This patch allows XDP prog to extend/remove the packet
data at the head (like adding or removing header). It is
done by adding a new XDP helper bpf_xdp_adjust_head().
It also renames bpf_helper_changes_skb_data() to
bpf_helper_changes_pkt_data() to better reflect
that XDP prog does not work on skb.
This patch adds one "xdp_adjust_head" bit to bpf_prog for the
XDP-capable driver to check if the XDP prog requires
bpf_xdp_adjust_head() support. The driver can then decide
to error out during XDP_SETUP_PROG.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commmits 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers")
and 484611357c19 ("bpf: allow access into map value arrays") by themselves
are correct, but in combination they make state equivalence ignore 'id' field
of the register state which can lead to accepting invalid program.
Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers")
Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
General assumption is that single program can hold up to BPF_MAXINSNS,
that is, 4096 number of instructions. It is the case with cBPF and
that limit was carried over to eBPF. When recently testing digest, I
noticed that it's actually not possible to feed 4096 instructions
via bpf(2).
The check for > BPF_MAXINSNS was added back then to bpf_check() in
cbd357008604 ("bpf: verifier (add ability to receive verification log)").
However, 09756af46893 ("bpf: expand BPF syscall with program load/unload")
added yet another check that comes before that into bpf_prog_load(),
but this time bails out already in case of >= BPF_MAXINSNS.
Fix it up and perform the check early in bpf_prog_load(), so we can drop
the second one in bpf_check(). It makes sense, because also a 0 insn
program is useless and we don't want to waste any resources doing work
up to bpf_check() point. The existing bpf(2) man page documents E2BIG
as the official error for such cases, so just stick with it as well.
Fixes: 09756af46893 ("bpf: expand BPF syscall with program load/unload")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When loading a BPF program via bpf(2), calculate the digest over
the program's instruction stream and store it in struct bpf_prog's
digest member. This is done at a point in time before any instructions
are rewritten by the verifier. Any unstable map file descriptor
number part of the imm field will be zeroed for the hash.
fdinfo example output for progs:
# cat /proc/1590/fdinfo/5
pos: 0
flags: 02000002
mnt_id: 11
prog_type: 1
prog_jited: 1
prog_digest: b27e8b06da22707513aa97363dfb11c7c3675d28
memlock: 4096
When programs are pinned and retrieved by an ELF loader, the loader
can check the program's digest through fdinfo and compare it against
one that was generated over the ELF file's program section to see
if the program needs to be reloaded. Furthermore, this can also be
exposed through other means such as netlink in case of a tc cls/act
dump (or xdp in future), but also through tracepoints or other
facilities to identify the program. Other than that, the digest can
also serve as a base name for the work in progress kallsyms support
of programs. The digest doesn't depend/select the crypto layer, since
we need to keep dependencies to a minimum. iproute2 will get support
for this facility.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Occasionally, clang (e.g. version 3.8.1) translates a sum between two
constant operands using a BPF_OR instead of a BPF_ADD. The verifier is
currently not handling this scenario, and the destination register type
becomes UNKNOWN_VALUE even if it's still storing a constant. As a result,
the destination register cannot be used as argument to a helper function
expecting a ARG_CONST_STACK_*, limiting some use cases.
Modify the verifier to handle this case, and add a few tests to make sure
all combinations are supported, and stack boundaries are still verified
even with BPF_OR.
Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Couple conflicts resolved here:
1) In the MACB driver, a bug fix to properly initialize the
RX tail pointer properly overlapped with some changes
to support variable sized rings.
2) In XGBE we had a "CONFIG_PM" --> "CONFIG_PM_SLEEP" fix
overlapping with a reorganization of the driver to support
ACPI, OF, as well as PCI variants of the chip.
3) In 'net' we had several probe error path bug fixes to the
stmmac driver, meanwhile a lot of this code was cleaned up
and reorganized in 'net-next'.
4) The cls_flower classifier obtained a helper function in
'net-next' called __fl_delete() and this overlapped with
Daniel Borkamann's bug fix to use RCU for object destruction
in 'net'. It also overlapped with Jiri's change to guard
the rhashtable_remove_fast() call with a check against
tc_skip_sw().
5) In mlx4, a revert bug fix in 'net' overlapped with some
unrelated changes in 'net-next'.
