s390:
* Two fixes for potential bitmap overruns in the cmma migration code
x86:
* Clear guest provided GPRs to defeat the Project Zero PoC for CVE
2017-5715
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaUTJ4AAoJEED/6hsPKofohk0IAJAFlMG66u5MxC0kSM61U4Zf
1vkzRwAkBbcN82LpGQKbqabVyTq0F3aLipyOn6WO5SN0K5m+OI2OV/aAroPyX8bI
F7nWIqTXLhJ9X6KXINFvyavHMprvWl8PA72tR/B/7GhhfShrZ2wGgqhl0vv/kCUK
/8q+5e693yJqw8ceemin9a6kPJrLpmjeH+Oy24KIlGbvJWV4UrIE86pRHnAnBtg8
L7Vbxn5+ezKmakvBh+zF8NKcD1zHDcmQZHoYFPsQT0vX5GPoYqT2bcO6gsh1Grmp
8ti6KkrnP+j2A/OEna4LBWfwKI/1xHXneB22BYrAxvNjHt+R4JrjaPpx82SEB4Y=
=URMR
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Radim Krčmář:
"s390:
- Two fixes for potential bitmap overruns in the cmma migration code
x86:
- Clear guest provided GPRs to defeat the Project Zero PoC for CVE
2017-5715"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: vmx: Scrub hardware GPRs at VM-exit
KVM: s390: prevent buffer overrun on memory hotplug during migration
KVM: s390: fix cmma migration for multiple memory slots
Pull more x86 pti fixes from Thomas Gleixner:
"Another small stash of fixes for fallout from the PTI work:
- Fix the modules vs. KASAN breakage which was caused by making
MODULES_END depend of the fixmap size. That was done when the cpu
entry area moved into the fixmap, but now that we have a separate
map space for that this is causing more issues than it solves.
- Use the proper cache flush methods for the debugstore buffers as
they are mapped/unmapped during runtime and not statically mapped
at boot time like the rest of the cpu entry area.
- Make the map layout of the cpu_entry_area consistent for 4 and 5
level paging and fix the KASLR vaddr_end wreckage.
- Use PER_CPU_EXPORT for per cpu variable and while at it unbreak
nvidia gfx drivers by dropping the GPL export. The subject line of
the commit tells it the other way around, but I noticed that too
late.
- Fix the ASM alternative macros so they can be used in the middle of
an inline asm block.
- Rename the BUG_CPU_INSECURE flag to BUG_CPU_MELTDOWN so the attack
vector is properly identified. The Spectre mitigations will come
with their own bug bits later"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pti: Rename BUG_CPU_INSECURE to BUG_CPU_MELTDOWN
x86/alternatives: Add missing '\n' at end of ALTERNATIVE inline asm
x86/tlb: Drop the _GPL from the cpu_tlbstate export
x86/events/intel/ds: Use the proper cache flush method for mapping ds buffers
x86/kaslr: Fix the vaddr_end mess
x86/mm: Map cpu_entry_area at the same place on 4/5 level
x86/mm: Set MODULES_END to 0xffffffffff000000
Pull EFI updates from Thomas Gleixner:
- A fix for a add_efi_memmap parameter regression which ensures that
the parameter is parsed before it is used.
- Reinstate the virtual capsule mapping as the cached copy turned out
to break Quark and other things
- Remove Matt Fleming as EFI co-maintainer. He stepped back a few days
ago. Thanks Matt for all your great work!
* 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Remove Matt Fleming as EFI co-maintainer
efi/capsule-loader: Reinstate virtual capsule mapping
x86/efi: Fix kernel param add_efi_memmap regression
Guest GPR values are live in the hardware GPRs at VM-exit. Do not
leave any guest values in hardware GPRs after the guest GPR values are
saved to the vcpu_vmx structure.
This is a partial mitigation for CVE 2017-5715 and CVE 2017-5753.
Specifically, it defeats the Project Zero PoC for CVE 2017-5715.
Suggested-by: Eric Northup <digitaleric@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Eric Northup <digitaleric@google.com>
Reviewed-by: Benjamin Serebrin <serebrin@google.com>
Reviewed-by: Andrew Honig <ahonig@google.com>
[Paolo: Add AMD bits, Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the name associated with the particular attack which needs page table
isolation for mitigation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Cc: Jiri Koshina <jikos@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Lutomirski <luto@amacapital.net>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Greg KH <gregkh@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801051525300.1724@nanos
Where an ALTERNATIVE is used in the middle of an inline asm block, this
would otherwise lead to the following instruction being appended directly
to the trailing ".popsection", and a failed compile.
Fixes: 9cebed423c84 ("x86, alternative: Use .pushsection/.popsection")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: ak@linux.intel.com
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180104143710.8961-8-dwmw@amazon.co.uk
The recent changes for PTI touch cpu_tlbstate from various tlb_flush
inlines. cpu_tlbstate is exported as GPL symbol, so this causes a
regression when building out of tree drivers for certain graphics cards.
