9 Commits

Author SHA1 Message Date
Christoph Hellwig
075fe10286 xfs: split xfs_sync_inodes
xfs_sync_inodes is used to write back either file data or inode metadata.
In general we always do these separately, except for one fishy case in
xfs_fs_put_super that does both.  So separate xfs_sync_inodes into
separate xfs_sync_data and xfs_sync_attr functions.  In xfs_fs_put_super
we first call the data sync and then the attr sync as that was the previous
order.  The moved log force in that path doesn't make a difference because
we will force the log again as part of the real unmount process.

The filesystem readonly checks are not performed by the new function but
instead moved into the callers, given that most callers alredy have it
further up in the stack.  Also add debug checks that we do not pass in
incorrect flags in the new xfs_sync_data and xfs_sync_attr function and
fix the one place that did pass in a wrong flag.

Also remove a comment mentioning xfs_sync_inodes that has been incorrect
for a while because we always take either the iolock or ilock in the
sync path these days.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
2009-06-08 15:35:48 +02:00
Dave Chinner
6cc87645e2 xfs: factor out code to find the longest free extent in the AG
Signed-off-by: Dave Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2009-03-16 08:29:46 +01:00
Lachlan McIlroy
5695ef46ef [XFS] Use KM_NOFS for debug trace buffers
Use KM_NOFS to prevent recursion back into the filesystem which can cause
deadlocks.

In the case of xfs_iread() we hold the lock on the inode cluster buffer
while allocating memory for the trace buffers. If we recurse back into XFS
to flush data that may require a transaction to allocate extents which
needs log space. This can deadlock with the xfsaild thread which can't
push the tail of the log because it is trying to get the inode cluster
buffer lock.

SGI-PV: 981498

SGI-Modid: xfs-linux-melb:xfs-kern:31838a

Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
2008-08-13 16:51:57 +10:00
Christoph Hellwig
9f8868ffb3 [XFS] streamline init/exit path
Currently the xfs module init/exit code is a mess. It's farmed out over a
lot of function with very little error checking. This patch makes sure we
propagate all initialization failures properly and clean up after them.
Various runtime initializations are replaced with compile-time
initializations where possible to make this easier. The exit path is
similarly consolidated.

There's now split out function to create/destroy the kmem zones and
alloc/free the trace buffers. I've also changed the ktrace allocations to
KM_MAYFAIL and handled errors resulting from that.

And yes, we really should replace the XFS_*_TRACE ifdefs with a single
XFS_TRACE..

SGI-PV: 976035

SGI-Modid: xfs-linux-melb:xfs-kern:31354a

Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-07-28 16:59:25 +10:00
Harvey Harrison
34a622b2e1 [XFS] replace remaining __FUNCTION__ occurrences
__FUNCTION__ is gcc-specific, use __func__

SGI-PV: 976035
SGI-Modid: xfs-linux-melb:xfs-kern:30775a

Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-04-18 11:51:26 +10:00
David Chinner
a8272ce0c1 [XFS] Fix up sparse warnings.
These are mostly locking annotations, marking things static, casts where
needed and declaring stuff in header files.

SGI-PV: 971186
SGI-Modid: xfs-linux-melb:xfs-kern:30002a

Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-07 18:14:38 +11:00
Eric Sandeen
bcc7b445ef [XFS] fix filestreams on 32-bit boxes
xfs_filestream_mount() sets up an mru cache with:
  err = xfs_mru_cache_create(&mp->m_filestream, lifetime, grp_count,
  (xfs_mru_cache_free_func_t)xfs_fstrm_free_func);
but that cast is causing problems...
  typedef void (*xfs_mru_cache_free_func_t)(unsigned long, void*);
but:
  void xfs_fstrm_free_func( xfs_ino_t ino, fstrm_item_t *item)
so on a 32-bit box, it's casting (32, 32) args into (64, 32) and I assume
it's getting garbage for *item, which subsequently causes an explosion.
With this change the filestreams xfsqa tests don't oops on my 32-bit box.

SGI-PV: 967795
SGI-Modid: xfs-linux-melb:xfs-kern:29510a

Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-09-20 19:40:19 +10:00
David Chinner
65de556756 [XFS] On-demand reaping of the MRU cache
Instead of running the mru cache reaper all the time based on a timeout,
we should only run it when the cache has active objects. This allows CPUs
to sleep when there is no activity rather than be woken repeatedly just to
check if there is anything to do.

SGI-PV: 968554
SGI-Modid: xfs-linux-melb:xfs-kern:29305a

Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-09-17 16:42:02 +10:00
David Chinner
2a82b8be8a [XFS] Concurrent Multi-File Data Streams
In media spaces, video is often stored in a frame-per-file format. When
dealing with uncompressed realtime HD video streams in this format, it is
crucial that files do not get fragmented and that multiple files a placed
contiguously on disk.

When multiple streams are being ingested and played out at the same time,
it is critical that the filesystem does not cross the streams and
interleave them together as this creates seek and readahead cache miss
latency and prevents both ingest and playout from meeting frame rate
targets.

This patch set creates a "stream of files" concept into the allocator to
place all the data from a single stream contiguously on disk so that RAID
array readahead can be used effectively. Each additional stream gets
placed in different allocation groups within the filesystem, thereby
ensuring that we don't cross any streams. When an AG fills up, we select a
new AG for the stream that is not in use.

The core of the functionality is the stream tracking - each inode that we
create in a directory needs to be associated with the directories' stream.
Hence every time we create a file, we look up the directories' stream
object and associate the new file with that object.

Once we have a stream object for a file, we use the AG that the stream
object point to for allocations. If we can't allocate in that AG (e.g. it
is full) we move the entire stream to another AG. Other inodes in the same
stream are moved to the new AG on their next allocation (i.e. lazy
update).

Stream objects are kept in a cache and hold a reference on the inode.
Hence the inode cannot be reclaimed while there is an outstanding stream
reference. This means that on unlink we need to remove the stream
association and we also need to flush all the associations on certain
events that want to reclaim all unreferenced inodes (e.g. filesystem
freeze).

SGI-PV: 964469
SGI-Modid: xfs-linux-melb:xfs-kern:29096a

Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
2007-07-14 15:40:53 +10:00