2024 Commits

Author SHA1 Message Date
Linus Torvalds
bba90e0964 Core code updates:
- Reduce the amount of work to release a task stack in context
     switch. There is no real reason to do cgroup accounting and memory
     freeing in this performance sensitive context. Aside of this the
     invoked functions cannot be called from this preemption disabled
     context on PREEMPT_RT enabled kernels. Solve this by moving the
     accounting into do_exit() and delaying the freeing of the stack unless
     the vmap stack can be cached.
 
   - Provide a mechanism to delay raising signals from atomic context on
     PREEMPT_RT enabled kernels as sighand::lock cannot be acquired.  Store
     the information in the task struct and raise it in the exit path.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmI4U6gTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoSpkEACwgaaQUbqVrpw5yb6LbwzUPnjEdFNN
 uUQCv0XZD8LWbfhcQQVSPWGho7S/w2Mkpdhi0DkVb2K0dkB7EvITSNEC4KoS/yez
 8iQBpv6Lm00quHdNLjkQySSZ4NYB8M1GasBI7zSBjROK/+sRqioTPQsM0oDemGmD
 uMvw0dgDJRlB8X4LZv0xuJbYLdSzu2VOlWd5aJG9BUgHkd7PfUWMlHsa29FP0hkP
 A5yziOnr9kMsmCAsgmiyDW/GmefrEealby5M/jgnxTruF/OLnDsP+PYMlws47fPx
 g6xpHkT5H0zQJ/nMJtK2JAlxpnbIl4cLuUnpn7wX316yjBpP2s3Pw04AVdzPPoBa
 ufAoOLFtnrKN6enIqLWaJHGAsBHEULw6d3/7HoAEQOVWChnQSuWOob8z0QDbvM14
 kKtz+LTrO+P5a15fd4g5+9lFBXJUTnF74SYQNwxIm2cV9hxrf15NhAr8yg+RtUvF
 /ilNNAFtXkASLqs9moEi7U+GyBYwemG+gduVZ3Dw8FBxK/vHmDrhlItcZdKom+UJ
 k4VFDVhzd2GYRHMrcaLfkCYew6ou+LD/rjdPhIU9OQHgILIMLY5aLqxDuyPtHqDz
 TEyF5qsL4wYLIUdsWlqyHISqQQ6LfnpIyko5kb2Zt56sYtrcZr8swDy+yimiEOdL
 G4BzQu0nVbCLhw==
 =uGTc
 -----END PGP SIGNATURE-----

Merge tag 'core-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull core process handling RT latency updates from Thomas Gleixner:

 - Reduce the amount of work to release a task stack in context switch.
   There is no real reason to do cgroup accounting and memory freeing in
   this performance sensitive context.

   Aside of this the invoked functions cannot be called from this
   preemption disabled context on PREEMPT_RT enabled kernels. Solve this
   by moving the accounting into do_exit() and delaying the freeing of
   the stack unless the vmap stack can be cached.

 - Provide a mechanism to delay raising signals from atomic context on
   PREEMPT_RT enabled kernels as sighand::lock cannot be acquired. Store
   the information in the task struct and raise it in the exit path.

* tag 'core-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  signal, x86: Delay calling signals in atomic on RT enabled kernels
  fork: Use IS_ENABLED() in account_kernel_stack()
  fork: Only cache the VMAP stack in finish_task_switch()
  fork: Move task stack accounting to do_exit()
  fork: Move memcg_charge_kernel_stack() into CONFIG_VMAP_STACK
  fork: Don't assign the stack pointer in dup_task_struct()
  fork, IA64: Provide alloc_thread_stack_node() for IA64
  fork: Duplicate task_struct before stack allocation
  fork: Redo ifdefs around task stack handling
2022-03-21 12:37:33 -07:00
Masami Hiramatsu
54ecbe6f1e rethook: Add a generic return hook
Add a return hook framework which hooks the function return. Most of the
logic came from the kretprobe, but this is independent from kretprobe.

Note that this is expected to be used with other function entry hooking
feature, like ftrace, fprobe, adn kprobes. Eventually this will replace
the kretprobe (e.g. kprobe + rethook = kretprobe), but at this moment,
this is just an additional hook.

Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Tested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/164735285066.1084943.9259661137330166643.stgit@devnote2
2022-03-17 20:16:29 -07:00
Oleg Nesterov
bf9ad37dc8 signal, x86: Delay calling signals in atomic on RT enabled kernels
On x86_64 we must disable preemption before we enable interrupts
for stack faults, int3 and debugging, because the current task is using
a per CPU debug stack defined by the IST. If we schedule out, another task
can come in and use the same stack and cause the stack to be corrupted
and crash the kernel on return.

When CONFIG_PREEMPT_RT is enabled, spinlock_t locks become sleeping, and
one of these is the spin lock used in signal handling.

Some of the debug code (int3) causes do_trap() to send a signal.
This function calls a spinlock_t lock that has been converted to a
sleeping lock. If this happens, the above issues with the corrupted
stack is possible.

Instead of calling the signal right away, for PREEMPT_RT and x86,
the signal information is stored on the stacks task_struct and
TIF_NOTIFY_RESUME is set. Then on exit of the trap, the signal resume
code will send the signal when preemption is enabled.

[ rostedt: Switched from #ifdef CONFIG_PREEMPT_RT to
  ARCH_RT_DELAYS_SIGNAL_SEND and added comments to the code. ]
[bigeasy: Add on 32bit as per Yang Shi, minor rewording. ]
[ tglx: Use a config option ]

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/Ygq5aBB/qMQw6aP5@linutronix.de
2022-03-04 14:58:54 +01:00
Valentin Schneider
25795ef629 sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE
TASK_RTLOCK_WAIT currently isn't part of TASK_REPORT, thus a task blocking
on an rtlock will appear as having a task state == 0, IOW TASK_RUNNING.

The actual state is saved in p->saved_state, but reading it after reading
p->__state has a few issues:
o that could still be TASK_RUNNING in the case of e.g. rt_spin_lock
o ttwu_state_match() might have changed that to TASK_RUNNING

As pointed out by Eric, adding TASK_RTLOCK_WAIT to TASK_REPORT implies
exposing a new state to userspace tools which way not know what to do with
them. The only information that needs to be conveyed here is that a task is
waiting on an rt_mutex, which matches TASK_UNINTERRUPTIBLE - there's no
need for a new state.

Reported-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20220120162520.570782-3-valentin.schneider@arm.com
2022-03-01 16:18:39 +01:00
Valentin Schneider
fa2c3254d7 sched/tracing: Don't re-read p->state when emitting sched_switch event
As of commit

  c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu")

the following sequence becomes possible:

		      p->__state = TASK_INTERRUPTIBLE;
		      __schedule()
			deactivate_task(p);
  ttwu()
    READ !p->on_rq
    p->__state=TASK_WAKING
			trace_sched_switch()
			  __trace_sched_switch_state()
			    task_state_index()
			      return 0;

TASK_WAKING isn't in TASK_REPORT, so the task appears as TASK_RUNNING in
the trace event.

Prevent this by pushing the value read from __schedule() down the trace
event.

Reported-by: Abhijeet Dharmapurikar <adharmap@quicinc.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20220120162520.570782-2-valentin.schneider@arm.com
2022-03-01 16:18:39 +01:00
Ingo Molnar
6255b48aeb Linux 5.17-rc5
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmISrYgeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGg20IAKDZr7rfSHBopjQV
 Cocw744tom0XuxpvSZpp2GGOOXF+tkswcNNaRIrbGOl1mkyxA7eBZCTMpDeDS9aQ
 wB0D0Gxx8QBAJp4KgB1W7TB+hIGes/rs8Ve+6iO4ulLLdCVWX/q2boI0aZ7QX9O9
 qNi8OsoZQtk6falRvciZFHwV5Av1p2Sy1AW57udQ7DvJ4H98AfKf1u8/z208WWW8
 1ixC+qJxQcUcM9vI+7P9Tt7NbFSKv8SvAmqjFY7P+DxQAsVw6KXoqVXykDzeOv0t
 fUNOE/t0oFZafwtn8h7KBQnwS9lH03+3KkslVZs+iMFyUj/Bar+NVVyKoDhWXtVg
 /PuMhEg=
 =eU1o
 -----END PGP SIGNATURE-----

Merge tag 'v5.17-rc5' into sched/core, to resolve conflicts

New conflicts in sched/core due to the following upstream fixes:

  44585f7bc0cb ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n")
  a06247c6804f ("psi: Fix uaf issue when psi trigger is destroyed while being polled")

Conflicts:
	include/linux/psi_types.h
	kernel/sched/psi.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-02-21 11:53:51 +01:00
Mark Rutland
99cf983cc8 sched/preempt: Add PREEMPT_DYNAMIC using static keys
Where an architecture selects HAVE_STATIC_CALL but not
HAVE_STATIC_CALL_INLINE, each static call has an out-of-line trampoline
which will either branch to a callee or return to the caller.

On such architectures, a number of constraints can conspire to make
those trampolines more complicated and potentially less useful than we'd
like. For example:

* Hardware and software control flow integrity schemes can require the
  addition of "landing pad" instructions (e.g. `BTI` for arm64), which
  will also be present at the "real" callee.

* Limited branch ranges can require that trampolines generate or load an
  address into a register and perform an indirect branch (or at least
  have a slow path that does so). This loses some of the benefits of
  having a direct branch.

* Interaction with SW CFI schemes can be complicated and fragile, e.g.
  requiring that we can recognise idiomatic codegen and remove
  indirections understand, at least until clang proves more helpful
  mechanisms for dealing with this.

For PREEMPT_DYNAMIC, we don't need the full power of static calls, as we
really only need to enable/disable specific preemption functions. We can
achieve the same effect without a number of the pain points above by
using static keys to fold early returns into the preemption functions
themselves rather than in an out-of-line trampoline, effectively
inlining the trampoline into the start of the function.

For arm64, this results in good code generation. For example, the
dynamic_cond_resched() wrapper looks as follows when enabled. When
disabled, the first `B` is replaced with a `NOP`, resulting in an early
return.

| <dynamic_cond_resched>:
|        bti     c
|        b       <dynamic_cond_resched+0x10>     // or `nop`
|        mov     w0, #0x0
|        ret
|        mrs     x0, sp_el0
|        ldr     x0, [x0, #8]
|        cbnz    x0, <dynamic_cond_resched+0x8>
|        paciasp
|        stp     x29, x30, [sp, #-16]!
|        mov     x29, sp
|        bl      <preempt_schedule_common>
|        mov     w0, #0x1
|        ldp     x29, x30, [sp], #16
|        autiasp
|        ret

... compared to the regular form of the function:

| <__cond_resched>:
|        bti     c
|        mrs     x0, sp_el0
|        ldr     x1, [x0, #8]
|        cbz     x1, <__cond_resched+0x18>
|        mov     w0, #0x0
|        ret
|        paciasp
|        stp     x29, x30, [sp, #-16]!
|        mov     x29, sp
|        bl      <preempt_schedule_common>
|        mov     w0, #0x1
|        ldp     x29, x30, [sp], #16
|        autiasp
|        ret

Any architecture which implements static keys should be able to use this
to implement PREEMPT_DYNAMIC with similar cost to non-inlined static
calls. Since this is likely to have greater overhead than (inlined)
static calls, PREEMPT_DYNAMIC is only defaulted to enabled when
HAVE_PREEMPT_DYNAMIC_CALL is selected.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-6-mark.rutland@arm.com
2022-02-19 11:11:08 +01:00
Peter Zijlstra
a3d29e8291 sched: Define and initialize a flag to identify valid PASID in the task
Add a new single bit field to the task structure to track whether this task
has initialized the IA32_PASID MSR to the mm's PASID.

Initialize the field to zero when creating a new task with fork/clone.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Co-developed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220207230254.3342514-8-fenghua.yu@intel.com
2022-02-15 11:31:43 +01:00
Igor Pylypiv
67d6212afd Revert "module, async: async_synchronize_full() on module init iff async is used"
This reverts commit 774a1221e862b343388347bac9b318767336b20b.

We need to finish all async code before the module init sequence is
done.  In the reverted commit the PF_USED_ASYNC flag was added to mark a
thread that called async_schedule().  Then the PF_USED_ASYNC flag was
used to determine whether or not async_synchronize_full() needs to be
invoked.  This works when modprobe thread is calling async_schedule(),
but it does not work if module dispatches init code to a worker thread
which then calls async_schedule().

For example, PCI driver probing is invoked from a worker thread based on
a node where device is attached:

	if (cpu < nr_cpu_ids)
		error = work_on_cpu(cpu, local_pci_probe, &ddi);
	else
		error = local_pci_probe(&ddi);

We end up in a situation where a worker thread gets the PF_USED_ASYNC
flag set instead of the modprobe thread.  As a result,
async_synchronize_full() is not invoked and modprobe completes without
waiting for the async code to finish.

