When we exceed quota limit in writing, we will free
some reserved extent when we need to drop but not free
account in qgroup. It means, each time we exceed quota
in writing, there will be some remain space in qg->reserved
we can not use any more. If things go on like this, the
all space will be ate up.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reproduce:
while true; do
dd if=/dev/zero of=/mnt/btrfs/file count=[75% fs_size]
rm /mnt/btrfs/file
done
Then we can see above loop failed on NO_SPACE.
It it long-term problem since very beginning, because delayed-iput
after rm are not run.
We already have commit_transaction() in alloc_space code, but it is
not triggered in above case.
This patch trigger commit_transaction() to run delayed-iput and
reflash pinned-space to to make write success.
It is based on previous fix of delayed-iput in commit_transaction(),
need to be applied on top of:
btrfs: Fix NO_SPACE bug caused by delayed-iput
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
while true; do
dd if=/dev/zero of=/btrfs_dir/file count=[fs_size * 75%]
rm /btrfs_dir/file
sync
done
And we'll see dd failed because btrfs return NO_SPACE.
Reason:
Normally, btrfs_commit_transaction() call btrfs_run_delayed_iputs()
in end to free fs space for next write, but sometimes it hadn't
done work on time, because btrfs-cleaner thread get delayed-iputs
from list before, but do iput() after next write.
This is log:
[ 2569.050776] comm=btrfs-cleaner func=btrfs_evict_inode() begin
[ 2569.084280] comm=sync func=btrfs_commit_transaction() call btrfs_run_delayed_iputs()
[ 2569.085418] comm=sync func=btrfs_commit_transaction() done btrfs_run_delayed_iputs()
[ 2569.087554] comm=sync func=btrfs_commit_transaction() end
[ 2569.191081] comm=dd begin
[ 2569.790112] comm=dd func=__btrfs_buffered_write() ret=-28
[ 2569.847479] comm=btrfs-cleaner func=add_pinned_bytes() 0 + 32677888 = 32677888
[ 2569.849530] comm=btrfs-cleaner func=add_pinned_bytes() 32677888 + 23834624 = 56512512
...
[ 2569.903893] comm=btrfs-cleaner func=add_pinned_bytes() 943976448 + 21762048 = 965738496
[ 2569.908270] comm=btrfs-cleaner func=btrfs_evict_inode() end
Fix:
Make btrfs_commit_transaction() wait current running btrfs-cleaner's
delayed-iputs() done in end.
Test:
Use script similar to above(more complex),
before patch:
7 failed in 100 * 20 loop.
after patch:
0 failed in 100 * 20 loop.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
space_info's value calculation is some complex and easy to cause
bug, add WARN_ON() to help debug.
Changelog v1->v2:
Put WARN_ON()s under the ENOSPC_DEBUG mount option.
Suggested by: David Sterba <dsterba@suse.cz>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Bug1:
space_info->bytes_readonly was set to very large(negative) value in
btrfs_remove_block_group().
Reason:
Current code set block_group_cache->pinned = 0 in btrfs_delete_unused_bgs(),
but above space was not counted to space_info->bytes_readonly.
Then in btrfs_remove_block_group():
block_group->space_info->bytes_readonly -= block_group->key.offset;
We can see following value in trace:
btrfs_remove_block_group: pid=2677 comm=btrfs-cleaner WARNING: bytes_readonly=12582912, key.offset=134217728
Bug2:
space_info->total_bytes_pinned grow to value larger than fs size.
In a 1.2G fs, we can get following trace log:
at first:
ZL_DEBUG: add_pinned_bytes: pid=2710 comm=sync change total_bytes_pinned flags=1 869793792 + 95944704 = 965738496
after some op:
ZL_DEBUG: add_pinned_bytes: pid=2770 comm=sync change total_bytes_pinned flags=1 1780178944 + 95944704 = 1876123648
after some op:
ZL_DEBUG: add_pinned_bytes: pid=3193 comm=sync change total_bytes_pinned flags=1 2924568576 + 95551488 = 3020120064
...
Reason:
Similar to bug1, we also need to adjust space_info->total_bytes_pinned
in above code block.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we have any chance to make a successful write, we should not give up.