Aside of that the export was wrong since it was introduced as it should
have been EXPORT_PER_CPU_SYMBOL_GPL().
Use the correct PER_CPU export and drop the _GPL to restore the previous
state which allows users to utilize the cards they payed for.
As always I'm really thrilled to make this kind of change to support the
#friends (or however the hot hashtag of today is spelled) from that closet
sauce graphics corp.
Fixes: 1e02ce4cccdc ("x86: Store a per-cpu shadow copy of CR4")
Fixes: 6fd166aae78c ("x86/mm: Use/Fix PCID to optimize user/kernel switches")
Reported-by: Kees Cook <keescook@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Thomas reported the following warning:
BUG: using smp_processor_id() in preemptible [00000000] code: ovsdb-server/4498
caller is native_flush_tlb_single+0x57/0xc0
native_flush_tlb_single+0x57/0xc0
__set_pte_vaddr+0x2d/0x40
set_pte_vaddr+0x2f/0x40
cea_set_pte+0x30/0x40
ds_update_cea.constprop.4+0x4d/0x70
reserve_ds_buffers+0x159/0x410
x86_reserve_hardware+0x150/0x160
x86_pmu_event_init+0x3e/0x1f0
perf_try_init_event+0x69/0x80
perf_event_alloc+0x652/0x740
SyS_perf_event_open+0x3f6/0xd60
do_syscall_64+0x5c/0x190
set_pte_vaddr is used to map the ds buffers into the cpu entry area, but
there are two problems with that:
1) The resulting flush is not supposed to be called in preemptible context
2) The cpu entry area is supposed to be per CPU, but the debug store
buffers are mapped for all CPUs so these mappings need to be flushed
globally.
Add the necessary preemption protection across the mapping code and flush
TLBs globally.
Fixes: c1961a4631da ("x86/events/intel/ds: Map debug buffers in cpu_entry_area")
Reported-by: Thomas Zeitlhofer <thomas.zeitlhofer+lkml@ze-it.at>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Thomas Zeitlhofer <thomas.zeitlhofer+lkml@ze-it.at>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180104170712.GB3040@hirez.programming.kicks-ass.net
vaddr_end for KASLR is only documented in the KASLR code itself and is
adjusted depending on config options. So it's not surprising that a change
of the memory layout causes KASLR to have the wrong vaddr_end. This can map
arbitrary stuff into other areas causing hard to understand problems.
Remove the whole ifdef magic and define the start of the cpu_entry_area to
be the end of the KASLR vaddr range.
Add documentation to that effect.
Fixes: 92a0f81d8957 ("x86/cpu_entry_area: Move it out of the fixmap")
Reported-by: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable <stable@vger.kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>,
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801041320360.1771@nanos
There is no reason for 4 and 5 level pagetables to have a different
layout. It just makes determining vaddr_end for KASLR harder than
necessary.
Fixes: 92a0f81d8957 ("x86/cpu_entry_area: Move it out of the fixmap")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable <stable@vger.kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>,
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801041320360.1771@nanos
Since f06bdd4001c2 ("x86/mm: Adapt MODULES_END based on fixmap section size")
kasan_mem_to_shadow(MODULES_END) could be not aligned to a page boundary.
So passing page unaligned address to kasan_populate_zero_shadow() have two
possible effects:
1) It may leave one page hole in supposed to be populated area. After commit
21506525fb8d ("x86/kasan/64: Teach KASAN about the cpu_entry_area") that
hole happens to be in the shadow covering fixmap area and leads to crash:
BUG: unable to handle kernel paging request at fffffbffffe8ee04
RIP: 0010:check_memory_region+0x5c/0x190
Call Trace:
<NMI>
memcpy+0x1f/0x50
ghes_copy_tofrom_phys+0xab/0x180
ghes_read_estatus+0xfb/0x280
ghes_notify_nmi+0x2b2/0x410
nmi_handle+0x115/0x2c0
default_do_nmi+0x57/0x110
do_nmi+0xf8/0x150
end_repeat_nmi+0x1a/0x1e
Note, the crash likely disappeared after commit 92a0f81d8957, which
changed kasan_populate_zero_shadow() call the way it was before
commit 21506525fb8d.
2) Attempt to load module near MODULES_END will fail, because
__vmalloc_node_range() called from kasan_module_alloc() will hit the
WARN_ON(!pte_none(*pte)) in the vmap_pte_range() and bail out with error.
To fix this we need to make kasan_mem_to_shadow(MODULES_END) page aligned
which means that MODULES_END should be 8*PAGE_SIZE aligned.
The whole point of commit f06bdd4001c2 was to move MODULES_END down if
NR_CPUS is big, so the cpu_entry_area takes a lot of space.
But since 92a0f81d8957 ("x86/cpu_entry_area: Move it out of the fixmap")
the cpu_entry_area is no longer in fixmap, so we could just set
MODULES_END to a fixed 8*PAGE_SIZE aligned address.
