6EAcuF4UdoEUq2l3PqhfD Il9Zm127eViPGAP+o+TBZFfW+rRw8d0ngqeRq2GvJ8ibNEDWss+GmBI1Dod7d+fC dUDg96Ipdm1a5Xz7dnH80eXz9JHdpu6qhQrQMKKArnlpJElrKiOf9b17ZcJoPQOR ZnstEnUyVnrWROZxUuKY72+2tx3TuSf+L9uZqFHNx3Ix5FIoS+tFbHf4b8SxtsOb hb2X7SigdGqhQDxUT+IPeO5hsJlIvG1/VYxMXxgc++rh9DjL06hDLUSH1WBSU0fC kFQ7HrcpAlVHtWmGbwwUyVjD+KC/qmZBTAnkcYT4C62WZVytSCnihIuSFAvV1tpZ SSIhVPyQ599UoZIiQYihp0S4qP74FotCtErWSrThneh2Cl8kDsRq//lV1nj/PTV8 CpTvz4VCFDFTgthCfd62fP95EwW5K+aE3NjGTPW/9Hx/0+J/1tT+yqWsrToGaruf TbrqtzQhpclz9UEqA+696cVAXNj9uRU4AoD3YIg72kVnRlkgYd0= =MDwh -----END PGP SIGNATURE----- Merge tag 'bpf-next-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Pull bpf updates from Alexei Starovoitov: - Introduce '__attribute__((bpf_fastcall))' for helpers and kfuncs with corresponding support in LLVM. It is similar to existing 'no_caller_saved_registers' attribute in GCC/LLVM with a provision for backward compatibility. It allows compilers generate more efficient BPF code assuming the verifier or JITs will inline or partially inline a helper/kfunc with such attribute. bpf_cast_to_kern_ctx, bpf_rdonly_cast, bpf_get_smp_processor_id are the first set of such helpers. - Harden and extend ELF build ID parsing logic. When called from sleepable context the relevants parts of ELF file will be read to find and fetch .note.gnu.build-id information. Also harden the logic to avoid TOCTOU, overflow, out-of-bounds problems. - Improvements and fixes for sched-ext: - Allow passing BPF iterators as kfunc arguments - Make the pointer returned from iter_next method trusted - Fix x86 JIT convergence issue due to growing/shrinking conditional jumps in variable length encoding - BPF_LSM related: - Introduce few VFS kfuncs and consolidate them in fs/bpf_fs_kfuncs.c - Enforce correct range of return values from certain LSM hooks - Disallow attaching to other LSM hooks - Prerequisite work for upcoming Qdisc in BPF: - Allow kptrs in program provided structs - Support for gen_epilogue in verifier_ops - Important fixes: - Fix uprobe multi pid filter check - Fix bpf_strtol and bpf_strtoul helpers - Track equal scalars history on per-instruction level - Fix tailcall hierarchy on x86 and arm64 - Fix signed division overflow to prevent INT_MIN/-1 trap on x86 - Fix get kernel stack in BPF progs attached to tracepoint:syscall - Selftests: - Add uprobe bench/stress tool - Generate file dependencies to drastically improve re-build time - Match JIT-ed and BPF asm with __xlated/__jited keywords - Convert older tests to test_progs framework - Add support for RISC-V - Few fixes when BPF programs are compiled with GCC-BPF backend (support for GCC-BPF in BPF CI is ongoing in parallel) - Add traffic monitor - Enable cross compile and musl libc * tag 'bpf-next-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (260 commits) btf: require pahole 1.21+ for DEBUG_INFO_BTF with default DWARF version btf: move pahole check in scripts/link-vmlinux.sh to lib/Kconfig.debug btf: remove redundant CONFIG_BPF test in scripts/link-vmlinux.sh bpf: Call the missed kfree() when there is no special field in btf bpf: Call the missed btf_record_free() when map creation fails selftests/bpf: Add a test case to write mtu result into .rodata selftests/bpf: Add a test case to write strtol result into .rodata selftests/bpf: Rename ARG_PTR_TO_LONG test description selftests/bpf: Fix ARG_PTR_TO_LONG {half-,}uninitialized test bpf: Zero former ARG_PTR_TO_{LONG,INT} args in case of error bpf: Improve check_raw_mode_ok test for MEM_UNINIT-tagged types bpf: Fix helper writes to read-only maps bpf: Remove truncation test in bpf_strtol and bpf_strtoul helpers bpf: Fix bpf_strtol and bpf_strtoul helpers for 32bit selftests/bpf: Add tests for sdiv/smod overflow cases bpf: Fix a sdiv overflow issue libbpf: Add bpf_object__token_fd accessor docs/bpf: Add missing BPF program types to docs docs/bpf: Add constant values for linkages bpf: Use fake pt_regs when doing bpf syscall tracepoint tracing ... |
||
Linus Torvalds
|
617a814f14 |
ALong with the usual shower of singleton patches, notable patch series in
