Add IPE's admin and developer documentation to the kernel tree.
Co-developed-by: Fan Wu <wufan@linux.microsoft.com>
Signed-off-by: Deven Bowers <deven.desai@linux.microsoft.com>
Signed-off-by: Fan Wu <wufan@linux.microsoft.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
This patch enhances fsverity's capabilities to support both integrity and
authenticity protection by introducing the exposure of built-in
signatures through a new LSM hook. This functionality allows LSMs,
e.g. IPE, to enforce policies based on the authenticity and integrity of
files, specifically focusing on built-in fsverity signatures. It enables
a policy enforcement layer within LSMs for fsverity, offering granular
control over the usage of authenticity claims. For instance, a policy
could be established to only permit the execution of all files with
verified built-in fsverity signatures.
The introduction of a security_inode_setintegrity() hook call within
fsverity's workflow ensures that the verified built-in signature of a file
is exposed to LSMs. This enables LSMs to recognize and label fsverity files
that contain a verified built-in fsverity signature. This hook is invoked
subsequent to the fsverity_verify_signature() process, guaranteeing the
signature's verification against fsverity's keyring. This mechanism is
crucial for maintaining system security, as it operates in kernel space,
effectively thwarting attempts by malicious binaries to bypass user space
stack interactions.
The second to last commit in this patch set will add a link to the IPE
documentation in fsverity.rst.
Signed-off-by: Deven Bowers <deven.desai@linux.microsoft.com>
Signed-off-by: Fan Wu <wufan@linux.microsoft.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
This adds the scaffolding (docs, config, mount options) for supporting
the new digest field in the metacopy xattr. This contains a fs-verity
digest that need to match the fs-verity digest of the lowerdata
file. The mount option "verity" specifies how this xattr is handled.
If you enable verity ("verity=on") all existing xattrs are validated
before use, and during metacopy we generate verity xattr in the upper
metacopy file (if the source file has verity enabled). This means
later accesses can guarantee that the same data is used.
Additionally you can use "verity=require". In this mode all metacopy
files must have a valid verity xattr. For this to work metadata
copy-up must be able to create a verity xattr (so that later accesses
are validated). Therefore, in this mode, if the lower data file
doesn't have fs-verity enabled we fall back to a full copy rather than
a metacopy.
Actual implementation follows in a separate commit.
Signed-off-by: Alexander Larsson <alexl@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
fsverity builtin signatures (CONFIG_FS_VERITY_BUILTIN_SIGNATURES) aren't
the only way to do signatures with fsverity, and they have some major
limitations. Yet, more users have tried to use them, e.g. recently by
https://github.com/ostreedev/ostree/pull/2640. In most cases this seems
to be because users aren't sufficiently familiar with the limitations of
this feature and what the alternatives are.
Therefore, make some updates to the documentation to try to clarify the
properties of this feature and nudge users in the right direction.
Note that the Integrity Policy Enforcement (IPE) LSM, which is not yet
upstream, is planned to use the builtin signatures. (This differs from
IMA, which uses its own signature mechanism.) For that reason, my
earlier patch "fsverity: mark builtin signatures as deprecated"
(https://lore.kernel.org/r/20221208033548.122704-1-ebiggers@kernel.org),
which marked builtin signatures as "deprecated", was controversial.
This patch therefore stops short of marking the feature as deprecated.
I've also revised the language to focus on better explaining the feature
and what its alternatives are.
Link: https://lore.kernel.org/r/20230620041937.5809-1-ebiggers@kernel.org
Reviewed-by: Colin Walters <walters@verbum.org>
Reviewed-by: Luca Boccassi <bluca@debian.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Try to make fs/verity/verify.c aware of large folios. This includes
making fsverity_verify_bio() support the case where the bio contains
large folios, and adding a function fsverity_verify_folio() which is the
equivalent of fsverity_verify_page().
There's no way to actually test this with large folios yet, but I've
tested that this doesn't cause any regressions.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230127221529.299560-1-ebiggers@kernel.org
Now that the needed changes have been made to fs/buffer.c, ext4 is ready
to support the verity feature when the filesystem block size is less
than the page size. So remove the mount-time check that prevented this.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/20221223203638.41293-12-ebiggers@kernel.org
Make FS_IOC_ENABLE_VERITY support values of
fsverity_enable_arg::block_size other than PAGE_SIZE.
To make this possible, rework build_merkle_tree(), which was reading
data and hash pages from the file and assuming that they were the same
thing as "blocks".