Fixes: f06bdd4001c2 ("x86/mm: Adapt MODULES_END based on fixmap section size")
Reported-by: Jakub Kicinski <kubakici@wp.pl>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Garnier <thgarnie@google.com>
Link: https://lkml.kernel.org/r/20171228160620.23818-1-aryabinin@virtuozzo.com
Pull x86 page table isolation fixes from Thomas Gleixner:
"A couple of urgent fixes for PTI:
- Fix a PTE mismatch between user and kernel visible mapping of the
cpu entry area (differs vs. the GLB bit) and causes a TLB mismatch
MCE on older AMD K8 machines
- Fix the misplaced CR3 switch in the SYSCALL compat entry code which
causes access to unmapped kernel memory resulting in double faults.
- Fix the section mismatch of the cpu_tss_rw percpu storage caused by
using a different mechanism for declaration and definition.
- Two fixes for dumpstack which help to decode entry stack issues
better
- Enable PTI by default in Kconfig. We should have done that earlier,
but it slipped through the cracks.
- Exclude AMD from the PTI enforcement. Not necessarily a fix, but if
AMD is so confident that they are not affected, then we should not
burden users with the overhead"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/process: Define cpu_tss_rw in same section as declaration
x86/pti: Switch to kernel CR3 at early in entry_SYSCALL_compat()
x86/dumpstack: Print registers for first stack frame
x86/dumpstack: Fix partial register dumps
x86/pti: Make sure the user/kernel PTEs match
x86/cpu, x86/pti: Do not enable PTI on AMD processors
x86/pti: Enable PTI by default
The preparation for PTI which added CR3 switching to the entry code
misplaced the CR3 switch in entry_SYSCALL_compat().
With PTI enabled the entry code tries to access a per cpu variable after
switching to kernel GS. This fails because that variable is not mapped to
user space. This results in a double fault and in the worst case a kernel
crash.
Move the switch ahead of the access and clobber RSP which has been saved
already.
Fixes: 8a09317b895f ("x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switching")
Reported-by: Lars Wendler <wendler.lars@web.de>
Reported-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>,
Cc: Dave Hansen <dave.hansen@linux.intel.com>,
Cc: Peter Zijlstra <peterz@infradead.org>,
Cc: Greg KH <gregkh@linuxfoundation.org>, ,
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>,
Cc: Juergen Gross <jgross@suse.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801031949200.1957@nanos
In the stack dump code, if the frame after the starting pt_regs is also
a regs frame, the registers don't get printed. Fix that.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Tested-by: Alexander Tsoy <alexander@tsoy.me>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toralf Förster <toralf.foerster@gmx.de>
Cc: stable@vger.kernel.org
Fixes: 3b3fa11bc700 ("x86/dumpstack: Print any pt_regs found on the stack")
Link: http://lkml.kernel.org/r/396f84491d2f0ef64eda4217a2165f5712f6a115.1514736742.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The show_regs_safe() logic is wrong. When there's an iret stack frame,
it prints the entire pt_regs -- most of which is random stack data --
instead of just the five registers at the end.
show_regs_safe() is also poorly named: the on_stack() checks aren't for
safety. Rename the function to show_regs_if_on_stack() and add a
comment to explain why the checks are needed.
These issues were introduced with the "partial register dump" feature of
the following commit:
b02fcf9ba121 ("x86/unwinder: Handle stack overflows more gracefully")
That patch had gone through a few iterations of development, and the
above issues were artifacts from a previous iteration of the patch where
'regs' pointed directly to the iret frame rather than to the (partially
empty) pt_regs.
Tested-by: Alexander Tsoy <alexander@tsoy.me>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toralf Förster <toralf.foerster@gmx.de>
Cc: stable@vger.kernel.org
Fixes: b02fcf9ba121 ("x86/unwinder: Handle stack overflows more gracefully")
Link: http://lkml.kernel.org/r/5b05b8b344f59db2d3d50dbdeba92d60f2304c54.1514736742.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Meelis reported that his K8 Athlon64 emits MCE warnings when PTI is
enabled:
[Hardware Error]: Error Addr: 0x0000ffff81e000e0
[Hardware Error]: MC1 Error: L1 TLB multimatch.
[Hardware Error]: cache level: L1, tx: INSN
The address is in the entry area, which is mapped into kernel _AND_ user
space. That's special because we switch CR3 while we are executing
there.
User mapping:
0xffffffff81e00000-0xffffffff82000000 2M ro PSE GLB x pmd
Kernel mapping:
0xffffffff81000000-0xffffffff82000000 16M ro PSE x pmd
So the K8 is complaining that the TLB entries differ. They differ in the
GLB bit.
Drop the GLB bit when installing the user shared mapping.