This patch adjust commit-transaction condition from:
pinned >= wanted
to
left + pinned >= wanted
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Old code bypass commit transaction when we don't have enough
pinned space, but another case is there exist freed bgs in current
transction, it have possibility to make alloc_chunk success.
This patch modify the condition to:
if (have_free_bg || have_pinned_space) commit_transaction()
Confirmed above action by printk before and after patch.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Near the end of close_ctree, we're calling btrfs_free_block_rsv
to free up the orphan rsv. The problem is this call updates the
space_info, which has already been freed.
This adds a new __ function that directly calls kfree instead of trying
to update the space infos.
Signed-off-by: Chris Mason <clm@fb.com>
We loop through all of the dirty block groups during commit and write
the free space cache. In order to make sure the cache is currect, we do
this while no other writers are allowed in the commit.
If a large number of block groups are dirty, this can introduce long
stalls during the final stages of the commit, which can block new procs
trying to change the filesystem.
This commit changes the block group cache writeout to take appropriate
locks and allow it to run earlier in the commit. We'll still have to
redo some of the block groups, but it means we can get most of the work
out of the way without blocking the entire FS.
Signed-off-by: Chris Mason <clm@fb.com>
Block group cache writeout is currently waiting on the pages for each
block group cache before moving on to writing the next one. This commit
switches things around to send down all the caches and then wait on them
in batches.
The end result is much faster, since we're keeping the disk pipeline
full.
Signed-off-by: Chris Mason <clm@fb.com>
We're triggering a huge number of commits from
btrfs_async_reclaim_metadata_space. These aren't really requried,
because everyone calling the async reclaim code is going to end up
triggering a commit on their own.
Signed-off-by: Chris Mason <clm@fb.com>
When truncate starts, it allocates some space in the block reserves so
that we'll have enough to update metadata along the way.
For very large files, we can easily go through all of that space as we
loop through the extents. This changes truncate to refill the space
reservation as it progresses through the file.
Signed-off-by: Chris Mason <clm@fb.com>
As we delete large extents, we end up doing huge amounts of COW in order
to delete the corresponding crcs. This adds accounting so that we keep
track of that space and flushing of delayed refs so that we don't build
up too much delayed crc work.
This helps limit the delayed work that must be done at commit time and
tries to avoid ENOSPC aborts because the crcs eat all the global
reserves.
Signed-off-by: Chris Mason <clm@fb.com>
While committing a transaction we free the log roots before we write the
new super block. Freeing the log roots implies marking the disk location
of every node/leaf (metadata extent) as pinned before the new super block
is written. This is to prevent the disk location of log metadata extents
from being reused before the new super block is written, otherwise we
would have a corrupted log tree if before the new super block is written
a crash/reboot happens and the location of any log tree metadata extent
ended up being reused and rewritten.
Even though we pinned the log tree's metadata extents, we were issuing a
discard against them if the fs was mounted with the -o discard option,
resulting in corruption of the log tree if a crash/reboot happened before
writing the new super block - the next time the fs was mounted, during
the log replay process we would find nodes/leafs of the log btree with
a content full of zeroes, causing the process to fail and require the
use of the tool btrfs-zero-log to wipeout the log tree (and all data
previously fsynced becoming lost forever).
Fix this by not doing a discard when pinning an extent. The discard will
be done later when it's safe (after the new super block is committed) at
extent-tree.c:btrfs_finish_extent_commit().
Fixes: e688b7252f (Btrfs: fix extent pinning bugs in the tree log)
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"Most of these are fixing extent reservation accounting, or corners
with tree writeback during commit.
