Because thermal zone handling by the thermal core is started from
scratch during resume from system-wide suspend, prevent the debug
code from extending mitigation episodes beyond that point by ending
the mitigation episode currently in progress, if any, for each thermal
zone.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
If cdev_dt_seq_show() runs before the first state transition of a cooling
device, it will not print any state residency information for it, even
though it might be reasonably expected to print residency information for
the initial state of the cooling device.
For this reason, rearrange the code to get the initial state of a cooling
device at the registration time and pass it to thermal_debug_cdev_add(),
so that the latter can create a duration record for that state which will
allow cdev_dt_seq_show() to print its residency information.
Fixes: 755113d767 ("thermal/debugfs: Add thermal cooling device debugfs information")
Reported-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Rename thermal_debug_update_temp() to thermal_debug_update_trip_stats()
which is a better match for the purpose of the function.
No functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
The mitigation episodes are recorded. A mitigation episode happens
when the first trip point is crossed the way up and then the way
down. During this episode other trip points can be crossed also and
are accounted for this mitigation episode. The interesting information
is the average temperature at the trip point, the undershot and the
overshot. The standard deviation of the mitigated temperature will be
added later.
The thermal debugfs directory structure tries to stay consistent with
the sysfs one but in a very simplified way:
thermal/
`-- thermal_zones
|-- 0
| `-- mitigations
`-- 1
`-- mitigations
The content of the mitigations file has the following format:
,-Mitigation at 349988258us, duration=130136ms
| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |
| 0 | passive | 65000 | 2000 | 130136 | 68227 | 62500 | 75625 |
| 1 | passive | 75000 | 2000 | 104209 | 74857 | 71666 | 77500 |
,-Mitigation at 272451637us, duration=75000ms
| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |
| 0 | passive | 65000 | 2000 | 75000 | 68561 | 62500 | 75000 |
| 1 | passive | 75000 | 2000 | 60714 | 74820 | 70555 | 77500 |
,-Mitigation at 238184119us, duration=27316ms
| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |
| 0 | passive | 65000 | 2000 | 27316 | 73377 | 62500 | 75000 |
| 1 | passive | 75000 | 2000 | 19468 | 75284 | 69444 | 77500 |
,-Mitigation at 39863713us, duration=136196ms
| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |
| 0 | passive | 65000 | 2000 | 136196 | 73922 | 62500 | 75000 |
| 1 | passive | 75000 | 2000 | 91721 | 74386 | 69444 | 78125 |
More information for a better understanding of the thermal behavior
will be added after. The idea is to give detailed statistics
information about the undershots and overshots, the temperature speed,
etc... As all the information in a single file is too much, the idea
would be to create a directory named with the mitigation timestamp
where all data could be added.
Please note this code is immune against trip ordering but not against
a trip temperature change while a mitigation is happening. However,
this situation should be extremely rare, perhaps not happening and we
might question ourselves if something should be done in the core
framework for other components first.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
[ rjw: White space fixups, rebase ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The thermal framework does not have any debug information except a
sysfs stat which is a bit controversial. This one allocates big chunks
of memory for every cooling devices with a high number of states and
could represent on some systems in production several megabytes of
memory for just a portion of it. As the sysfs is limited to a page
size, the output is not exploitable with large data array and gets
truncated.
The patch provides the same information than sysfs except the
transitions are dynamically allocated, thus they won't show more
events than the ones which actually occurred. There is no longer a
size limitation and it opens the field for more debugging information
where the debugfs is designed for, not sysfs.
The thermal debugfs directory structure tries to stay consistent with
the sysfs one but in a very simplified way:
thermal/
-- cooling_devices
|-- 0
| |-- clear
| |-- time_in_state_ms
| |-- total_trans
| `-- trans_table
|-- 1
| |-- clear
| |-- time_in_state_ms
| |-- total_trans
| `-- trans_table
|-- 2
| |-- clear
| |-- time_in_state_ms
| |-- total_trans
| `-- trans_table
|-- 3
| |-- clear
| |-- time_in_state_ms
| |-- total_trans
| `-- trans_table
`-- 4
|-- clear
|-- time_in_state_ms
|-- total_trans
`-- trans_table
The content of the files in the cooling devices directory is the same
as the sysfs one except for the trans_table which has the following
format:
Transition Hits
1->0 246
0->1 246
2->1 632
1->2 632
3->2 98
2->3 98
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
[ rjw: White space fixups, rebase ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>