Fixes: 6dc72c3cbca0 ("x86/mm/pti: Share entry text PMD")
Reported-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Meelis Roos <mroos@linux.ee>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801031407180.1957@nanos
AMD processors are not subject to the types of attacks that the kernel
page table isolation feature protects against. The AMD microarchitecture
does not allow memory references, including speculative references, that
access higher privileged data when running in a lesser privileged mode
when that access would result in a page fault.
Disable page table isolation by default on AMD processors by not setting
the X86_BUG_CPU_INSECURE feature, which controls whether X86_FEATURE_PTI
is set.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20171227054354.20369.94587.stgit@tlendack-t1.amdoffice.net
Commit:
82c3768b8d68 ("efi/capsule-loader: Use a cached copy of the capsule header")
... refactored the capsule loading code that maps the capsule header,
to avoid having to map it several times.
However, as it turns out, the vmap() call we ended up removing did not
just map the header, but the entire capsule image, and dropping this
virtual mapping breaks capsules that are processed by the firmware
immediately (i.e., without a reboot).
Unfortunately, that change was part of a larger refactor that allowed
a quirk to be implemented for Quark, which has a non-standard memory
layout for capsules, and we have slightly painted ourselves into a
corner by allowing quirk code to mangle the capsule header and memory
layout.
So we need to fix this without breaking Quark. Fortunately, Quark does
not appear to care about the virtual mapping, and so we can simply
do a partial revert of commit:
2a457fb31df6 ("efi/capsule-loader: Use page addresses rather than struct page pointers")
... and create a vmap() mapping of the entire capsule (including header)
based on the reinstated struct page array, unless running on Quark, in
which case we pass the capsule header copy as before.
Reported-by: Ge Song <ge.song@hxt-semitech.com>
Tested-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Tested-by: Ge Song <ge.song@hxt-semitech.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: <stable@vger.kernel.org>
Cc: Dave Young <dyoung@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Fixes: 82c3768b8d68 ("efi/capsule-loader: Use a cached copy of the capsule header")
Link: http://lkml.kernel.org/r/20180102172110.17018-3-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'add_efi_memmap' is an early param, but do_add_efi_memmap() has no
chance to run because the code path is before parse_early_param().
I believe it worked when the param was introduced but probably later
some other changes caused the wrong order and nobody noticed it.
Move efi_memblock_x86_reserve_range() after parse_early_param()
to fix it.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Ge Song <ge.song@hxt-semitech.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20180102172110.17018-2-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"A couple of fixlets for x86:
- Fix the ESPFIX double fault handling for 5-level pagetables
- Fix the commandline parsing for 'apic=' on 32bit systems and update
documentation
- Make zombie stack traces reliable
- Fix kexec with stack canary
- Fix the delivery mode for APICs which was missed when the x86
vector management was converted to single target delivery. Caused a
regression due to the broken hardware which ignores affinity
settings in lowest prio delivery mode.
- Unbreak modules when AMD memory encryption is enabled
- Remove an unused parameter of prepare_switch_to"
* 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Switch all APICs to Fixed delivery mode
x86/apic: Update the 'apic=' description of setting APIC driver
x86/apic: Avoid wrong warning when parsing 'apic=' in X86-32 case
x86-32: Fix kexec with stack canary (CONFIG_CC_STACKPROTECTOR)
x86: Remove unused parameter of prepare_switch_to
x86/stacktrace: Make zombie stack traces reliable
x86/mm: Unbreak modules that use the DMA API
x86/build: Make isoimage work on Debian
x86/espfix/64: Fix espfix double-fault handling on 5-level systems
Pull x86 page table isolation fixes from Thomas Gleixner:
"Four patches addressing the PTI fallout as discussed and debugged
yesterday:
- Remove stale and pointless TLB flush invocations from the hotplug
code
- Remove stale preempt_disable/enable from __native_flush_tlb()
- Plug the memory leak in the write_ldt() error path"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ldt: Make LDT pgtable free conditional
x86/ldt: Plug memory leak in error path
x86/mm: Remove preempt_disable/enable() from __native_flush_tlb()
x86/smpboot: Remove stale TLB flush invocations
Pull perf fixes from Thomas Gleixner:
- plug a memory leak in the intel pmu init code
- clang fixes
- tooling fix to avoid including kernel headers
- a fix for jvmti to generate correct debug information for inlined
code
- replace backtick with a regular shell function
- fix the build in hardened environments
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Plug memory leak in intel_pmu_init()
x86/asm: Allow again using asm.h when building for the 'bpf' clang target
tools arch s390: Do not include header files from the kernel sources
perf jvmti: Generate correct debug information for inlined code
perf tools: Fix up build in hardened environments
perf tools: Use shell function for perl cflags retrieval
Pull irq fixes from Thomas Gleixner:
"A rather large update after the kaisered maintainer finally found time
to handle regression reports.
- The larger part addresses a regression caused by the x86 vector
management rework.
The reservation based model does not work reliably for MSI
interrupts, if they cannot be masked (yes, yet another hw
engineering trainwreck). The reason is that the reservation mode
assigns a dummy vector when the interrupt is allocated and switches
to a real vector when the interrupt is requested.