this pull request are: "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. "mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this was overprovisioning THPs in sparsely accessed memory areas. "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo= =s0T+ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ... |
||
Linus Torvalds
|
9f0c253ddd |
Performance events changes for v6.12:
- Implement per-PMU context rescheduling to significantly improve single-PMU performance, and related cleanups/fixes. (by Peter Zijlstra and Namhyung Kim) - Fix ancient bug resulting in a lot of events being dropped erroneously at higher sampling frequencies. (by Luo Gengkun) - uprobes enhancements: - Implement RCU-protected hot path optimizations for better performance: "For baseline vs SRCU, peak througput increased from 3.7 M/s (million uprobe triggerings per second) up to about 8 M/s. For uretprobes it's a bit more modest with bump from 2.4 M/s to 5 M/s. For SRCU vs RCU Tasks Trace, peak throughput for uprobes increases further from 8 M/s to 10.3 M/s (+28%!), and for uretprobes from 5.3 M/s to 5.8 M/s (+11%), as we have more work to do on uretprobes side. Even single-thread (no contention) performance is slightly better: 3.276 M/s to 3.396 M/s (+3.5%) for uprobes, and 2.055 M/s to 2.174 M/s (+5.8%) for uretprobes." (by Andrii Nakryiko et al) - Document mmap_lock, don't abuse get_user_pages_remote(). (by Oleg Nesterov) - Cleanups & fixes to prepare for future work: - Remove uprobe_register_refctr() - Simplify error handling for alloc_uprobe() - Make uprobe_register() return struct uprobe * - Fold __uprobe_unregister() into uprobe_unregister() - Shift put_uprobe() from delete_uprobe() to uprobe_unregister() - BPF: Fix use-after-free in bpf_uprobe_multi_link_attach() (by Oleg Nesterov) - New feature & ABI extension: allow events to use PERF_SAMPLE READ with inheritance, enabling sample based profiling of a group of counters over a hierarchy of processes or threads. (by Ben Gainey) - Intel uncore & power events updates: - Add Arrow Lake and Lunar Lake support - Add PERF_EV_CAP_READ_SCOPE - Clean up and enhance cpumask and hotplug support (by Kan Liang) - Add LNL uncore iMC freerunning support - Use D0:F0 as a default device (by Zhenyu Wang) - Intel PT: fix AUX snapshot handling race. (by Adrian Hunter) - Misc fixes and cleanups. (by James Clark, Jiri Olsa, Oleg Nesterov and Peter Zijlstra) Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJEBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmbqxEwRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1iusw/43UAcAZVof6Qs+j6bVAxSabF66fFfE9Wh jc+F4yZ2MGl9x6a1f392+CPcTdVsYp6G2QtRGMipD+trmi/lhDhmRrhxxD1KWIwP zVGSBx9CSFl0UpCXdGiVrGzT5xpIpJ4qqW2XUVr32n8SxTT5X/vM5ySm6KUXsIrD 2/KXwucT9a7grkl3pvy/A/FUHxaF7oAMJjcIPSvLBveQjQSHUrZoCZdHsRGT9rjS HjzxG6gDy97172z5XV1ej3HJOfFlFTQ1RcoxNqdLfiZ6n3hD4hfmtsXWB5zTzRjT xHaCOmWLhEp5v+fK2+RCFiWUbDBsmW/mecZdrjGb3C1RIDWQhLCXXc95XtrobTvk BkW9QEC/XRB+vU6Ssdv3ugN7yRWxih0BsLU5sy4nlzmwoYt9qOy8fgjRvSBKHr5K Mu1RIFu+KXq++sa7+ZJjUMY70PHQCp2m4AHprG/Y98t93CQMhDXzGVpPzWyQuW/V lqYFjd/CAoCIVGF4Jxq7sqOdZ1emDN+P0WSnnFWssJ0ZJFvxN9ZDPH2AaMk4lwo7 NFW6u3+0Vx9P0m/H6xRQj00Iye2JLMqJNCIA8QtjnB7L6upgVvcIPjgcG58fpV1o xfJekOR1A7T2aQUDlX5t9Cu36ZUImDRmwHj2m1p84s5AANlbD7/fOmffR1Hn9uFj wCTqSpi8Hg== =E3s3 -----END PGP SIGNATURE----- Merge tag 'perf-core-2024-09-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf events updates from Ingo Molnar: - Implement per-PMU context rescheduling to significantly improve single-PMU performance, and related cleanups/fixes (Peter Zijlstra and Namhyung Kim) - Fix ancient bug resulting in a lot of events being dropped erroneously at higher sampling frequencies (Luo Gengkun) - uprobes enhancements: - Implement RCU-protected hot path optimizations for better performance: "For baseline vs SRCU, peak througput increased from 3.7 M/s (million uprobe triggerings per second) up to about 8 M/s. For uretprobes it's a bit more modest with bump from 2.4 M/s to 5 M/s. For SRCU vs RCU Tasks Trace, peak throughput for uprobes increases further from 8 M/s to 10.3 M/s (+28%!), and for uretprobes from 5.3 M/s to 5.8 M/s (+11%), as we have more work to do on uretprobes side. Even single-thread (no contention) performance is slightly better: 3.276 M/s to 3.396 M/s (+3.5%) for uprobes, and 2.055 M/s to 2.174 M/s (+5.8%) for