Sparse can do constant folding of __builtin_bswap*() since 2017. Also, a
much recent version of Sparse is needed anyway, see commit 6ec4476ac825
("Raise gcc version requirement to 4.9").
So, remove the comment about sparse not being yet able to constant fold
__builtin_bswap*() and remove the corresponding test of __CHECKER__.
Link: https://lkml.kernel.org/r/20210226092236.99369-1-luc.vanoostenryck@gmail.com
Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Paul Gortmaker reported a regression in the GCC version check. [1]
If you use GCC 4.8, the build breaks before showing the error message
"error Sorry, your version of GCC is too old - please use 4.9 or newer."
I do not want to apply his fix-up since it implies we would not be able
to remove any cc-option test. Anyway, I admit checking the GCC version
in <linux/compiler-gcc.h> is too late.
Almost at the same time, Linus also suggested to move the compiler
version error to Kconfig time. [2]
I unified the two similar scripts, gcc-version.sh and clang-version.sh
into cc-version.sh. The old scripts invoked the compiler multiple times
(3 times for gcc-version.sh, 4 times for clang-version.sh). I refactored
the code so the new one invokes the compiler just once, and also tried
my best to use shell-builtin commands where possible.
The new script runs faster.
$ time ./scripts/clang-version.sh clang
120000
real 0m0.029s
user 0m0.012s
sys 0m0.021s
$ time ./scripts/cc-version.sh clang
Clang 120000
real 0m0.009s
user 0m0.006s
sys 0m0.004s
cc-version.sh also shows an error message if the compiler is too old:
$ make defconfig CC=clang-9
*** Default configuration is based on 'x86_64_defconfig'
***
*** Compiler is too old.
*** Your Clang version: 9.0.1
*** Minimum Clang version: 10.0.1
***
scripts/Kconfig.include:46: Sorry, this compiler is not supported.
make[1]: *** [scripts/kconfig/Makefile:81: defconfig] Error 1
make: *** [Makefile:602: defconfig] Error 2
The new script takes care of ICC because we have <linux/compiler-intel.h>
although I am not sure if building the kernel with ICC is well-supported.
[1]: https://lore.kernel.org/r/20210110190807.134996-1-paul.gortmaker@windriver.com
[2]: https://lore.kernel.org/r/CAHk-=wh-+TMHPTFo1qs-MYyK7tZh-OQovA=pP3=e06aCVp6_kA@mail.gmail.com
Fixes: 87de84c9140e ("kbuild: remove cc-option test of -Werror=date-time")
Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Tested-by: Miguel Ojeda <ojeda@kernel.org>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
GCC versions >= 4.9 and < 5.1 have been shown to emit memory references
beyond the stack pointer, resulting in memory corruption if an interrupt
is taken after the stack pointer has been adjusted but before the
reference has been executed. This leads to subtle, infrequent data
corruption such as the EXT4 problems reported by Russell King at the
link below.
Life is too short for buggy compilers, so raise the minimum GCC version
required by arm64 to 5.1.
Reported-by: Russell King <linux@armlinux.org.uk>
Suggested-by: Arnd Bergmann <arnd@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@vger.kernel.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/r/20210105154726.GD1551@shell.armlinux.org.uk
Link: https://lore.kernel.org/r/20210112224832.10980-1-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 815f0ddb346c ("include/linux/compiler*.h: make compiler-*.h
mutually exclusive") neglected to copy barrier_data() from
compiler-gcc.h into compiler-clang.h.
The definition in compiler-gcc.h was really to work around clang's more
aggressive optimization, so this broke barrier_data() on clang, and
consequently memzero_explicit() as well.
For example, this results in at least the memzero_explicit() call in
lib/crypto/sha256.c:sha256_transform() being optimized away by clang.
Fix this by moving the definition of barrier_data() into compiler.h.
Also move the gcc/clang definition of barrier() into compiler.h,
__memory_barrier() is icc-specific (and barrier() is already defined
using it in compiler-intel.h) and doesn't belong in compiler.h.
[rdunlap@infradead.org: fix ALPHA builds when SMP is not enabled]
Link: https://lkml.kernel.org/r/20201101231835.4589-1-rdunlap@infradead.org
Fixes: 815f0ddb346c ("include/linux/compiler*.h: make compiler-*.h mutually exclusive")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201014212631.207844-1-nivedita@alum.mit.edu
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3193c0836 ("bpf: Disable GCC -fgcse optimization for
___bpf_prog_run()") introduced a __no_fgcse macro that expands to a
function scope __attribute__((optimize("-fno-gcse"))), to disable a
GCC specific optimization that was causing trouble on x86 builds, and
was not expected to have any positive effect in the first place.
However, as the GCC manual documents, __attribute__((optimize))
is not for production use, and results in all other optimization
options to be forgotten for the function in question. This can
cause all kinds of trouble, but in one particular reported case,
it causes -fno-asynchronous-unwind-tables to be disregarded,
resulting in .eh_frame info to be emitted for the function.
This reverts commit 3193c0836, and instead, it disables the -fgcse
optimization for the entire source file, but only when building for
X86 using GCC with CONFIG_BPF_JIT_ALWAYS_ON disabled. Note that the
original commit states that CONFIG_RETPOLINE=n triggers the issue,
whereas CONFIG_RETPOLINE=y performs better without the optimization,
so it is kept disabled in both cases.
Fixes: 3193c0836f20 ("bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/lkml/CAMuHMdUg0WJHEcq6to0-eODpXPOywLot6UD2=GFHpzoj_hCoBQ@mail.gmail.com/
Link: https://lore.kernel.org/bpf/20201028171506.15682-2-ardb@kernel.org
As Kees suggests, doing so provides developers with two useful pieces of
information:
- The kernel build was attempting to use GCC.
(Maybe they accidentally poked the wrong configs in a CI.)