If the MSI entry cannot be masked then the initialization might
raise an interrupt before the interrupt is requested, which ends up
as spurious interrupt and causes device malfunction and worse. The
fix is to exclude MSI interrupts which do not support masking from
reservation mode and assign a real vector right away.
- Extend the extra lockdep class setup for nested interrupts with a
class for the recently added irq_desc::request_mutex so lockdep can
differeniate and does not emit false positive warnings.
- A ratelimit guard for the bad irq printout so in case a bad irq
comes back immediately the system does not drown in dmesg spam"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
genirq/msi, x86/vector: Prevent reservation mode for non maskable MSI
genirq/irqdomain: Rename early argument of irq_domain_activate_irq()
x86/vector: Use IRQD_CAN_RESERVE flag
genirq: Introduce IRQD_CAN_RESERVE flag
genirq/msi: Handle reactivation only on success
gpio: brcmstb: Make really use of the new lockdep class
genirq: Guard handle_bad_irq log messages
kernel/irq: Extend lockdep class for request mutex
Andy prefers to be paranoid about the pagetable free in the error path of
write_ldt(). Make it conditional and warn whenever the installment of a
secondary LDT fails.
Requested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The error path in write_ldt() tries to free 'old_ldt' instead of the newly
allocated 'new_ldt', resulting in a memory leak. It also misses to clean up a
half populated LDT pagetable, which is not a leak as it gets cleaned up
when the process exits.
Free both the potentially half populated LDT pagetable and the newly
allocated LDT struct. This can be done unconditionally because once an LDT
is mapped subsequent maps will succeed, because the PTE page is already
populated and the two LDTs fit into that single page.
Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: f55f0501cbf6 ("x86/pti: Put the LDT in its own PGD if PTI is on")
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1712311121340.1899@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The preempt_disable/enable() pair in __native_flush_tlb() was added in
commit:
5cf0791da5c1 ("x86/mm: Disable preemption during CR3 read+write")
... to protect the UP variant of flush_tlb_mm_range().
That preempt_disable/enable() pair should have been added to the UP variant
of flush_tlb_mm_range() instead.
The UP variant was removed with commit:
ce4a4e565f52 ("x86/mm: Remove the UP asm/tlbflush.h code, always use the (formerly) SMP code")
... but the preempt_disable/enable() pair stayed around.
The latest change to __native_flush_tlb() in commit:
6fd166aae78c ("x86/mm: Use/Fix PCID to optimize user/kernel switches")
... added an access to a per CPU variable outside the preempt disabled
regions, which makes no sense at all. __native_flush_tlb() must always
be called with at least preemption disabled.
Remove the preempt_disable/enable() pair and add a WARN_ON_ONCE() to catch
bad callers independent of the smp_processor_id() debugging.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20171230211829.679325424@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
smpboot_setup_warm_reset_vector() and smpboot_restore_warm_reset_vector()
invoke local_flush_tlb() for no obvious reason.
Digging in history revealed that the original code in the 2.1 era added
those because the code manipulated a swapper_pg_dir pagetable entry. The
pagetable manipulation was removed long ago in the 2.3 timeframe, but the
TLB flush invocations stayed around forever.
Remove them along with the pointless pr_debug()s which come from the same 2.1
change.
Reported-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20171230211829.586548655@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 page table isolation updates from Thomas Gleixner:
"This is the final set of enabling page table isolation on x86:
- Infrastructure patches for handling the extra page tables.
- Patches which map the various bits and pieces which are required to
get in and out of user space into the user space visible page
tables.
- The required changes to have CR3 switching in the entry/exit code.
- Optimizations for the CR3 switching along with documentation how
the ASID/PCID mechanism works.
- Updates to dump pagetables to cover the user space page tables for
W+X scans and extra debugfs files to analyze both the kernel and
the user space visible page tables
The whole functionality is compile time controlled via a config switch
and can be turned on/off on the command line as well"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
x86/ldt: Make the LDT mapping RO
x86/mm/dump_pagetables: Allow dumping current pagetables
x86/mm/dump_pagetables: Check user space page table for WX pages
x86/mm/dump_pagetables: Add page table directory to the debugfs VFS hierarchy
x86/mm/pti: Add Kconfig
x86/dumpstack: Indicate in Oops whether PTI is configured and enabled
x86/mm: Clarify the whole ASID/kernel PCID/user PCID naming
x86/mm: Use INVPCID for __native_flush_tlb_single()
x86/mm: Optimize RESTORE_CR3
x86/mm: Use/Fix PCID to optimize user/kernel switches
x86/mm: Abstract switching CR3
x86/mm: Allow flushing for future ASID switches
x86/pti: Map the vsyscall page if needed
x86/pti: Put the LDT in its own PGD if PTI is on
x86/mm/64: Make a full PGD-entry size hole in the memory map
x86/events/intel/ds: Map debug buffers in cpu_entry_area
x86/cpu_entry_area: Add debugstore entries to cpu_entry_area
x86/mm/pti: Map ESPFIX into user space
x86/mm/pti: Share entry text PMD
x86/entry: Align entry text section to PMD boundary
...