For reading the data blocks, just replace the direct pagecache access
with __kernel_read(), to naturally read one block at a time.
(A disadvantage of the above is that we lose the two optimizations of
hashing the pagecache pages in-place and forcing the maximum readahead.
That shouldn't be very important, though.)
The hash block reads are a bit more difficult to handle, as the only way
to do them is through fsverity_operations::read_merkle_tree_page().
Instead, let's switch to the single-pass tree construction algorithm
that fsverity-utils uses. This eliminates the need to read back any
hash blocks while the tree is being built, at the small cost of an extra
block-sized memory buffer per Merkle tree level. This is probably what
I should have done originally.
Taken together, the above two changes result in page-size independent
code that is also a bit simpler than what we had before.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Andrey Albershteyn <aalbersh@redhat.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/20221223203638.41293-8-ebiggers@kernel.org
Add support for verifying data from verity files whose Merkle tree block
size is less than the page size. The main use case for this is to allow
a single Merkle tree block size to be used across all systems, so that
only one set of fsverity file digests and signatures is needed.
To do this, eliminate various assumptions that the Merkle tree block
size and the page size are the same:
- Make fsverity_verify_page() a wrapper around a new function
fsverity_verify_blocks() which verifies one or more blocks in a page.
- When a Merkle tree block is needed, get the corresponding page and
only verify and use the needed portion. (The Merkle tree continues to
be read and cached in page-sized chunks; that doesn't need to change.)
- When the Merkle tree block size and page size differ, use a bitmap
fsverity_info::hash_block_verified to keep track of which Merkle tree
blocks have been verified, as PageChecked cannot be used directly.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Andrey Albershteyn <aalbersh@redhat.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/20221223203638.41293-7-ebiggers@kernel.org
Currently, there is an implementation limit where files can't have more
than 8 Merkle tree levels. With SHA-256 and 4K blocks, this limit is
never reached, since a file would need to be larger than 2**64 bytes to
need 9 levels. However, with SHA-512, 9 levels are needed for files
larger than about 1.15 EB, which is possible on btrfs. Therefore, this
limit technically became reachable when btrfs added fsverity support.
Meanwhile, support for merkle_tree_block_size < PAGE_SIZE will introduce
another implementation limit on file size, resulting from the use of an
in-memory bitmap to track which Merkle tree blocks have been verified.
In any case, currently FS_IOC_ENABLE_VERITY fails with EINVAL when the
file is too large. This is undocumented, and also ambiguous since
EINVAL can mean other things too. Let's change the error code to EFBIG,
which is much clearer, and document it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Andrey Albershteyn <aalbersh@redhat.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/20221223203638.41293-5-ebiggers@kernel.org
- Appoint myself page cache maintainer
- Fix how scsicam uses the page cache
- Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS
- Remove the AOP flags entirely
- Remove pagecache_write_begin() and pagecache_write_end()
- Documentation updates
- Convert several address_space operations to use folios:
- is_dirty_writeback
- readpage becomes read_folio
- releasepage becomes release_folio
- freepage becomes free_folio
- Change filler_t to require a struct file pointer be the first argument
like ->read_folio
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmKNMDUACgkQDpNsjXcp
gj4/mwf/bpHhXH4ZoNIvtUpTF6rZbqeffmc0VrbxCZDZ6igRnRPglxZ9H9v6L53O
7B0FBQIfxgNKHZpdqGdOkv8cjg/GMe/HJUbEy5wOakYPo4L9fZpHbDZ9HM2Eankj
xBqLIBgBJ7doKr+Y62DAN19TVD8jfRfVtli5mqXJoNKf65J7BkxljoTH1L3EXD9d
nhLAgyQjR67JQrT/39KMW+17GqLhGefLQ4YnAMONtB6TVwX/lZmigKpzVaCi4r26
bnk5vaR/3PdjtNxIoYvxdc71y2Eg05n2jEq9Wcy1AaDv/5vbyZUlZ2aBSaIVbtKX
WfrhN9O3L0bU5qS7p9PoyfLc9wpq8A==
=djLv
-----END PGP SIGNATURE-----
Merge tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache
Pull page cache updates from Matthew Wilcox:
- Appoint myself page cache maintainer
- Fix how scsicam uses the page cache
- Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS
- Remove the AOP flags entirely
- Remove pagecache_write_begin() and pagecache_write_end()
- Documentation updates
- Convert several address_space operations to use folios:
- is_dirty_writeback
- readpage becomes read_folio
- releasepage becomes release_folio
- freepage becomes free_folio
- Change filler_t to require a struct file pointer be the first
argument like ->read_folio
* tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache: (107 commits)
nilfs2: Fix some kernel-doc comments
Appoint myself page cache maintainer
fs: Remove aops->freepage
secretmem: Convert to free_folio
nfs: Convert to free_folio
orangefs: Convert to free_folio
fs: Add free_folio address space operation
fs: Convert drop_buffers() to use a folio
fs: Change try_to_free_buffers() to take a folio
jbd2: Convert release_buffer_page() to use a folio
jbd2: Convert jbd2_journal_try_to_free_buffers to take a folio
reiserfs: Convert release_buffer_page() to use a folio
fs: Remove last vestiges of releasepage
ubifs: Convert to release_folio
reiserfs: Convert to release_folio
orangefs: Convert to release_folio
ocfs2: Convert to release_folio
nilfs2: Remove comment about releasepage
nfs: Convert to release_folio
jfs: Convert to release_folio
...
