Key points of this patch are:
- In case new SACK information is advance only type, no skb
processing below previously discovered highest point is done
- Optimize cases below highest point too since there's no need
to always go up to highest point (which is very likely still
present in that SACK), this is not entirely true though
because I'm dropping the fastpath_skb_hint which could
previously optimize those cases even better. Whether that's
significant, I'm not too sure.
Currently it will provide skipping by walking. Combined with
RB-tree, all skipping would become fast too regardless of window
size (can be done incrementally later).
Previously a number of cases in TCP SACK processing fails to
take advantage of costly stored information in sack_recv_cache,
most importantly, expected events such as cumulative ACK and new
hole ACKs. Processing on such ACKs result in rather long walks
building up latencies (which easily gets nasty when window is
huge). Those latencies are often completely unnecessary
compared with the amount of _new_ information received, usually
for cumulative ACK there's no new information at all, yet TCP
walks whole queue unnecessary potentially taking a number of
costly cache misses on the way, etc.!
Since the inclusion of highest_sack, there's a lot information
that is very likely redundant (SACK fastpath hint stuff,
fackets_out, highest_sack), though there's no ultimate guarantee
that they'll remain the same whole the time (in all unearthly
scenarios). Take advantage of this knowledge here and drop
fastpath hint and use direct access to highest SACKed skb as
a replacement.
Effectively "special cased" fastpath is dropped. This change
adds some complexity to introduce better coveraged "fastpath",
though the added complexity should make TCP behave more cache
friendly.
The current ACK's SACK blocks are compared against each cached
block individially and only ranges that are new are then scanned
by the high constant walk. For other parts of write queue, even
when in previously known part of the SACK blocks, a faster skip
function is used (if necessary at all). In addition, whenever
possible, TCP fast-forwards to highest_sack skb that was made
available by an earlier patch. In typical case, no other things
but this fast-forward and mandatory markings after that occur
making the access pattern quite similar to the former fastpath
"special case".
DSACKs are special case that must always be walked.
The local to recv_sack_cache copying could be more intelligent
w.r.t DSACKs which are likely to be there only once but that
is left to a separate patch.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is going to replace the sack fastpath hint quite soon... :-)
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the abstraction functions got added, conversion here was
made incorrectly. As a result, the skb may end up pointing
to skb which got included to the probe skb and then was freed.
For it to trigger, however, skb_transmit must fail sending as
well.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
The tcp_minshall_update() function is called in exactly one place, and is
passed an unsigned integer for the mss_len argument. Make the sign of the
argument match the sign of the passed variable in order to eliminate an
unneeded implicit type cast and a mixed sign comparison in
tcp_minshall_update().
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There's no reason to clear the sacktag skb hint when small part
of the rexmit queue changes. Account changes (if any) instead when
fragmenting/collapsing. RTO/FRTO do not touch SACKED_ACKED bits so
no need to discard SACK tag hint at all.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Makes caller side more obvious, there's no need to have
a wrapper for this oneliner!
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Previously code had IsReno/IsFack defined as macros that were
local to tcp_input.c though sack_ok field has user elsewhere too
for the same purpose. This changes them to static inlines as
preferred according the current coding style and unifies the
access to sack_ok across multiple files. Magic bitops of sack_ok
for FACK and DSACK are also abstracted to functions with
appropriate names.
Note:
- One sack_ok = 1 remains but that's self explanary, i.e., it
enables sack
- Couple of !IsReno cases are changed to tcp_is_sack
- There were no users for IsDSack => I dropped it
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
BUG_ON is an overkill. In fact, I was mislead by BUG_TRAP
severity (equals to WARN_ON) which is much lower than BUG_ON's
(that panics).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Previously TCP had a transitional state during which reno
counted segments that are already below the current window into
sacked_out, which is now prevented. In addition, re-try now
the unconditional S+L skb catching.