- They need 4.9 or better.
("Upgrade to what version?" doesn't need to be dug out of documentation,
headers, etc.)
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Fangrui Song <maskray@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200902225911.209899-8-ndesaulniers@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I realize that we fairly recently raised it to 4.8, but the fact is, 4.9
is a much better minimum version to target.
We have a number of workarounds for actual bugs in pre-4.9 gcc versions
(including things like internal compiler errors on ARM), but we also
have some syntactic workarounds for lacking features.
In particular, raising the minimum to 4.9 means that we can now just
assume _Generic() exists, which is likely the much better replacement
for a lot of very convoluted built-time magic with conditionals on
sizeof and/or __builtin_choose_expr() with same_type() etc.
Using _Generic also means that you will need to have a very recent
version of 'sparse', but thats easy to build yourself, and much less of
a hassle than some old gcc version can be.
The latest (in a long string) of reasons for minimum compiler version
upgrades was commit 5435f73d5c4a ("efi/x86: Fix build with gcc 4").
Ard points out that RHEL 7 uses gcc-4.8, but the people who stay back on
old RHEL versions persumably also don't build their own kernels anyway.
And maybe they should cross-built or just have a little side affair with
a newer compiler?
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adds the portable definitions for __no_sanitize_address, and
__no_sanitize_undefined, and subsequently changes noinstr to use the
attributes to disable instrumentation via KASAN or UBSAN.
Reported-by: syzbot+dc1fa714cb070b184db5@syzkaller.appspotmail.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: https://lore.kernel.org/lkml/000000000000d2474c05a6c938fe@google.com/
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.
Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It is very rare to see versions of GCC prior to 4.8 being used to build
the mainline kernel. These old compilers are also know to have codegen
issues which can lead to silent miscompilation:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145
Raise the minimum GCC version for kernel build to 4.8 and remove some
tautological Kconfig dependencies as a consequence.
Cc: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Since the use of -fsanitize=thread is an implementation detail of KCSAN,
the name __no_sanitize_thread could be misleading if used widely.
Instead, we introduce the __no_kcsan attribute which is shorter and more
accurate in the context of KCSAN.
This matches the attribute name __no_kcsan_or_inline. The use of
__kcsan_or_inline itself is still required for __always_inline functions
to retain compatibility with older compilers.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Kernel Concurrency Sanitizer (KCSAN) is a dynamic data-race detector for
kernel space. KCSAN is a sampling watchpoint-based data-race detector.
See the included Documentation/dev-tools/kcsan.rst for more details.
This patch adds basic infrastructure, but does not yet enable KCSAN for
any architecture.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
On x86-64, with CONFIG_RETPOLINE=n, GCC's "global common subexpression
elimination" optimization results in ___bpf_prog_run()'s jumptable code
changing from this:
select_insn:
jmp *jumptable(, %rax, 8)
...
ALU64_ADD_X:
...
jmp *jumptable(, %rax, 8)
ALU_ADD_X:
...
jmp *jumptable(, %rax, 8)
to this:
select_insn:
mov jumptable, %r12
jmp *(%r12, %rax, 8)
...
ALU64_ADD_X:
...
jmp *(%r12, %rax, 8)
ALU_ADD_X:
...
jmp *(%r12, %rax, 8)
The jumptable address is placed in a register once, at the beginning of
the function. The function execution can then go through multiple
indirect jumps which rely on that same register value. This has a few
issues:
1) Objtool isn't smart enough to be able to track such a register value
across multiple recursive indirect jumps through the jump table.
2) With CONFIG_RETPOLINE enabled, this optimization actually results in
a small slowdown. I measured a ~4.7% slowdown in the test_bpf
"tcpdump port 22" selftest.
This slowdown is actually predicted by the GCC manual:
Note: When compiling a program using computed gotos, a GCC
extension, you may get better run-time performance if you
disable the global common subexpression elimination pass by
adding -fno-gcse to the command line.
So just disable the optimization for this function.
Fixes: e55a73251da3 ("bpf: Fix ORC unwinding in non-JIT BPF code")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/30c3ca29ba037afcbd860a8672eef0021addf9fe.1563413318.git.jpoimboe@redhat.com
- A fix for OPTIMIZER_HIDE_VAR
From Michael S. Tsirkin
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAlxEkZkACgkQGXyLc2ht
IW2ksQ/8C2rfoTcKKeNxjpgV2XQ0HV6DsacEeQw+0VSBTzA2OPSiV61Dfm6/qywp
Y7DyjrosteIOShZhxSdg6M04uDEtb9m8GaWQitW3ewfmbnXmRX5OB3CI5vFF1/nS
LOj/Bd6FRqkIM6b0b7MWp/J0hQMnSNuElZp+yqlJyy1YuivfXN3vu8iDsHDhlyAs
OY4SqNmmlaUtSlRaTgJsSt28AFJ4CSgJqziKZux17xzjrstXg1p9BhcnZVzcmjeY
tcGFptbpUEmrcF2iqR8weaWkJSizgfsI60USrRZwLKM+i1NyOmnk9AWtSxOblNZZ