Update the fsverity documentation related to IMA signature support.
Acked-by: Stefan Berger <stefanb@linux.ibm.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
All filesystems have now been converted to use ->readahead, so
remove the ->readpages operation and fix all the comments that
used to refer to it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Add support for FS_VERITY_METADATA_TYPE_SIGNATURE to
FS_IOC_READ_VERITY_METADATA. This allows a userspace server program to
retrieve the built-in signature (if present) of a verity file for
serving to a client which implements fs-verity compatible verification.
See the patch which introduced FS_IOC_READ_VERITY_METADATA for more
details.
The ability for userspace to read the built-in signatures is also useful
because it allows a system that is using the in-kernel signature
verification to migrate to userspace signature verification.
This has been tested using a new xfstest which calls this ioctl via a
new subcommand for the 'fsverity' program from fsverity-utils.
Link: https://lore.kernel.org/r/20210115181819.34732-7-ebiggers@kernel.org
Reviewed-by: Victor Hsieh <victorhsieh@google.com>
Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add support for FS_VERITY_METADATA_TYPE_DESCRIPTOR to
FS_IOC_READ_VERITY_METADATA. This allows a userspace server program to
retrieve the fs-verity descriptor of a file for serving to a client
which implements fs-verity compatible verification. See the patch which
introduced FS_IOC_READ_VERITY_METADATA for more details.
"fs-verity descriptor" here means only the part that userspace cares
about because it is hashed to produce the file digest. It doesn't
include the signature which ext4 and f2fs append to the
fsverity_descriptor struct when storing it on-disk, since that way of
storing the signature is an implementation detail. The next patch adds
a separate metadata_type value for retrieving the signature separately.
This has been tested using a new xfstest which calls this ioctl via a
new subcommand for the 'fsverity' program from fsverity-utils.
Link: https://lore.kernel.org/r/20210115181819.34732-6-ebiggers@kernel.org
Reviewed-by: Victor Hsieh <victorhsieh@google.com>
Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add support for FS_VERITY_METADATA_TYPE_MERKLE_TREE to
FS_IOC_READ_VERITY_METADATA. This allows a userspace server program to
retrieve the Merkle tree of a verity file for serving to a client which
implements fs-verity compatible verification. See the patch which
introduced FS_IOC_READ_VERITY_METADATA for more details.
This has been tested using a new xfstest which calls this ioctl via a
new subcommand for the 'fsverity' program from fsverity-utils.
Link: https://lore.kernel.org/r/20210115181819.34732-5-ebiggers@kernel.org
Reviewed-by: Victor Hsieh <victorhsieh@google.com>
Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add an ioctl FS_IOC_READ_VERITY_METADATA which will allow reading verity
metadata from a file that has fs-verity enabled, including:
- The Merkle tree
- The fsverity_descriptor (not including the signature if present)
- The built-in signature, if present
This ioctl has similar semantics to pread(). It is passed the type of
metadata to read (one of the above three), and a buffer, offset, and
size. It returns the number of bytes read or an error.
Separate patches will add support for each of the above metadata types.
This patch just adds the ioctl itself.
This ioctl doesn't make any assumption about where the metadata is
stored on-disk. It does assume the metadata is in a stable format, but
that's basically already the case:
- The Merkle tree and fsverity_descriptor are defined by how fs-verity
file digests are computed; see the "File digest computation" section
of Documentation/filesystems/fsverity.rst. Technically, the way in
which the levels of the tree are ordered relative to each other wasn't
previously specified, but it's logical to put the root level first.