This approach conservatively calls just remove_sack and leaves
reset_sack() calls alone. The best solution to the whole problem
would be to first calculate the new sacked_out fully (this patch
does not move reno_sack_reset calls from original sites and thus
does not implement this). However, that would require very
invasive change to fastretrans_alert (perhaps even slicing it to
two halves). Alternatively, all callers of tcp_packets_in_flight
(i.e., users that depend on sacked_out) should be postponed
until the new sacked_out has been calculated but it isn't any
simpler alternative.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Left_out was dropped a while ago, thus leaving verifying
consistency of the "left out" as only task for the function in
question. Thus make it's name more appropriate.
In addition, it is intentionally converted to #define instead
of static inline because the location of the invariant failure
is the most important thing to have if this ever triggers. I
think it would have been helpful e.g. in this case where the
location of the failure point had to be based on some quesswork:
http://lkml.org/lkml/2007/5/2/464
...Luckily the guesswork seems to have proved to be correct.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
tp->left_out got removed but nothing came to replace it back
then (users just did addition by themselves), so add function
for users now.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is easily calculable when needed and user are not that many
after all.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
No other users exist for tcp_ecn.h. Very few things remain in
tcp.h, for most TCP ECN functions callers reside within a
single .c file and can be placed there.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based upon a report and initial patch by Peter Lieven.
tcp4_md5sig_key and tcp6_md5sig_key need to start with
the exact same members as tcp_md5sig_key. Because they
are both cast to that type by tcp_v{4,6}_md5_do_lookup().
Unfortunately tcp{4,6}_md5sig_key use a u16 for the key
length instead of a u8, which is what tcp_md5sig_key
uses. This just so happens to work by accident on
little-endian, but on big-endian it doesn't.
Instead of casting, just place tcp_md5sig_key as the first member of
the address-family specific structures, adjust the access sites, and
kill off the ugly casts.
Signed-off-by: David S. Miller <davem@davemloft.net>
As discovered by Evegniy Polyakov, if we try to sendmsg after
a connection reset, we can do incredibly stupid things.
The core issue is that inet_sendmsg() tries to autobind the
socket, but we should never do that for TCP. Instead we should
just go straight into TCP's sendmsg() code which will do all
of the necessary state and pending socket error checks.
TCP's sendpage already directly vectors to tcp_sendpage(), so this
merely brings sendmsg() in line with that.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch changes the API for the callback that is done after an ACK is
received. It solves a couple of issues:
* Some congestion controls want higher resolution value of RTT
(controlled by TCP_CONG_RTT_SAMPLE flag). These don't really want a ktime, but
all compute a RTT in microseconds.
* Other congestion control could use RTT at jiffies resolution.
To keep API consistent the units should be the same for both cases, just the
resolution should change.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
None of the existing TCP congestion controls use the rtt value pased
in the ca_ops->cong_avoid interface. Which is lucky because seq_rtt
could have been -1 when handling a duplicate ack.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_out_of_resources() and tcp_close() perform the
same checking of number of orphan sockets. Move this
code into common place.
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
TCP has a transitional state when SACK is not in use during
which this invariant is temporarily broken. Without SACK,
tcp_clean_rtx_queue does not decrement sacked_out. Therefore
calls to tcp_sync_left_out before sacked_out is again
corrected by tcp_fastretrans_alert can trigger this trap as
sacked_out still has couple of segments that are already out
of window.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a corner case where less than MSS sized new data thingie
is awaiting in the send queue. For F-RTO to work correctly, a
new data segment must be sent at certain point or F-RTO cannot
be used at all. RFC4138 allows overriding of Nagle at that
point.
Implementation uses frto_counter states 2 and 3 to distinguish
when Nagle override is needed.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
SACKED_ACKED and LOST are mutually exclusive with SACK, thus
having their sum larger than packets_out is bug with SACK.
Eventually these bugs trigger traps in the tcp_clean_rtx_queue
with SACK but it's much more informative to do this here.