6) In geneve, a stale header pointer after pskb_expand_head()
bug fix in 'net' overlapped with a large reorganization of
the same code in 'net-next'. Since the 'net-next' code no
longer had the bug in question, there was nothing to do
other than to simply take the 'net-next' hunks.
Signed-off-by: David S. Miller <davem@davemloft.net>
Add new cgroup based program type, BPF_PROG_TYPE_CGROUP_SOCK. Similar to
BPF_PROG_TYPE_CGROUP_SKB programs can be attached to a cgroup and run
any time a process in the cgroup opens an AF_INET or AF_INET6 socket.
Currently only sk_bound_dev_if is exported to userspace for modification
by a bpf program.
This allows a cgroup to be configured such that AF_INET{6} sockets opened
by processes are automatically bound to a specific device. In turn, this
enables the running of programs that do not support SO_BINDTODEVICE in a
specific VRF context / L3 domain.
Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Code move and rename only; no functional change intended.
Signed-off-by: David Ahern <dsa@cumulusnetworks.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Registers new BPF program types which correspond to the LWT hooks:
- BPF_PROG_TYPE_LWT_IN => dst_input()
- BPF_PROG_TYPE_LWT_OUT => dst_output()
- BPF_PROG_TYPE_LWT_XMIT => lwtunnel_xmit()
The separate program types are required to differentiate between the
capabilities each LWT hook allows:
* Programs attached to dst_input() or dst_output() are restricted and
may only read the data of an skb. This prevent modification and
possible invalidation of already validated packet headers on receive
and the construction of illegal headers while the IP headers are
still being assembled.
* Programs attached to lwtunnel_xmit() are allowed to modify packet
content as well as prepending an L2 header via a newly introduced
helper bpf_skb_change_head(). This is safe as lwtunnel_xmit() is
invoked after the IP header has been assembled completely.
All BPF programs receive an skb with L3 headers attached and may return
one of the following error codes:
BPF_OK - Continue routing as per nexthop
BPF_DROP - Drop skb and return EPERM
BPF_REDIRECT - Redirect skb to device as per redirect() helper.
(Only valid in lwtunnel_xmit() context)
The return codes are binary compatible with their TC_ACT_
relatives to ease compatibility.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
If we have a branch that looks something like this
int foo = map->value;
if (condition) {
foo += blah;
} else {
foo = bar;
}
map->array[foo] = baz;
We will incorrectly assume that the !condition branch is equal to the condition
branch as the register for foo will be UNKNOWN_VALUE in both cases. We need to
adjust this logic to only do this if we didn't do a varlen access after we
processed the !condition branch, otherwise we have different ranges and need to
check the other branch as well.
Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
There's a 'not' missing in one paragraph. Add it.
Fixes: 3007098494be ("cgroup: add support for eBPF programs")
Signed-off-by: Daniel Mack <daniel@zonque.org>
Reported-by: Rami Rosen <roszenrami@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since we recently converted the BPF filesystem over to use mount_nodev(),
we now have the possibility to also hold mount options in sb's s_fs_info.
This work implements mount options support for specifying permissions on
the sb's inode, which will be used by tc when it manually needs to mount
the fs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow for checking the owner_prog_type of a program array map. In some
cases bpf(2) can return -EINVAL /after/ the verifier passed and did all
the rewrites of the bpf program.
The reason that lets us fail at this late stage is that program array
maps are incompatible. Allow users to inspect this earlier after they
got the map fd through BPF_OBJ_GET command. tc will get support for this.
Also, display how much we charged the map with regards to RLIMIT_MEMLOCK.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extend the bpf(2) syscall by two new commands, BPF_PROG_ATTACH and
BPF_PROG_DETACH which allow attaching and detaching eBPF programs
to a target.
On the API level, the target could be anything that has an fd in
userspace, hence the name of the field in union bpf_attr is called
'target_fd'.
When called with BPF_ATTACH_TYPE_CGROUP_INET_{E,IN}GRESS, the target is
expected to be a valid file descriptor of a cgroup v2 directory which
has the bpf controller enabled. These are the only use-cases
implemented by this patch at this point, but more can be added.
If a program of the given type already exists in the given cgroup,
the program is swapped automically, so userspace does not have to drop
an existing program first before installing a new one, which would
otherwise leave a gap in which no program is attached.
For more information on the propagation logic to subcgroups, please
refer to the bpf cgroup controller implementation.