uretprobes." (Andrii Nakryiko et al) - Document mmap_lock, don't abuse get_user_pages_remote() (Oleg Nesterov) - Cleanups & fixes to prepare for future work: - Remove uprobe_register_refctr() - Simplify error handling for alloc_uprobe() - Make uprobe_register() return struct uprobe * - Fold __uprobe_unregister() into uprobe_unregister() - Shift put_uprobe() from delete_uprobe() to uprobe_unregister() - BPF: Fix use-after-free in bpf_uprobe_multi_link_attach() (Oleg Nesterov) - New feature & ABI extension: allow events to use PERF_SAMPLE READ with inheritance, enabling sample based profiling of a group of counters over a hierarchy of processes or threads (Ben Gainey) - Intel uncore & power events updates: - Add Arrow Lake and Lunar Lake support - Add PERF_EV_CAP_READ_SCOPE - Clean up and enhance cpumask and hotplug support (Kan Liang) - Add LNL uncore iMC freerunning support - Use D0:F0 as a default device (Zhenyu Wang) - Intel PT: fix AUX snapshot handling race (Adrian Hunter) - Misc fixes and cleanups (James Clark, Jiri Olsa, Oleg Nesterov and Peter Zijlstra) * tag 'perf-core-2024-09-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits) dmaengine: idxd: Clean up cpumask and hotplug for perfmon iommu/vt-d: Clean up cpumask and hotplug for perfmon perf/x86/intel/cstate: Clean up cpumask and hotplug perf: Add PERF_EV_CAP_READ_SCOPE perf: Generic hotplug support for a PMU with a scope uprobes: perform lockless SRCU-protected uprobes_tree lookup rbtree: provide rb_find_rcu() / rb_find_add_rcu() perf/uprobe: split uprobe_unregister() uprobes: travers uprobe's consumer list locklessly under SRCU protection uprobes: get rid of enum uprobe_filter_ctx in uprobe filter callbacks uprobes: protected uprobe lifetime with SRCU uprobes: revamp uprobe refcounting and lifetime management bpf: Fix use-after-free in bpf_uprobe_multi_link_attach() perf/core: Fix small negative period being ignored perf: Really fix event_function_call() locking perf: Optimize __pmu_ctx_sched_out() perf: Add context time freeze perf: Fix event_function_call() locking perf: Extract a few helpers perf: Optimize context reschedule for single PMU cases ... |
||
Oleg Nesterov
|
2abbcc099e |
uprobes: turn xol_area->pages[2] into xol_area->page
Now that xol_mapping has its own ->fault() method we no longer need xol_area->pages[1] == NULL, we need a single page. Link: https://lkml.kernel.org/r/20240911131437.GC3448@redhat.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Oleg Nesterov
|
6d27a31ef1 |
uprobes: introduce the global struct vm_special_mapping xol_mapping
Currently each xol_area has its own instance of vm_special_mapping, this is suboptimal and ugly. Kill xol_area->xol_mapping and add a single global instance of vm_special_mapping, the ->fault() method can use area->pages rather than xol_mapping->pages. As a side effect this fixes the problem introduced by the recent commit |
||
Oleg Nesterov
|
ed8d5b0ce1 |
Revert "uprobes: use vm_special_mapping close() functionality"
This reverts commit
|
||
Linus Torvalds
|
114143a595 |
arm64 updates for 6.12
ACPI: * Enable PMCG erratum workaround for HiSilicon HIP10 and 11 platforms. * Ensure arm64-specific IORT header is covered by MAINTAINERS. CPU Errata: * Enable workaround for hardware access/dirty issue on Ampere-1A cores. Memory management: * Define PHYSMEM_END to fix a crash in the amdgpu driver. * Avoid tripping over invalid kernel mappings on the kexec() path. * Userspace support for the Permission Overlay Extension (POE) using protection keys. Perf and PMUs: * Add support for the "fixed instruction counter" extension in the CPU PMU architecture. * Extend and fix the event encodings for Apple's M1 CPU PMU. * Allow LSM hooks to decide on SPE permissions for physical profiling. * Add support for the CMN S3 and NI-700 PMUs. Confidential Computing: * Add support for booting an arm64 kernel as a protected guest under Android's "Protected KVM" (pKVM) hypervisor. Selftests: * Fix vector length issues in the SVE/SME sigreturn tests * Fix build warning in the ptrace tests. Timers: * Add support for PR_{G,S}ET_TSC so that 'rr' can deal with non-determinism arising from the architected counter. Miscellaneous: * Rework our IPI-based CPU