The bpf_sys_bpf() helper function allows an eBPF program to load another
eBPF program from within the kernel. In this case the argument union
bpf_attr pointer (as well as the insns and license pointers inside) is a
kernel address instead of a userspace address (which is the case of a
usual bpf() syscall). To make the memory copying process in the syscall
work in both cases, bpfptr_t was introduced to wrap around the pointer
and distinguish its origin. Specifically, when copying memory contents
from a bpfptr_t, a copy_from_user() is performed in case of a userspace
address and a memcpy() is performed for a kernel address.
This can lead to problems because the in-kernel pointer is never checked
for validity. The problem happens when an eBPF syscall program tries to
call bpf_sys_bpf() to load a program but provides a bad insns pointer --
say 0xdeadbeef -- in the bpf_attr union. The helper calls __sys_bpf()
which would then call bpf_prog_load() to load the program.
bpf_prog_load() is responsible for copying the eBPF instructions to the
newly allocated memory for the program; it creates a kernel bpfptr_t for
insns and invokes copy_from_bpfptr(). Internally, all bpfptr_t
operations are backed by the corresponding sockptr_t operations, which
performs direct memcpy() on kernel pointers for copy_from/strncpy_from
operations. Therefore, the code is always happy to dereference the bad
pointer to trigger a un-handle-able page fault and in turn an oops.
However, this is not supposed to happen because at that point the eBPF
program is already verified and should not cause a memory error.
Sample KASAN trace:
[ 25.685056][ T228] ==================================================================
[ 25.685680][ T228] BUG: KASAN: user-memory-access in copy_from_bpfptr+0x21/0x30
[ 25.686210][ T228] Read of size 80 at addr 00000000deadbeef by task poc/228
[ 25.686732][ T228]
[ 25.686893][ T228] CPU: 3 PID: 228 Comm: poc Not tainted 5.19.0-rc7 #7
[ 25.687375][ T228] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS d55cb5a 04/01/2014
[ 25.687991][ T228] Call Trace:
[ 25.688223][ T228] <TASK>
[ 25.688429][ T228] dump_stack_lvl+0x73/0x9e
[ 25.688747][ T228] print_report+0xea/0x200
[ 25.689061][ T228] ? copy_from_bpfptr+0x21/0x30
[ 25.689401][ T228] ? _printk+0x54/0x6e
[ 25.689693][ T228] ? _raw_spin_lock_irqsave+0x70/0xd0
[ 25.690071][ T228] ? copy_from_bpfptr+0x21/0x30
[ 25.690412][ T228] kasan_report+0xb5/0xe0
[ 25.690716][ T228] ? copy_from_bpfptr+0x21/0x30
[ 25.691059][ T228] kasan_check_range+0x2bd/0x2e0
[ 25.691405][ T228] ? copy_from_bpfptr+0x21/0x30
[ 25.691734][ T228] memcpy+0x25/0x60
[ 25.692000][ T228] copy_from_bpfptr+0x21/0x30
[ 25.692328][ T228] bpf_prog_load+0x604/0x9e0
[ 25.692653][ T228] ? cap_capable+0xb4/0xe0
[ 25.692956][ T228] ? security_capable+0x4f/0x70
[ 25.693324][ T228] __sys_bpf+0x3af/0x580
[ 25.693635][ T228] bpf_sys_bpf+0x45/0x240
[ 25.693937][ T228] bpf_prog_f0ec79a5a3caca46_bpf_func1+0xa2/0xbd
[ 25.694394][ T228] bpf_prog_run_pin_on_cpu+0x2f/0xb0
[ 25.694756][ T228] bpf_prog_test_run_syscall+0x146/0x1c0
[ 25.695144][ T228] bpf_prog_test_run+0x172/0x190
[ 25.695487][ T228] __sys_bpf+0x2c5/0x580
[ 25.695776][ T228] __x64_sys_bpf+0x3a/0x50
[ 25.696084][ T228] do_syscall_64+0x60/0x90
[ 25.696393][ T228] ? fpregs_assert_state_consistent+0x50/0x60
[ 25.696815][ T228] ? exit_to_user_mode_prepare+0x36/0xa0
[ 25.697202][ T228] ? syscall_exit_to_user_mode+0x20/0x40
[ 25.697586][ T228] ? do_syscall_64+0x6e/0x90
[ 25.697899][ T228] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 25.698312][ T228] RIP: 0033:0x7f6d543fb759
[ 25.698624][ T228] Code: 08 5b 89 e8 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 97 a6 0e 00 f7 d8 64 89 01 48
[ 25.699946][ T228] RSP: 002b:00007ffc3df78468 EFLAGS: 00000287 ORIG_RAX: 0000000000000141
[ 25.700526][ T228] RAX: ffffffffffffffda RBX: 00007ffc3df78628 RCX: 00007f6d543fb759
[ 25.701071][ T228] RDX: 0000000000000090 RSI: 00007ffc3df78478 RDI: 000000000000000a
[ 25.701636][ T228] RBP: 00007ffc3df78510 R08: 0000000000000000 R09: 0000000000300000
[ 25.702191][ T228] R10: 0000000000000005 R11: 0000000000000287 R12: 0000000000000000
[ 25.702736][ T228] R13: 00007ffc3df78638 R14: 000055a1584aca68 R15: 00007f6d5456a000
[ 25.703282][ T228] </TASK>
[ 25.703490][ T228] ==================================================================
[ 25.704050][ T228] Disabling lock debugging due to kernel taint
Update copy_from_bpfptr() and strncpy_from_bpfptr() so that:
- for a kernel pointer, it uses the safe copy_from_kernel_nofault() and
strncpy_from_kernel_nofault() functions.
- for a userspace pointer, it performs copy_from_user() and
strncpy_from_user().
Fixes: af2ac3e13e45 ("bpf: Prepare bpf syscall to be used from kernel and user space.")
Link: https://lore.kernel.org/bpf/20220727132905.45166-1-jinghao@linux.ibm.com/
Signed-off-by: Jinghao Jia <jinghao@linux.ibm.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220729201713.88688-1-jinghao@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This adds helpers for registering btf_id_set from modules and the
bpf_check_mod_kfunc_call callback that can be used to look them up.
With in kernel sets, the way this is supposed to work is, in kernel
callback looks up within the in-kernel kfunc whitelist, and then defers
to the dynamic BTF set lookup if it doesn't find the BTF id. If there is
no in-kernel BTF id set, this callback can be used directly.
Also fix includes for btf.h and bpfptr.h so that they can included in
isolation. This is in preparation for their usage in tcp_bbr, tcp_cubic
and tcp_dctcp modules in the next patch.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211002011757.311265-4-memxor@gmail.com
Same as previous patch but for the keys. memdup_bpfptr is renamed
to kvmemdup_bpfptr (and converted to kvmalloc).
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210818235216.1159202-2-sdf@google.com
Similar to sockptr_t introduce bpfptr_t with few additions:
make_bpfptr() creates new user/kernel pointer in the same address space as
existing user/kernel pointer.
bpfptr_add() advances the user/kernel pointer.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-3-alexei.starovoitov@gmail.com