The issue was discovered while loading the pm80xx driver:
(scsi_mod.scan=async)

modprobe pm80xx                      worker
...
  do_init_module()
  ...
    pci_call_probe()
      work_on_cpu(local_pci_probe)
                                     local_pci_probe()
                                       pm8001_pci_probe()
                                         scsi_scan_host()
                                           async_schedule()
                                           worker->flags |= PF_USED_ASYNC;
                                     ...
      < return from worker >
  ...
  if (current->flags & PF_USED_ASYNC) <--- false
  	async_synchronize_full();

Commit 21c3c5d28007 ("block: don't request module during elevator init")
fixed the deadlock issue which the reverted commit 774a1221e862
("module, async: async_synchronize_full() on module init iff async is
used") tried to fix.

Since commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
request_module() from async workers") synchronous module loading from
async is not allowed.

Given that the original deadlock issue is fixed and it is no longer
allowed to call synchronous request_module() from async we can remove
PF_USED_ASYNC flag to make module init consistently invoke
async_synchronize_full() unless async module probe is requested.

Signed-off-by: Igor Pylypiv <ipylypiv@google.com>
Reviewed-by: Changyuan Lyu <changyuanl@google.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-02-03 11:20:34 -08:00
Linus Torvalds
10c64a0f28 - A bunch of fixes: forced idle time accounting, utilization values
propagation in the sched hierarchies and other minor cleanups and
 improvements
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHtNkcACgkQEsHwGGHe
 VUru2xAAq2sJYOjb3AFQQskKDMjUqY42+Z2LnFk+zbv/2NfXPG17lGRNl8zIFWgK
 en+RguHOnBDo4Lc4qcx06k02gmZmSA7YonLJVYtT/N1mwsW6zkW0wDho/W3+ssU5
 5fJEFSd/y9XmoFOyFj7k+POND/Prk/sguxYcYDRMwjdw4pZoDZ4WgPU3oS3PCiBk
 ISua8zqxNC+kqSnlKzDbc23K22mdcsneW/aLFK7npyaKqzypy9IvqaBL6h8tyOgb
 Q7jOBavUQwmfi/J5A39JgUrYs90gMuQKMJ0wxWrix+YCgvdRLCX3gcWBvdxHwlmm
 KkxmWmM3iGO4qKXUDmmTt8e8GO1c0HgR7tBiVKkG2977fIojLGXTXwZKjIz/gn7f
 wg3oltKWj2JZ7X3Z3Te4TDjtWSfibUkUHhrVlm94HgZL9ZiFFY+qigBTUoa/QVAf
 q1nkk/acpSDAKY2CGcjeQZtkuIcfz+5Z94n07NsV4O8OriwkEOgVWGGXkky3687C
 /woT4a3iIeqiFzSQ8raJq0bdMj3J+wpDe4gmjKmx7oPjiS7FzsyGc8HckwQtiOQ3
 kGTTB+9zJS9ChWEk2ViQQgNOUUaJJjAwsBoYkRQakFnQ4AhvQKHmD+MS02vSPBD7
 j3k3RPkO0Gm+gUBnkgyKSRTQpAcoVY0lBwttJoEr0IlA/MUWMJ0=
 =4m7x
 -----END PGP SIGNATURE-----

Merge tag 'sched_urgent_for_v5.17_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fixes from Borislav Petkov:
 "A bunch of fixes: forced idle time accounting, utilization values
  propagation in the sched hierarchies and other minor cleanups and
  improvements"

* tag 'sched_urgent_for_v5.17_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  kernel/sched: Remove dl_boosted flag comment
  sched: Avoid double preemption in __cond_resched_*lock*()
  sched/fair: Fix all kernel-doc warnings
  sched/core: Accounting forceidle time for all tasks except idle task
  sched/pelt: Relax the sync of load_sum with load_avg
  sched/pelt: Relax the sync of runnable_sum with runnable_avg
  sched/pelt: Continue to relax the sync of util_sum with util_avg
  sched/pelt: Relax the sync of util_sum with util_avg
  psi: Fix uaf issue when psi trigger is destroyed while being polled
2022-01-23 17:35:27 +02:00
Linus Torvalds
f4484d138b Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "55 patches.

  Subsystems affected by this patch series: percpu, procfs, sysctl,
  misc, core-kernel, get_maintainer, lib, checkpatch, binfmt, nilfs2,
  hfs, fat, adfs, panic, delayacct, kconfig, kcov, and ubsan"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (55 commits)
  lib: remove redundant assignment to variable ret
  ubsan: remove CONFIG_UBSAN_OBJECT_SIZE
  kcov: fix generic Kconfig dependencies if ARCH_WANTS_NO_INSTR
  lib/Kconfig.debug: make TEST_KMOD depend on PAGE_SIZE_LESS_THAN_256KB
  btrfs: use generic Kconfig option for 256kB page size limit
  arch/Kconfig: split PAGE_SIZE_LESS_THAN_256KB from PAGE_SIZE_LESS_THAN_64KB
  configs: introduce debug.config for CI-like setup
  delayacct: track delays from memory compact
  Documentation/accounting/delay-accounting.rst: add thrashing page cache and direct compact
  delayacct: cleanup flags in struct task_delay_info and functions use it
  delayacct: fix incomplete disable operation when switch enable to disable
  delayacct: support swapin delay accounting for swapping without blkio
  panic: remove oops_id
  panic: use error_report_end tracepoint on warnings
  fs/adfs: remove unneeded variable make code cleaner
  FAT: use io_schedule_timeout() instead of congestion_wait()
  hfsplus: use struct_group_attr() for memcpy() region
  nilfs2: remove redundant pointer sbufs
  fs/binfmt_elf: use PT_LOAD p_align values for static PIE
  const_structs.checkpatch: add frequently used ops structs
  ...
2022-01-20 10:41:01 +02:00
Yafang Shao
3087c61ed2 tools/testing/selftests/bpf: replace open-coded 16 with TASK_COMM_LEN
As the sched:sched_switch tracepoint args are derived from the kernel,
we'd better make it same with the kernel.  So the macro TASK_COMM_LEN is
converted to type enum, then all the BPF programs can get it through
BTF.

The BPF program which wants to use TASK_COMM_LEN should include the
header vmlinux.h.  Regarding the test_stacktrace_map and
test_tracepoint, as the type defined in linux/bpf.h are also defined in
vmlinux.h, so we don't need to include linux/bpf.h again.

Link: https://lkml.kernel.org/r/20211120112738.45980-8-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Arnaldo Carvalho de Melo <arnaldo.melo@gmail.com>
Cc: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Cc: Michal Miroslaw <mirq-linux@rere.qmqm.pl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Kees Cook <keescook@chromium.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-20 08:52:53 +02:00
Hui Su
0e3872499d kernel/sched: Remove dl_boosted flag comment
since commit 2279f540ea7d ("sched/deadline: Fix priority
inheritance with multiple scheduling classes"), we should not
keep it here.

Signed-off-by: Hui Su <suhui_kernel@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lore.kernel.org/r/20220107095254.GA49258@localhost.localdomain
2022-01-18 12:10:00 +01:00
Linus Torvalds
35ce8ae9ae Merge branch 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull signal/exit/ptrace updates from Eric Biederman:
 "This set of changes deletes some dead code, makes a lot of cleanups
  which hopefully make the code easier to follow, and fixes bugs found
  along the way.

  The end-game which I have not yet reached yet is for fatal signals
  that generate coredumps to be short-circuit deliverable from
  complete_signal, for force_siginfo_to_task not to require changing
  userspace configured signal delivery state, and for the ptrace stops
  to always happen in locations where we can guarantee on all
  architectures that the all of the registers are saved and available on
  the stack.

  Removal of profile_task_ext, profile_munmap, and profile_handoff_task
  are the big successes for dead code removal this round.

  A bunch of small bug fixes are included, as most of the issues
  reported were small enough that they would not affect bisection so I
  simply added the fixes and did not fold the fixes into the changes
  they were fixing.

  There was a bug that broke coredumps piped to systemd-coredump. I
  dropped the change that caused that bug and replaced it entirely with
  something much more restrained. Unfortunately that required some
  rebasing.

  Some successes after this set of changes: There are few enough calls
  to do_exit to audit in a reasonable amount of time. The lifetime of
  struct kthread now matches the lifetime of struct task, and the
  pointer to struct kthread is no longer stored in set_child_tid. The
  flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
  removed. Issues where task->exit_code was examined with
  signal->group_exit_code should been examined were fixed.

  There are several loosely related changes included because I am
  cleaning up and if I don't include them they will probably get lost.

  The original postings of these changes can be found at:
     https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.org
     https://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.org
     https://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org

  I trimmed back the last set of changes to only the obviously correct
  once. Simply because there was less time for review than I had hoped"

* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
  ptrace/m68k: Stop open coding ptrace_report_syscall
  ptrace: Remove unused regs argument from ptrace_report_syscall
  ptrace: Remove second setting of PT_SEIZED in ptrace_attach
  taskstats: Cleanup the use of task->exit_code
  exit: Use the correct exit_code in /proc/<pid>/stat
  exit: Fix the exit_code for wait_task_zombie
  exit: Coredumps reach do_group_exit
  exit: Remove profile_handoff_task
  exit: Remove profile_task_exit & profile_munmap
  signal: clean up kernel-doc comments
  signal: Remove the helper signal_group_exit
  signal: Rename group_exit_task group_exec_task
  coredump: Stop setting signal->group_exit_task
  signal: Remove SIGNAL_GROUP_COREDUMP
  signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
  signal: Make coredump handling explicit in complete_signal
  signal: Have prepare_signal detect coredumps using signal->core_state
  signal: Have the oom killer detect coredumps using signal->core_state
  exit: Move force_uaccess back into do_exit
  exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
  ...
2022-01-17 05:49:30 +02:00
Linus Torvalds
daadb3bd0e Peter Zijlstra says:
"Lots of cleanups and preparation; highlights:
 
  - futex: Cleanup and remove runtime futex_cmpxchg detection
 
  - rtmutex: Some fixes for the PREEMPT_RT locking infrastructure
 
  - kcsan: Share owner_on_cpu() between mutex,rtmutex and rwsem and
    annotate the racy owner->on_cpu access *once*.
 
  - atomic64: Dead-Code-Elemination"
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHdvssACgkQEsHwGGHe
 VUrbBg//VQvz5BwddIJDj9utt5AvSixNcTF5mJyFKCSIqO0S4J8nCNcvJjZ2bs4S
 w1YmInFbp0WFGUhaIZiw0e6KWJUoINTng4MfHDZosS1doT2of53ZaQqXs3i81jDz
 87w8ADVHL0x4+BNjdsIwbcuPSDTmJFoyFOdeXTIl9hv9ZULT8m4Mt+LJuUHNZ+vF
 rS1jyseVPWkcm5y+Yie0rhip+ygzbfbt0ArsLfRcrBJsKr6oxLxV2DDF+2djXuuP
 d2OgGT7VkbgAhoKpzVXUiHsT6ppR5Mn5TLSa4EZ4bPPCUFldOhKuCAImF3T6yVIa
 44iX5vQN9v5VHBy6ocPbdOIBuYBYVGCMurh1t7pbpB6G+mmSxMiyta5MY37POwjv
 K2JT9mC2A6a4d17gue5FT3mnJMBB4eHwVaDfAwCZs/5rRNuoTz4aY5Xy04Mq0ltI
 39uarwBd5hwSugBWg44AS5E9h52E654FQ7g6iS4NtUvJuuaXBTl43EcZWx2+mnPL
 zY+iOMVMgg33VIVcm/mlf/6zWL0LXPmILUiA1fp4Q9/n8u1EuOOyeA/GsC9Pl3wO
 HY3KpYJA5eQpIk/JEnzKm5ZE3pCrUdH6VDC/SB4owQtafQG6OxyQVP1Gj7KYxZsD
 NqqpJ4nkKooc5f5DqVEN8wrjyYsnVxEfriEG09OoR6wI3MqyUA4=
 =vrYy
 -----END PGP SIGNATURE-----

Merge tag 'locking_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull locking updates from Borislav Petkov:
 "Lots of cleanups and preparation. Highlights:

   - futex: Cleanup and remove runtime futex_cmpxchg detection

   - rtmutex: Some fixes for the PREEMPT_RT locking infrastructure

   - kcsan: Share owner_on_cpu() between mutex,rtmutex and rwsem and
     annotate the racy owner->on_cpu access *once*.