stopping code to try NMIs if regular IPIs don't succeed. * Minor fixes and cleanups. -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmbkVNEQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNKeIB/9YtbN7JMgsXktM94GP03r3tlFF36Y1S51S +zdDZclAVZCTCZN+PaFeAZ/+ah2EQYrY6rtDoHUSEMQdF9kH+ycuIPDTwaJ4Qkam QKXMpAgtY/4yf2rX4lhDF8rEvkhLDsu7oGDhqUZQsA33GrMBHfgA3oqpYwlVjvGq gkm7olTo9LdWAxkPpnjGrjB6Mv5Dq8dJRhW+0Q5AntI5zx3RdYGJZA9GUSzyYCCt FIYOtMmWPkQ0kKxIVxOxAOm/ubhfyCs2sjSfkaa3vtvtt+Yjye1Xd81rFciIbPgP QlK/Mes2kBZmjhkeus8guLI5Vi7tx3DQMkNqLXkHAAzOoC4oConE =6osL -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The highlights are support for Arm's "Permission Overlay Extension" using memory protection keys, support for running as a protected guest on Android as well as perf support for a bunch of new interconnect PMUs. Summary: ACPI: - Enable PMCG erratum workaround for HiSilicon HIP10 and 11 platforms. - Ensure arm64-specific IORT header is covered by MAINTAINERS. CPU Errata: - Enable workaround for hardware access/dirty issue on Ampere-1A cores. Memory management: - Define PHYSMEM_END to fix a crash in the amdgpu driver. - Avoid tripping over invalid kernel mappings on the kexec() path. - Userspace support for the Permission Overlay Extension (POE) using protection keys. Perf and PMUs: - Add support for the "fixed instruction counter" extension in the CPU PMU architecture. - Extend and fix the event encodings for Apple's M1 CPU PMU. - Allow LSM hooks to decide on SPE permissions for physical profiling. - Add support for the CMN S3 and NI-700 PMUs. Confidential Computing: - Add support for booting an arm64 kernel as a protected guest under Android's "Protected KVM" (pKVM) hypervisor. Selftests: - Fix vector length issues in the SVE/SME sigreturn tests - Fix build warning in the ptrace tests. Timers: - Add support for PR_{G,S}ET_TSC so that 'rr' can deal with non-determinism arising from the architected counter. Miscellaneous: - Rework our IPI-based CPU stopping code to try NMIs if regular IPIs don't succeed. - Minor fixes and cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (94 commits) perf: arm-ni: Fix an NULL vs IS_ERR() bug arm64: hibernate: Fix warning for cast from restricted gfp_t arm64: esr: Define ESR_ELx_EC_* constants as UL arm64: pkeys: remove redundant WARN perf: arm_pmuv3: Use BR_RETIRED for HW branch event if enabled MAINTAINERS: List Arm interconnect PMUs as supported perf: Add driver for Arm NI-700 interconnect PMU dt-bindings/perf: Add Arm NI-700 PMU perf/arm-cmn: Improve format attr printing perf/arm-cmn: Clean up unnecessary NUMA_NO_NODE check arm64/mm: use lm_alias() with addresses passed to memblock_free() mm: arm64: document why pte is not advanced in contpte_ptep_set_access_flags() arm64: Expose the end of the linear map in PHYSMEM_END arm64: trans_pgd: mark PTEs entries as valid to avoid dead kexec() arm64/mm: Delete __init region from memblock.reserved perf/arm-cmn: Support CMN S3 dt-bindings: perf: arm-cmn: Add CMN S3 perf/arm-cmn: Refactor DTC PMU register access perf/arm-cmn: Make cycle counts less surprising perf/arm-cmn: Improve build-time assertion ... |
||
Andrii Nakryiko
|
45b8fc3096 |
lib/buildid: rename build_id_parse() into build_id_parse_nofault()
Make it clear that build_id_parse() assumes that it can take no page fault by renaming it and current few users to build_id_parse_nofault(). Also add build_id_parse() stub which for now falls back to non-sleepable implementation, but will be changed in subsequent patches to take advantage of sleepable context. PROCMAP_QUERY ioctl() on /proc/<pid>/maps file is using build_id_parse() and will automatically take advantage of more reliable sleepable context implementation. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-6-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> |
||
Kan Liang
|
a48a36b316 |
perf: Add PERF_EV_CAP_READ_SCOPE
Usually, an event can be read from any CPU of the scope. It doesn't need to be read from the advertised CPU. Add a new event cap, PERF_EV_CAP_READ_SCOPE. An event of a PMU with scope can be read from any active CPU in the scope. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240802151643.1691631-3-kan.liang@linux.intel.com |