Non-SACK TCP, however, could get more than packets_out duplicate
ACKs which each increment sacked_out, so it makes sense to do
this kind of limitting for non-SACK TCP but not for SACK enabled
one. Perhaps the author had the opposite in mind but did the
logic accidently wrong way around? Anyway, the sacked_out
incrementer code for non-SACK already deals this issue before
calling sync_left_out so this trapping can be done
unconditionally.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Do some simple changes to make congestion control API faster/cleaner.
* use ktime_t rather than timeval
* merge rtt sampling into existing ack callback
this means one indirect call versus two per ack.
* use flags bits to store options/settings
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The function is quite big and has several call sites and nothing
to collapse by compiler optimization on inlining.
Besides it's nicer to read in a in .c file.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a transmitted packet is looped back directly, CHECKSUM_PARTIAL
maps to the semantics of CHECKSUM_UNNECESSARY. Therefore we should
treat it as such in the stack.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This allows the write queue implementation to be changed,
for example, to one which allows fast interval searching.
Signed-off-by: David S. Miller <davem@davemloft.net>
Where appropriate, convert references to xtime.tv_sec to the
get_seconds() helper function.
Signed-off-by: James Morris <jmorris@namei.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
New sysctl tcp_frto_response is added to select amongst these
responses:
- Rate halving based; reuses CA_CWR state (default)
- Very conservative; used to be the only one available (=1)
- Undo cwr; undoes ssthresh and cwnd reductions (=2)
The response with rate halving requires a new parameter to
tcp_enter_cwr because FRTO has already reduced ssthresh and
doing a second reduction there has to be prevented. In addition,
to keep things nice on 80 cols screen, a local variable was
added.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This interpretation comes from RFC4138:
"If the sender implements some loss recovery algorithm other
than Reno or NewReno [FHG04], the F-RTO algorithm SHOULD
NOT be entered when earlier fast recovery is underway."
I think the RFC means to say (especially in the light of
Appendix B) that ...recovery is underway (not just fast recovery)
or was underway when it was interrupted by an earlier (F-)RTO
that hasn't yet been resolved (snd_una has not advanced enough).
Thus, my interpretation is that whenever TCP has ever
retransmitted other than head, basic version cannot be used
because then the order assumptions which are used as FRTO basis
do not hold.
NewReno has only the head segment retransmitted at a time.
Therefore, walk up to the segment that has not been SACKed, if
that segment is not retransmitted nor anything before it, we know
for sure, that nothing after the non-SACKed segment should be
either. This assumption is valid because TCPCB_EVER_RETRANS does
not leave holes but each non-SACKed segment is rexmitted
in-order.
Check for retrans_out > 1 avoids more expensive walk through the
skb list, as we can know the result beforehand: F-RTO will not be
allowed.
SACKed skb can turn into non-SACked only in the extremely rare
case of SACK reneging, in this case we might fail to detect
retransmissions if there were them for any other than head. To
get rid of that feature, whole rexmit queue would have to be
walked (always) or FRTO should be prevented when SACK reneging
happens. Of course RTO should still trigger after reneging which
makes this issue even less likely to show up. And as long as the
response is as conservative as it's now, nothing bad happens even
then.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
The tcphdr struct passed to tcp_v4_check is not used, the following
patch removes it from the parameter list.
This adds the netfilter modifications missing in the patch I sent
for rc3-mm1.
Signed-off-by: Frederik Deweerdt <frederik.deweerdt@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts the new (unambiguous) definition of the TCP `before'
relation. As pointed out in an example by Herbert Xu, there is
existing code which implicitly requires the old definition in order
to work correctly.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
While looking at DCCP sequence numbers, I stumbled over a problem with
the following definition of before in tcp.h:
static inline int before(__u32 seq1, __u32 seq2)
{
return (__s32)(seq1-seq2) < 0;
}
Problem: This definition suffers from an an ambiguity, i.e. always
before(a, (a + 2^31) % 2^32)) = 1
before((a + 2^31) % 2^32), a) = 1
In text: when the difference between a and b amounts to 2^31,
a is always considered `before' b, the function can not decide.