0z4QslkZG1/7rtmHOn6qVGcWsic+AINbrzSeBReEg8G/f/P/XI7yRJmQAaQWqzOD
ByEYoCp6U7gmQY6QiLLwq9d3VTHxV9d6PeC6gqEDM5ifrTIdOwNbL0MPvpb/UOlC
1IC/RpHOqAwWKTaYvpoutXzw9kG/TXG/yvdphTsStxOSnXeEXntdwmd0CDLKG6sG
y4xmEqU51KUoQ1UsX++dhxxxR4H7O6WcUmcFGXcrrhAD+x0N7Rd9g+lSDCpxW9yC
sIzr2aaPpaZMD40gAHb4vlXR+MqJdIFAAJ4xI1oaU+zSuxkEUn05xR6OgVgAdMLp
jT1SbI0XpbviakV6mwquAND7HOKWP/eZ7NLf6LlJIp0wrkBZRrQ=
=2ce7
-----END PGP SIGNATURE-----
mergetag object 99e309b6ed75fab4a43afd9e523441ecc5a1f511
type commit
tag clang-format-for-linus-v5.0-rc3
tagger Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> 1547999145 +0100
clang-format changes:
- Update of the for_each macro list
From Jason Gunthorpe
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAlxEmAYACgkQGXyLc2ht
IW3AZQ//byEzF7HPogmwAQDA8cs6Rg2GSP3ohPsGavvqmd6AegXMqAfV9VNzFRBr
tekhJuPufen6TjFkD+1Tlk+dvsXZXb/n/wYQWAJWm5SgOUfzh6Monprhe1JofLz0
pQ5xIAKtbpsuS6TmjWttXMKWN7aTenNQIPyGXxZziKe653yLYdISuYKDqo9SbLQX
QaXi911REjZHSUXdHrsmGyidci6HizJZkqCVB7zWrmB3+ygMTzo8x6HPTeIBOAdX
zEHGDdKQEPKO7y6Jyh5GkCzpCKWqSgdgXsI16eyKsPYymkARaqgMYtCPHTBvZ3e1
DkpCUg2BEMEDeftEFa9ysNOWppQTw9xDVuk6BO0T8YYeXnLlo9CWb6Dl7YRnoO63
0nsdvmHRkDKP93Hs9Zn3kZRVvy1EgOeIkfD+gK6sJpibyzJZRFGAwC3ysP/ERDVx
Lb25tdluWaxKZQwepqC472fiwX1V65YrLX66gUGfF5JIJqYDjeoOl+lgVb8L6Ped
sjYKO8uf2D9ZPRpsXgecx9u+Fy94P0fPTEm76vo5z1HBMAldihrQnw1U9ZNsvjBr
HiWIB6ccP/chDN+wtoI/lQGKgqjM6EYWJpts/NkPHvA1d0BUEPJ7/tHTFmUZ0c6z
DxdcjX/g4Bu/rSyIJaeosdcKNgFm+maHWQX+L+YV9yE1uGTzdcE=
=mM3e
-----END PGP SIGNATURE-----
Merge tags 'compiler-attributes-for-linus-v5.0-rc3' and 'clang-format-for-linus-v5.0-rc3' of git://github.com/ojeda/linux
Pull misc clang fixes from Miguel Ojeda:
- A fix for OPTIMIZER_HIDE_VAR from Michael S Tsirkin
- Update clang-format with the latest for_each macro list from Jason
Gunthorpe
* tag 'compiler-attributes-for-linus-v5.0-rc3' of git://github.com/ojeda/linux:
include/linux/compiler*.h: fix OPTIMIZER_HIDE_VAR
* tag 'clang-format-for-linus-v5.0-rc3' of git://github.com/ojeda/linux:
clang-format: Update .clang-format with the latest for_each macro list
Since commit 815f0ddb346c ("include/linux/compiler*.h: make compiler-*.h
mutually exclusive") clang no longer reuses the OPTIMIZER_HIDE_VAR macro
from compiler-gcc - instead it gets the version in
include/linux/compiler.h. Unfortunately that version doesn't actually
prevent compiler from optimizing out the variable.
Fix up by moving the macro out from compiler-gcc.h to compiler.h.
Compilers without incline asm support will keep working
since it's protected by an ifdef.
Also fix up comments to match reality since we are no longer overriding
any macros.
Build-tested with gcc and clang.
Fixes: 815f0ddb346c ("include/linux/compiler*.h: make compiler-*.h mutually exclusive")
Cc: Eli Friedman <efriedma@codeaurora.org>
Cc: Joe Perches <joe@perches.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
This commit splits the current CONFIG_KASAN config option into two:
1. CONFIG_KASAN_GENERIC, that enables the generic KASAN mode (the one
that exists now);
2. CONFIG_KASAN_SW_TAGS, that enables the software tag-based KASAN mode.
The name CONFIG_KASAN_SW_TAGS is chosen as in the future we will have
another hardware tag-based KASAN mode, that will rely on hardware memory
tagging support in arm64.
With CONFIG_KASAN_SW_TAGS enabled, compiler options are changed to
instrument kernel files with -fsantize=kernel-hwaddress (except the ones
for which KASAN_SANITIZE := n is set).
Both CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGS support both
CONFIG_KASAN_INLINE and CONFIG_KASAN_OUTLINE instrumentation modes.
This commit also adds empty placeholder (for now) implementation of
tag-based KASAN specific hooks inserted by the compiler and adjusts
common hooks implementation.
While this commit adds the CONFIG_KASAN_SW_TAGS config option, this option
is not selectable, as it depends on HAVE_ARCH_KASAN_SW_TAGS, which we will
enable once all the infrastracture code has been added.
Link: http://lkml.kernel.org/r/b2550106eb8a68b10fefbabce820910b115aa853.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __no_sanitize_address_or_inline and __no_kasan_or_inline defines
are almost identical. The only difference is that __no_kasan_or_inline
does not have the 'notrace' attribute.
To be able to replace __no_sanitize_address_or_inline with the older
definition, add 'notrace' to __no_kasan_or_inline and change to two
users of __no_sanitize_address_or_inline in the s390 code.
The 'notrace' option is necessary for e.g. the __load_psw_mask function
in arch/s390/include/asm/processor.h. Without the option it is possible
to trace __load_psw_mask which leads to kernel stack overflow.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Pointed-out-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an effort to disentangle the include/linux/compiler*.h headers
and bring them up to date.
The main idea behind the series is to use feature checking macros
(i.e. __has_attribute) instead of compiler version checks (e.g. GCC_VERSION),
which are compiler-agnostic (so they can be shared, reducing the size
of compiler-specific headers) and version-agnostic.