||
Kan Liang
|
4ba4f1afb6 |
perf: Generic hotplug support for a PMU with a scope
The perf subsystem assumes that the counters of a PMU are per-CPU. So the user space tool reads a counter from each CPU in the system wide mode. However, many PMUs don't have a per-CPU counter. The counter is effective for a scope, e.g., a die or a socket. To address this, a cpumask is exposed by the kernel driver to restrict to one CPU to stand for a specific scope. In case the given CPU is removed, the hotplug support has to be implemented for each such driver. The codes to support the cpumask and hotplug are very similar. - Expose a cpumask into sysfs - Pickup another CPU in the same scope if the given CPU is removed. - Invoke the perf_pmu_migrate_context() to migrate to a new CPU. - In event init, always set the CPU in the cpumask to event->cpu Similar duplicated codes are implemented for each such PMU driver. It would be good to introduce a generic infrastructure to avoid such duplication. 5 popular scopes are implemented here, core, die, cluster, pkg, and the system-wide. The scope can be set when a PMU is registered. If so, a "cpumask" is automatically exposed for the PMU. The "cpumask" is from the perf_online_<scope>_mask, which is to track the active CPU for each scope. They are set when the first CPU of the scope is online via the generic perf hotplug support. When a corresponding CPU is removed, the perf_online_<scope>_mask is updated accordingly and the PMU will be moved to a new CPU from the same scope if possible. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240802151643.1691631-2-kan.liang@linux.intel.com |
||
Sven Schnelle
|
08e28de116 |
uprobes: use vm_special_mapping close() functionality
The following KASAN splat was shown:
[ 44.505448] ================================================================== 20:37:27 [3421/145075]
[ 44.505455] BUG: KASAN: slab-use-after-free in special_mapping_close+0x9c/0xc8
[ 44.505471] Read of size 8 at addr 00000000868dac48 by task sh/1384
[ 44.505479]
[ 44.505486] CPU: 51 UID: 0 PID: 1384 Comm: sh Not tainted 6.11.0-rc6-next-20240902-dirty #1496
[ 44.505503] Hardware name: IBM 3931 A01 704 (z/VM 7.3.0)
[ 44.505508] Call Trace:
[ 44.505511] [<000b0324d2f78080>] dump_stack_lvl+0xd0/0x108
[ 44.505521] [<000b0324d2f5435c>] print_address_description.constprop.0+0x34/0x2e0
[ 44.505529] [<000b0324d2f5464c>] print_report+0x44/0x138
[ 44.505536] [<000b0324d1383192>] kasan_report+0xc2/0x140
[ 44.505543] [<000b0324d2f52904>] special_mapping_close+0x9c/0xc8
[ 44.505550] [<000b0324d12c7978>] remove_vma+0x78/0x120
[ 44.505557] [<000b0324d128a2c6>] exit_mmap+0x326/0x750
[ 44.505563] [<000b0324d0ba655a>] __mmput+0x9a/0x370
[ 44.505570] [<000b0324d0bbfbe0>] exit_mm+0x240/0x340
[ 44.505575] [<000b0324d0bc0228>] do_exit+0x548/0xd70
[ 44.505580] [<000b0324d0bc1102>] do_group_exit+0x132/0x390
[ 44.505586] [<000b0324d0bc13b6>] __s390x_sys_exit_group+0x56/0x60
[ 44.505592] [<000b0324d0adcbd6>] do_syscall+0x2f6/0x430
[ 44.505599] [<000b0324d2f78434>] __do_syscall+0xa4/0x170
[ 44.505606] [<000b0324d2f9454c>] system_call+0x74/0x98
[ 44.505614]
[ 44.505616] Allocated by task 1384:
[ 44.505621] kasan_save_stack+0x40/0x70
[ 44.505630] kasan_save_track+0x28/0x40
[ 44.505636] __kasan_kmalloc+0xa0/0xc0
[ 44.505642] __create_xol_area+0xfa/0x410
[ 44.505648] get_xol_area+0xb0/0xf0
[ 44.505652] uprobe_notify_resume+0x27a/0x470
[ 44.505657] irqentry_exit_to_user_mode+0x15e/0x1d0
[ 44.505664] pgm_check_handler+0x122/0x170
[ 44.505670]
[ 44.505672] Freed by task 1384:
[ 44.505676] kasan_save_stack+0x40/0x70
[ 44.505682] kasan_save_track+0x28/0x40
[ 44.505687] kasan_save_free_info+0x4a/0x70
[ 44.505693] __kasan_slab_free+0x5a/0x70
[ 44.505698] kfree+0xe8/0x3f0
[ 44.505704] __mmput+0x20/0x370
[ 44.505709] exit_mm+0x240/0x340
[ 44.505713] do_exit+0x548/0xd70
[ 44.505718] do_group_exit+0x132/0x390
[ 44.505722] __s390x_sys_exit_group+0x56/0x60
[ 44.505727] do_syscall+0x2f6/0x430
[ 44.505732] __do_syscall+0xa4/0x170
[ 44.505738] system_call+0x74/0x98
The problem is that uprobe_clear_state() kfree's struct xol_area, which
contains struct vm_special_mapping *xol_mapping. This one is passed to
_install_special_mapping() in xol_add_vma().