The API is guarded by CAP_NET_ADMIN.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds two sets of eBPF program pointers to struct cgroup.
One for such that are directly pinned to a cgroup, and one for such
that are effective for it.
To illustrate the logic behind that, assume the following example
cgroup hierarchy.
A - B - C
\ D - E
If only B has a program attached, it will be effective for B, C, D
and E. If D then attaches a program itself, that will be effective for
both D and E, and the program in B will only affect B and C. Only one
program of a given type is effective for a cgroup.
Attaching and detaching programs will be done through the bpf(2)
syscall. For now, ingress and egress inet socket filtering are the
only supported use-cases.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
All conflicts were simple overlapping changes except perhaps
for the Thunder driver.
That driver has a change_mtu method explicitly for sending
a message to the hardware. If that fails it returns an
error.
Normally a driver doesn't need an ndo_change_mtu method becuase those
are usually just range changes, which are now handled generically.
But since this extra operation is needed in the Thunder driver, it has
to stay.
However, if the message send fails we have to restore the original
MTU before the change because the entire call chain expects that if
an error is thrown by ndo_change_mtu then the MTU did not change.
Therefore code is added to nicvf_change_mtu to remember the original
MTU, and to restore it upon nicvf_update_hw_max_frs() failue.
Signed-off-by: David S. Miller <davem@davemloft.net>
In mlx5e_create_rq(), when creating a new queue, we call bpf_prog_add() but
without checking the return value. bpf_prog_add() can fail since 92117d8443bc
("bpf: fix refcnt overflow"), so we really must check it. Take the reference
right when we assign it to the rq from priv->xdp_prog, and just drop the
reference on error path. Destruction in mlx5e_destroy_rq() looks good, though.
Fixes: 86994156c736 ("net/mlx5e: XDP fast RX drop bpf programs support")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
I made some invalid assumptions with BPF_AND and BPF_MOD that could result in
invalid accesses to bpf map entries. Fix this up by doing a few things
1) Kill BPF_MOD support. This doesn't actually get used by the compiler in real
life and just adds extra complexity.
2) Fix the logic for BPF_AND, don't allow AND of negative numbers and set the
minimum value to 0 for positive AND's.
3) Don't do operations on the ranges if they are set to the limits, as they are
by definition undefined, and allowing arithmetic operations on those values
could make them appear valid when they really aren't.
This fixes the testcase provided by Jann as well as a few other theoretical
problems.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
gcc-6.2.1 gives the following warning:
kernel/bpf/bpf_lru_list.c: In function ‘__bpf_lru_list_rotate_inactive.isra.3’:
kernel/bpf/bpf_lru_list.c:201:28: warning: ‘next’ may be used uninitialized in this function [-Wmaybe-uninitialized]
The "next" is currently initialized in the while() loop which must have >=1
iterations.
This patch initializes next to get rid of the compiler warning.
Fixes: 3a08c2fd7634 ("bpf: LRU List")
Reported-by: David Miller <davem@davemloft.net>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Provide a LRU version of the existing BPF_MAP_TYPE_PERCPU_HASH
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Provide a LRU version of the existing BPF_MAP_TYPE_HASH.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Refactor the codes that populate the value
of a htab_elem in a BPF_MAP_TYPE_PERCPU_HASH
typed bpf_map.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Instead of having a common LRU list, this patch allows a
percpu LRU list which can be selected by specifying a map
attribute. The map attribute will be added in the later
patch.
While the common use case for LRU is #reads >> #updates,
percpu LRU list allows bpf prog to absorb unusual #updates
under pathological case (e.g. external traffic facing machine which
could be under attack).
Each percpu LRU is isolated from each other. The LRU nodes (including
free nodes) cannot be moved across different LRU Lists.
Here are the update performance comparison between
common LRU list and percpu LRU list (the test code is
at the last patch):
[root@kerneltest003.31.prn1 ~]# for i in 1 4 8; do echo -n "$i cpus: "; \
./map_perf_test 16 $i | awk '{r += $3}END{print r " updates"}'; done
1 cpus: 2934082 updates
4 cpus: 7391434 updates
8 cpus: 6500576 updates
[root@kerneltest003.31.prn1 ~]# for i in 1 4 8; do echo -n "$i cpus: "; \
./map_perf_test 32 $i | awk '{r += $3}END{printr " updates"}'; done
1 cpus: 2896553 updates
4 cpus: 9766395 updates
8 cpus: 17460553 updates
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce bpf_lru_list which will provide LRU capability to
the bpf_htab in the later patch.