   - atomic64: Dead-Code-Elemination"

[ Description above by Peter Zijlstra ]

* tag 'locking_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  locking/atomic: atomic64: Remove unusable atomic ops
  futex: Fix additional regressions
  locking: Allow to include asm/spinlock_types.h from linux/spinlock_types_raw.h
  x86/mm: Include spinlock_t definition in pgtable.
  locking: Mark racy reads of owner->on_cpu
  locking: Make owner_on_cpu() into <linux/sched.h>
  lockdep/selftests: Adapt ww-tests for PREEMPT_RT
  lockdep/selftests: Skip the softirq related tests on PREEMPT_RT
  lockdep/selftests: Unbalanced migrate_disable() & rcu_read_lock().
  lockdep/selftests: Avoid using local_lock_{acquire|release}().
  lockdep: Remove softirq accounting on PREEMPT_RT.
  locking/rtmutex: Add rt_mutex_lock_nest_lock() and rt_mutex_lock_killable().
  locking/rtmutex: Squash self-deadlock check for ww_rt_mutex.
  locking: Remove rt_rwlock_is_contended().
  sched: Trigger warning if ->migration_disabled counter underflows.
  futex: Fix sparc32/m68k/nds32 build regression
  futex: Remove futex_cmpxchg detection
  futex: Ensure futex_atomic_cmpxchg_inatomic() is present
  kernel/locking: Use a pointer in ww_mutex_trylock().
2022-01-11 17:24:45 -08:00
Linus Torvalds
6ae71436cd Peter Zijlstra says:
"Mostly minor things this time; some highlights:
 
  - core-sched: Add 'Forced Idle' accounting; this allows to track how
    much CPU time is 'lost' due to core scheduling constraints.
 
  - psi: Fix for MEM_FULL; a task running reclaim would be counted as a
    runnable task and prevent MEM_FULL from being reported.
 
  - cpuacct: Long standing fixes for some cgroup accounting issues.
 
  - rt: Bandwidth timer could, under unusual circumstances, be failed to
    armed, leading to indefinite throttling."
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHdvGkACgkQEsHwGGHe
 VUq3tQ/9GdaCpbo+WgtM20vo3FqzoRCWAtZZRLWm87g9G7FKE6tD1JCZ+cXn63jR
 wz4nuTMGg0lHkrmMiHoeTWoRo7Brw3vPdKTbFBxRaPS3gi3qyz8gaDHSKzAHTJSx
 L3j5XaTLcZnXwXV0MOphbK8ZD2W0f9PJZJjwYy1HFUrXh1AFT0WaMXL3aXuaZr8M
 jYZoB8r5qXsTBgzNZR8unq5bSUXgvoDAqupFU8gvQWYvNFV4NGK9WFQLlznG1ZhE
 aE7oHRbpCnb4avbv9xIm/QgLEHeCVTb/4kLBPk57nrW+aXTHX4ZTHuFtFs0nfDHS
 yHSgie3hthr5lFQ/c2G4a5bi5EfPcyURmgNHpWrs2zWWtWzVtqy1WAQ//m8twd14
 9cMeefQzttPUbOjykj5QNCJPqkkGgKlblz3p9j8NwUBYUBtBIejsEP0UFPoVgZuL
 DjeGhPuGGeTqkVEhLD/pb9kSzUsi1ptTJtnzT9EvtBOi+EpnZnFC6jB98qcuRT19
 jhlXwlFNH+SNnMrCniTjLhQK5gVEbvzbU86/nj9CHWDTNdu6DFeJv1S+ZBsjRHUe
 f8dV9+laXdLK5QJKAeAubq8ciMvacW8pTf/5PJfaFCJHHDs8rgmx/Ip6TxCZzVEG
 XEhNqOmMNnvbkj+9a1yk6SyD9QkVmitZrvRiqeoGayQMjsphT3E=
 =H0vR
 -----END PGP SIGNATURE-----

Merge tag 'sched_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Borislav Petkov:
 "Mostly minor things this time; some highlights:

   - core-sched: Add 'Forced Idle' accounting; this allows to track how
     much CPU time is 'lost' due to core scheduling constraints.

   - psi: Fix for MEM_FULL; a task running reclaim would be counted as a
     runnable task and prevent MEM_FULL from being reported.

   - cpuacct: Long standing fixes for some cgroup accounting issues.

   - rt: Bandwidth timer could, under unusual circumstances, be failed
     to armed, leading to indefinite throttling."

[ Description above by Peter Zijlstra ]

* tag 'sched_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/fair: Replace CFS internal cpu_util() with cpu_util_cfs()
  sched/fair: Cleanup task_util and capacity type
  sched/rt: Try to restart rt period timer when rt runtime exceeded
  sched/fair: Document the slow path and fast path in select_task_rq_fair
  sched/fair: Fix per-CPU kthread and wakee stacking for asym CPU capacity
  sched/fair: Fix detection of per-CPU kthreads waking a task
  sched/cpuacct: Make user/system times in cpuacct.stat more precise
  sched/cpuacct: Fix user/system in shown cpuacct.usage*
  cpuacct: Convert BUG_ON() to WARN_ON_ONCE()
  cputime, cpuacct: Include guest time in user time in cpuacct.stat
  psi: Fix PSI_MEM_FULL state when tasks are in memstall and doing reclaim
  sched/core: Forced idle accounting
  psi: Add a missing SPDX license header
  psi: Remove repeated verbose comment
2022-01-11 17:14:59 -08:00
Eric W. Biederman
e32cf5dfbe kthread: Generalize pf_io_worker so it can point to struct kthread
The point of using set_child_tid to hold the kthread pointer was that
it already did what is necessary.  There are now restrictions on when
set_child_tid can be initialized and when set_child_tid can be used in
schedule_tail.  Which indicates that continuing to use set_child_tid
to hold the kthread pointer is a bad idea.

Instead of continuing to use the set_child_tid field of task_struct
generalize the pf_io_worker field of task_struct and use it to hold
the kthread pointer.

Rename pf_io_worker (which is a void * pointer) to worker_private so
it can be used to store kthreads struct kthread pointer.  Update the
kthread code to store the kthread pointer in the worker_private field.
Remove the places where set_child_tid had to be dealt with carefully
because kthreads also used it.

Link: https://lkml.kernel.org/r/CAHk-=wgtFAA9SbVYg0gR1tqPMC17-NYcs0GQkaYg1bGhh1uJQQ@mail.gmail.com
Link: https://lkml.kernel.org/r/87a6grvqy8.fsf_-_@email.froward.int.ebiederm.org
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-01-08 09:39:49 -06:00
Marco Elver
69562e4983 kcsan: Add core support for a subset of weak memory modeling
Add support for modeling a subset of weak memory, which will enable
detection of a subset of data races due to missing memory barriers.

KCSAN's approach to detecting missing memory barriers is based on
modeling access reordering, and enabled if `CONFIG_KCSAN_WEAK_MEMORY=y`,
which depends on `CONFIG_KCSAN_STRICT=y`. The feature can be enabled or
disabled at boot and runtime via the `kcsan.weak_memory` boot parameter.

Each memory access for which a watchpoint is set up, is also selected
for simulated reordering within the scope of its function (at most 1
in-flight access).

We are limited to modeling the effects of "buffering" (delaying the
access), since the runtime cannot "prefetch" accesses (therefore no
acquire modeling). Once an access has been selected for reordering, it
is checked along every other access until the end of the function scope.
If an appropriate memory barrier is encountered, the access will no
longer be considered for reordering.

When the result of a memory operation should be ordered by a barrier,
KCSAN can then detect data races where the conflict only occurs as a
result of a missing barrier due to reordering accesses.

Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-12-09 16:42:26 -08:00
Marco Elver
4cf75fd4a2 locking: Mark racy reads of owner->on_cpu
One of the more frequent data races reported by KCSAN is the racy read
in mutex_spin_on_owner(), which is usually reported as "race of unknown
origin" without showing the writer. This is due to the racing write
occurring in kernel/sched. Locally enabling KCSAN in kernel/sched shows:

 | write (marked) to 0xffff97f205079934 of 4 bytes by task 316 on cpu 6:
 |  finish_task                kernel/sched/core.c:4632 [inline]
 |  finish_task_switch         kernel/sched/core.c:4848
 |  context_switch             kernel/sched/core.c:4975 [inline]
 |  __schedule                 kernel/sched/core.c:6253
 |  schedule                   kernel/sched/core.c:6326
 |  schedule_preempt_disabled  kernel/sched/core.c:6385
 |  __mutex_lock_common        kernel/locking/mutex.c:680
 |  __mutex_lock               kernel/locking/mutex.c:740 [inline]
 |  __mutex_lock_slowpath      kernel/locking/mutex.c:1028
 |  mutex_lock                 kernel/locking/mutex.c:283
 |  tty_open_by_driver         drivers/tty/tty_io.c:2062 [inline]
 |  ...
 |
 | read to 0xffff97f205079934 of 4 bytes by task 322 on cpu 3:
 |  mutex_spin_on_owner        kernel/locking/mutex.c:370
 |  mutex_optimistic_spin      kernel/locking/mutex.c:480
 |  __mutex_lock_common        kernel/locking/mutex.c:610
 |  __mutex_lock               kernel/locking/mutex.c:740 [inline]
 |  __mutex_lock_slowpath      kernel/locking/mutex.c:1028
 |  mutex_lock                 kernel/locking/mutex.c:283
 |  tty_open_by_driver         drivers/tty/tty_io.c:2062 [inline]
 |  ...
 |
 | value changed: 0x00000001 -> 0x00000000

This race is clearly intentional, and the potential for miscompilation
is slim due to surrounding barrier() and cpu_relax(), and the value
being used as a boolean.

Nevertheless, marking this reader would more clearly denote intent and
make it obvious that concurrency is expected. Use READ_ONCE() to avoid
having to reason about compiler optimizations now and in future.

With previous refactor, mark the read to owner->on_cpu in owner_on_cpu(),
which immediately precedes the loop executing mutex_spin_on_owner().

Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211203075935.136808-3-wangkefeng.wang@huawei.com
2021-12-04 10:56:25 +01:00
Kefeng Wang
c0bed69daf locking: Make owner_on_cpu() into <linux/sched.h>
Move the owner_on_cpu() from kernel/locking/rwsem.c into
include/linux/sched.h with under CONFIG_SMP, then use it
in the mutex/rwsem/rtmutex to simplify the code.

Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211203075935.136808-2-wangkefeng.wang@huawei.com
2021-12-04 10:56:25 +01:00
Josh Don
4feee7d126 sched/core: Forced idle accounting
Adds accounting for "forced idle" time, which is time where a cookie'd
task forces its SMT sibling to idle, despite the presence of runnable
tasks.

Forced idle time is one means to measure the cost of enabling core
scheduling (ie. the capacity lost due to the need to force idle).

Forced idle time is attributed to the thread responsible for causing
the forced idle.

A few details:
 - Forced idle time is displayed via /proc/PID/sched. It also requires
   that schedstats is enabled.
 - Forced idle is only accounted when a sibling hyperthread is held
   idle despite the presence of runnable tasks. No time is charged if
   a sibling is idle but has no runnable tasks.
 - Tasks with 0 cookie are never charged forced idle.
 - For SMT > 2, we scale the amount of forced idle charged based on the
   number of forced idle siblings. Additionally, we split the time up and
   evenly charge it to all running tasks, as each is equally responsible
   for the forced idle.

Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211018203428.2025792-1-joshdon@google.com
2021-11-17 14:49:00 +01:00
Linus Torvalds
a602285ac1 Merge branch 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull per signal_struct coredumps from Eric Biederman:
 "Current coredumps are mixed up with the exit code, the signal handling
  code, and the ptrace code making coredumps much more complicated than
  necessary and difficult to follow.

  This series of changes starts with ptrace_stop and cleans it up,
  making it easier to follow what is happening in ptrace_stop. Then
  cleans up the exec interactions with coredumps. Then cleans up the
  coredump interactions with exit. Finally the coredump interactions
  with the signal handling code is cleaned up.

  The first and last changes are bug fixes for minor bugs.

  I believe the fact that vfork followed by execve can kill the process
  the called vfork if exec fails is sufficient justification to change
  the userspace visible behavior.

  In previous discussions some of these changes were organized
  differently and individually appeared to make the code base worse. As
  currently written I believe they all stand on their own as cleanups
  and bug fixes.

  Which means that even if the worst should happen and the last change
  needs to be reverted for some unimaginable reason, the code base will
  still be improved.

  If the worst does not happen there are a more cleanups that can be
  made. Signals that generate coredumps can easily become eligible for
  short circuit delivery in complete_signal. The entire rendezvous for
  generating a coredump can move into get_signal. The function
  force_sig_info_to_task be written in a way that does not modify the
  signal handling state of the target task (because coredumps are
  eligible for short circuit delivery). Many of these future cleanups
  can be done another way but nothing so cleanly as if coredumps become
  per signal_struct"

* 'per_signal_struct_coredumps-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  coredump: Limit coredumps to a single thread group
  coredump:  Don't perform any cleanups before dumping core
  exit: Factor coredump_exit_mm out of exit_mm
  exec: Check for a pending fatal signal instead of core_state
  ptrace: Remove the unnecessary arguments from arch_ptrace_stop
  signal: Remove the bogus sigkill_pending in ptrace_stop
2021-11-03 12:15:29 -07:00
Linus Torvalds
01463374c5 cpu-to-thread_info update for v5.16-rc1
Cross-architecture update to move task_struct::cpu back into thread_info
 on arm64, x86, s390, powerpc, and riscv. All Acked by arch maintainers.
 