__mput reads:
static inline void __mmput(struct mm_struct *mm)
{
VM_BUG_ON(atomic_read(&mm->mm_users));
uprobe_clear_state(mm);
exit_aio(mm);
ksm_exit(mm);
khugepaged_exit(mm); /* must run before exit_mmap */
exit_mmap(mm);
...
}
So uprobe_clear_state() in the beginning free's the memory area
containing the vm_special_mapping data, but exit_mmap() uses this
address later via vma->vm_private_data (which was set in
_install_special_mapping().
Fix this by moving uprobe_clear_state() to uprobes.c and use it as
close() callback.
[usama.anjum@collabora.com: remove unneeded condition]
Link: https://lkml.kernel.org/r/20240906101825.177490-1-usama.anjum@collabora.com
Link: https://lkml.kernel.org/r/20240903073629.2442754-1-svens@linux.ibm.com
Fixes:
|
||
Andrii Nakryiko
|
cd7bdd9d46 |
uprobes: perform lockless SRCU-protected uprobes_tree lookup
Another big bottleneck to scalablity is uprobe_treelock that's taken in a very hot path in handle_swbp(). Now that uprobes are SRCU-protected, take advantage of that and make uprobes_tree RB-tree look up lockless. To make RB-tree RCU-protected lockless lookup correct, we need to take into account that such RB-tree lookup can return false negatives if there are parallel RB-tree modifications (rotations) going on. We use seqcount lock to detect whether RB-tree changed, and if we find nothing while RB-tree got modified inbetween, we just retry. If uprobe was found, then it's guaranteed to be a correct lookup. With all the lock-avoiding changes done, we get a pretty decent improvement in performance and scalability of uprobes with number of CPUs, even though we are still nowhere near linear scalability. This is due to SRCU not really scaling very well with number of CPUs on a particular hardware that was used for testing (80-core Intel Xeon Gold 6138 CPU @ 2.00GHz), but also due to the remaning mmap_lock, which is currently taken to resolve interrupt address to inode+offset and then uprobe instance. And, of course, uretprobes still need similar RCU to avoid refcount in the hot path, which will be addressed in the follow up patches. Nevertheless, the improvement is good. We used BPF selftest-based uprobe-nop and uretprobe-nop benchmarks to get the below numbers, varying number of CPUs on which uprobes and uretprobes are triggered. BASELINE ======== uprobe-nop ( 1 cpus): 3.032 ± 0.023M/s ( 3.032M/s/cpu) uprobe-nop ( 2 cpus): 3.452 ± 0.005M/s ( 1.726M/s/cpu) uprobe-nop ( 4 cpus): 3.663 ± 0.005M/s ( 0.916M/s/cpu) uprobe-nop ( 8 cpus): 3.718 ± 0.038M/s ( 0.465M/s/cpu) uprobe-nop (16 cpus): 3.344 ± 0.008M/s ( 0.209M/s/cpu) uprobe-nop (32 cpus): 2.288 ± 0.021M/s ( 0.071M/s/cpu) uprobe-nop (64 cpus): 3.205 ± 0.004M/s ( 0.050M/s/cpu) uretprobe-nop ( 1 cpus): 1.979 ± 0.005M/s ( 1.979M/s/cpu) uretprobe-nop ( 2 cpus): 2.361 ± 0.005M/s ( 1.180M/s/cpu) uretprobe-nop ( 4 cpus): 2.309 ± 0.002M/s ( 0.577M/s/cpu) uretprobe-nop ( 8 cpus): 2.253 ± 0.001M/s ( 0.282M/s/cpu) uretprobe-nop (16 cpus): 2.007 ± 0.000M/s ( 0.125M/s/cpu) uretprobe-nop (32 cpus): 1.624 ± 0.003M/s ( 0.051M/s/cpu) uretprobe-nop (64 cpus): 2.149 ± 0.001M/s ( 0.034M/s/cpu) SRCU CHANGES ============ uprobe-nop ( 1 cpus): 3.276 ± 0.005M/s ( 3.276M/s/cpu) uprobe-nop ( 2 cpus): 4.125 ± 0.002M/s ( 2.063M/s/cpu) uprobe-nop ( 4 cpus): 7.713 ± 0.002M/s ( 1.928M/s/cpu) uprobe-nop ( 8 cpus): 8.097 ± 0.006M/s ( 1.012M/s/cpu) uprobe-nop (16 cpus): 6.501 ± 0.056M/s ( 0.406M/s/cpu) uprobe-nop (32 cpus): 4.398 ± 0.084M/s ( 0.137M/s/cpu) uprobe-nop (64 cpus): 6.452 ± 0.000M/s ( 0.101M/s/cpu) uretprobe-nop ( 1 cpus): 2.055 ± 0.001M/s ( 2.055M/s/cpu) uretprobe-nop ( 2 cpus): 2.677 ± 0.000M/s ( 1.339M/s/cpu) uretprobe-nop ( 4 cpus): 4.561 ± 0.003M/s ( 1.140M/s/cpu) uretprobe-nop ( 8 cpus): 5.291 ± 0.002M/s ( 0.661M/s/cpu) uretprobe-nop (16 cpus): 5.065 ± 0.019M/s ( 0.317M/s/cpu) uretprobe-nop (32 cpus): 3.622 ± 0.003M/s ( 0.113M/s/cpu) uretprobe-nop (64 cpus): 3.723 ± 0.002M/s ( 0.058M/s/cpu) Peak througput increased from 3.7 mln/s (uprobe triggerings) up to about 8 mln/s. For uretprobes it's a bit more modest with bump from 2.4 mln/s to 5mln/s. Suggested-by: "Peter Zijlstra (Intel)" <peterz@infradead.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20240903174603.3554182-8-andrii@kernel.org |
||
Peter Zijlstra
|
04b01625da |
perf/uprobe: split uprobe_unregister()