Josef's set does add a test, which isn't strictly a fix, but it'll
keep us from making this same mistake again"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix outstanding_extents accounting in DIO
Btrfs: add sanity test for outstanding_extents accounting
Btrfs: just free dummy extent buffers
Btrfs: account merges/splits properly
Btrfs: prepare block group cache before writing
Btrfs: fix ASSERT(list_empty(&cur_trans->dirty_bgs_list)
Btrfs: account for the correct number of extents for delalloc reservations
Btrfs: fix merge delalloc logic
Btrfs: fix comp_oper to get right order
Btrfs: catch transaction abortion after waiting for it
btrfs: fix sizeof format specifier in btrfs_check_super_valid()
I introduced a regression wrt outstanding_extents accounting. These are tricky
areas that aren't easily covered by xfstests as we could change MAX_EXTENT_SIZE
at any time. So add sanity tests to cover the various conditions that are
tricky in order to make sure we don't introduce regressions in the future.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Writing the block group cache will modify the extent tree quite a bit because it
truncates the old space cache and pre-allocates new stuff. To try and cut down
on the churn lets do the setup dance first, then later on hopefully we can avoid
looping with newly dirtied roots. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Direct IO can easily pass in an buffer that is greater than
BTRFS_MAX_EXTENT_SIZE, so take this into account when reserving extents in the
delalloc reservation code. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"Outside of misc fixes, Filipe has a few fsync corners and we're
pulling in one more of Josef's fixes from production use here"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
Btrfs: fix data loss in the fast fsync path
Btrfs: remove extra run_delayed_refs in update_cowonly_root
Btrfs: incremental send, don't rename a directory too soon
btrfs: fix lost return value due to variable shadowing
Btrfs: do not ignore errors from btrfs_lookup_xattr in do_setxattr
Btrfs: fix off-by-one logic error in btrfs_realloc_node
Btrfs: add missing inode update when punching hole
Btrfs: abort the transaction if we fail to update the free space cache inode
Btrfs: fix fsync race leading to ordered extent memory leaks
The divisor is derived from nodesize or PAGE_SIZE, fits into 32bit type.
Get rid of a few more do_div instances.
Signed-off-by: David Sterba <dsterba@suse.cz>
Switch to div_u64 if the divisor is a numeric constant or sum of
sizeof()s. We can remove a few instances of do_div that has the hidden
semtantics of changing the 1st argument.
Small power-of-two divisors are converted to bitshifts, large values are
kept intact for clarity.
Signed-off-by: David Sterba <dsterba@suse.cz>
Our gluster boxes were hitting a problem where they'd run out of space when
updating the block group cache and therefore wouldn't be able to update the free
space inode. This is a problem because this is how we invalidate the cache and
protect ourselves from errors further down the stack, so if this fails we have
to abort the transaction so we make sure we don't end up with stale free space
cache. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"This pull is mostly cleanups and fixes:
- The raid5/6 cleanups from Zhao Lei fixup some long standing warts
in the code and add improvements on top of the scrubbing support
from 3.19.
- Josef has round one of our ENOSPC fixes coming from large btrfs
clusters here at FB.
- Dave Sterba continues a long series of cleanups (thanks Dave), and
Filipe continues hammering on corner cases in fsync and others
This all was held up a little trying to track down a use-after-free in
btrfs raid5/6. It's not clear yet if this is just made easier to
trigger with this pull or if its a new bug from the raid5/6 cleanups.
Dave Sterba is the only one to trigger it so far, but he has a
consistent way to reproduce, so we'll get it nailed shortly"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (68 commits)
Btrfs: don't remove extents and xattrs when logging new names
Btrfs: fix fsync data loss after adding hard link to inode
Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group
Btrfs: account for large extents with enospc
Btrfs: don't set and clear delalloc for O_DIRECT writes
Btrfs: only adjust outstanding_extents when we do a short write
btrfs: Fix out-of-space bug
Btrfs: scrub, fix sleep in atomic context
Btrfs: fix scheduler warning when syncing log
Btrfs: Remove unnecessary placeholder in btrfs_err_code
btrfs: cleanup init for list in free-space-cache
btrfs: delete chunk allocation attemp when setting block group ro
btrfs: clear bio reference after submit_one_bio()
Btrfs: fix scrub race leading to use-after-free
Btrfs: add missing cleanup on sysfs init failure
Btrfs: fix race between transaction commit and empty block group removal
btrfs: add more checks to btrfs_read_sys_array
btrfs: cleanup, rename a few variables in btrfs_read_sys_array
btrfs: add checks for sys_chunk_array sizes
btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize
...
int alloc_chunk is never used in this function, remove it.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
This is the 3rd independent patch of a larger project to cleanup btrfs's
internal usage of btrfs_root. Many functions take btrfs_root only to
grab the fs_info struct.