The new reservation mode for interrupts assigns a dummy vector when the
interrupt is allocated and assigns a real vector when the interrupt is
requested. The reservation mode prevents vector pressure when devices with
a large amount of queues/interrupts are initialized, but only a minimal
subset of those queues/interrupts is actually used.
This mode has an issue with MSI interrupts which cannot be masked. If the
driver is not careful or the hardware emits an interrupt before the device
irq is requestd by the driver then the interrupt ends up on the dummy
vector as a spurious interrupt which can cause malfunction of the device or
in the worst case a lockup of the machine.
Change the logic for the reservation mode so that the early activation of
MSI interrupts checks whether:
- the device is a PCI/MSI device
- the reservation mode of the underlying irqdomain is activated
- PCI/MSI masking is globally enabled
- the PCI/MSI device uses either MSI-X, which supports masking, or
MSI with the maskbit supported.
If one of those conditions is false, then clear the reservation mode flag
in the irq data of the interrupt and invoke irq_domain_activate_irq() with
the reserve argument cleared. In the x86 vector code, clear the can_reserve
flag in the vector allocation data so a subsequent free_irq() won't create
the same situation again. The interrupt stays assigned to a real vector
until pci_disable_msi() is invoked and all allocations are undone.
Fixes: 4900be83602b ("x86/vector/msi: Switch to global reservation mode")
Reported-by: Alexandru Chirvasitu <achirvasub@gmail.com>
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexandru Chirvasitu <achirvasub@gmail.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Mikael Pettersson <mikpelinux@gmail.com>
Cc: Josh Poulson <jopoulso@microsoft.com>
Cc: Mihai Costache <v-micos@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: linux-pci@vger.kernel.org
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Simon Xiao <sixiao@microsoft.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Cc: Jork Loeser <Jork.Loeser@microsoft.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: devel@linuxdriverproject.org
Cc: KY Srinivasan <kys@microsoft.com>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Sakari Ailus <sakari.ailus@intel.com>,
Cc: linux-media@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712291406420.1899@nanos
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712291409460.1899@nanos
The 'early' argument of irq_domain_activate_irq() is actually used to
denote reservation mode. To avoid confusion, rename it before abuse
happens.
No functional change.
Fixes: 72491643469a ("genirq/irqdomain: Update irq_domain_ops.activate() signature")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandru Chirvasitu <achirvasub@gmail.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Mikael Pettersson <mikpelinux@gmail.com>
Cc: Josh Poulson <jopoulso@microsoft.com>
Cc: Mihai Costache <v-micos@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: linux-pci@vger.kernel.org
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Simon Xiao <sixiao@microsoft.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Cc: Jork Loeser <Jork.Loeser@microsoft.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: devel@linuxdriverproject.org
Cc: KY Srinivasan <kys@microsoft.com>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Sakari Ailus <sakari.ailus@intel.com>,
Cc: linux-media@vger.kernel.org
Set the new CAN_RESERVE flag when the initial reservation for an interrupt
happens. The flag is used in a subsequent patch to disable reservation mode
for a certain class of MSI devices.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Alexandru Chirvasitu <achirvasub@gmail.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Maciej W. Rozycki <macro@linux-mips.org>
Cc: Mikael Pettersson <mikpelinux@gmail.com>
Cc: Josh Poulson <jopoulso@microsoft.com>
Cc: Mihai Costache <v-micos@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: linux-pci@vger.kernel.org
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Simon Xiao <sixiao@microsoft.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Cc: Jork Loeser <Jork.Loeser@microsoft.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: devel@linuxdriverproject.org
Cc: KY Srinivasan <kys@microsoft.com>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Sakari Ailus <sakari.ailus@intel.com>,
Cc: linux-media@vger.kernel.org
Some of the APIC incarnations are operating in lowest priority delivery
mode. This worked as long as the vector management code allocated the same
vector on all possible CPUs for each interrupt.
Lowest priority delivery mode does not necessarily respect the affinity
setting and may redirect to some other online CPU. This was documented
somewhere in the old code and the conversion to single target delivery
missed to update the delivery mode of the affected APIC drivers which
results in spurious interrupts on some of the affected CPU/Chipset
combinations.
Switch the APIC drivers over to Fixed delivery mode and remove all
leftovers of lowest priority delivery mode.
Switching to Fixed delivery mode is not a problem on these CPUs because the
kernel already uses Fixed delivery mode for IPIs. The reason for this is
that th SDM explicitely forbids lowest prio mode for IPIs. The reason is
obvious: If the irq routing does not honor destination targets in lowest
prio mode then an IPI targeted at CPU1 might end up on CPU0, which would be
a fatal problem in many cases.