* General Thoughts:
1. Target use case. Read is more often than update.
(i.e. bpf_lookup_elem() is more often than bpf_update_elem()).
If bpf_prog does a bpf_lookup_elem() first and then an in-place
update, it still counts as a read operation to the LRU list concern.
2. It may be useful to think of it as a LRU cache
3. Optimize the read case
3.1 No lock in read case
3.2 The LRU maintenance is only done during bpf_update_elem()
4. If there is a percpu LRU list, it will lose the system-wise LRU
property. A completely isolated percpu LRU list has the best
performance but the memory utilization is not ideal considering
the work load may be imbalance.
5. Hence, this patch starts the LRU implementation with a global LRU
list with batched operations before accessing the global LRU list.
As a LRU cache, #read >> #update/#insert operations, it will work well.
6. There is a local list (for each cpu) which is named
'struct bpf_lru_locallist'. This local list is not used to sort
the LRU property. Instead, the local list is to batch enough
operations before acquiring the lock of the global LRU list. More
details on this later.
7. In the later patch, it allows a percpu LRU list by specifying a
map-attribute for scalability reason and for use cases that need to
prepare for the worst (and pathological) case like DoS attack.
The percpu LRU list is completely isolated from each other and the
LRU nodes (including free nodes) cannot be moved across the list. The
following description is for the global LRU list but mostly applicable
to the percpu LRU list also.
* Global LRU List:
1. It has three sub-lists: active-list, inactive-list and free-list.
2. The two list idea, active and inactive, is borrowed from the
page cache.
3. All nodes are pre-allocated and all sit at the free-list (of the
global LRU list) at the beginning. The pre-allocation reasoning
is similar to the existing BPF_MAP_TYPE_HASH. However,
opting-out prealloc (BPF_F_NO_PREALLOC) is not supported in
the LRU map.
* Active/Inactive List (of the global LRU list):
1. The active list, as its name says it, maintains the active set of
the nodes. We can think of it as the working set or more frequently
accessed nodes. The access frequency is approximated by a ref-bit.
The ref-bit is set during the bpf_lookup_elem().
2. The inactive list, as its name also says it, maintains a less
active set of nodes. They are the candidates to be removed
from the bpf_htab when we are running out of free nodes.
3. The ordering of these two lists is acting as a rough clock.
The tail of the inactive list is the older nodes and
should be released first if the bpf_htab needs free element.
* Rotating the Active/Inactive List (of the global LRU list):
1. It is the basic operation to maintain the LRU property of
the global list.
2. The active list is only rotated when the inactive list is running
low. This idea is similar to the current page cache.
Inactive running low is currently defined as
"# of inactive < # of active".
3. The active list rotation always starts from the tail. It moves
node without ref-bit set to the head of the inactive list.
It moves node with ref-bit set back to the head of the active
list and then clears its ref-bit.
4. The inactive rotation is pretty simply.
It walks the inactive list and moves the nodes back to the head of
active list if its ref-bit is set. The ref-bit is cleared after moving
to the active list.
If the node does not have ref-bit set, it just leave it as it is
because it is already in the inactive list.
* Shrinking the Inactive List (of the global LRU list):
1. Shrinking is the operation to get free nodes when the bpf_htab is
full.
2. It usually only shrinks the inactive list to get free nodes.
3. During shrinking, it will walk the inactive list from the tail,
delete the nodes without ref-bit set from bpf_htab.
4. If no free node found after step (3), it will forcefully get
one node from the tail of inactive or active list. Forcefully is
in the sense that it ignores the ref-bit.
* Local List:
1. Each CPU has a 'struct bpf_lru_locallist'. The purpose is to
batch enough operations before acquiring the lock of the
global LRU.
2. A local list has two sub-lists, free-list and pending-list.
3. During bpf_update_elem(), it will try to get from the free-list
of (the current CPU local list).
4. If the local free-list is empty, it will acquire from the
global LRU list. The global LRU list can either satisfy it
by its global free-list or by shrinking the global inactive
list. Since we have acquired the global LRU list lock,
it will try to get at most LOCAL_FREE_TARGET elements
to the local free list.
5. When a new element is added to the bpf_htab, it will
first sit at the pending-list (of the local list) first.