 Quoting Ard Biesheuvel:
 
 "Move task_struct::cpu back into thread_info
 
  Keeping CPU in task_struct is problematic for architectures that define
  raw_smp_processor_id() in terms of this field, as it requires
  linux/sched.h to be included, which causes a lot of pain in terms of
  circular dependencies (aka 'header soup')
 
  This series moves it back into thread_info (where it came from) for all
  architectures that enable THREAD_INFO_IN_TASK, addressing the header
  soup issue as well as some pointless differences in the implementations
  of task_cpu() and set_task_cpu()."
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmGAEPYWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJq4wEACItgLuyzPgB2eSLVMc3sHPIWcn
 EUWbAWsuzJH79wmJtn2AKxW/C5OLBNGeoNjkXQvFN3ULkQDPrfCpB4x/tB6CjIQI
 WRDf8kO7oaAD85ZrbSwyFl/MFfrD67f6H1HZoB9FKWAzuv/Bp2xQ0Kf06Dv4HEZp
 CzprzZuWtjHB+qgyy+EpGOge3zbFmCuYPE2QpMYLWgs1rcVW9OYvoCI6AYtNefrC
 6Kl6CbmBb1k6lFxkhM7wvRcIJthBl6Bajpc3Z2uL1aLb27dVpQZs3YpY859Knb6U
 ZpOQCRJOMui3HOxyF3bDUI37y0XVLm6xaNM6C/7i0XS1GiFlSxkGVamg+Mp7anpI
 +hdK5kqtSagaBC9CaJvRHnWIex1npQAfiyDNdyiEbrsUJ1dp6/zZcQSe4/m/XRbi
 vywQPGxU9f1ASshzHsGU2TJf7Ps7qHulUsS5fKwmHU2ZjQnbYCoPN10JGO9gKjOX
 yioN5xsKnbPY9j0ys3l9XBqaMJ8KAr1XspplTGIMZIVbjNMlqrfgbg8Qn8T8WGM7
 oUqudMIxczilj0/iEGfGRxBeFaYAfhGQCDnxNlNX9g7Xe/gHTJgNYlHVxL55jHNu
 AoPE3Gd0X8K9fbov0BCB6a21XwGJ6Wj+FSrnvuyWrRuy8JWiDFJaVKUBEcalKr7a
 MhoUNQPu5M83OdC42A==
 =PzvV
 -----END PGP SIGNATURE-----

Merge tag 'cpu-to-thread_info-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull thread_info update to move 'cpu' back from task_struct from Kees Cook:
 "Cross-architecture update to move task_struct::cpu back into
  thread_info on arm64, x86, s390, powerpc, and riscv. All Acked by arch
  maintainers.

  Quoting Ard Biesheuvel:

     'Move task_struct::cpu back into thread_info

      Keeping CPU in task_struct is problematic for architectures that
      define raw_smp_processor_id() in terms of this field, as it
      requires linux/sched.h to be included, which causes a lot of pain
      in terms of circular dependencies (aka 'header soup')

      This series moves it back into thread_info (where it came from)
      for all architectures that enable THREAD_INFO_IN_TASK, addressing
      the header soup issue as well as some pointless differences in the
      implementations of task_cpu() and set_task_cpu()'"

* tag 'cpu-to-thread_info-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  riscv: rely on core code to keep thread_info::cpu updated
  powerpc: smp: remove hack to obtain offset of task_struct::cpu
  sched: move CPU field back into thread_info if THREAD_INFO_IN_TASK=y
  powerpc: add CPU field to struct thread_info
  s390: add CPU field to struct thread_info
  x86: add CPU field to struct thread_info
  arm64: add CPU field to struct thread_info
2021-11-01 17:00:05 -07:00
Linus Torvalds
9a7e0a90a4 Scheduler updates:
- Revert the printk format based wchan() symbol resolution as it can leak
    the raw value in case that the symbol is not resolvable.
 
  - Make wchan() more robust and work with all kind of unwinders by
    enforcing that the task stays blocked while unwinding is in progress.
 
  - Prevent sched_fork() from accessing an invalid sched_task_group
 
  - Improve asymmetric packing logic
 
  - Extend scheduler statistics to RT and DL scheduling classes and add
    statistics for bandwith burst to the SCHED_FAIR class.
 
  - Properly account SCHED_IDLE entities
 
  - Prevent a potential deadlock when initial priority is assigned to a
    newly created kthread. A recent change to plug a race between cpuset and
    __sched_setscheduler() introduced a new lock dependency which is now
    triggered. Break the lock dependency chain by moving the priority
    assignment to the thread function.
 
  - Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
 
  - Improve idle balancing in general and especially for NOHZ enabled
    systems.
 
  - Provide proper interfaces for live patching so it does not have to
    fiddle with scheduler internals.
 
  - Add cluster aware scheduling support.
 
  - A small set of tweaks for RT (irqwork, wait_task_inactive(), various
    scheduler options and delaying mmdrop)
 
  - The usual small tweaks and improvements all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/OUkTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoR/5D/9ikdGNpKg9osNqJ3GjAmxsK6kVkB29
 iFe2k8pIpWDToWQf/wQRGih4Yj3Cl49QSnZcPIibh2/12EB1qrrW6iSPJkInz8Ec
 /1LS5/Vewn2OyoxyXZjdvGC5gTXEodSbIazASvX7nvdMeI4gsAsL5etzrMJirT/t
 aymqvr7zovvywrwMTQJrGjUMo9l4ewE8tafMNNhRu1BHU1U4ojM9yvThyRAAcmp7
 3Xy49A+Yq3IgrvYI4u8FMK5Zh08KaxSFjiLhePGm/bF+wSfYmWop2TP1jY05W2Uo
 ti8hfbJMUoFRYuMxAiEldkItnc0wV4M9PtWZZ/x+B71bs65Y4Zjt9cW+rxJv2+m1
 vzV31EsQwGnOti072dzWN4c/cZqngVXAjaNtErvDwJUr+Tw1ayv9KUvuodMQqZY6
 mu68bFUO2kV9EMe1CBOv51Uy1RGHyLj3rlNqrkw+Xp5ISE9Ad2vhUEiRp5bQx5Ci
 V/XFhGZkGUluh0vccrdFlNYZwhj8cZEzkOPCnPSeZ+bq8SyZE6xuHH/lTP1CJCOy
 s800rW1huM+kgV+zRN8adDkGXibAk9N3RtVGnQXmuEy8gB9LZmQg+JeM2wsc9B+6
 i0gdqZnsjNAfoK+BBAG4holxptSL8/eOJsFH8ZNIoxQ+iqooyPx9tFX7yXnRTBQj
 d2qWG7UvoseT+g==
 =fgtS
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Thomas Gleixner:

 - Revert the printk format based wchan() symbol resolution as it can
   leak the raw value in case that the symbol is not resolvable.

 - Make wchan() more robust and work with all kind of unwinders by
   enforcing that the task stays blocked while unwinding is in progress.

 - Prevent sched_fork() from accessing an invalid sched_task_group

 - Improve asymmetric packing logic

 - Extend scheduler statistics to RT and DL scheduling classes and add
   statistics for bandwith burst to the SCHED_FAIR class.

 - Properly account SCHED_IDLE entities

 - Prevent a potential deadlock when initial priority is assigned to a
   newly created kthread. A recent change to plug a race between cpuset
   and __sched_setscheduler() introduced a new lock dependency which is
   now triggered. Break the lock dependency chain by moving the priority
   assignment to the thread function.

 - Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.

 - Improve idle balancing in general and especially for NOHZ enabled
   systems.

 - Provide proper interfaces for live patching so it does not have to
   fiddle with scheduler internals.

 - Add cluster aware scheduling support.

 - A small set of tweaks for RT (irqwork, wait_task_inactive(), various
   scheduler options and delaying mmdrop)

 - The usual small tweaks and improvements all over the place

* tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
  sched/fair: Cleanup newidle_balance
  sched/fair: Remove sysctl_sched_migration_cost condition
  sched/fair: Wait before decaying max_newidle_lb_cost
  sched/fair: Skip update_blocked_averages if we are defering load balance
  sched/fair: Account update_blocked_averages in newidle_balance cost
  x86: Fix __get_wchan() for !STACKTRACE
  sched,x86: Fix L2 cache mask
  sched/core: Remove rq_relock()
  sched: Improve wake_up_all_idle_cpus() take #2
  irq_work: Also rcuwait for !IRQ_WORK_HARD_IRQ on PREEMPT_RT
  irq_work: Handle some irq_work in a per-CPU thread on PREEMPT_RT
  irq_work: Allow irq_work_sync() to sleep if irq_work() no IRQ support.
  sched/rt: Annotate the RT balancing logic irqwork as IRQ_WORK_HARD_IRQ
  sched: Add cluster scheduler level for x86
  sched: Add cluster scheduler level in core and related Kconfig for ARM64
  topology: Represent clusters of CPUs within a die
  sched: Disable -Wunused-but-set-variable
  sched: Add wrapper for get_wchan() to keep task blocked
  x86: Fix get_wchan() to support the ORC unwinder
  proc: Use task_is_running() for wchan in /proc/$pid/stat
  ...
2021-11-01 13:48:52 -07:00
Linus Torvalds
595b28fb0c Locking updates:
- Move futex code into kernel/futex/ and split up the kitchen sink into
    seperate files to make integration of sys_futex_waitv() simpler.
 
  - Add a new sys_futex_waitv() syscall which allows to wait on multiple
    futexes. The main use case is emulating Windows' WaitForMultipleObjects
    which allows Wine to improve the performance of Windows Games. Also
    native Linux games can benefit from this interface as this is a common
    wait pattern for this kind of applications.
 
  - Add context to ww_mutex_trylock() to provide a path for i915 to rework
    their eviction code step by step without making lockdep upset until the
    final steps of rework are completed. It's also useful for regulator and
    TTM to avoid dropping locks in the non contended path.
 
  - Lockdep and might_sleep() cleanups and improvements
 
  - A few improvements for the RT substitutions.
 
  - The usual small improvements and cleanups.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/FTITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoVNZD/9vIm3Bu1Coz8tbNXz58AiCYq9Y/vp5
 mzFgSzz+VJTkW5Vh8jo5Uel4rCKZyt+rL276EoaRPzYl8KFtWDbpK3qd3PrXKqTX
 At49JO4ttAMJUHIBQ6vblEkykmfEd9YPU1uSWk5roJ+s7Jmr5VWnu0FEWHP00As5
 tWOca/TM0ei9kof26V2fl5aecTGII4i4Zsvy+LPsXtI+TnmP0gSBcGAS/5UnZTtJ
 vQRWTR3ojoYvh5iTmNqbaURYoQLe2j8yscn1DSW1CABWVmP12eDWs+N7jRP4b5S9
 73xOv5P7vpva41wxrK2ir5iNkpsLE97VL2JOHTW8nm7orblfiuxHLTCkTjEdd2pO
 h8blI2IBizEB3JYn2BMkOAaZQOSjN8hd6Ye/b2B4AMEGWeXEoEv6eVy/orYKCluQ
 XDqGn47Vce/SYmo5vfTB8VMt6nANx8PKvOP3IvjHInYEQBgiT6QrlUw3RRkXBp5s
 clQkjYYwjAMVIXowcCrdhoKjMROzi6STShVwHwGL8MaZXqr8Vl6BUO9ckU0pY+4C
 F000Hzwxi8lGEQ9k+P+BnYOEzH5osCty8lloKiQ/7ciX6T+CZHGJPGK/iY4YL8P5
 C3CJWMsHCqST7DodNFJmdfZt99UfIMmEhshMDduU9AAH0tHCn8vOu0U6WvCtpyBp
 BvHj68zteAtlYg==
 =RZ4x
 -----END PGP SIGNATURE-----

Merge tag 'locking-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull locking updates from Thomas Gleixner:

 - Move futex code into kernel/futex/ and split up the kitchen sink into
   seperate files to make integration of sys_futex_waitv() simpler.

 - Add a new sys_futex_waitv() syscall which allows to wait on multiple
   futexes.

   The main use case is emulating Windows' WaitForMultipleObjects which
   allows Wine to improve the performance of Windows Games. Also native
   Linux games can benefit from this interface as this is a common wait
   pattern for this kind of applications.

 - Add context to ww_mutex_trylock() to provide a path for i915 to
   rework their eviction code step by step without making lockdep upset
   until the final steps of rework are completed. It's also useful for
   regulator and TTM to avoid dropping locks in the non contended path.

 - Lockdep and might_sleep() cleanups and improvements

 - A few improvements for the RT substitutions.

 - The usual small improvements and cleanups.