Other related improvements have been performed in the headers as well,
which on top of the use of __has_attribute it has amounted to a significant
simplification of these headers (e.g. GCC_VERSION is now only guarding
a few non-attribute macros).
This series should also help the efforts to support compiling the kernel
with clang and icc. A fair amount of documentation and comments have also
been added, clarified or removed; and the headers are now more readable,
which should help kernel developers in general.
The series was triggered due to the move to gcc >= 4.6. In turn, this series
has also triggered Sparse to gain the ability to recognize __has_attribute
on its own.
Finally, the __nonstring variable attribute series has been also applied
on top; plus two related patches from Nick Desaulniers for unreachable()
that came a bit afterwards.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEPjU5OPd5QIZ9jqqOGXyLc2htIW0FAlvNpywACgkQGXyLc2ht
IW1aiQ/+P8SJOa3GkiH37/nrIbk/wgMNytbs+gxE5YPaU1DP74Mn1prJ4XhQQic9
/mt8GnitZwzEHWdsGEUk+ZQwnIa7ZEAmpecbAF206AMRbNxa14T5YwBx4bqWFjZp
sP4zPTHt3JCKL8TM+z26o152UbF2kc4WSxHjEjSFaqEnR2E5D0MwFeGPzc8fgWmS
pNyn3CidzB0TS1UF008YXhiJO6HIhFNPyhPawlhwbbdsdlhZ4u0JmwfqP4EvjRFM
kyzdQ9CDe+AgTTD9Y8HhtoUClaa7SJzFWNzpKIJMWt8jpKWYZQ/+WtwKg2cf+v3M
uwktcs3RI1dYrjcITLz4VJ0oVaRFnyGgXvMP4yqWQx429hqnd09WXhMioXQ1htoI
H0vpPIAPsK+dqVA9sP3JzMq4h6+dE7P364lkbThbVpYAGKZ52qaLt9ixT1mw1Q9f
a683ji6o02IVOGUNZ/3KAb5MqdhewNEDdZILZYRfm4AL1Em3WW9QVtIosHPviLgc
16VjA02wKdxIcg+1LZMTNhfybztnSCf7SuQurpH1zEqFDGzrXwB7nYFplEY7DrrD
cqhOA1fMQa++oQR+D40QDoY2ybqPOyvJG7z17pvtt+6jXep4yy2a3Bxf+ClK0nto
5yT7v9ikXJr84FOkk7OvktLlAWvcykvAdfvDepBZhpqhuX82tHY=
=Y8WB
-----END PGP SIGNATURE-----
Merge tag 'compiler-attributes-for-linus-4.20-rc1' of https://github.com/ojeda/linux
Pull compiler attribute updates from Miguel Ojeda:
"This is an effort to disentangle the include/linux/compiler*.h headers
and bring them up to date.
The main idea behind the series is to use feature checking macros
(i.e. __has_attribute) instead of compiler version checks (e.g.
GCC_VERSION), which are compiler-agnostic (so they can be shared,
reducing the size of compiler-specific headers) and version-agnostic.
Other related improvements have been performed in the headers as well,
which on top of the use of __has_attribute it has amounted to a
significant simplification of these headers (e.g. GCC_VERSION is now
only guarding a few non-attribute macros).
This series should also help the efforts to support compiling the
kernel with clang and icc. A fair amount of documentation and comments
have also been added, clarified or removed; and the headers are now
more readable, which should help kernel developers in general.
The series was triggered due to the move to gcc >= 4.6. In turn, this
series has also triggered Sparse to gain the ability to recognize
__has_attribute on its own.
Finally, the __nonstring variable attribute series has been also
applied on top; plus two related patches from Nick Desaulniers for
unreachable() that came a bit afterwards"
* tag 'compiler-attributes-for-linus-4.20-rc1' of https://github.com/ojeda/linux:
compiler-gcc: remove comment about gcc 4.5 from unreachable()
compiler.h: update definition of unreachable()
Compiler Attributes: ext4: remove local __nonstring definition
Compiler Attributes: auxdisplay: panel: use __nonstring
Compiler Attributes: enable -Wstringop-truncation on W=1 (gcc >= 8)
Compiler Attributes: add support for __nonstring (gcc >= 8)
Compiler Attributes: add MAINTAINERS entry
Compiler Attributes: add Doc/process/programming-language.rst
Compiler Attributes: remove uses of __attribute__ from compiler.h
Compiler Attributes: KENTRY used twice the "used" attribute
Compiler Attributes: use feature checks instead of version checks
Compiler Attributes: add missing SPDX ID in compiler_types.h
Compiler Attributes: remove unneeded sparse (__CHECKER__) tests
Compiler Attributes: homogenize __must_be_array
Compiler Attributes: remove unneeded tests
Compiler Attributes: always use the extra-underscores syntax
Compiler Attributes: remove unused attributes
- Improved access control for the zcrypt driver, multiple device nodes
can now be created with different access control lists
- Extend the pkey API to provide random protected keys, this is useful
for encrypted swap device with ephemeral protected keys
- Add support for virtually mapped kernel stacks
- Rework the early boot code, this moves the memory detection into the
boot code that runs prior to decompression.