By requiring a root these functions cause programmer overhead. That
these functions can accept any valid root is not obvious until
inspection.
This patch reduces the specificity of such functions to accept the
fs_info directly.
These patches can be applied independently and thus are not being
submitted as a patch series. There should be about 26 patches by the
project's completion. Each patch will cleanup between 1 and 34 functions
apiece. Each patch covers a single file's functions.
This patch affects the following function(s):
1) csum_tree_block
2) csum_dirty_buffer
3) check_tree_block_fsid
4) btrfs_find_tree_block
5) clean_tree_block
Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
On our gluster boxes we stream large tar balls of backups onto our fses. With
160gb of ram this means we get really large contiguous ranges of dirty data, but
the way our ENOSPC stuff works is that as long as it's contiguous we only hold
metadata reservation for one extent. The problem is we limit our extents to
128mb, so we'll end up with at least 800 extents so our enospc accounting is
quite a bit lower than what we need. To keep track of this make sure we
increase outstanding_extents for every multiple of the max extent size so we can
be sure to have enough reserved metadata space. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Below test will fail currently:
mkfs.ext4 -F /dev/sda
btrfs-convert /dev/sda
mount /dev/sda /mnt
btrfs device add -f /dev/sdb /mnt
btrfs balance start -v -dconvert=raid1 -mconvert=raid1 /mnt
The reason is there are some block groups with usage 0, but the whole
disk hasn't free space to allocate new chunk, so we even can't set such
block group readonly. This patch deletes the chunk allocation when
setting block group ro. For META, we already have reserve. But for
SYSTEM, we don't have, so the check_system_chunk is still required.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
"run_most" is not used anymore.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
1: ref_count is simple than current RBIO_HOLD_BBIO_MAP_BIT flag
to keep btrfs_bio's memory in raid56 recovery implement.
2: free function for bbio will make code clean and flexible, plus
forced data type checking in compile.
Changelog v1->v2:
Rename following by David Sterba's suggestion:
put_btrfs_bio() -> btrfs_put_bio()
get_btrfs_bio() -> btrfs_get_bio()
bbio->ref_count -> bbio->refs
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Very often our extent buffer's header generation doesn't match the current
transaction's id or it is also referenced by other trees (snapshots), so
we don't need the corresponding block group cache object. Therefore only
search for it if we are going to use it, so we avoid an unnecessary search
in the block groups rbtree (and acquiring and releasing its spinlock).
Freeing a tree block is performed when COWing or deleting a node/leaf,
which implies we are holding the node/leaf's parent node lock, therefore
reducing the amount of time spent when freeing a tree block helps reducing
the amount of time we are holding the parent node's lock.
For example, for a run of xfstests/generic/083, the block group cache
object was needed only 682 times for a total of 226691 calls to free
a tree block.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently any time we try to update the block groups on disk we will walk _all_
block groups and check for the ->dirty flag to see if it is set. This function
can get called several times during a commit. So if you have several terabytes
of data you will be a very sad panda as we will loop through _all_ of the block
groups several times, which makes the commit take a while which slows down the
rest of the file system operations.
This patch introduces a dirty list for the block groups that we get added to
when we dirty the block group for the first time. Then we simply update any
block groups that have been dirtied since the last time we called
btrfs_write_dirty_block_groups. This allows us to clean up how we write the
free space cache out so it is much cleaner. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When removing a block group we were deleting it from its space_info's
ro_bgs list without the correct protection - the space info's spinlock.
Fix this by doing the list delete while holding the spinlock of the
corresponding space info, which is the correct lock for any operation
on that list.
This issue was introduced in the 3.19 kernel by the following change:
Btrfs: move read only block groups onto their own list V2
commit 633c0aad4c
I ran into a kernel crash while a task was running statfs, which iterates
the space_info->ro_bgs list while holding the space info's spinlock,
and another task was deleting it from the same list, without holding that
spinlock, as part of the block group remove operation (while running the
function btrfs_remove_block_group). This happened often when running the
stress test xfstests/generic/038 I recently made.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We shouldn't BUG_ON() if there is corruption. I hit this while testing my block
group patch and the abort worked properly. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Finally it's clear that the requested blocksize is always equal to
nodesize, with one exception, the superblock.