With uprobe_unregister() having grown a synchronize_srcu(), it becomes fairly slow to call. Esp. since both users of this API call it in a loop. Peel off the sync_srcu() and do it once, after the loop. We also need to add uprobe_unregister_sync() into uprobe_register()'s error handling path, as we need to be careful about returning to the caller before we have a guarantee that partially attached consumer won't be called anymore. This is an unlikely slow path and this should be totally fine to be slow in the case of a failed attach. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org> Co-developed-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20240903174603.3554182-6-andrii@kernel.org |
||
Andrii Nakryiko
|
cc01bd044e |
uprobes: travers uprobe's consumer list locklessly under SRCU protection
uprobe->register_rwsem is one of a few big bottlenecks to scalability of uprobes, so we need to get rid of it to improve uprobe performance and multi-CPU scalability. First, we turn uprobe's consumer list to a typical doubly-linked list and utilize existing RCU-aware helpers for traversing such lists, as well as adding and removing elements from it. For entry uprobes we already have SRCU protection active since before uprobe lookup. For uretprobe we keep refcount, guaranteeing that uprobe won't go away from under us, but we add SRCU protection around consumer list traversal. Lastly, to keep handler_chain()'s UPROBE_HANDLER_REMOVE handling simple, we remember whether any removal was requested during handler calls, but then we double-check the decision under a proper register_rwsem using consumers' filter callbacks. Handler removal is very rare, so this extra lock won't hurt performance, overall, but we also avoid the need for any extra protection (e.g., seqcount locks). Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20240903174603.3554182-5-andrii@kernel.org |
||
Andrii Nakryiko
|
59da880afe |
uprobes: get rid of enum uprobe_filter_ctx in uprobe filter callbacks
It serves no purpose beyond adding unnecessray argument passed to the filter callback. Just get rid of it, no one is actually using it. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20240903174603.3554182-4-andrii@kernel.org |
||
Andrii Nakryiko
|
8617408f7a |
uprobes: protected uprobe lifetime with SRCU
To avoid unnecessarily taking a (brief) refcount on uprobe during breakpoint handling in handle_swbp for entry uprobes, make find_uprobe() not take refcount, but protect the lifetime of a uprobe instance with RCU. This improves scalability, as refcount gets quite expensive due to cache line bouncing between multiple CPUs. Specifically, we utilize our own uprobe-specific SRCU instance for this RCU protection. put_uprobe() will delay actual kfree() using call_srcu(). For now, uretprobe and single-stepping handling will still acquire refcount as necessary. We'll address these issues in follow up patches by making them use SRCU with timeout. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20240903174603.3554182-3-andrii@kernel.org |
||
Andrii Nakryiko
|
3f7f1a64da |
uprobes: revamp uprobe refcounting and lifetime management
Revamp how struct uprobe is refcounted, and thus how its lifetime is managed. Right now, there are a few possible "owners" of uprobe refcount: - uprobes_tree RB tree assumes one refcount when uprobe is registered and added to the lookup tree; - while uprobe is triggered and kernel is handling it in the breakpoint handler code, temporary refcount bump is done to keep uprobe from being freed; - if we have uretprobe requested on a given struct uprobe instance, we take another refcount to keep uprobe alive until user space code returns from the function and triggers return handler. The uprobe_tree's extra refcount of 1 is confusing and problematic. No matter how many actual consumers are attached, they all share the same refcount, and we have an extra logic to drop the "last" (which might not really be last) refcount once uprobe's consumer list becomes empty. This is unconventional and has to be kept in mind as a special case all the time. Further, because of this design we have the situations where find_uprobe() will find uprobe, bump refcount, return it to the caller, but that uprobe will still need uprobe_is_active() check, after which the caller is required to drop refcount and try again. This is just too many details leaking to the higher level logic. This patch changes refcounting scheme in such a way as to not have uprobes_tree keeping extra refcount for struct uprobe. Instead, each uprobe_consumer is assuming its own refcount, which will be dropped when consumer is unregistered. Other than that, all the active users of uprobe (entry and return uprobe handling code) keeps exactly the same refcounting approach. With the above