* tag 'locking-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
  locking: Remove spin_lock_flags() etc
  locking/rwsem: Fix comments about reader optimistic lock stealing conditions
  locking: Remove rcu_read_{,un}lock() for preempt_{dis,en}able()
  locking/rwsem: Disable preemption for spinning region
  docs: futex: Fix kernel-doc references
  futex: Fix PREEMPT_RT build
  futex2: Documentation: Document sys_futex_waitv() uAPI
  selftests: futex: Test sys_futex_waitv() wouldblock
  selftests: futex: Test sys_futex_waitv() timeout
  selftests: futex: Add sys_futex_waitv() test
  futex,arm: Wire up sys_futex_waitv()
  futex,x86: Wire up sys_futex_waitv()
  futex: Implement sys_futex_waitv()
  futex: Simplify double_lock_hb()
  futex: Split out wait/wake
  futex: Split out requeue
  futex: Rename mark_wake_futex()
  futex: Rename: match_futex()
  futex: Rename: hb_waiter_{inc,dec,pending}()
  futex: Split out PI futex
  ...
2021-11-01 13:15:36 -07:00
Jens Axboe
599593a82f sched: make task_struct->plug always defined
If CONFIG_BLOCK isn't set, then it's an empty struct anyway. Just make
it generally available, so we don't break the compile:

kernel/sched/core.c: In function ‘sched_submit_work’:
kernel/sched/core.c:6346:35: error: ‘struct task_struct’ has no member named ‘plug’
 6346 |                 blk_flush_plug(tsk->plug, true);
      |                                   ^~
kernel/sched/core.c: In function ‘io_schedule_prepare’:
kernel/sched/core.c:8357:20: error: ‘struct task_struct’ has no member named ‘plug’
 8357 |         if (current->plug)
      |                    ^~
kernel/sched/core.c:8358:39: error: ‘struct task_struct’ has no member named ‘plug’
 8358 |                 blk_flush_plug(current->plug, true);
      |                                       ^~

Reported-by: Nathan Chancellor <nathan@kernel.org>
Fixes: 008f75a20e70 ("block: cleanup the flush plug helpers")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-10-22 19:35:45 -06:00
Kees Cook
42a20f86dc sched: Add wrapper for get_wchan() to keep task blocked
Having a stable wchan means the process must be blocked and for it to
stay that way while performing stack unwinding.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> [arm]
Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64]
Link: https://lkml.kernel.org/r/20211008111626.332092234@infradead.org
2021-10-15 11:25:14 +02:00
Kees Cook
804bccba71 sched: Fill unconditional hole induced by sched_entity
With struct sched_entity before the other sched entities, its alignment
won't induce a struct hole. This saves 64 bytes in defconfig task_struct:

Before:
	...
        unsigned int               rt_priority;          /*   120     4 */

        /* XXX 4 bytes hole, try to pack */

        /* --- cacheline 2 boundary (128 bytes) --- */
        const struct sched_class  * sched_class;         /*   128     8 */

        /* XXX 56 bytes hole, try to pack */

        /* --- cacheline 3 boundary (192 bytes) --- */
        struct sched_entity        se __attribute__((__aligned__(64))); /*   192   448 */
        /* --- cacheline 10 boundary (640 bytes) --- */
        struct sched_rt_entity     rt;                   /*   640    48 */
        struct sched_dl_entity     dl __attribute__((__aligned__(8))); /*   688   224 */
        /* --- cacheline 14 boundary (896 bytes) was 16 bytes ago --- */

After:
	...
        unsigned int               rt_priority;          /*   120     4 */

        /* XXX 4 bytes hole, try to pack */

        /* --- cacheline 2 boundary (128 bytes) --- */
        struct sched_entity        se __attribute__((__aligned__(64))); /*   128   448 */
        /* --- cacheline 9 boundary (576 bytes) --- */
        struct sched_rt_entity     rt;                   /*   576    48 */
        struct sched_dl_entity     dl __attribute__((__aligned__(8))); /*   624   224 */
        /* --- cacheline 13 boundary (832 bytes) was 16 bytes ago --- */

Summary diff:
-	/* size: 7040, cachelines: 110, members: 188 */
+	/* size: 6976, cachelines: 109, members: 188 */

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210924025450.4138503-1-keescook@chromium.org
2021-10-14 13:09:58 +02:00
Eric W. Biederman
9230738308 coredump: Don't perform any cleanups before dumping core
Rename coredump_exit_mm to coredump_task_exit and call it from do_exit
before PTRACE_EVENT_EXIT, and before any cleanup work for a task
happens.  This ensures that an accurate copy of the process can be
captured in the coredump as no cleanup for the process happens before
the coredump completes.  This also ensures that PTRACE_EVENT_EXIT
will not be visited by any thread until the coredump is complete.

Add a new flag PF_POSTCOREDUMP so that tasks that have passed through
coredump_task_exit can be recognized and ignored in zap_process.

Now that all of the coredumping happens before exit_mm remove code to
test for a coredump in progress from mm_release.

Replace "may_ptrace_stop()" with a simple test of "current->ptrace".
The other tests in may_ptrace_stop all concern avoiding stopping
during a coredump.  These tests are no longer necessary as it is now
guaranteed that fatal_signal_pending will be set if the code enters
ptrace_stop during a coredump.  The code in ptrace_stop is guaranteed
not to stop if fatal_signal_pending returns true.

Until this change "ptrace_event(PTRACE_EVENT_EXIT)" could call
ptrace_stop without fatal_signal_pending being true, as signals are
dequeued in get_signal before calling do_exit.  This is no longer
an issue as "ptrace_event(PTRACE_EVENT_EXIT)" is no longer reached
until after the coredump completes.

Link: https://lkml.kernel.org/r/874kaax26c.fsf@disp2133
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-10-06 11:28:39 -05:00
Yafang Shao
847fc0cd06 sched: Introduce task block time in schedstats
Currently in schedstats we have sum_sleep_runtime and iowait_sum, but
there's no metric to show how long the task is in D state.  Once a task in
D state, it means the task is blocked in the kernel, for example the
task may be waiting for a mutex. The D state is more frequent than
iowait, and it is more critital than S state. So it is worth to add a
metric to measure it.

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-5-laoar.shao@gmail.com
2021-10-05 15:51:48 +02:00
Yafang Shao
ceeadb83ae sched: Make struct sched_statistics independent of fair sched class
If we want to use the schedstats facility to trace other sched classes, we
should make it independent of fair sched class. The struct sched_statistics
is the schedular statistics of a task_struct or a task_group. So we can
move it into struct task_struct and struct task_group to achieve the goal.

After the patch, schestats are orgnized as follows,

    struct task_struct {
       ...
       struct sched_entity se;
       struct sched_rt_entity rt;
       struct sched_dl_entity dl;
       ...
       struct sched_statistics stats;
       ...
   };

Regarding the task group, schedstats is only supported for fair group
sched, and a new struct sched_entity_stats is introduced, suggested by
Peter -

    struct sched_entity_stats {
        struct sched_entity     se;
        struct sched_statistics stats;
    } __no_randomize_layout;

Then with the se in a task_group, we can easily get the stats.

The sched_statistics members may be frequently modified when schedstats is
enabled, in order to avoid impacting on random data which may in the same
cacheline with them, the struct sched_statistics is defined as cacheline
aligned.

As this patch changes the core struct of scheduler, so I verified the
performance it may impact on the scheduler with 'perf bench sched
pipe', suggested by Mel. Below is the result, in which all the values
are in usecs/op.
                                  Before               After
      kernel.sched_schedstats=0  5.2~5.4               5.2~5.4
      kernel.sched_schedstats=1  5.3~5.5               5.3~5.5
[These data is a little difference with the earlier version, that is
 because my old test machine is destroyed so I have to use a new
 different test machine.]

Almost no impact on the sched performance.

No functional change.

[lkp@intel.com: reported build failure in earlier version]

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
2021-10-05 15:51:45 +02:00
Peter Zijlstra
83d40a6104 sched: Always inline is_percpu_thread()
vmlinux.o: warning: objtool: check_preemption_disabled()+0x81: call to is_percpu_thread() leaves .noinstr.text section

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928084218.063371959@infradead.org
2021-10-01 13:57:57 +02:00
Thomas Gleixner
3e9cc688e5 sched: Make cond_resched_lock() variants RT aware
The __might_resched() checks in the cond_resched_lock() variants use
PREEMPT_LOCK_OFFSET for preempt count offset checking which takes the
preemption disable by the spin_lock() which is still held at that point
into account.

On PREEMPT_RT enabled kernels spin/rw_lock held sections stay preemptible
which means PREEMPT_LOCK_OFFSET is 0, but that still triggers the
__might_resched() check because that takes RCU read side nesting into
account.

On RT enabled kernels spin/read/write_lock() issue rcu_read_lock() to
resemble the !RT semantics, which means in cond_resched_lock() the might
resched check will see preempt_count() == 0 and rcu_preempt_depth() == 1.

Introduce PREEMPT_LOCK_SCHED_OFFSET for those might resched checks and map
them depending on CONFIG_PREEMPT_RT.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.305969211@linutronix.de
2021-10-01 13:57:51 +02:00
Thomas Gleixner
50e081b96e sched: Make RCU nest depth distinct in __might_resched()
For !RT kernels RCU nest depth in __might_resched() is always expected to
be 0, but on RT kernels it can be non zero while the preempt count is
expected to be always 0.

Instead of playing magic games in interpreting the 'preempt_offset'
argument, rename it to 'offsets' and use the lower 8 bits for the expected
preempt count, allow to hand in the expected RCU nest depth in the upper
bits and adopt the __might_resched() code and related checks and printks.

The affected call sites are updated in subsequent steps.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.243232823@linutronix.de
2021-10-01 13:57:51 +02:00
Thomas Gleixner
7b5ff4bb9a sched: Make cond_resched_*lock() variants consistent vs. might_sleep()
Commit 3427445afd26 ("sched: Exclude cond_resched() from nested sleep
test") removed the task state check of __might_sleep() for
cond_resched_lock() because cond_resched_lock() is not a voluntary
scheduling point which blocks. It's a preemption point which requires the
lock holder to release the spin lock.

The same rationale applies to cond_resched_rwlock_read/write(), but those
were not touched.

Make it consistent and use the non-state checking __might_resched() there
as well.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165357.991262778@linutronix.de
2021-10-01 13:57:50 +02:00
Thomas Gleixner
874f670e60 sched: Clean up the might_sleep() underscore zoo
__might_sleep() vs. ___might_sleep() is hard to distinguish. Aside of that
the three underscore variant is exposed to provide a checkpoint for
rescheduling points which are distinct from blocking points.

They are semantically a preemption point which means that scheduling is
state preserving. A real blocking operation, e.g. mutex_lock(), wait*(),
which cannot preserve a task state which is not equal to RUNNING.

While technically blocking on a "sleeping" spinlock in RT enabled kernels
falls into the voluntary scheduling category because it has to wait until
the contended spin/rw lock becomes available, the RT lock substitution code
can semantically be mapped to a voluntary preemption because the RT lock
substitution code and the scheduler are providing mechanisms to preserve
the task state and to take regular non-lock related wakeups into account.

Rename ___might_sleep() to __might_resched() to make the distinction of
these functions clear.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165357.928693482@linutronix.de
2021-10-01 13:57:49 +02:00
Ard Biesheuvel
bcf9033e54 sched: move CPU field back into thread_info if THREAD_INFO_IN_TASK=y
THREAD_INFO_IN_TASK moved the CPU field out of thread_info, but this
causes some issues on architectures that define raw_smp_processor_id()
in terms of this field, due to the fact that #include'ing linux/sched.h
to get at struct task_struct is problematic in terms of circular
dependencies.

Given that thread_info and task_struct are the same data structure
anyway when THREAD_INFO_IN_TASK=y, let's move it back so that having
access to the type definition of struct thread_info is sufficient to
reference the CPU number of the current task.

Note that this requires THREAD_INFO_IN_TASK's definition of the
task_thread_info() helper to be updated, as task_cpu() takes a
pointer-to-const, whereas task_thread_info() (which is used to generate
lvalues as well), needs a non-const pointer. So make it a macro instead.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
2021-09-30 16:13:10 +02:00
Linus Torvalds
20621d2f27 A set of x86 fixes:
- Prevent a infinite loop in the MCE recovery on return to user space,
     which was caused by a second MCE queueing work for the same page and
     thereby creating a circular work list.
 
   - Make kern_addr_valid() handle existing PMD entries, which are marked not
     present in the higher level page table, correctly instead of blindly
     dereferencing them.
 
   - Pass a valid address to sanitize_phys(). This was caused by the mixture
     of inclusive and exclusive ranges. memtype_reserve() expect 'end' being
     exclusive, but sanitize_phys() wants it inclusive. This worked so far,
     but with end being the end of the physical address space the fail is
     exposed.
 
