If
- a bfq_queue Q preempts another queue, because one request of Q
arrives in time,
- but, after this preemption, Q is not the queue that is set in service,
then Q->entity.service is set to 0 when Q is eventually set in
service. But Q should have continued receiving service with its old
budget (which is why preemption has occurred) and its old service.
This commit addresses this issue by resetting service on queue real
expiration.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
To keep I/O throughput high as often as possible, BFQ performs
I/O-dispatch plugging (aka device idling) only when beneficial exactly
for throughput, or when needed for service guarantees (low latency,
fairness). An important case where the latter condition holds is when
the scenario is 'asymmetric' in terms of weights: i.e., when some
bfq_queue or whole group of queues has a higher weight, and thus has
to receive more service, than other queues or groups. Without dispatch
plugging, lower-weight queues/groups may unjustly steal bandwidth to
higher-weight queues/groups.
To detect asymmetric scenarios, BFQ checks some sufficient
conditions. One of these conditions is that active groups have
different weights. BFQ controls this condition by maintaining a
special set of unique weights of active groups
(group_weights_tree). To this purpose, in the function
bfq_active_insert/bfq_active_extract BFQ adds/removes the weight of a
group to/from this set.
Unfortunately, the function bfq_active_extract may happen to be
invoked also for a group that is still active (to preserve the correct
update of the next queue to serve, see comments in function
bfq_no_longer_next_in_service() for details). In this case, removing
the weight of the group makes the set group_weights_tree
inconsistent. Service-guarantee violations follow.
This commit addresses this issue by moving group_weights_tree
insertions from their previous location (in bfq_active_insert) into
the function __bfq_activate_entity, and by moving group_weights_tree
extractions from bfq_active_extract to when the entity that represents
a group remains throughly idle, i.e., with no request either enqueued
or dispatched.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
To maximise responsiveness, BFQ raises the weight, and performs device
idling, for bfq_queues associated with processes deemed as
interactive. In particular, weight raising has a maximum duration,
equal to the time needed to start a large application. If a
weight-raised process goes on doing I/O beyond this maximum duration,
it loses weight-raising.
This mechanism is evidently vulnerable to the following false
positives: I/O-bound applications that will go on doing I/O for much
longer than the duration of weight-raising. These applications have
basically no benefit from being weight-raised at the beginning of
their I/O. On the opposite end, while being weight-raised, these
applications
a) unjustly steal throughput to applications that may truly need
low latency;
b) make BFQ uselessly perform device idling; device idling results
in loss of device throughput with most flash-based storage, and may
increase latencies when used purposelessly.
This commit adds a countermeasure to reduce both the above
problems. To introduce this countermeasure, we provide the following
extra piece of information (full details in the comments added by this
commit). During the start-up of the large application used as a
reference to set the duration of weight-raising, involved processes
transfer at most ~110K sectors each. Accordingly, a process initially
deemed as interactive has no right to be weight-raised any longer,
once transferred 110K sectors or more.
Basing on this consideration, this commit early-ends weight-raising
for a bfq_queue if the latter happens to have received an amount of
service at least equal to 110K sectors (actually, a little bit more,
to keep a safety margin). I/O-bound applications that reach a high
throughput, such as file copy, get to this threshold much before the
allowed weight-raising period finishes. Thus this early ending of
weight-raising reduces the amount of time during which these
applications cause the problems described above.
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In BFQ and CFQ, two processes are said to be cooperating if they do
I/O in such a way that the union of their I/O requests yields a
sequential I/O pattern. To get such a sequential I/O pattern out of
the non-sequential pattern of each cooperating process, BFQ and CFQ
merge the queues associated with these processes. In more detail,
cooperating processes, and thus their associated queues, usually
start, or restart, to do I/O shortly after each other. This is the
case, e.g., for the I/O threads of KVM/QEMU and of the dump
utility. Basing on this assumption, this commit allows a bfq_queue to
be merged only during a short time interval (100ms) after it starts,
or re-starts, to do I/O. This filtering provides two important
benefits.