- Add KASAN support
- Bug fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJbzXKpAAoJEDjwexyKj9rg98YH/jZ5/kEYV44JsACroTNBC782
6QLCvoCvSgXUAqRwnIfnxrcjrUVNW2aK6rOSsI/I8rQDsSA3boJ7FimoEI2BsUZG
dcMy0hC47AYB7yKREQX3gdDEj8f0bn8v2ize5F6gwLkIx0A+aBUSivRQeYMaF8sn
N/5OkSJwjCb+ZkNmDa3SHif+hC5+iL+q1hfuBdQkeCBok9pAqhyosRkgLe8CQgUV
HGrvaWJ4FudIpg4tu2jL2OsNoZFX2pK5d+Up886+KGKQEUfiXKYtdmzX17Vd7PIk
Vkf7EWUipzIA7UtrJ6pljoFsrNa+83jm4j5Dgy0ohadCVUBYLORte3yEl4P1EoM=
=MMf0
-----END PGP SIGNATURE-----
Merge tag 's390-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky:
- Improved access control for the zcrypt driver, multiple device nodes
can now be created with different access control lists
- Extend the pkey API to provide random protected keys, this is useful
for encrypted swap device with ephemeral protected keys
- Add support for virtually mapped kernel stacks
- Rework the early boot code, this moves the memory detection into the
boot code that runs prior to decompression.
- Add KASAN support
- Bug fixes and cleanups
* tag 's390-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (83 commits)
s390/pkey: move pckmo subfunction available checks away from module init
s390/kasan: support preemptible kernel build
s390/pkey: Load pkey kernel module automatically
s390/perf: Return error when debug_register fails
s390/sthyi: Fix machine name validity indication
s390/zcrypt: fix broken zcrypt_send_cprb in-kernel api function
s390/vmalloc: fix VMALLOC_START calculation
s390/mem_detect: add missing include
s390/dumpstack: print psw mask and address again
s390/crypto: Enhance paes cipher to accept variable length key material
s390/pkey: Introduce new API for transforming key blobs
s390/pkey: Introduce new API for random protected key verification
s390/pkey: Add sysfs attributes to emit secure key blobs
s390/pkey: Add sysfs attributes to emit protected key blobs
s390/pkey: Define protected key blob format
s390/pkey: Introduce new API for random protected key generation
s390/zcrypt: add ap_adapter_mask sysfs attribute
s390/zcrypt: provide apfs failure code on type 86 error reply
s390/zcrypt: zcrypt device driver cleanup
s390/kasan: add support for mem= kernel parameter
...
Remove the comment about being unable to detect __builtin_unreachable.
__builtin_unreachable was implemented in the GCC 4.5 timeframe. The
kernel's minimum supported version of GCC is 4.6 since commit
cafa0010cd51 ("Raise the minimum required gcc version to 4.6"). Commit
cb984d101b30 ("compiler-gcc: integrate the various compiler-gcc[345].h
files") shows that unreachable() had different guards based on GCC
version.
Suggested-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Due to conflict between kasan instrumentation and inlining
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 functions which are
defined as inline could not be called from functions defined with
__no_sanitize_address.
Introduce __no_sanitize_address_or_inline which would expand to
__no_sanitize_address when the kernel is built with kasan support and
to inline otherwise. This helps to avoid disabling kasan
instrumentation for entire files.
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Instead of using version checks per-compiler to define (or not)
each attribute, use __has_attribute to test for them, following
the cleanup started with commit 815f0ddb346c
("include/linux/compiler*.h: make compiler-*.h mutually exclusive"),
which is supported on gcc >= 5, clang >= 2.9 and icc >= 17.
In the meantime, to support 4.6 <= gcc < 5, we implement
__has_attribute by hand.
All the attributes that can be unconditionally defined and directly
map to compiler attribute(s) (even if optional) have been moved
to a new file include/linux/compiler_attributes.h
In an effort to make the file as regular as possible, comments
stating the purpose of attributes have been removed. Instead,
links to the compiler docs have been added (i.e. to gcc and,
if available, to clang as well). In addition, they have been sorted.
Finally, if an attribute is optional (i.e. if it is guarded
by __has_attribute), the reason has been stated for future reference.
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Sparse knows about a few more attributes now, so we can remove
the __CHECKER__ conditions from them (which, in turn, allow us
to move some of them later on to compiler_attributes.h).
* assume_aligned: since sparse's commit ffc860b ("sparse:
ignore __assume_aligned__ attribute"), included in 0.5.1
* error: since sparse's commit 0a04210 ("sparse: Add 'error'
to ignored attributes"), included in 0.5.0
* hotpatch: since sparse's commit 6043210 ("sparse/parse.c:
ignore hotpatch attribute"), included in 0.5.1
* warning: since sparse's commit 977365d ("Avoid "attribute
'warning': unknown attribute" warning"), included in 0.4.2
On top of that, __must_be_array does not need it either because:
* Even ancient versions of sparse do not have a problem
* BUILD_BUG_ON_ZERO() is currently disabled for __CHECKER__
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Different definitions of __must_be_array:
* gcc: disabled for __CHECKER__
* clang: same definition as gcc's, but without __CHECKER__
* intel: the comment claims __builtin_types_compatible_p()
is unsupported; but icc seems to support it since 13.0.1
(released in 2012). See https://godbolt.org/z/S0l6QQ
Therefore, we can remove all of them and have a single definition
in compiler.h
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
The attribute syntax optionally allows to surround attribute names
with "__" in order to avoid collisions with macros of the same name
(see https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html).
This homogenizes all attributes to use the syntax with underscores.
While there are currently only a handful of cases of some TUs defining
macros like "error" which may collide with the attributes,
this should prevent futures surprises.
This has been done only for "standard" attributes supported by
the major compilers. In other words, those of third-party tools
(e.g. sparse, plugins...) have not been changed for the moment.
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
__optimize and __deprecate_for_modules are unused in
the whole kernel tree. Simply drop them.
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # on top of v4.19-rc5, clang 7
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
The naked attribute is supported by at least gcc >= 4.6 (for ARM,
which is the only current user), gcc >= 8 (for x86), clang >= 3.1
and icc >= 13. See https://godbolt.org/z/350Dyc
Therefore, move it out of compiler-gcc.h so that the definition
is shared by all compilers.
This also fixes Clang support for ARM32 --- 815f0ddb346c
("include/linux/compiler*.h: make compiler-*.h mutually exclusive").