The pending-list will be flushed to the global LRU list
when it needs to acquire free nodes from the global list
next time.
* Lock Consideration:
The LRU list has a lock (lru_lock). Each bucket of htab has a
lock (buck_lock). If both locks need to be acquired together,
the lock order is always lru_lock -> buck_lock and this only
happens in the bpf_lru_list.c logic.
In hashtab.c, both locks are not acquired together (i.e. one
lock is always released first before acquiring another lock).
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Replace the custom u64_to_ptr() function with the u64_to_user_ptr()
macro.
Signed-off-by: Mickaël Salaün <mic@digikod.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 67f8b1dcb9ee ("net/mlx4_en: Refactor the XDP forwarding rings
scheme") added a bug in that the prog's reference count is not dropped
in the error path when mlx4_en_try_alloc_resources() is failing from
mlx4_xdp_set().
We previously took bpf_prog_add(prog, priv->rx_ring_num - 1), that we
need to release again. Earlier in the call path, dev_change_xdp_fd()
itself holds a reference to the prog as well (hence the '- 1' in the
bpf_prog_add()), so a simple atomic_sub() is safe to use here. When
an error is propagated, then bpf_prog_put() is called eventually from
dev_change_xdp_fd()
Fixes: 67f8b1dcb9ee ("net/mlx4_en: Refactor the XDP forwarding rings scheme")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove the unused but set variables min_set and max_set in
adjust_reg_min_max_vals to fix the following warning when building with
'W=1':
kernel/bpf/verifier.c:1483:7: warning: variable ‘min_set’ set but not used [-Wunused-but-set-variable]
There is no warning about max_set being unused, but since it is only
used in the assignment of min_set it can be removed as well.
They were introduced in commit 484611357c19 ("bpf: allow access into map
value arrays") but seem to have never been used.
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
In map_create(), we first find and create the map, then once that
suceeded, we charge it to the user's RLIMIT_MEMLOCK, and then fetch
a new anon fd through anon_inode_getfd(). The problem is, once the
latter fails f.e. due to RLIMIT_NOFILE limit, then we only destruct
the map via map->ops->map_free(), but without uncharging the previously
locked memory first. That means that the user_struct allocation is
leaked as well as the accounted RLIMIT_MEMLOCK memory not released.
Make the label names in the fix consistent with bpf_prog_load().
Fixes: aaac3ba95e4c ("bpf: charge user for creation of BPF maps and programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit a6ed3ea65d98 ("bpf: restore behavior of bpf_map_update_elem")
added an extra per-cpu reserve to the hash table map to restore old
behaviour from pre prealloc times. When non-prealloc is in use for a
map, then problem is that once a hash table extra element has been
linked into the hash-table, and the hash table is destroyed due to
refcount dropping to zero, then htab_map_free() -> delete_all_elements()
will walk the whole hash table and drop all elements via htab_elem_free().
The problem is that the element from the extra reserve is first fed
to the wrong backend allocator and eventually freed twice.
Fixes: a6ed3ea65d98 ("bpf: restore behavior of bpf_map_update_elem")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
While commit bb35a6ef7da4 ("bpf, inode: allow for rename and link ops")
added support for hard links that can be used for prog and map nodes,
this work adds simple symlink support, which can be used f.e. for
directories also when unpriviledged and works with cmdline tooling that
understands S_IFLNK anyway. Since the switch in e27f4a942a0e ("bpf: Use
mount_nodev not mount_ns to mount the bpf filesystem"), there can be
various mount instances with mount_nodev() and thus hierarchy can be
flattened to facilitate object sharing. Thus, we can keep bpf tooling
also working by repointing paths.
Most of the functionality can be used from vfs library operations. The
symlink is stored in the inode itself, that is in i_link, which is
sufficient in our case as opposed to storing it in the page cache.
While at it, I noticed that bpf_mkdir() and bpf_mkobj() don't update
the directories mtime and ctime, so add a common helper for it called
bpf_dentry_finalize() that takes care of it for all cases now.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The verifier currently prints raw function ids when printing CALL
instructions or when complaining:
5: (85) call 23
unknown func 23
print a meaningful function name instead:
5: (85) call bpf_redirect#23
unknown func bpf_redirect#23
Moves the function documentation to a single comment and renames all
helpers names in the list to conform to the bpf_ prefix notation so
they can be greped in the kernel source.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use case is mainly for soreuseport to select sockets for the local
numa node, but since generic, lets also add this for other networking
and tracing program types.