First, it greatly reduces the probability that two non-cooperating
processes have their queues merged by mistake, if they just happen to
do I/O close to each other for a short time interval. These spurious
merges cause loss of service guarantees. A low-weight bfq_queue may
unjustly get more than its expected share of the throughput: if such a
low-weight queue is merged with a high-weight queue, then the I/O for
the low-weight queue is served as if the queue had a high weight. This
may damage other high-weight queues unexpectedly. For instance,
because of this issue, lxterminal occasionally took 7.5 seconds to
start, instead of 6.5 seconds, when some sequential readers and
writers did I/O in the background on a FUJITSU MHX2300BT HDD. The
reason is that the bfq_queues associated with some of the readers or
the writers were merged with the high-weight queues of some processes
that had to do some urgent but little I/O. The readers then exploited
the inherited high weight for all or most of their I/O, during the
start-up of terminal. The filtering introduced by this commit
eliminated any outlier caused by spurious queue merges in our start-up
time tests.
This filtering also provides a little boost of the throughput
sustainable by BFQ: 3-4%, depending on the CPU. The reason is that,
once a bfq_queue cannot be merged any longer, this commit makes BFQ
stop updating the data needed to handle merging for the queue.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bfq invokes various blkg_*stats_* functions to update the statistics
contained in the special files blkio.bfq.* in the blkio controller
groups, i.e., the I/O accounting related to the proportional-share
policy provided by bfq. The execution of these functions takes a
considerable percentage, about 40%, of the total per-request execution
time of bfq (i.e., of the sum of the execution time of all the bfq
functions that have to be executed to process an I/O request from its
creation to its destruction). This reduces the request-processing
rate sustainable by bfq noticeably, even on a multicore CPU. In fact,
the bfq functions that invoke blkg_*stats_* functions cannot be
executed in parallel with the rest of the code of bfq, because both
are executed under the same same per-device scheduler lock.
To reduce this slowdown, this commit moves, wherever possible, the
invocation of these functions (more precisely, of the bfq functions
that invoke blkg_*stats_* functions) outside the critical sections
protected by the scheduler lock.
With this change, and with all blkio.bfq.* statistics enabled, the
throughput grows, e.g., from 250 to 310 KIOPS (+25%) on an Intel
i7-4850HQ, in case of 8 threads doing random I/O in parallel on
null_blk, with the latter configured with 0 latency. We obtained the
same or higher throughput boosts, up to +30%, with other processors
(some figures are reported in the documentation). For our tests, we
used the script [1], with which our results can be easily reproduced.
NOTE. This commit still protects the invocation of blkg_*stats_*
functions with the request_queue lock, because the group these
functions are invoked on may otherwise disappear before or while these
functions are executed. Fortunately, tests without even this lock
show, by difference, that the serialization caused by this lock has a
little impact (at most ~5% of throughput reduction).
[1] https://github.com/Algodev-github/IOSpeed
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Luca Miccio <lucmiccio@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If the function bfq_update_next_in_service is invoked as a consequence
of the activation or requeueing of an entity, say E, then it doesn't
invoke bfq_lookup_next_entity to get the next-in-service entity. In
contrast, it follows a shorter path: if E happens to be eligible (see
commit "bfq-sq-mq: make lookup_next_entity push up vtime on
expirations" for details on eligibility) and to have a lower virtual
finish time than the current candidate as next-in-service entity, then
E directly becomes the next-in-service entity. Unfortunately, there is
a corner case for which this shorter path makes
bfq_update_next_in_service choose a non eligible entity: it occurs if
both E and the current next-in-service entity happen to be non
eligible when bfq_update_next_in_service is invoked. In this case, E
is not set as next-in-service, and, since bfq_lookup_next_entity is
not invoked, the state of the parent entity is not updated so as to
end up with an eligible entity as the proper next-in-service entity.
In this respect, next-in-service is actually allowed to be non
eligible while some queue is in service: since no system-virtual-time
push-up can be performed in that case (see again commit "bfq-sq-mq:
make lookup_next_entity push up vtime on expirations" for details),
next-in-service is chosen, speculatively, as a function of the
possible value that the system virtual time may get after a push
up. But the correctness of the schedule breaks if next-in-service is
still a non eligible entity when it is time to set in service the next
entity. Unfortunately, this may happen in the above corner case.