The reason is that implicitly 0 is `before' 1 ... 2^31-1 ... 2^31
Solution: There is a simple fix, by defining before in such a way that
0 is no longer `before' 2^31, i.e. 0 `before' 1 ... 2^31-1
By not using the middle between 0 and 2^32, before can be made
unambiguous.
This is achieved by testing whether seq2-seq1 > 0 (using signed
32-bit arithmetic).
I attach a patch to codify this. Also the `after' relation is basically
a redefinition of `before', it is now defined as a macro after before.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow normal users to only choose among a restricted set of congestion
control choices. The default is reno and what ever has been configured
as default. But the policy can be changed by administrator at any time.
For example, to allow any choice:
cp /proc/sys/net/ipv4/tcp_available_congestion_control \
/proc/sys/net/ipv4/tcp_allowed_congestion_control
Signed-off-by: Stephen Hemminger <shemminger@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Create /proc/sys/net/ipv4/tcp_available_congestion_control
that reflects currently available TCP choices.
Signed-off-by: Stephen Hemminger <shemminger@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
We currently allocate a fixed size (TCP_SYNQ_HSIZE=512) slots hash table for
each LISTEN socket, regardless of various parameters (listen backlog for
example)
On x86_64, this means order-1 allocations (might fail), even for 'small'
sockets, expecting few connections. On the contrary, a huge server wanting a
backlog of 50000 is slowed down a bit because of this fixed limit.
This patch makes the sizing of listen hash table a dynamic parameter,
depending of :
- net.core.somaxconn tunable (default is 128)
- net.ipv4.tcp_max_syn_backlog tunable (default : 256, 1024 or 128)
- backlog value given by user application (2nd parameter of listen())
For large allocations (bigger than PAGE_SIZE), we use vmalloc() instead of
kmalloc().
We still limit memory allocation with the two existing tunables (somaxconn &
tcp_max_syn_backlog). So for standard setups, this patch actually reduce RAM
usage.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Refer to RFC2012, tcpAttemptFails is defined as following:
tcpAttemptFails OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times TCP connections have made a direct
transition to the CLOSED state from either the SYN-SENT
state or the SYN-RCVD state, plus the number of times TCP
connections have made a direct transition to the LISTEN
state from the SYN-RCVD state."
::= { tcp 7 }
When I lookup into RFC793, I found that the state change should occured
under following condition:
1. SYN-SENT -> CLOSED
a) Received ACK,RST segment when SYN-SENT state.
2. SYN-RCVD -> CLOSED
b) Received SYN segment when SYN-RCVD state(came from LISTEN).
c) Received RST segment when SYN-RCVD state(came from SYN-SENT).
d) Received SYN segment when SYN-RCVD state(came from SYN-SENT).
3. SYN-RCVD -> LISTEN
e) Received RST segment when SYN-RCVD state(came from LISTEN).
In my test, those direct state transition can not be counted to
tcpAttemptFails.
Signed-off-by: Wei Yongjun <yjwei@nanjing-fnst.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Certain subsystems in the stack (e.g., netfilter) can break the partial
checksum on GSO packets. Until they're fixed, this patch allows this to
work by recomputing the partial checksums through the GSO mechanism.
Once they've all been converted to update the partial checksum instead of
clearing it, this workaround can be removed.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch generalises the TSO-specific bits from sk_setup_caps by adding
the sk_gso_type member to struct sock. This makes sk_setup_caps generic
so that it can be used by TCPv6 or UFO.
The only catch is that whoever uses this must provide a GSO implementation
for their protocol which I think is a fair deal :) For now UFO continues to
live without a GSO implementation which is OK since it doesn't use the sock
caps field at the moment.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>