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A BPF program is required to check the return register of a
map_elem_lookup() call before accessing memory. The verifier keeps
track of this by converting the type of the result register from
PTR_TO_MAP_VALUE_OR_NULL to PTR_TO_MAP_VALUE after a conditional
jump ensures safety. This check is currently exclusively performed
for the result register 0.
In the event the compiler reorders instructions, BPF_MOV64_REG
instructions may be moved before the conditional jump which causes
them to keep their type PTR_TO_MAP_VALUE_OR_NULL to which the
verifier objects when the register is accessed:
0: (b7) r1 = 10
1: (7b) *(u64 *)(r10 -8) = r1
2: (bf) r2 = r10
3: (07) r2 += -8
4: (18) r1 = 0x59c00000
6: (85) call 1
7: (bf) r4 = r0
8: (15) if r0 == 0x0 goto pc+1
R0=map_value(ks=8,vs=8) R4=map_value_or_null(ks=8,vs=8) R10=fp
9: (7a) *(u64 *)(r4 +0) = 0
R4 invalid mem access 'map_value_or_null'
This commit extends the verifier to keep track of all identical
PTR_TO_MAP_VALUE_OR_NULL registers after a map_elem_lookup() by
assigning them an ID and then marking them all when the conditional
jump is observed.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull more vfs updates from Al Viro:
">rename2() work from Miklos + current_time() from Deepa"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Replace current_fs_time() with current_time()
fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
fs: Replace CURRENT_TIME with current_time() for inode timestamps
fs: proc: Delete inode time initializations in proc_alloc_inode()
vfs: Add current_time() api
vfs: add note about i_op->rename changes to porting
fs: rename "rename2" i_op to "rename"
vfs: remove unused i_op->rename
fs: make remaining filesystems use .rename2
libfs: support RENAME_NOREPLACE in simple_rename()
fs: support RENAME_NOREPLACE for local filesystems
ncpfs: fix unused variable warning
Suppose you have a map array value that is something like this
struct foo {
unsigned iter;
int array[SOME_CONSTANT];
};
You can easily insert this into an array, but you cannot modify the contents of
foo->array[] after the fact. This is because we have no way to verify we won't
go off the end of the array at verification time. This patch provides a start
for this work. We accomplish this by keeping track of a minimum and maximum
value a register could be while we're checking the code. Then at the time we
try to do an access into a MAP_VALUE we verify that the maximum offset into that
region is a valid access into that memory region. So in practice, code such as
this
unsigned index = 0;
if (foo->iter >= SOME_CONSTANT)
foo->iter = index;
else
index = foo->iter++;
foo->array[index] = bar;
would be allowed, as we can verify that index will always be between 0 and
SOME_CONSTANT-1. If you wish to use signed values you'll have to have an extra
check to make sure the index isn't less than 0, or do something like index %=
SOME_CONSTANT.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
put_cpu_var takes the percpu data, not the data returned from
get_cpu_var.
This doesn't change the behavior.
Cc: Tejun Heo <tj@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Shaohua Li <shli@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_time() instead.
CURRENT_TIME is also not y2038 safe.
This is also in preparation for the patch that transitions
vfs timestamps to use 64 bit time and hence make them
y2038 safe. As part of the effort current_time() will be
extended to do range checks. Hence, it is necessary for all
file system timestamps to use current_time(). Also,
current_time() will be transitioned along with vfs to be
y2038 safe.
Note that whenever a single call to current_time() is used
to change timestamps in different inodes, it is because they
share the same time granularity.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Felipe Balbi <balbi@kernel.org>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This prevent future potential pointer leaks when an unprivileged eBPF
program will read a pointer value from its context. Even if
is_valid_access() returns a pointer type, the eBPF verifier replace it
with UNKNOWN_VALUE. The register value that contains a kernel address is
then allowed to leak. Moreover, this fix allows unprivileged eBPF
programs to use functions with (legitimate) pointer arguments.
Not an issue currently since reg_type is only set for PTR_TO_PACKET or
PTR_TO_PACKET_END in XDP and TC programs that can only be loaded as
privileged. For now, the only unprivileged eBPF program allowed is for
socket filtering and all the types from its context are UNKNOWN_VALUE.
However, this fix is important for future unprivileged eBPF programs
which could use pointers in their context.