- The built-in signature is the value passed to FS_IOC_ENABLE_VERITY.
This ioctl is useful because it allows writing a server program that
takes a verity file and serves it to a client program, such that the
client can do its own fs-verity compatible verification of the file.
This only makes sense if the client doesn't trust the server and if the
server needs to provide the storage for the client.
More concretely, there is interest in using this ability in Android to
export APK files (which are protected by fs-verity) to "protected VMs".
This would use Protected KVM (https://lwn.net/Articles/836693), which
provides an isolated execution environment without having to trust the
traditional "host". A "guest" VM can boot from a signed image and
perform specific tasks in a minimum trusted environment using files that
have fs-verity enabled on the host, without trusting the host or
requiring that the guest has its own trusted storage.
Technically, it would be possible to duplicate the metadata and store it
in separate files for serving. However, that would be less efficient
and would require extra care in userspace to maintain file consistency.
In addition to the above, the ability to read the built-in signatures is
useful because it allows a system that is using the in-kernel signature
verification to migrate to userspace signature verification.
Link: https://lore.kernel.org/r/20210115181819.34732-4-ebiggers@kernel.org
Reviewed-by: Victor Hsieh <victorhsieh@google.com>
Acked-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Although it isn't used directly by the ioctls,
"struct fsverity_descriptor" is required by userspace programs that need
to compute fs-verity file digests in a standalone way. Therefore
it's also needed to sign files in a standalone way.
Similarly, "struct fsverity_formatted_digest" (previously called
"struct fsverity_signed_digest" which was misleading) is also needed to
sign files if the built-in signature verification is being used.
Therefore, move these structs to the UAPI header.
While doing this, try to make it clear that the signature-related fields
in fsverity_descriptor aren't used in the file digest computation.
Acked-by: Luca Boccassi <luca.boccassi@microsoft.com>
Link: https://lore.kernel.org/r/20201113211918.71883-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
I originally chose the name "file measurement" to refer to the fs-verity
file digest to avoid confusion with traditional full-file digests or
with the bare root hash of the Merkle tree.
But the name "file measurement" hasn't caught on, and usually people are
calling it something else, usually the "file digest". E.g. see
"struct fsverity_digest" and "struct fsverity_formatted_digest", the
libfsverity_compute_digest() and libfsverity_sign_digest() functions in
libfsverity, and the "fsverity digest" command.
Having multiple names for the same thing is always confusing.
So to hopefully avoid confusion in the future, rename
"fs-verity file measurement" to "fs-verity file digest".
This leaves FS_IOC_MEASURE_VERITY as the only reference to "measure" in
the kernel, which makes some amount of sense since the ioctl is actively
"measuring" the file.
I'll be renaming this in fsverity-utils too (though similarly the
'fsverity measure' command, which is a wrapper for
FS_IOC_MEASURE_VERITY, will stay).
Acked-by: Luca Boccassi <luca.boccassi@microsoft.com>
Link: https://lore.kernel.org/r/20201113211918.71883-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The name "struct fsverity_signed_digest" is causing confusion because it
isn't actually a signed digest, but rather it's the way that the digest
is formatted in order to be signed. Rename it to
"struct fsverity_formatted_digest" to prevent this confusion.
Also update the struct's comment to clarify that it's specific to the
built-in signature verification support and isn't a requirement for all
fs-verity users.
I'll be renaming this struct in fsverity-utils too.
Acked-by: Luca Boccassi <luca.boccassi@microsoft.com>
Link: https://lore.kernel.org/r/20201113211918.71883-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
The :c:type:`foo` only works properly with structs before
Sphinx 3.x.
On Sphinx 3.x, structs should now be declared using the
.. c:struct, and referenced via :c:struct tag.
As we now have the automarkup.py macro, that automatically
convert:
struct foo
into cross-references, let's get rid of that, solving
several warnings when building docs with Sphinx 3.x.
Reviewed-by: André Almeida <andrealmeid@collabora.com> # blk-mq.rst
Reviewed-by: Takashi Iwai <tiwai@suse.de> # sound
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
I had meant to replace these TODOs with the actual version when applying
the patches, but forgot to do so. Do it now.
Signed-off-by: Eric Biggers <ebiggers@google.com>