Fixes: 815f0ddb346c ("include/linux/compiler*.h: make compiler-*.h mutually exclusive")
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Eli Friedman <efriedma@codeaurora.org>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Joe Perches <joe@perches.com>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-sparse@vger.kernel.org
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 9c695203a7dd ("compiler-gcc.h: gcc-4.5 needs noclone
and noinline on __naked functions") added noinline and noclone
as a workaround for a gcc 4.5 bug, which was resolved in 4.6.0.
Since now the minimum gcc supported version is 4.6,
we can clean it up.
See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=44290
and https://godbolt.org/z/h6NMIL
Fixes: 815f0ddb346c ("include/linux/compiler*.h: make compiler-*.h mutually exclusive")
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Eli Friedman <efriedma@codeaurora.org>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Joe Perches <joe@perches.com>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-sparse@vger.kernel.org
Tested-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit cafa0010cd51 ("Raise the minimum required gcc version to 4.6")
recently exposed a brittle part of the build for supporting non-gcc
compilers.
Both Clang and ICC define __GNUC__, __GNUC_MINOR__, and
__GNUC_PATCHLEVEL__ for quick compatibility with code bases that haven't
added compiler specific checks for __clang__ or __INTEL_COMPILER.
This is brittle, as they happened to get compatibility by posing as a
certain version of GCC. This broke when upgrading the minimal version
of GCC required to build the kernel, to a version above what ICC and
Clang claim to be.
Rather than always including compiler-gcc.h then undefining or
redefining macros in compiler-intel.h or compiler-clang.h, let's
separate out the compiler specific macro definitions into mutually
exclusive headers, do more proper compiler detection, and keep shared
definitions in compiler_types.h.
Fixes: cafa0010cd51 ("Raise the minimum required gcc version to 4.6")
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Suggested-by: Eli Friedman <efriedma@codeaurora.org>
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Various architectures fail to build properly with older versions of the
gcc compiler.
An example from Guenter Roeck in thread [1]:
>
> In file included from ./include/linux/mm.h:17:0,
> from ./include/linux/pid_namespace.h:7,
> from ./include/linux/ptrace.h:10,
> from arch/openrisc/kernel/asm-offsets.c:32:
> ./include/linux/mm_types.h:497:16: error: flexible array member in otherwise empty struct
>
> This is just an example with gcc 4.5.1 for or32. I have seen the problem
> with gcc 4.4 (for unicore32) as well.
So update the minimum required version of gcc to 4.6.
[1] https://lore.kernel.org/lkml/20180814170904.GA12768@roeck-us.net/
Miscellanea:
- Update Documentation/process/changes.rst
- Remove and consolidate version test blocks in compiler-gcc.h for
versions lower than 4.6
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We haven't had lots of deprecation warnings lately, but the rdma use of
it made them flare up again.
They are not useful. They annoy everybody, and nobody ever does
anything about them, because it's always "somebody elses problem". And
when people start thinking that warnings are normal, they stop looking
at them, and the real warnings that mean something go unnoticed.
If you want to get rid of a function, just get rid of it. Convert every
user to the new world order.
And if you can't do that, then don't annoy everybody else with your
marking that says "I couldn't be bothered to fix this, so I'll just spam
everybody elses build logs with warnings about my laziness".
Make a kernelnewbies wiki page about things that could be cleaned up,
write a blog post about it, or talk to people on the mailing lists. But
don't add warnings to the kernel build about cleanup that you think
should happen but you aren't doing yourself.
Don't. Just don't.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have occasionally run into a situation where it would make sense to
control a compiler warning from a source file rather than doing so from
a Makefile using the $(cc-disable-warning, ...) or $(cc-option, ...)
helpers.
The approach here is similar to what glibc uses, using __diag() and
related macros to encapsulate a _Pragma("GCC diagnostic ...") statement
that gets turned into the respective "#pragma GCC diagnostic ..." by
the preprocessor when the macro gets expanded.
Like glibc, I also have an argument to pass the affected compiler
version, but decided to actually evaluate that one. For now, this
supports GCC_4_6, GCC_4_7, GCC_4_8, GCC_4_9, GCC_5, GCC_6, GCC_7,
GCC_8 and GCC_9. Adding support for CLANG_5 and other interesting
versions is straightforward here. GNU compilers starting with gcc-4.2
could support it in principle, but "#pragma GCC diagnostic push"
was only added in gcc-4.6, so it seems simpler to not deal with those
at all. The same versions show a large number of warnings already,
so it seems easier to just leave it at that and not do a more
fine-grained control for them.
The use cases I found so far include:
- turning off the gcc-8 -Wattribute-alias warning inside of the
SYSCALL_DEFINEx() macro without having to do it globally.
- Reducing the build time for a simple re-make after a change,
once we move the warnings from ./Makefile and
./scripts/Makefile.extrawarn into linux/compiler.h
- More control over the warnings based on other configurations,
using preprocessor syntax instead of Makefile syntax. This should make
it easier for the average developer to understand and change things.
- Adding an easy way to turn the W=1 option on unconditionally
for a subdirectory or a specific file. This has been requested
by several developers in the past that want to have their subsystems
W=1 clean.
- Integrating clang better into the build systems. Clang supports
more warnings than GCC, and we probably want to classify them
as default, W=1, W=2 etc, but there are cases in which the
warnings should be classified differently due to excessive false
positives from one or the other compiler.
- Adding a way to turn the default warnings into errors (e.g. using
a new "make E=0" tag) while not also turning the W=1 warnings into
errors.
This patch for now just adds the minimal infrastructure in order to
do the first of the list above. As the #pragma GCC diagnostic
takes precedence over command line options, the next step would be
to convert a lot of the individual Makefiles that set nonstandard
options to use __diag() instead.
[paul.burton@mips.com:
- Rebase atop current master.