Superblock has fixed size regardless of the metadata block size, but
uses the same helpers to initialize sys array/chunk tree and to work
with the chunk items. So it pretends to be an extent_buffer for a
moment, btrfs_read_sys_array is full of special cases, we're adding one
more.
Signed-off-by: David Sterba <dsterba@suse.cz>
It doesn't do anything special, it just calls btrfs_discard_extent(),
so just remove it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we abort a transaction we iterate over all the ranges marked as dirty
in fs_info->freed_extents[0] and fs_info->freed_extents[1], clear them
from those trees, add them back (unpin) to the free space caches and, if
the fs was mounted with "-o discard", perform a discard on those regions.
Also, after adding the regions to the free space caches, a fitrim ioctl call
can see those ranges in a block group's free space cache and perform a discard
on the ranges, so the same issue can happen without "-o discard" as well.
This causes corruption, affecting one or multiple btree nodes (in the worst
case leaving the fs unmountable) because some of those ranges (the ones in
the fs_info->pinned_extents tree) correspond to btree nodes/leafs that are
referred by the last committed super block - breaking the rule that anything
that was committed by a transaction is untouched until the next transaction
commits successfully.
I ran into this while running in a loop (for several hours) the fstest that
I recently submitted:
[PATCH] fstests: add btrfs test to stress chunk allocation/removal and fstrim
The corruption always happened when a transaction aborted and then fsck complained
like this:
_check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent
*** fsck.btrfs output ***
Check tree block failed, want=94945280, have=0
Check tree block failed, want=94945280, have=0
Check tree block failed, want=94945280, have=0
Check tree block failed, want=94945280, have=0
Check tree block failed, want=94945280, have=0
read block failed check_tree_block
Couldn't open file system
In this case 94945280 corresponded to the root of a tree.
Using frace what I observed was the following sequence of steps happened:
1) transaction N started, fs_info->pinned_extents pointed to
fs_info->freed_extents[0];
2) node/eb 94945280 is created;
3) eb is persisted to disk;
4) transaction N commit starts, fs_info->pinned_extents now points to
fs_info->freed_extents[1], and transaction N completes;
5) transaction N + 1 starts;
6) eb is COWed, and btrfs_free_tree_block() called for this eb;
7) eb range (94945280 to 94945280 + 16Kb) is added to
fs_info->pinned_extents (fs_info->freed_extents[1]);
8) Something goes wrong in transaction N + 1, like hitting ENOSPC
for example, and the transaction is aborted, turning the fs into
readonly mode. The stack trace I got for example:
[112065.253935] [<ffffffff8140c7b6>] dump_stack+0x4d/0x66
[112065.254271] [<ffffffff81042984>] warn_slowpath_common+0x7f/0x98
[112065.254567] [<ffffffffa0325990>] ? __btrfs_abort_transaction+0x50/0x10b [btrfs]
[112065.261674] [<ffffffff810429e5>] warn_slowpath_fmt+0x48/0x50
[112065.261922] [<ffffffffa032949e>] ? btrfs_free_path+0x26/0x29 [btrfs]
[112065.262211] [<ffffffffa0325990>] __btrfs_abort_transaction+0x50/0x10b [btrfs]
[112065.262545] [<ffffffffa036b1d6>] btrfs_remove_chunk+0x537/0x58b [btrfs]
[112065.262771] [<ffffffffa033840f>] btrfs_delete_unused_bgs+0x1de/0x21b [btrfs]
[112065.263105] [<ffffffffa0343106>] cleaner_kthread+0x100/0x12f [btrfs]
(...)