This commit fixes this problem by making bfq_update_next_in_service
invoke bfq_lookup_next_entity not only if the above shorter path
cannot be taken, but also if the shorter path is taken but fails to
yield an eligible next-in-service entity.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If the function bfq_update_next_in_service is invoked as a consequence
of the activation or requeueing of an entity, say E, and finds out
that E belongs to a higher-priority class than that of the current
next-in-service entity, then it sets next_in_service directly to
E. But this may lead to anomalous schedules, because E may happen not
be eligible for service, because its virtual start time is higher than
the system virtual time for its service tree.
This commit addresses this issue by simply removing this direct
switch.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
To provide a very smooth service, bfq starts to serve a bfq_queue
only if the queue is 'eligible', i.e., if the same queue would
have started to be served in the ideal, perfectly fair system that
bfq simulates internally. This is obtained by associating each
queue with a virtual start time, and by computing a special system
virtual time quantity: a queue is eligible only if the system
virtual time has reached the virtual start time of the
queue. Finally, bfq guarantees that, when a new queue must be set
in service, there is always at least one eligible entity for each
active parent entity in the scheduler. To provide this guarantee,
the function __bfq_lookup_next_entity pushes up, for each parent
entity on which it is invoked, the system virtual time to the
minimum among the virtual start times of the entities in the
active tree for the parent entity (more precisely, the push up
occurs if the system virtual time happens to be lower than all
such virtual start times).
There is however a circumstance in which __bfq_lookup_next_entity
cannot push up the system virtual time for a parent entity, even
if the system virtual time is lower than the virtual start times
of all the child entities in the active tree. It happens if one of
the child entities is in service. In fact, in such a case, there
is already an eligible entity, the in-service one, even if it may
not be not present in the active tree (because in-service entities
may be removed from the active tree).
Unfortunately, in the last re-design of the
hierarchical-scheduling engine, the reset of the pointer to the
in-service entity for a given parent entity--reset to be done as a
consequence of the expiration of the in-service entity--always
happens after the function __bfq_lookup_next_entity has been
invoked. This causes the function to think that there is still an
entity in service for the parent entity, and then that the system
virtual time cannot be pushed up, even if actually such a
no-more-in-service entity has already been properly reinserted
into the active tree (or in some other tree if no more
active). Yet, the system virtual time *had* to be pushed up, to be
ready to correctly choose the next queue to serve. Because of the
lack of this push up, bfq may wrongly set in service a queue that
had been speculatively pre-computed as the possible
next-in-service queue, but that would no more be the one to serve
after the expiration and the reinsertion into the active trees of
the previously in-service entities.
This commit addresses this issue by making
__bfq_lookup_next_entity properly push up the system virtual time
if an expiration is occurring.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Lee Tibbert <lee.tibbert@gmail.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Groups of BFQ queues are represented by generic entities in BFQ. When
a queue belonging to a parent entity is deactivated, the parent entity
may need to be deactivated too, in case the deactivated queue was the
only active queue for the parent entity. This deactivation may need to
be propagated upwards if the entity belongs, in its turn, to a further
higher-level entity, and so on. In particular, the upward propagation
of deactivation stops at the first parent entity that remains active
even if one of its child entities has been deactivated.
To decide whether the last non-deactivation condition holds for a
parent entity, BFQ checks whether the field next_in_service is still
not NULL for the parent entity, after the deactivation of one of its
child entity. If it is not NULL, then there are certainly other active
entities in the parent entity, and deactivations can stop.
Unfortunately, this check misses a corner case: if in_service_entity
is not NULL, then next_in_service may happen to be NULL, although the
parent entity is evidently active. This happens if: 1) the entity
pointed by in_service_entity is the only active entity in the parent
entity, and 2) according to the definition of next_in_service, the
in_service_entity cannot be considered as next_in_service. See the
comments on the definition of next_in_service for details on this
second point.
Hitting the above corner case causes crashes.