  - Increase the maximum supported GPIO numbers for 64bit. Newer SoCs exceed
    the previous maximum.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmFHhPIACgkQEsHwGGHe
 VUqqQA/+MHQ2HxVOPxnJ0i/D1nK8ccNqTEkSN08z23RGnjqKQun/VaNIIceJY25f
 Abeb2tI+0qRrdWVPVd5YqcTHuBLmnPs6Je3MfOrG47eQNW4/SmkXYuOexK80Bew3
 YDgEV73d40rHcolXZCaonVajx+FmjoNvkDt5LpLvLcCxIyv0GClFBcZrFAm70AxI
 Feax30koh3/MIFxHoXyADN8D+MJu1GxA6QWuoTK40s3G/gTTAwimkDgnNU1JXbcj
 VvVVZaNnnAxjxrCa81blr9nDpHJCDinG9bdvDT3UDLous52hGMZTsHoHogxwfogT
 EhIgPvL8hf+wm1WXA4NyvSNKZxsGfdkvIXaUq9XYHpLRD6Ao6x7jQDL039imucqb
 9YtaH52GhG0SgJlYjkm/zrKezIjKLDen0ZYr/2iNTDM1p2GqQEFo07wC/ME8TkQ6
 /BvtbkIvOuUz3nJeV4/AO+O4kaNvto9O2eHq9oodIN9nrwmlO5fMg8XO9nrhWB11
 ChXEz6kPqta1nyZXy0mwOrlXlqzcusiroG4G9F7IBBz+t/gNwlu3uZuIgkQCXyYw
 DgKz9cnQ3RdgCFknbmEwV5oCjewm7UdcgwaDAaelHIDuWMcshZFvMf1uSjnyg4Z/
 39WI8W7W2aZnIoKWpvu8s7Gr8f1krE7C3xrkvl2WmbKPkxNAin8=
 =7cq3
 -----END PGP SIGNATURE-----

Merge tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fixes from Borislav Petkov:

 - Prevent a infinite loop in the MCE recovery on return to user space,
   which was caused by a second MCE queueing work for the same page and
   thereby creating a circular work list.

 - Make kern_addr_valid() handle existing PMD entries, which are marked
   not present in the higher level page table, correctly instead of
   blindly dereferencing them.

 - Pass a valid address to sanitize_phys(). This was caused by the
   mixture of inclusive and exclusive ranges. memtype_reserve() expect
   'end' being exclusive, but sanitize_phys() wants it inclusive. This
   worked so far, but with end being the end of the physical address
   space the fail is exposed.

 - Increase the maximum supported GPIO numbers for 64bit. Newer SoCs
   exceed the previous maximum.

* tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mce: Avoid infinite loop for copy from user recovery
  x86/mm: Fix kern_addr_valid() to cope with existing but not present entries
  x86/platform: Increase maximum GPIO number for X86_64
  x86/pat: Pass valid address to sanitize_phys()
2021-09-19 13:29:36 -07:00
Tony Luck
81065b35e2 x86/mce: Avoid infinite loop for copy from user recovery
There are two cases for machine check recovery:

1) The machine check was triggered by ring3 (application) code.
   This is the simpler case. The machine check handler simply queues
   work to be executed on return to user. That code unmaps the page
   from all users and arranges to send a SIGBUS to the task that
   triggered the poison.

2) The machine check was triggered in kernel code that is covered by
   an exception table entry. In this case the machine check handler
   still queues a work entry to unmap the page, etc. but this will
   not be called right away because the #MC handler returns to the
   fix up code address in the exception table entry.

Problems occur if the kernel triggers another machine check before the
return to user processes the first queued work item.

Specifically, the work is queued using the ->mce_kill_me callback
structure in the task struct for the current thread. Attempting to queue
a second work item using this same callback results in a loop in the
linked list of work functions to call. So when the kernel does return to
user, it enters an infinite loop processing the same entry for ever.

There are some legitimate scenarios where the kernel may take a second
machine check before returning to the user.

1) Some code (e.g. futex) first tries a get_user() with page faults
   disabled. If this fails, the code retries with page faults enabled
   expecting that this will resolve the page fault.

2) Copy from user code retries a copy in byte-at-time mode to check
   whether any additional bytes can be copied.

On the other side of the fence are some bad drivers that do not check
the return value from individual get_user() calls and may access
multiple user addresses without noticing that some/all calls have
failed.

Fix by adding a counter (current->mce_count) to keep track of repeated
machine checks before task_work() is called. First machine check saves
the address information and calls task_work_add(). Subsequent machine
checks before that task_work call back is executed check that the address
is in the same page as the first machine check (since the callback will
offline exactly one page).

Expected worst case is four machine checks before moving on (e.g. one
user access with page faults disabled, then a repeat to the same address
with page faults enabled ... repeat in copy tail bytes). Just in case
there is some code that loops forever enforce a limit of 10.

 [ bp: Massage commit message, drop noinstr, fix typo, extend panic
   messages. ]

Fixes: 5567d11c21a1 ("x86/mce: Send #MC singal from task work")
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/YT/IJ9ziLqmtqEPu@agluck-desk2.amr.corp.intel.com
2021-09-14 10:27:03 +02:00
Linus Torvalds
9e9fb7655e Core:
- Enable memcg accounting for various networking objects.
 
 BPF:
 
  - Introduce bpf timers.
 
  - Add perf link and opaque bpf_cookie which the program can read
    out again, to be used in libbpf-based USDT library.
 
  - Add bpf_task_pt_regs() helper to access user space pt_regs
    in kprobes, to help user space stack unwinding.
 
  - Add support for UNIX sockets for BPF sockmap.
 
  - Extend BPF iterator support for UNIX domain sockets.
 
  - Allow BPF TCP congestion control progs and bpf iterators to call
    bpf_setsockopt(), e.g. to switch to another congestion control
    algorithm.
 
 Protocols:
 
  - Support IOAM Pre-allocated Trace with IPv6.
 
  - Support Management Component Transport Protocol.
 
  - bridge: multicast: add vlan support.
 
  - netfilter: add hooks for the SRv6 lightweight tunnel driver.
 
  - tcp:
     - enable mid-stream window clamping (by user space or BPF)
     - allow data-less, empty-cookie SYN with TFO_SERVER_COOKIE_NOT_REQD
     - more accurate DSACK processing for RACK-TLP
 
  - mptcp:
     - add full mesh path manager option
     - add partial support for MP_FAIL
     - improve use of backup subflows
     - optimize option processing
 
  - af_unix: add OOB notification support.
 
  - ipv6: add IFLA_INET6_RA_MTU to expose MTU value advertised by
          the router.
 
  - mac80211: Target Wake Time support in AP mode.
 
  - can: j1939: extend UAPI to notify about RX status.
 
 Driver APIs:
 
  - Add page frag support in page pool API.
 
  - Many improvements to the DSA (distributed switch) APIs.
 
  - ethtool: extend IRQ coalesce uAPI with timer reset modes.
 
  - devlink: control which auxiliary devices are created.
 
  - Support CAN PHYs via the generic PHY subsystem.
 
  - Proper cross-chip support for tag_8021q.
 
  - Allow TX forwarding for the software bridge data path to be
    offloaded to capable devices.
 
 Drivers:
 
  - veth: more flexible channels number configuration.
 
  - openvswitch: introduce per-cpu upcall dispatch.
 
  - Add internet mix (IMIX) mode to pktgen.
 
  - Transparently handle XDP operations in the bonding driver.
 
  - Add LiteETH network driver.
 
  - Renesas (ravb):
    - support Gigabit Ethernet IP
 
  - NXP Ethernet switch (sja1105)
    - fast aging support
    - support for "H" switch topologies
    - traffic termination for ports under VLAN-aware bridge
 
  - Intel 1G Ethernet
     - support getcrosststamp() with PCIe PTM (Precision Time
       Measurement) for better time sync
     - support Credit-Based Shaper (CBS) offload, enabling HW traffic
       prioritization and bandwidth reservation
 
  - Broadcom Ethernet (bnxt)
     - support pulse-per-second output
     - support larger Rx rings
 
  - Mellanox Ethernet (mlx5)
     - support ethtool RSS contexts and MQPRIO channel mode
     - support LAG offload with bridging
     - support devlink rate limit API
     - support packet sampling on tunnels
 
  - Huawei Ethernet (hns3):
     - basic devlink support
     - add extended IRQ coalescing support
     - report extended link state
 
  - Netronome Ethernet (nfp):
     - add conntrack offload support
 
  - Broadcom WiFi (brcmfmac):
     - add WPA3 Personal with FT to supported cipher suites
     - support 43752 SDIO device
 
  - Intel WiFi (iwlwifi):
     - support scanning hidden 6GHz networks
     - support for a new hardware family (Bz)
 
  - Xen pv driver:
     - harden netfront against malicious backends
 
  - Qualcomm mobile
     - ipa: refactor power management and enable automatic suspend
     - mhi: move MBIM to WWAN subsystem interfaces
 
 Refactor:
 
  - Ambient BPF run context and cgroup storage cleanup.
 
  - Compat rework for ndo_ioctl.
 
 Old code removal:
 
  - prism54 remove the obsoleted driver, deprecated by the p54 driver.
 
  - wan: remove sbni/granch driver.
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmEukBYACgkQMUZtbf5S
 IrsyHA//TO8dw18NYts4n9LmlJT2naJ7yBUUSSXK/M+DtW0MQ9nnHhqzPm5uJdRl
 IgQTNJrW3dYzRwgqaWZqEwO1t5/FI+f87ND1Nsekg7x9tF66a6ov5WxU26TwwSba
 U+si/inQ/4chuQ+LxMQobqCDxaLE46I2dIoRl+YfndJ24DRzYSwAEYIPPbSdfyU+
 +/l+3s4GaxO4k/hLciPAiOniyxLoUNiGUTNh+2yqRBXelSRJRKVnl+V22ANFrxRW
 nTEiplfVKhlPU1e4iLuRtaxDDiePHhw9I3j/lMHhfeFU2P/gKJIvz4QpGV0CAZg2
 1VvDU32WEx1GQLXJbKm0KwoNRUq1QSjOyyFti+BO7ugGaYAR4gKhShOqlSYLzUtB
 tbtzQhSNLWOGqgmSJOztZb5kFDm2EdRSll5/lP2uyFlPkIsIp0QbscJVzNTnS74b
 Xz15ZOw41Z4TfWPEMWgfrx6Zkm7pPWkly+7WfUkPcHa1gftNz6tzXXxSXcXIBPdi
 yQ5JCzzxrM5573YHuk5YedwZpn6PiAt4A/muFGk9C6aXP60TQAOS/ppaUzZdnk4D
 NfOk9mj06WEULjYjPcKEuT3GGWE6kmjb8Pu0QZWKOchv7vr6oZly1EkVZqYlXELP
 AfhcrFeuufie8mqm0jdb4LnYaAnqyLzlb1J4Zxh9F+/IX7G3yoc=
 =JDGD
 -----END PGP SIGNATURE-----

Merge tag 'net-next-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Jakub Kicinski:
 "Core:

   - Enable memcg accounting for various networking objects.

  BPF:

   - Introduce bpf timers.

   - Add perf link and opaque bpf_cookie which the program can read out
     again, to be used in libbpf-based USDT library.

   - Add bpf_task_pt_regs() helper to access user space pt_regs in
     kprobes, to help user space stack unwinding.

   - Add support for UNIX sockets for BPF sockmap.

   - Extend BPF iterator support for UNIX domain sockets.

   - Allow BPF TCP congestion control progs and bpf iterators to call
     bpf_setsockopt(), e.g. to switch to another congestion control
     algorithm.

  Protocols:

   - Support IOAM Pre-allocated Trace with IPv6.

   - Support Management Component Transport Protocol.

   - bridge: multicast: add vlan support.

   - netfilter: add hooks for the SRv6 lightweight tunnel driver.

   - tcp:
       - enable mid-stream window clamping (by user space or BPF)
       - allow data-less, empty-cookie SYN with TFO_SERVER_COOKIE_NOT_REQD
       - more accurate DSACK processing for RACK-TLP

   - mptcp:
       - add full mesh path manager option
       - add partial support for MP_FAIL
       - improve use of backup subflows
       - optimize option processing

   - af_unix: add OOB notification support.

   - ipv6: add IFLA_INET6_RA_MTU to expose MTU value advertised by the
     router.

   - mac80211: Target Wake Time support in AP mode.

   - can: j1939: extend UAPI to notify about RX status.

  Driver APIs:

   - Add page frag support in page pool API.

   - Many improvements to the DSA (distributed switch) APIs.

   - ethtool: extend IRQ coalesce uAPI with timer reset modes.

   - devlink: control which auxiliary devices are created.

   - Support CAN PHYs via the generic PHY subsystem.

   - Proper cross-chip support for tag_8021q.

   - Allow TX forwarding for the software bridge data path to be
     offloaded to capable devices.

  Drivers:

   - veth: more flexible channels number configuration.

   - openvswitch: introduce per-cpu upcall dispatch.

   - Add internet mix (IMIX) mode to pktgen.

   - Transparently handle XDP operations in the bonding driver.