[112065.264493] ---[ end trace dd7903a975a31a08 ]---
[112065.264673] BTRFS: error (device sdc) in btrfs_remove_chunk:2625: errno=-28 No space left
[112065.264997] BTRFS info (device sdc): forced readonly
9) The clear kthread sees that the BTRFS_FS_STATE_ERROR bit is set in
fs_info->fs_state and calls btrfs_cleanup_transaction(), which in
turn calls btrfs_destroy_pinned_extent();
10) Then btrfs_destroy_pinned_extent() iterates over all the ranges
marked as dirty in fs_info->freed_extents[], and for each one
it calls discard, if the fs was mounted with "-o discard", and
adds the range to the free space cache of the respective block
group;
11) btrfs_trim_block_group(), invoked from the fitrim ioctl code path,
sees the free space entries and performs a discard;
12) After an umount and mount (or fsck), our eb's location on disk was full
of zeroes, and it should have been untouched, because it was marked as
dirty in the fs_info->pinned_extents tree, and therefore used by the
trees that the last committed superblock points to.
Fix this by not performing a discard and not adding the ranges to the free space
caches - it's useless from this point since the fs is now in readonly mode and
we won't write free space caches to disk anymore (otherwise we would leak space)
nor any new superblock. By not adding the ranges to the free space caches, it
prevents other code paths from allocating that space and write to it as well,
therefore being safer and simpler.
This isn't a new problem, as it's been present since 2011 (git commit
acce952b02).
Cc: stable@vger.kernel.org # any kernel released after 2011-01-06
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Always clear a block group's rbnode after removing it from the rbtree to
ensure that any tasks that might be holding a reference on the block group
don't end up accessing stale rbnode left and right child pointers through
next_block_group().
This is a leftover from the change titled:
"Btrfs: fix invalid block group rbtree access after bg is removed"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This was written when we didn't do a caching control for the fast free space
cache loading. However we started doing that a long time ago, and there is
still a small window of time that we could be caching the block group the fast
way, so if there is a caching_ctl at all on the block group just return it, the
callers all wait properly for what they want. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
On block group remove if the corresponding extent map was on the
transaction->pending_chunks list, we were deleting the extent map
from that list, through remove_extent_mapping(), without any
synchronization with chunk allocation (which iterates that list
and adds new elements to it). Fix this by ensure that this is done
while the chunk mutex is held, since that's the mutex that protects
the list in the chunk allocation code path.
This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"
But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
On chunk allocation error (label "error_del_extent"), after adding the
extent map to the tree and to the pending chunks list, we would leave
decrementing the extent map's refcount by 2 instead of 3 (our allocation
+ tree reference + list reference).
Also, on chunk/block group removal, if the block group was on the list
pending_chunks we weren't decrementing the respective list reference.
Detected by 'rmmod btrfs':
[20770.105881] kmem_cache_destroy btrfs_extent_map: Slab cache still has objects
[20770.106127] CPU: 2 PID: 11093 Comm: rmmod Tainted: G W L 3.17.0-rc5-btrfs-next-1+ #1
[20770.106128] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[20770.106130] 0000000000000000 ffff8800ba867eb8 ffffffff813e7a13 ffff8800a2e11040
[20770.106132] ffff8800ba867ed0 ffffffff81105d0c 0000000000000000 ffff8800ba867ee0
[20770.106134] ffffffffa035d65e ffff8800ba867ef0 ffffffffa03b0654 ffff8800ba867f78
[20770.106136] Call Trace:
[20770.106142] [<ffffffff813e7a13>] dump_stack+0x45/0x56
[20770.106145] [<ffffffff81105d0c>] kmem_cache_destroy+0x4b/0x90
[20770.106164] [<ffffffffa035d65e>] extent_map_exit+0x1a/0x1c [btrfs]
[20770.106176] [<ffffffffa03b0654>] exit_btrfs_fs+0x27/0x9d3 [btrfs]
[20770.106179] [<ffffffff8109dc97>] SyS_delete_module+0x153/0x1c4
[20770.106182] [<ffffffff8121261b>] ? trace_hardirqs_on_thunk+0x3a/0x3c
[20770.106184] [<ffffffff813ebf52>] system_call_fastpath+0x16/0x1b
This applies on top (depends on) of my previous patch titled:
"Btrfs: fix race between fs trimming and block group remove/allocation"
But the issue in fact was already present before that change, it only
became easier to hit after Josef's 3.18 patch that added automatic
removal of empty block groups.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>