setup, once uprobe's refcount drops to zero, we need to make sure that uprobe's "destructor" removes uprobe from uprobes_tree, of course. This, though, races with uprobe entry handling code in handle_swbp(), which, through find_active_uprobe()->find_uprobe() lookup, can race with uprobe being destroyed after refcount drops to zero (e.g., due to uprobe_consumer unregistering). So we add try_get_uprobe(), which will attempt to bump refcount, unless it already is zero. Caller needs to guarantee that uprobe instance won't be freed in parallel, which is the case while we keep uprobes_treelock (for read or write, doesn't matter). Note also, we now don't leak the race between registration and unregistration, so we remove the retry logic completely. If find_uprobe() returns valid uprobe, it's guaranteed to remain in uprobes_tree with properly incremented refcount. The race is handled inside __insert_uprobe() and put_uprobe() working together: __insert_uprobe() will remove uprobe from RB-tree, if it can't bump refcount and will retry to insert the new uprobe instance. put_uprobe() won't attempt to remove uprobe from RB-tree, if it's already not there. All that is protected by uprobes_treelock, which keeps things simple. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20240903174603.3554182-2-andrii@kernel.org |
||
Luo Gengkun
|
62c0b10615 |
perf/core: Fix small negative period being ignored
In perf_adjust_period, we will first calculate period, and then use
this period to calculate delta. However, when delta is less than 0,
there will be a deviation compared to when delta is greater than or
equal to 0. For example, when delta is in the range of [-14,-1], the
range of delta = delta + 7 is between [-7,6], so the final value of
delta/8 is 0. Therefore, the impact of -1 and -2 will be ignored.
This is unacceptable when the target period is very short, because
we will lose a lot of samples.
Here are some tests and analyzes:
before:
# perf record -e cs -F 1000 ./a.out
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.022 MB perf.data (518 samples) ]
# perf script
...
a.out 396 257.956048: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.957891: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.959730: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.961545: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.963355: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.965163: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.966973: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.968785: 23 cs: ffffffff81f4eeec schedul>
a.out 396 257.970593: 23 cs: ffffffff81f4eeec schedul>
...
after:
# perf record -e cs -F 1000 ./a.out
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.058 MB perf.data (1466 samples) ]
# perf script
...
a.out 395 59.338813: 11 cs: ffffffff81f4eeec schedul>
a.out 395 59.339707: 12 cs: ffffffff81f4eeec schedul>
a.out 395 59.340682: 13 cs: ffffffff81f4eeec schedul>
a.out 395 59.341751: 13 cs: ffffffff81f4eeec schedul>
a.out 395 59.342799: 12 cs: ffffffff81f4eeec schedul>
a.out 395 59.343765: 11 cs: ffffffff81f4eeec schedul>
a.out 395 59.344651: 11 cs: ffffffff81f4eeec schedul>
a.out 395 59.345539: 12 cs: ffffffff81f4eeec schedul>
a.out 395 59.346502: 13 cs: ffffffff81f4eeec schedul>
...
test.c
int main() {
for (int i = 0; i < 20000; i++)
usleep(10);
return 0;
}
# time ./a.out
real 0m1.583s
user 0m0.040s
sys 0m0.298s
The above results were tested on x86-64 qemu with KVM enabled using
test.c as test program. Ideally, we should have around 1500 samples,
but the previous algorithm had only about 500, whereas the modified
algorithm now has about 1400. Further more, the new version shows 1
sample per 0.001s, while the previous one is 1 sample per 0.002s.This
indicates that the new algorithm is more sensitive to small negative
values compared to old algorithm.
Fixes:
|
||
Ingo Molnar
|
95c13662b6 |
Merge branch 'perf/urgent' into perf/core, to pick up fixes
This also refreshes the -rc1 based branch to -rc5. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
2ab9d83026 |
perf/aux: Fix AUX buffer serialization
Ole reported that event->mmap_mutex is strictly insufficient to
serialize the AUX buffer, add a per RB mutex to fully serialize it.
Note that in the lock order comment the perf_event::mmap_mutex order
was already wrong, that is, it nesting under mmap_lock is not new with
this patch.
Fixes:
|
||
Sven Schnelle
|
e240b0fde5 |
uprobes: Use kzalloc to allocate xol area
To prevent unitialized members, use kzalloc to allocate
the xol area.
Fixes:
|