   - Add LiteETH network driver.

   - Renesas (ravb):
       - support Gigabit Ethernet IP

   - NXP Ethernet switch (sja1105):
       - fast aging support
       - support for "H" switch topologies
       - traffic termination for ports under VLAN-aware bridge

   - Intel 1G Ethernet
       - support getcrosststamp() with PCIe PTM (Precision Time
         Measurement) for better time sync
       - support Credit-Based Shaper (CBS) offload, enabling HW traffic
         prioritization and bandwidth reservation

   - Broadcom Ethernet (bnxt)
       - support pulse-per-second output
       - support larger Rx rings

   - Mellanox Ethernet (mlx5)
       - support ethtool RSS contexts and MQPRIO channel mode
       - support LAG offload with bridging
       - support devlink rate limit API
       - support packet sampling on tunnels

   - Huawei Ethernet (hns3):
       - basic devlink support
       - add extended IRQ coalescing support
       - report extended link state

   - Netronome Ethernet (nfp):
       - add conntrack offload support

   - Broadcom WiFi (brcmfmac):
       - add WPA3 Personal with FT to supported cipher suites
       - support 43752 SDIO device

   - Intel WiFi (iwlwifi):
       - support scanning hidden 6GHz networks
       - support for a new hardware family (Bz)

   - Xen pv driver:
       - harden netfront against malicious backends

   - Qualcomm mobile
       - ipa: refactor power management and enable automatic suspend
       - mhi: move MBIM to WWAN subsystem interfaces

  Refactor:

   - Ambient BPF run context and cgroup storage cleanup.

   - Compat rework for ndo_ioctl.

  Old code removal:

   - prism54 remove the obsoleted driver, deprecated by the p54 driver.

   - wan: remove sbni/granch driver"

* tag 'net-next-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1715 commits)
  net: Add depends on OF_NET for LiteX's LiteETH
  ipv6: seg6: remove duplicated include
  net: hns3: remove unnecessary spaces
  net: hns3: add some required spaces
  net: hns3: clean up a type mismatch warning
  net: hns3: refine function hns3_set_default_feature()
  ipv6: remove duplicated 'net/lwtunnel.h' include
  net: w5100: check return value after calling platform_get_resource()
  net/mlxbf_gige: Make use of devm_platform_ioremap_resourcexxx()
  net: mdio: mscc-miim: Make use of the helper function devm_platform_ioremap_resource()
  net: mdio-ipq4019: Make use of devm_platform_ioremap_resource()
  fou: remove sparse errors
  ipv4: fix endianness issue in inet_rtm_getroute_build_skb()
  octeontx2-af: Set proper errorcode for IPv4 checksum errors
  octeontx2-af: Fix static code analyzer reported issues
  octeontx2-af: Fix mailbox errors in nix_rss_flowkey_cfg
  octeontx2-af: Fix loop in free and unmap counter
  af_unix: fix potential NULL deref in unix_dgram_connect()
  dpaa2-eth: Replace strlcpy with strscpy
  octeontx2-af: Use NDC TX for transmit packet data
  ...
2021-08-31 16:43:06 -07:00
Linus Torvalds
0a096f240a A reworked version of the opt-in L1D flush mechanism:
A stop gap for potential future speculation related hardware
   vulnerabilities and a mechanism for truly security paranoid
   applications.
 
   It allows a task to request that the L1D cache is flushed when the kernel
   switches to a different mm. This can be requested via prctl().
 
   Changes vs. the previous versions:
 
     - Get rid of the software flush fallback
 
     - Make the handling consistent with other mitigations
 
     - Kill the task when it ends up on a SMT enabled core which defeats the
       purpose of L1D flushing obviously
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmEsn0oTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoa5fD/47vHGtjAtDr/DaXR1C6F9AvVbKEl8p
 oNHn8IukE6ts6G4dFH9wUvo/Ut0K3kxX54I+BATew0LTy6tsQeUYh/xjwXMupgNV
 oKOc9waoqdFvju3ayLFWJmuACLdXpyrGC1j35Aji61zSbR/GdtZ4oDxbuN2YJDAT
 BTcgKrBM5nQm94JNa083RQSCU5LJxbC7ETkIh6NR73RSPCjUC1Wpxy1sAQAa2MPD
 8EzcJ/DjVGaHCI7adX10sz3xdUcyOz7qYz16HpoMGx+oSiq7pGEBtUiK97EYMcrB
 s+ADFUjYmx/pbEWv2r4c9zxNh7ZV3aLBsWwi7bScHIsv8GjrsA/mYLWskuwOV6BB
 22qZjfd0c4raiJwd+nmSx+D2Szv6lZ20gP+krtP2VNC6hUv7ft0VPLySiaFMmUHj
 quooDZis/W5n+4C9Q8Rk9uUtKzzJOngqW+duftiixHiNQ/ECP/QCAHhZYck/NOkL
 tZkNj6lJj9+2iR7mhbYROZ+wrYQzRvqNb2pJJQoi/wA0q7wPSKBi3m+51lPsht5W
 tn94CpaDDZ4IB7Fe1NtcA0UpYJSWpDQGlau4qp92HMCCIcRFfQEm+m9x8axwcj7m
 ECblHJYBPHuNcCHvPA8kHvr1nd6UUXrGPIo8TK8YhUUbK6pO0OjdNzZX496ia/2g
 pLzaW2ENTPLbXg==
 =27wH
 -----END PGP SIGNATURE-----

Merge tag 'x86-cpu-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cache flush updates from Thomas Gleixner:
 "A reworked version of the opt-in L1D flush mechanism.

  This is a stop gap for potential future speculation related hardware
  vulnerabilities and a mechanism for truly security paranoid
  applications.

  It allows a task to request that the L1D cache is flushed when the
  kernel switches to a different mm. This can be requested via prctl().

  Changes vs the previous versions:

   - Get rid of the software flush fallback

   - Make the handling consistent with other mitigations

   - Kill the task when it ends up on a SMT enabled core which defeats
     the purpose of L1D flushing obviously"

* tag 'x86-cpu-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  Documentation: Add L1D flushing Documentation
  x86, prctl: Hook L1D flushing in via prctl
  x86/mm: Prepare for opt-in based L1D flush in switch_mm()
  x86/process: Make room for TIF_SPEC_L1D_FLUSH
  sched: Add task_work callback for paranoid L1D flush
  x86/mm: Refactor cond_ibpb() to support other use cases
  x86/smp: Add a per-cpu view of SMT state
2021-08-30 15:00:33 -07:00
Linus Torvalds
e5e726f7bb Updates for locking and atomics:
The regular pile:
 
   - A few improvements to the mutex code
 
   - Documentation updates for atomics to clarify the difference between
     cmpxchg() and try_cmpxchg() and to explain the forward progress
     expectations.
 
   - Simplification of the atomics fallback generator
 
   - The addition of arch_atomic_long*() variants and generic arch_*()
     bitops based on them.
 
   - Add the missing might_sleep() invocations to the down*() operations of
     semaphores.
 
 The PREEMPT_RT locking core:
 
   - Scheduler updates to support the state preserving mechanism for
     'sleeping' spin- and rwlocks on RT. This mechanism is carefully
     preserving the state of the task when blocking on a 'sleeping' spin- or
     rwlock and takes regular wake-ups targeted at the same task into
     account. The preserved or updated (via a regular wakeup) state is
     restored when the lock has been acquired.
 
   - Restructuring of the rtmutex code so it can be utilized and extended
     for the RT specific lock variants.
 
   - Restructuring of the ww_mutex code to allow sharing of the ww_mutex
     specific functionality for rtmutex based ww_mutexes.
 
   - Header file disentangling to allow substitution of the regular lock
     implementations with the PREEMPT_RT variants without creating an
     unmaintainable #ifdef mess.
 
   - Shared base code for the PREEMPT_RT specific rw_semaphore and rwlock
     implementations. Contrary to the regular rw_semaphores and rwlocks the
     PREEMPT_RT implementation is writer unfair because it is infeasible to
     do priority inheritance on multiple readers. Experience over the years
     has shown that real-time workloads are not the typical workloads which
     are sensitive to writer starvation. The alternative solution would be
     to allow only a single reader which has been tried and discarded as it
     is a major bottleneck especially for mmap_sem. Aside of that many of
     the writer starvation critical usage sites have been converted to a
     writer side mutex/spinlock and RCU read side protections in the past
     decade so that the issue is less prominent than it used to be.
 
   - The actual rtmutex based lock substitutions for PREEMPT_RT enabled
     kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
     rwlock_t. The spin/rw_lock*() functions disable migration across the
     critical section to preserve the existing semantics vs. per CPU
     variables.
 
   - Rework of the futex REQUEUE_PI mechanism to handle the case of early
     wake-ups which interleave with a re-queue operation to prevent the
     situation that a task would be blocked on both the rtmutex associated
     to the outer futex and the rtmutex based hash bucket spinlock.
 
     While this situation cannot happen on !RT enabled kernels the changes
     make the underlying concurrency problems easier to understand in
     general. As a result the difference between !RT and RT kernels is
     reduced to the handling of waiting for the critical section. !RT
     kernels simply spin-wait as before and RT kernels utilize rcu_wait().
 
   - The substitution of local_lock for PREEMPT_RT with a spinlock which
     protects the critical section while staying preemptible. The CPU
     locality is established by disabling migration.
 
   The underlying concepts of this code have been in use in PREEMPT_RT for
   way more than a decade. The code has been refactored several times over
   the years and this final incarnation has been optimized once again to be
   as non-intrusive as possible, i.e. the RT specific parts are mostly
   isolated.
 
   It has been extensively tested in the 5.14-rt patch series and it has
   been verified that !RT kernels are not affected by these changes.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmEsnuMTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoaeWD/wLNMoAZXslS0prfr64ANjRgLXIqMFA
 r6xgioiwxxaxbmZ/GNPraoLC//ENo6mwobuUovq8yKljv2oBu6AmlUkBwrmMBc8Q
 nnm7jjGM3bZ1REup7rWERnjdOZfdGVSL5CUAAfthyC744XmXaepwrrrqfXG22GxJ
 QwLXBTAwXFVDxKfUjDKzEo5zgLNHRvHbzc0DpTYYn6WcuDJOmlyWnhfDTu2mNG9Z
 rqjqy+OgOUEUprQDgitk5hedfeic2kPm1mxxZrXkpkuPef5be2inQq2siC7GxR4g
 0AKeUsMFgFmSqiD4iJTALJ+8WXkgMnD9VgooeWHk4OaqZfaGzi/iwRSnrlnf7+OV
 GTmrsmX+TX/Wz2BDjB+3zylQnYqYh3quE5w4UO6uUyJXfdhlnvsjVc8bEajDFjeM
 yUapaWxdAri7k2n+vjXQthAngxtYPgXtFbZPoOl109JcDcG6jJsCdM5TdenegaRs
 WeUh05JqrH8+qI+Nwzc4rO+PmKHQ8on2wKdgLp11dviiPOf8OguH65nDQSGZ/fGv
 7cnD9A1/MUd0sdrvc52AqkIYxh+Rp9GnCs1xA82JsTXgAPcXqAWjjR2JFPHL4neV
 eW2upZekl8lMR7hkfcQbhe4MVjQIjff3iFOkQXittxMzfzFdi0tly8xB8AzpTHOx
 h91MycvmMR2zRw==
 =IEqE
 -----END PGP SIGNATURE-----

Merge tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull locking and atomics updates from Thomas Gleixner:
 "The regular pile:

   - A few improvements to the mutex code

   - Documentation updates for atomics to clarify the difference between
     cmpxchg() and try_cmpxchg() and to explain the forward progress
     expectations.

   - Simplification of the atomics fallback generator

   - The addition of arch_atomic_long*() variants and generic arch_*()
     bitops based on them.

   - Add the missing might_sleep() invocations to the down*() operations
     of semaphores.

  The PREEMPT_RT locking core:

   - Scheduler updates to support the state preserving mechanism for
     'sleeping' spin- and rwlocks on RT.

     This mechanism is carefully preserving the state of the task when
     blocking on a 'sleeping' spin- or rwlock and takes regular wake-ups
     targeted at the same task into account. The preserved or updated
     (via a regular wakeup) state is restored when the lock has been
     acquired.

   - Restructuring of the rtmutex code so it can be utilized and
     extended for the RT specific lock variants.

   - Restructuring of the ww_mutex code to allow sharing of the ww_mutex
     specific functionality for rtmutex based ww_mutexes.

   - Header file disentangling to allow substitution of the regular lock
     implementations with the PREEMPT_RT variants without creating an
     unmaintainable #ifdef mess.

   - Shared base code for the PREEMPT_RT specific rw_semaphore and
     rwlock implementations.

     Contrary to the regular rw_semaphores and rwlocks the PREEMPT_RT
     implementation is writer unfair because it is infeasible to do
     priority inheritance on multiple readers. Experience over the years
     has shown that real-time workloads are not the typical workloads
     which are sensitive to writer starvation.