Signed-off-by: Mickaël Salaün <mic@digikod.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When running as parser interpret BPF_LD | BPF_IMM | BPF_DW
instructions as loading CONST_IMM with the value stored
in imm. The verifier will continue not recognizing those
due to concerns about search space/program complexity
increase.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Advanced JIT compilers and translators may want to use
eBPF verifier as a base for parsers or to perform custom
checks and validations.
Add ability for external users to invoke the verifier
and provide callbacks to be invoked for every intruction
checked. For now only add most basic callback for
per-instruction pre-interpretation checks is added. More
advanced users may also like to have per-instruction post
callback and state comparison callback.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Move verifier's internal structures to a header file and
prefix their names with bpf_ to avoid potential namespace
conflicts. Those structures will soon be used by external
analyzers.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Storing state in reserved fields of instructions makes
it impossible to run verifier on programs already
marked as read-only. Allocate and use an array of
per-instruction state instead.
While touching the error path rename and move existing
jump target.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work implements direct packet access for helpers and direct packet
write in a similar fashion as already available for XDP types via commits
4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and
6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a
complementary feature to the already available direct packet read for tc
(cls/act) programs.
For enabling this, we need to introduce two helpers, bpf_skb_pull_data()
and bpf_csum_update(). The first is generally needed for both, read and
write, because they would otherwise only be limited to the current linear
skb head. Usually, when the data_end test fails, programs just bail out,
or, in the direct read case, use bpf_skb_load_bytes() as an alternative
to overcome this limitation. If such data sits in non-linear parts, we
can just pull them in once with the new helper, retest and eventually
access them.
At the same time, this also makes sure the skb is uncloned, which is, of
course, a necessary condition for direct write. As this needs to be an
invariant for the write part only, the verifier detects writes and adds
a prologue that is calling bpf_skb_pull_data() to effectively unclone the
skb from the very beginning in case it is indeed cloned. The heuristic
makes use of a similar trick that was done in 233577a22089 ("net: filter:
constify detection of pkt_type_offset"). This comes at zero cost for other
programs that do not use the direct write feature. Should a program use
this feature only sparsely and has read access for the most parts with,
for example, drop return codes, then such write action can be delegated
to a tail called program for mitigating this cost of potential uncloning
to a late point in time where it would have been paid similarly with the
bpf_skb_store_bytes() as well. Advantage of direct write is that the
writes are inlined whereas the helper cannot make any length assumptions
and thus needs to generate a call to memcpy() also for small sizes, as well
as cost of helper call itself with sanity checks are avoided. Plus, when
direct read is already used, we don't need to cache or perform rechecks
on the data boundaries (due to verifier invalidating previous checks for
helpers that change skb->data), so more complex programs using rewrites
can benefit from switching to direct read plus write.
For direct packet access to helpers, we save the otherwise needed copy into
a temp struct sitting on stack memory when use-case allows. Both facilities
are enabled via may_access_direct_pkt_data() in verifier. For now, we limit
this to map helpers and csum_diff, and can successively enable other helpers
where we find it makes sense. Helpers that definitely cannot be allowed for
this are those part of bpf_helper_changes_skb_data() since they can change
underlying data, and those that write into memory as this could happen for
packet typed args when still cloned. bpf_csum_update() helper accommodates
for the fact that we need to fixup checksum_complete when using direct write
instead of bpf_skb_store_bytes(), meaning the programs can use available
helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(),
csum_block_add(), csum_block_sub() equivalents in eBPF together with the
new helper. A usage example will be provided for iproute2's examples/bpf/
directory.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Current contract for the following two helper argument types is:
* ARG_CONST_STACK_SIZE: passed argument pair must be (ptr, >0).
* ARG_CONST_STACK_SIZE_OR_ZERO: passed argument pair can be either
(NULL, 0) or (ptr, >0).
With 6841de8b0d03 ("bpf: allow helpers access the packet directly"), we can
pass also raw packet data to helpers, so depending on the argument type
being PTR_TO_PACKET, we now either assert memory via check_packet_access()
or check_stack_boundary(). As a result, the tests in check_packet_access()
currently allow more than intended with regards to reg->imm.
Back in 969bf05eb3ce ("bpf: direct packet access"), check_packet_access()
was fine to ignore size argument since in check_mem_access() size was
bpf_size_to_bytes() derived and prior to the call to check_packet_access()
guaranteed to be larger than zero.