- Add __diag_GCC, or more generally __diag_<compiler>, abstraction to
avoid code outside of linux/compiler-gcc.h needing to duplicate
knowledge about different GCC versions.
- Add a comment argument to __diag_{ignore,warn,error} which isn't
used in the expansion of the macros but serves to push people to
document the reason for using them - per feedback from Kees Cook.
- Translate severity to GCC-specific pragmas in linux/compiler-gcc.h
rather than using GCC-specific in linux/compiler_types.h.
- Drop all but GCC 8 macros, since we only need to define macros for
versions that we need to introduce pragmas for, and as of this
series that's just GCC 8.
- Capitalize comments in linux/compiler-gcc.h to match the style of
the rest of the file.
- Line up macro definitions with tabs in linux/compiler-gcc.h.]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Tested-by: Christophe Leroy <christophe.leroy@c-s.fr>
Tested-by: Stafford Horne <shorne@gmail.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
This adds wrappers for the __builtin overflow checkers present in gcc
5.1+ as well as fallback implementations for earlier compilers. It's not
that easy to implement the fully generic __builtin_X_overflow(T1 a, T2
b, T3 *d) in macros, so the fallback code assumes that T1, T2 and T3 are
the same. We obviously don't want the wrappers to have different
semantics depending on $GCC_VERSION, so we also insist on that even when
using the builtins.
There are a few problems with the 'a+b < a' idiom for checking for
overflow: For signed types, it relies on undefined behaviour and is
not actually complete (it doesn't check underflow;
e.g. INT_MIN+INT_MIN == 0 isn't caught). Due to type promotion it
is wrong for all types (signed and unsigned) narrower than
int. Similarly, when a and b does not have the same type, there are
subtle cases like
u32 a;
if (a + sizeof(foo) < a)
return -EOVERFLOW;
a += sizeof(foo);
where the test is always false on 64 bit platforms. Add to that that it
is not always possible to determine the types involved at a glance.
The new overflow.h is somewhat bulky, but that's mostly a result of
trying to be type-generic, complete (e.g. catching not only overflow
but also signed underflow) and not relying on undefined behaviour.
Linus is of course right [1] that for unsigned subtraction a-b, the
right way to check for overflow (underflow) is "b > a" and not
"__builtin_sub_overflow(a, b, &d)", but that's just one out of six cases
covered here, and included mostly for completeness.
So is it worth it? I think it is, if nothing else for the documentation
value of seeing
if (check_add_overflow(a, b, &d))
return -EGOAWAY;
do_stuff_with(d);
instead of the open-coded (and possibly wrong and/or incomplete and/or
UBsan-tickling)
if (a+b < a)
return -EGOAWAY;
do_stuff_with(a+b);
While gcc does recognize the 'a+b < a' idiom for testing unsigned add
overflow, it doesn't do nearly as good for unsigned multiplication
(there's also no single well-established idiom). So using
check_mul_overflow in kcalloc and friends may also make gcc generate
slightly better code.
[1] https://lkml.org/lkml/2015/11/2/658
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Kees Cook <keescook@chromium.org>
The original intent for always adding the anonymous struct in
task_struct was to make sure we had compiler coverage.
However, this caused pathological padding of 40 bytes at the start of
task_struct. Instead, move the anonymous struct to being only used when
struct layout randomization is enabled.
Link: http://lkml.kernel.org/r/20180327213609.GA2964@beast
Fixes: 29e48ce87f1e ("task_struct: Allow randomized")
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Thomas Gleixner:
"Yet another pile of melted spectrum related changes:
- sanitize the array_index_nospec protection mechanism: Remove the
overengineered array_index_nospec_mask_check() magic and allow
const-qualified types as index to avoid temporary storage in a
non-const local variable.
- make the microcode loader more robust by properly propagating error
codes. Provide information about new feature bits after micro code
was updated so administrators can act upon.
- optimizations of the entry ASM code which reduce code footprint and
make the code simpler and faster.
- fix the {pmd,pud}_{set,clear}_flags() implementations to work
properly on paravirt kernels by removing the address translation
operations.
- revert the harmful vmexit_fill_RSB() optimization
- use IBRS around firmware calls
- teach objtool about retpolines and add annotations for indirect
jumps and calls.
- explicitly disable jumplabel patching in __init code and handle
patching failures properly instead of silently ignoring them.
- remove indirect paravirt calls for writing the speculation control
MSR as these calls are obviously proving the same attack vector
which is tried to be mitigated.
- a few small fixes which address build issues with recent compiler
and assembler versions"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
KVM/VMX: Optimize vmx_vcpu_run() and svm_vcpu_run() by marking the RDMSR path as unlikely()
KVM/x86: Remove indirect MSR op calls from SPEC_CTRL
objtool, retpolines: Integrate objtool with retpoline support more closely
x86/entry/64: Simplify ENCODE_FRAME_POINTER
extable: Make init_kernel_text() global
jump_label: Warn on failed jump_label patching attempt
jump_label: Explicitly disable jump labels in __init code
x86/entry/64: Open-code switch_to_thread_stack()
x86/entry/64: Move ASM_CLAC to interrupt_entry()
x86/entry/64: Remove 'interrupt' macro
x86/entry/64: Move the switch_to_thread_stack() call to interrupt_entry()
x86/entry/64: Move ENTER_IRQ_STACK from interrupt macro to interrupt_entry
x86/entry/64: Move PUSH_AND_CLEAR_REGS from interrupt macro to helper function
x86/speculation: Move firmware_restrict_branch_speculation_*() from C to CPP
objtool: Add module specific retpoline rules
objtool: Add retpoline validation
objtool: Use existing global variables for options
x86/mm/sme, objtool: Annotate indirect call in sme_encrypt_execute()
x86/boot, objtool: Annotate indirect jump in secondary_startup_64()
x86/paravirt, objtool: Annotate indirect calls
...