     The alternative solution would be to allow only a single reader
     which has been tried and discarded as it is a major bottleneck
     especially for mmap_sem. Aside of that many of the writer
     starvation critical usage sites have been converted to a writer
     side mutex/spinlock and RCU read side protections in the past
     decade so that the issue is less prominent than it used to be.

   - The actual rtmutex based lock substitutions for PREEMPT_RT enabled
     kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
     rwlock_t. The spin/rw_lock*() functions disable migration across
     the critical section to preserve the existing semantics vs per-CPU
     variables.

   - Rework of the futex REQUEUE_PI mechanism to handle the case of
     early wake-ups which interleave with a re-queue operation to
     prevent the situation that a task would be blocked on both the
     rtmutex associated to the outer futex and the rtmutex based hash
     bucket spinlock.

     While this situation cannot happen on !RT enabled kernels the
     changes make the underlying concurrency problems easier to
     understand in general. As a result the difference between !RT and
     RT kernels is reduced to the handling of waiting for the critical
     section. !RT kernels simply spin-wait as before and RT kernels
     utilize rcu_wait().

   - The substitution of local_lock for PREEMPT_RT with a spinlock which
     protects the critical section while staying preemptible. The CPU
     locality is established by disabling migration.

  The underlying concepts of this code have been in use in PREEMPT_RT for
  way more than a decade. The code has been refactored several times over
  the years and this final incarnation has been optimized once again to be
  as non-intrusive as possible, i.e. the RT specific parts are mostly
  isolated.

  It has been extensively tested in the 5.14-rt patch series and it has
  been verified that !RT kernels are not affected by these changes"

* tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (92 commits)
  locking/rtmutex: Return success on deadlock for ww_mutex waiters
  locking/rtmutex: Prevent spurious EDEADLK return caused by ww_mutexes
  locking/rtmutex: Dequeue waiter on ww_mutex deadlock
  locking/rtmutex: Dont dereference waiter lockless
  locking/semaphore: Add might_sleep() to down_*() family
  locking/ww_mutex: Initialize waiter.ww_ctx properly
  static_call: Update API documentation
  locking/local_lock: Add PREEMPT_RT support
  locking/spinlock/rt: Prepare for RT local_lock
  locking/rtmutex: Add adaptive spinwait mechanism
  locking/rtmutex: Implement equal priority lock stealing
  preempt: Adjust PREEMPT_LOCK_OFFSET for RT
  locking/rtmutex: Prevent lockdep false positive with PI futexes
  futex: Prevent requeue_pi() lock nesting issue on RT
  futex: Simplify handle_early_requeue_pi_wakeup()
  futex: Reorder sanity checks in futex_requeue()
  futex: Clarify comment in futex_requeue()
  futex: Restructure futex_requeue()
  futex: Correct the number of requeued waiters for PI
  futex: Remove bogus condition for requeue PI
  ...
2021-08-30 14:26:36 -07:00
Linus Torvalds
5d3c0db459 Scheduler changes for v5.15 are:
- The biggest change in this cycle is scheduler support for asymmetric
   scheduling affinity, to support the execution of legacy 32-bit tasks on
   AArch32 systems that also have 64-bit-only CPUs.
 
   Architectures can fill in this functionality by defining their
   own task_cpu_possible_mask(p). When this is done, the scheduler will
   make sure the task will only be scheduled on CPUs that support it.
 
   (The actual arm64 specific changes are not part of this tree.)
 
   For other architectures there will be no change in functionality.
 
 - Add cgroup SCHED_IDLE support
 
 - Increase node-distance flexibility & delay determining it until a CPU
   is brought online. (This enables platforms where node distance isn't
   final until the CPU is only.)
 
 - Deadline scheduler enhancements & fixes
 
 - Misc fixes & cleanups.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmEsrDgRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gMxBAAmzXPnDm1pDBBUaEwc+DynNGHNxZcBO5E
 CaNyfywp4GMA+OC3JzUgDg1B9uvKQRdBGtv6SZ8OcyhJMfmkEvjt5/wYUrcdtQVP
 TA2lt80/Is8LQMnvcz7X0gmsLt+fXWQTF8ik1KT4wsi/k03Xw8BH11zHct6sV2QN
 NNQ+7BEjqU1HA1UXJFiaoGtWF0gdh29VyE5dSzfAis79L0XUQadS512LJKin/AK0
 wYz8E+L7QIrjhfX9FQdOrR6da4TK6jAXyEY6a9dpaMHnFdtxuwhT4/BPtovNTeeY
 yxEZm3qSZbpghWHsMEa6Z4GIeLE6aNi3wcHt10fgdZDdotSRsNZuF6gi4A8nhRC+
 6wm+fCcFGEIBCL6eE/16Wms6YMdFfuiEAgtJGNy7GGyfH3/mS6u8eylXbLZncYXn
 DFHY+xUvmVZSzoPzcnYXEy4FB3kywNL7WBFxyhdXf5/EvWmmtHi4K3jVQ8jaqvhL
 MDk3NX9Hd0ariff3zUltWhMY5ouj6bIbBZmWWnD3s1xQT68VvE563cq0qH15dlnr
 j5M71eNRWvoOdZKzflgjRZzmdQtsZQ51tiMA6W6ZRfwYkHjb70qiia0r5GFf41X1
 MYelmcaA8+RjKrQ5etxzzDjoXl0xDXiZric6gRQHjG1Y1Zm2rVaoD+vkJGD5TQJ0
 2XTOGQgAxh4=
 =VdGE
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - The biggest change in this cycle is scheduler support for asymmetric
   scheduling affinity, to support the execution of legacy 32-bit tasks
   on AArch32 systems that also have 64-bit-only CPUs.

   Architectures can fill in this functionality by defining their own
   task_cpu_possible_mask(p). When this is done, the scheduler will make
   sure the task will only be scheduled on CPUs that support it.

   (The actual arm64 specific changes are not part of this tree.)

   For other architectures there will be no change in functionality.

 - Add cgroup SCHED_IDLE support

 - Increase node-distance flexibility & delay determining it until a CPU
   is brought online. (This enables platforms where node distance isn't
   final until the CPU is only.)

 - Deadline scheduler enhancements & fixes

 - Misc fixes & cleanups.

* tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
  eventfd: Make signal recursion protection a task bit
  sched/fair: Mark tg_is_idle() an inline in the !CONFIG_FAIR_GROUP_SCHED case
  sched: Introduce dl_task_check_affinity() to check proposed affinity
  sched: Allow task CPU affinity to be restricted on asymmetric systems
  sched: Split the guts of sched_setaffinity() into a helper function
  sched: Introduce task_struct::user_cpus_ptr to track requested affinity
  sched: Reject CPU affinity changes based on task_cpu_possible_mask()
  cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq()
  cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus()
  cpuset: Don't use the cpu_possible_mask as a last resort for cgroup v1
  sched: Introduce task_cpu_possible_mask() to limit fallback rq selection
  sched: Cgroup SCHED_IDLE support
  sched/topology: Skip updating masks for non-online nodes
  sched: Replace deprecated CPU-hotplug functions.
  sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMS
  sched: Fix UCLAMP_FLAG_IDLE setting
  sched/deadline: Fix missing clock update in migrate_task_rq_dl()
  sched/fair: Avoid a second scan of target in select_idle_cpu
  sched/fair: Use prev instead of new target as recent_used_cpu
  sched: Don't report SCHED_FLAG_SUGOV in sched_getattr()
  ...
2021-08-30 13:42:10 -07:00
Thomas Gleixner
b542e383d8 eventfd: Make signal recursion protection a task bit
The recursion protection for eventfd_signal() is based on a per CPU
variable and relies on the !RT semantics of spin_lock_irqsave() for
protecting this per CPU variable. On RT kernels spin_lock_irqsave() neither
disables preemption nor interrupts which allows the spin lock held section
to be preempted. If the preempting task invokes eventfd_signal() as well,
then the recursion warning triggers.

Paolo suggested to protect the per CPU variable with a local lock, but
that's heavyweight and actually not necessary. The goal of this protection
is to prevent the task stack from overflowing, which can be achieved with a
per task recursion protection as well.

Replace the per CPU variable with a per task bit similar to other recursion
protection bits like task_struct::in_page_owner. This works on both !RT and
RT kernels and removes as a side effect the extra per CPU storage.

No functional change for !RT kernels.

Reported-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/r/87wnp9idso.ffs@tglx
2021-08-28 01:33:02 +02:00
Will Deacon
234b8ab647 sched: Introduce dl_task_check_affinity() to check proposed affinity
In preparation for restricting the affinity of a task during execve()
on arm64, introduce a new dl_task_check_affinity() helper function to
give an indication as to whether the restricted mask is admissible for
a deadline task.

Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lore.kernel.org/r/20210730112443.23245-10-will@kernel.org
2021-08-20 12:33:00 +02:00
Will Deacon
07ec77a1d4 sched: Allow task CPU affinity to be restricted on asymmetric systems
Asymmetric systems may not offer the same level of userspace ISA support
across all CPUs, meaning that some applications cannot be executed by
some CPUs. As a concrete example, upcoming arm64 big.LITTLE designs do
not feature support for 32-bit applications on both clusters.

Although userspace can carefully manage the affinity masks for such
tasks, one place where it is particularly problematic is execve()
because the CPU on which the execve() is occurring may be incompatible
with the new application image. In such a situation, it is desirable to
restrict the affinity mask of the task and ensure that the new image is
entered on a compatible CPU. From userspace's point of view, this looks
the same as if the incompatible CPUs have been hotplugged off in the
task's affinity mask. Similarly, if a subsequent execve() reverts to
a compatible image, then the old affinity is restored if it is still
valid.

In preparation for restricting the affinity mask for compat tasks on
arm64 systems without uniform support for 32-bit applications, introduce
{force,relax}_compatible_cpus_allowed_ptr(), which respectively restrict
and restore the affinity mask for a task based on the compatible CPUs.

Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210730112443.23245-9-will@kernel.org
2021-08-20 12:33:00 +02:00
Will Deacon
b90ca8badb sched: Introduce task_struct::user_cpus_ptr to track requested affinity
In preparation for saving and restoring the user-requested CPU affinity
mask of a task, add a new cpumask_t pointer to 'struct task_struct'.

If the pointer is non-NULL, then the mask is copied across fork() and
freed on task exit.

Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Link: https://lore.kernel.org/r/20210730112443.23245-7-will@kernel.org
2021-08-20 12:33:00 +02:00
Thomas Gleixner
6991436c2b sched/core: Provide a scheduling point for RT locks
RT enabled kernels substitute spin/rwlocks with 'sleeping' variants based
on rtmutexes. Blocking on such a lock is similar to preemption versus:

 - I/O scheduling and worker handling, because these functions might block
   on another substituted lock, or come from a lock contention within these
   functions.

 - RCU considers this like a preemption, because the task might be in a read
   side critical section.

Add a separate scheduling point for this, and hand a new scheduling mode
argument to __schedule() which allows, along with separate mode masks, to
handle this gracefully from within the scheduler, without proliferating that
to other subsystems like RCU.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210815211302.372319055@linutronix.de
2021-08-17 16:57:17 +02:00
Thomas Gleixner
5f220be214 sched/wakeup: Prepare for RT sleeping spin/rwlocks
Waiting for spinlocks and rwlocks on non RT enabled kernels is task::state
preserving. Any wakeup which matches the state is valid.

RT enabled kernels substitutes them with 'sleeping' spinlocks. This creates
an issue vs. task::__state.

In order to block on the lock, the task has to overwrite task::__state and a
consecutive wakeup issued by the unlocker sets the state back to
TASK_RUNNING. As a consequence the task loses the state which was set
before the lock acquire and also any regular wakeup targeted at the task
while it is blocked on the lock.

To handle this gracefully, add a 'saved_state' member to task_struct which
is used in the following way:

 1) When a task blocks on a 'sleeping' spinlock, the current state is saved
    in task::saved_state before it is set to TASK_RTLOCK_WAIT.

 2) When the task unblocks and after acquiring the lock, it restores the saved
    state.

 3) When a regular wakeup happens for a task while it is blocked then the
    state change of that wakeup is redirected to operate on task::saved_state.

    This is also required when the task state is running because the task
    might have been woken up from the lock wait and has not yet restored
    the saved state.

To make it complete, provide the necessary helpers to save and restore the
saved state along with the necessary documentation how the RT lock blocking
is supposed to work.

For non-RT kernels there is no functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210815211302.258751046@linutronix.de
2021-08-17 16:49:02 +02:00
Thomas Gleixner
85019c1674 sched/wakeup: Reorganize the current::__state helpers
In order to avoid more duplicate implementations for the debug and
non-debug variants of the state change macros, split the debug portion out
and make that conditional on CONFIG_DEBUG_ATOMIC_SLEEP=y.

Suggested-by: Waiman Long <longman@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210815211302.200898048@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-08-17 16:45:28 +02:00