As a consequence of this change, the apic::irq_delivery_mode field is now
pointless, but this needs to be cleaned up in a separate patch.
Fixes: fdba46ffb4c2 ("x86/apic: Get rid of multi CPU affinity")
Reported-by: vcaputo@pengaru.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: vcaputo@pengaru.com
Cc: Pavel Machek <pavel@ucw.cz>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712281140440.1688@nanos
There are two consumers of apic=:
apic_set_verbosity() for setting the APIC debug level;
parse_apic() for registering APIC driver by hand.
X86-32 supports both of them, but sometimes, kernel issues a weird warning.
eg: when kernel was booted up with 'apic=bigsmp' in command line,
early_param would warn like that:
...
[ 0.000000] APIC Verbosity level bigsmp not recognised use apic=verbose or apic=debug
[ 0.000000] Malformed early option 'apic'
...
Wrap the warning code in CONFIG_X86_64 case to avoid this.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Cc: rdunlap@infradead.org
Cc: corbet@lwn.net
Link: https://lkml.kernel.org/r/20171204040313.24824-1-douly.fnst@cn.fujitsu.com
Commit e802a51ede91 ("x86/idt: Consolidate IDT invalidation") cleaned up
and unified the IDT invalidation that existed in a couple of places. It
changed no actual real code.
Despite not changing any actual real code, it _did_ change code generation:
by implementing the common idt_invalidate() function in
archx86/kernel/idt.c, it made the use of the function in
arch/x86/kernel/machine_kexec_32.c be a real function call rather than an
(accidental) inlining of the function.
That, in turn, exposed two issues:
- in load_segments(), we had incorrectly reset all the segment
registers, which then made the stack canary load (which gcc does
using offset of %gs) cause a trap. Instead of %gs pointing to the
stack canary, it will be the normal zero-based kernel segment, and
the stack canary load will take a page fault at address 0x14.
- to make this even harder to debug, we had invalidated the GDT just
before calling idt_invalidate(), which meant that the fault happened
with an invalid GDT, which in turn causes a triple fault and
immediate reboot.
Fix this by
(a) not reloading the special segments in load_segments(). We currently
don't do any percpu accesses (which would require %fs on x86-32) in
this area, but there's no reason to think that we might not want to
do them, and like %gs, it's pointless to break it.
(b) doing idt_invalidate() before invalidating the GDT, to keep things
at least _slightly_ more debuggable for a bit longer. Without a
IDT, traps will not work. Without a GDT, traps also will not work,
but neither will any segment loads etc. So in a very real sense,
the GDT is even more core than the IDT.
Fixes: e802a51ede91 ("x86/idt: Consolidate IDT invalidation")
Reported-and-tested-by: Alexandru Chirvasitu <achirvasub@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.LFD.2.21.1712271143180.8572@i7.lan
Commit e37e43a497d5 ("x86/mm/64: Enable vmapped stacks
(CONFIG_HAVE_ARCH_VMAP_STACK=y)") added prepare_switch_to with one extra
parameter which is not used by the function, remove it.
Signed-off-by: Rodrigo Siqueira <rodrigosiqueiramelo@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Link: https://lkml.kernel.org/r/20171215131533.hp6kqebw45o7uvsb@smtp.gmail.com
A recent commit introduced an extra merge_attr() call in the skylake
branch, which causes a memory leak.
Store the pointer to the extra allocated memory and free it at the end of
the function.
Fixes: a5df70c354c2 ("perf/x86: Only show format attributes when supported")
Reported-by: Tommi Rantala <tommi.t.rantala@nokia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Now that the LDT mapping is in a known area when PAGE_TABLE_ISOLATION is
enabled its a primary target for attacks, if a user space interface fails
to validate a write address correctly. That can never happen, right?
The SDM states:
If the segment descriptors in the GDT or an LDT are placed in ROM, the
processor can enter an indefinite loop if software or the processor
attempts to update (write to) the ROM-based segment descriptors. To
prevent this problem, set the accessed bits for all segment descriptors
placed in a ROM. Also, remove operating-system or executive code that
attempts to modify segment descriptors located in ROM.
So its a valid approach to set the ACCESS bit when setting up the LDT entry
and to map the table RO. Fixup the selftest so it can handle that new mode.
Remove the manual ACCESS bit setter in set_tls_desc() as this is now
pointless. Folded the patch from Peter Ziljstra.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add two debugfs files which allow to dump the pagetable of the current
task.
current_kernel dumps the regular page table. This is the page table which
is normally shared between kernel and user space. If kernel page table
isolation is enabled this is the kernel space mapping.
If kernel page table isolation is enabled the second file, current_user,
dumps the user space page table.
These files allow to verify the resulting page tables for page table
isolation, but even in the normal case its useful to be able to inspect
user space page tables of current for debugging purposes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ptdump_walk_pgd_level_checkwx() checks the kernel page table for WX pages,
but does not check the PAGE_TABLE_ISOLATION user space page table.