To address this issue, this commit:
1) Extends the above check on only next_in_service to controlling both
next_in_service and in_service_entity (if any of them is not NULL,
then no further deactivation is performed)
2) Improves the (important) comments on how next_in_service is defined
and updated; in particular it fixes a few rather obscure paragraphs
Reported-by: Eric Wheeler <bfq-sched@lists.ewheeler.net>
Reported-by: Rick Yiu <rick_yiu@htc.com>
Reported-by: Tom X Nguyen <tom81094@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Eric Wheeler <bfq-sched@lists.ewheeler.net>
Tested-by: Rick Yiu <rick_yiu@htc.com>
Tested-by: Laurentiu Nicola <lnicola@dend.ro>
Tested-by: Tom X Nguyen <tom81094@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
BFQ implements hierarchical scheduling by representing each group of
queues with a generic parent entity. For each parent entity, BFQ
maintains an in_service_entity pointer: if one of the child entities
happens to be in service, in_service_entity points to it. The
resetting of these pointers happens only on queue expirations: when
the in-service queue is expired, i.e., stops to be the queue in
service, BFQ resets all in_service_entity pointers along the
parent-entity path from this queue to the root entity.
Functions handling the scheduling of entities assume, naturally, that
in-service entities are active, i.e., have pending I/O requests (or,
as a special case, even if they have no pending requests, they are
expected to receive a new request very soon, with the scheduler idling
the storage device while waiting for such an event). Unfortunately,
the above resetting scheme of the in_service_entity pointers may cause
this assumption to be violated. For example, the in-service queue may
happen to remain without requests because of a request merge. In this
case the queue does become idle, and all related data structures are
updated accordingly. But in_service_entity still points to the queue
in the parent entity. This inconsistency may even propagate to
higher-level parent entities, if they happen to become idle as well,
as a consequence of the leaf queue becoming idle. For this queue and
parent entities, scheduling functions have an undefined behaviour,
and, as reported, may easily lead to kernel crashes or hangs.
This commit addresses this issue by simply resetting the
in_service_entity field also when it is detected to point to an entity
becoming idle (regardless of why the entity becomes idle).
Reported-by: Laurentiu Nicola <lnicola@dend.ro>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Laurentiu Nicola <lnicola@dend.ro>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The start time of eligible entity should be less than or equal to
the current virtual time, and the entity in idle tree has a finish
time being greater than the current virtual time.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
On each deactivation or re-scheduling (after being served) of a
bfq_queue, BFQ invokes the function __bfq_entity_update_weight_prio(),
to perform pending updates of ioprio, weight and ioprio class for the
bfq_queue. BFQ also invokes this function on I/O-request dispatches,
to raise or lower weights more quickly when needed, thereby improving
latency. However, the entity representing the bfq_queue may be on the
active (sub)tree of a service tree when this happens, and, although
with a very low probability, the bfq_queue may happen to also have a
pending change of its ioprio class. If both conditions hold when
__bfq_entity_update_weight_prio() is invoked, then the entity moves to
a sort of hybrid state: the new service tree for the entity, as
returned by bfq_entity_service_tree(), differs from service tree on
which the entity still is. The functions that handle activations and
deactivations of entities do not cope with such a hybrid state (and
would need to become more complex to cope).
This commit addresses this issue by just making
__bfq_entity_update_weight_prio() not perform also a possible pending
change of ioprio class, when invoked on an I/O-request dispatch for a
bfq_queue. Such a change is thus postponed to when
__bfq_entity_update_weight_prio() is invoked on deactivation or
re-scheduling of the bfq_queue.
Reported-by: Marco Piazza <mpiazza@gmail.com>
Reported-by: Laurentiu Nicola <lnicola@dend.ro>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Tested-by: Marco Piazza <mpiazza@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In the function __bfq_deactivate_entity, the pointer
entity->sched_data could happen to be used before being properly
initialized. This led to a NULL pointer dereference. This commit fixes
this bug by just using this pointer only where it is safe to do so.
Reported-by: Tom Harrison <l12436.tw@gmail.com>
Tested-by: Tom Harrison <l12436.tw@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
The BFQ I/O scheduler features an optimal fair-queuing
(proportional-share) scheduling algorithm, enriched with several
mechanisms to boost throughput and reduce latency for interactive and
real-time applications. This makes BFQ a large and complex piece of
code. This commit addresses this issue by splitting BFQ into three
main, independent components, and by moving each component into a
separate source file:
1. Main algorithm: handles the interaction with the kernel, and
decides which requests to dispatch; it uses the following two further
components to achieve its goals.
2. Scheduling engine (Hierarchical B-WF2Q+ scheduling algorithm):
computes the schedule, using weights and budgets provided by the above
component.
3. cgroups support: handles group operations (creation, destruction,
move, ...).
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@fb.com>