However, for the above two argument types, it currently means, we can have
a <= 0 size and thus breaking current guarantees for helpers. Enforce a
check for size <= 0 and bail out if so.
check_stack_boundary() doesn't have such an issue since it already tests
for access_size <= 0 and bails out, resp. access_size == 0 in case of NULL
pointer passed when allowed.
Fixes: 6841de8b0d03 ("bpf: allow helpers access the packet directly")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some minor misc cleanups, f.e. use sizeof(__u32) instead of hardcoding
and in __bpf_skb_max_len(), I missed that we always have skb->dev valid
anyway, so we can drop the unneeded test for dev; also few more other
misc bits addressed here.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
LLVM can generate code that tests for direct packet access via
skb->data/data_end in a way that currently gets rejected by the
verifier, example:
[...]
7: (61) r3 = *(u32 *)(r6 +80)
8: (61) r9 = *(u32 *)(r6 +76)
9: (bf) r2 = r9
10: (07) r2 += 54
11: (3d) if r3 >= r2 goto pc+12
R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx
R9=pkt(id=0,off=0,r=0) R10=fp
12: (18) r4 = 0xffffff7a
14: (05) goto pc+430
[...]
from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv
R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp
24: (7b) *(u64 *)(r10 -40) = r1
25: (b7) r1 = 0
26: (63) *(u32 *)(r6 +56) = r1
27: (b7) r2 = 40
28: (71) r8 = *(u8 *)(r9 +20)
invalid access to packet, off=20 size=1, R9(id=0,off=0,r=0)
The reason why this gets rejected despite a proper test is that we
currently call find_good_pkt_pointers() only in case where we detect
tests like rX > pkt_end, where rX is of type pkt(id=Y,off=Z,r=0) and
derived, for example, from a register of type pkt(id=Y,off=0,r=0)
pointing to skb->data. find_good_pkt_pointers() then fills the range
in the current branch to pkt(id=Y,off=0,r=Z) on success.
For above case, we need to extend that to recognize pkt_end >= rX
pattern and mark the other branch that is taken on success with the
appropriate pkt(id=Y,off=0,r=Z) type via find_good_pkt_pointers().
Since eBPF operates on BPF_JGT (>) and BPF_JGE (>=), these are the
only two practical options to test for from what LLVM could have
generated, since there's no such thing as BPF_JLT (<) or BPF_JLE (<=)
that we would need to take into account as well.
After the fix:
[...]
7: (61) r3 = *(u32 *)(r6 +80)
8: (61) r9 = *(u32 *)(r6 +76)
9: (bf) r2 = r9
10: (07) r2 += 54
11: (3d) if r3 >= r2 goto pc+12
R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx
R9=pkt(id=0,off=0,r=0) R10=fp
12: (18) r4 = 0xffffff7a
14: (05) goto pc+430
[...]
from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=54) R3=pkt_end R4=inv
R6=ctx R9=pkt(id=0,off=0,r=54) R10=fp
24: (7b) *(u64 *)(r10 -40) = r1
25: (b7) r1 = 0
26: (63) *(u32 *)(r6 +56) = r1
27: (b7) r2 = 40
28: (71) r8 = *(u8 *)(r9 +20)
29: (bf) r1 = r8
30: (25) if r8 > 0x3c goto pc+47
R1=inv56 R2=imm40 R3=pkt_end R4=inv R6=ctx R8=inv56
R9=pkt(id=0,off=0,r=54) R10=fp
31: (b7) r1 = 1
[...]
Verifier test cases are also added in this work, one that demonstrates
the mentioned example here and one that tries a bad packet access for
the current/fall-through branch (the one with types pkt(id=X,off=Y,r=0),
pkt(id=X,off=0,r=0)), then a case with good and bad accesses, and two
with both test variants (>, >=).
Fixes: 969bf05eb3ce ("bpf: direct packet access")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
preallocated hash maps, since doing memory allocation
in overflow_handler can crash depending on where nmi got triggered.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The verifier supported only 4-byte metafields in
struct __sk_buff and struct xdp_md. The metafields in upcoming
struct bpf_perf_event are 8-byte to match register width in struct pt_regs.
Teach verifier to recognize 8-byte metafield access.
The patch doesn't affect safety of sockets and xdp programs.
They check for 4-byte only ctx access before these conditions are hit.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>