Restructure the code so that dmesg output is selected by an explicit
argument and not implicit via checking the pgd argument for !NULL.
Add the check for the user space page table.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The upcoming support for dumping the kernel and the user space page tables
of the current process would create more random files in the top level
debugfs directory.
Add a page table directory and move the existing file to it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CONFIG_PAGE_TABLE_ISOLATION is relatively new and intrusive feature that may
still have some corner cases which could take some time to manifest and be
fixed. It would be useful to have Oops messages indicate whether it was
enabled for building the kernel, and whether it was disabled during boot.
Example of fully enabled:
Oops: 0001 [#1] SMP PTI
Example of enabled during build, but disabled during boot:
Oops: 0001 [#1] SMP NOPTI
We can decide to remove this after the feature has been tested in the field
long enough.
[ tglx: Made it use boot_cpu_has() as requested by Borislav ]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eduardo Valentin <eduval@amazon.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: bpetkov@suse.de
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: jkosina@suse.cz
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This uses INVPCID to shoot down individual lines of the user mapping
instead of marking the entire user map as invalid. This
could/might/possibly be faster.
This for sure needs tlb_single_page_flush_ceiling to be redetermined;
esp. since INVPCID is _slow_.
A detailed performance analysis is available here:
https://lkml.kernel.org/r/3062e486-3539-8a1f-5724-16199420be71@intel.com
[ Peterz: Split out from big combo patch ]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Most NMI/paranoid exceptions will not in fact change pagetables and would
thus not require TLB flushing, however RESTORE_CR3 uses flushing CR3
writes.
Restores to kernel PCIDs can be NOFLUSH, because we explicitly flush the
kernel mappings and now that we track which user PCIDs need flushing we can
avoid those too when possible.
This does mean RESTORE_CR3 needs an additional scratch_reg, luckily both
sites have plenty available.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can use PCID to retain the TLBs across CR3 switches; including those now
part of the user/kernel switch. This increases performance of kernel
entry/exit at the cost of more expensive/complicated TLB flushing.
Now that we have two address spaces, one for kernel and one for user space,
we need two PCIDs per mm. We use the top PCID bit to indicate a user PCID
(just like we use the PFN LSB for the PGD). Since we do TLB invalidation
from kernel space, the existing code will only invalidate the kernel PCID,
we augment that by marking the corresponding user PCID invalid, and upon
switching back to userspace, use a flushing CR3 write for the switch.
In order to access the user_pcid_flush_mask we use PER_CPU storage, which
means the previously established SWAPGS vs CR3 ordering is now mandatory
and required.
Having to do this memory access does require additional registers, most
sites have a functioning stack and we can spill one (RAX), sites without
functional stack need to otherwise provide the second scratch register.
Note: PCID is generally available on Intel Sandybridge and later CPUs.
Note: Up until this point TLB flushing was broken in this series.
Based-on-code-from: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If changing the page tables in such a way that an invalidation of all
contexts (aka. PCIDs / ASIDs) is required, they can be actively invalidated
by:
1. INVPCID for each PCID (works for single pages too).
2. Load CR3 with each PCID without the NOFLUSH bit set
3. Load CR3 with the NOFLUSH bit set for each and do INVLPG for each address.
But, none of these are really feasible since there are ~6 ASIDs (12 with
PAGE_TABLE_ISOLATION) at the time that invalidation is required.
Instead of actively invalidating them, invalidate the *current* context and
also mark the cpu_tlbstate _quickly_ to indicate future invalidation to be
required.
At the next context-switch, look for this indicator
('invalidate_other' being set) invalidate all of the
cpu_tlbstate.ctxs[] entries.
This ensures that any future context switches will do a full flush
of the TLB, picking up the previous changes.
[ tglx: Folded more fixups from Peter ]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make VSYSCALLs work fully in PTI mode by mapping them properly to the user
space visible page tables.
[ tglx: Hide unused functions (Patch by Arnd Bergmann) ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With PTI enabled, the LDT must be mapped in the usermode tables somewhere.
The LDT is per process, i.e. per mm.
An earlier approach mapped the LDT on context switch into a fixmap area,
but that's a big overhead and exhausted the fixmap space when NR_CPUS got
big.
Take advantage of the fact that there is an address space hole which
provides a completely unused pgd. Use this pgd to manage per-mm LDT
mappings.
This has a down side: the LDT isn't (currently) randomized, and an attack
that can write the LDT is instant root due to call gates (thanks, AMD, for
leaving call gates in AMD64 but designing them wrong so they're only useful
for exploits). This can be mitigated by making the LDT read-only or
randomizing the mapping, either of which is strightforward on top of this
patch.
This will significantly slow down LDT users, but that shouldn't matter for
important workloads -- the LDT is only used by DOSEMU(2), Wine, and very
old libc implementations.
[ tglx: Cleaned it up. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>