Looking at functions with large stack frames across all architectures
led me discovering that BUG() suffers from the same problem as
fortify_panic(), which I've added a workaround for already.
In short, variables that go out of scope by calling a noreturn function
or __builtin_unreachable() keep using stack space in functions
afterwards.
A workaround that was identified is to insert an empty assembler
statement just before calling the function that doesn't return. I'm
adding a macro "barrier_before_unreachable()" to document this, and
insert calls to that in all instances of BUG() that currently suffer
from this problem.
The files that saw the largest change from this had these frame sizes
before, and much less with my patch:
fs/ext4/inode.c:82:1: warning: the frame size of 1672 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/ext4/namei.c:434:1: warning: the frame size of 904 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/ext4/super.c:2279:1: warning: the frame size of 1160 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/ext4/xattr.c:146:1: warning: the frame size of 1168 bytes is larger than 800 bytes [-Wframe-larger-than=]
fs/f2fs/inode.c:152:1: warning: the frame size of 1424 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_core.c:1195:1: warning: the frame size of 1068 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_core.c:395:1: warning: the frame size of 1084 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_ftp.c:298:1: warning: the frame size of 928 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_ftp.c:418:1: warning: the frame size of 908 bytes is larger than 800 bytes [-Wframe-larger-than=]
net/netfilter/ipvs/ip_vs_lblcr.c:718:1: warning: the frame size of 960 bytes is larger than 800 bytes [-Wframe-larger-than=]
drivers/net/xen-netback/netback.c:1500:1: warning: the frame size of 1088 bytes is larger than 800 bytes [-Wframe-larger-than=]
In case of ARC and CRIS, it turns out that the BUG() implementation
actually does return (or at least the compiler thinks it does),
resulting in lots of warnings about uninitialized variable use and
leaving noreturn functions, such as:
block/cfq-iosched.c: In function 'cfq_async_queue_prio':
block/cfq-iosched.c:3804:1: error: control reaches end of non-void function [-Werror=return-type]
include/linux/dmaengine.h: In function 'dma_maxpq':
include/linux/dmaengine.h:1123:1: error: control reaches end of non-void function [-Werror=return-type]
This makes them call __builtin_trap() instead, which should normally
dump the stack and kill the current process, like some of the other
architectures already do.
I tried adding barrier_before_unreachable() to panic() and
fortify_panic() as well, but that had very little effect, so I'm not
submitting that patch.
Vineet said:
: For ARC, it is double win.
:
: 1. Fixes 3 -Wreturn-type warnings
:
: | ../net/core/ethtool.c:311:1: warning: control reaches end of non-void function
: [-Wreturn-type]
: | ../kernel/sched/core.c:3246:1: warning: control reaches end of non-void function
: [-Wreturn-type]
: | ../include/linux/sunrpc/svc_xprt.h:180:1: warning: control reaches end of
: non-void function [-Wreturn-type]
:
: 2. bloat-o-meter reports code size improvements as gcc elides the
: generated code for stack return.
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82365
Link: http://lkml.kernel.org/r/20171219114112.939391-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc]
Tested-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc]
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull crypto fixes from Herbert Xu:
"This fixes the following issues:
- oversize stack frames on mn10300 in sha3-generic
- warning on old compilers in sha3-generic
- API error in sun4i_ss_prng
- potential dead-lock in sun4i_ss_prng
- null-pointer dereference in sha512-mb
- endless loop when DECO acquire fails in caam
- kernel oops when hashing empty message in talitos"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: sun4i_ss_prng - convert lock to _bh in sun4i_ss_prng_generate
crypto: sun4i_ss_prng - fix return value of sun4i_ss_prng_generate
crypto: caam - fix endless loop when DECO acquire fails
crypto: sha3-generic - Use __optimize to support old compilers
compiler-gcc.h: __nostackprotector needs gcc-4.4 and up
compiler-gcc.h: Introduce __optimize function attribute
crypto: sha3-generic - deal with oversize stack frames
crypto: talitos - fix Kernel Oops on hashing an empty file
crypto: sha512-mb - initialize pending lengths correctly
Create a new function attribute __optimize, which allows to specify an
optimization level on a per-function basis.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Without this patch, I drown in a sea of unknown attribute warnings
Link: http://lkml.kernel.org/r/20180117024539.27354-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
linux/compiler.h is included indirectly by linux/types.h via
uapi/linux/types.h -> uapi/linux/posix_types.h -> linux/stddef.h
-> uapi/linux/stddef.h and is needed to provide a proper definition of
offsetof.
Unfortunately, compiler.h requires a definition of
smp_read_barrier_depends() for defining lockless_dereference() and soon
for defining READ_ONCE(), which means that all
users of READ_ONCE() will need to include asm/barrier.h to avoid splats
such as:
In file included from include/uapi/linux/stddef.h:1:0,
from include/linux/stddef.h:4,
from arch/h8300/kernel/asm-offsets.c:11:
include/linux/list.h: In function 'list_empty':
>> include/linux/compiler.h:343:2: error: implicit declaration of function 'smp_read_barrier_depends' [-Werror=implicit-function-declaration]
smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
^
A better alternative is to include asm/barrier.h in linux/compiler.h,
but this requires a type definition for "bool" on some architectures
(e.g. x86), which is defined later by linux/types.h. Type "bool" is also
used directly in linux/compiler.h, so the whole thing is pretty fragile.
This patch splits compiler.h in two: compiler_types.h contains type
annotations, definitions and the compiler-specific parts, whereas
compiler.h #includes compiler-types.h and additionally defines macros
such as {READ,WRITE.ACCESS}_ONCE().
uapi/linux/stddef.h and linux/linkage.h are then moved over to include
linux/compiler_types.h, which fixes the build for h8 and blackfin.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-2-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...