349 Commits

Author SHA1 Message Date
Tejun Heo
aa6ec29bee cgroup: remove sane_behavior support on non-default hierarchies
sane_behavior has been used as a development vehicle for the default
unified hierarchy.  Now that the default hierarchy is in place, the
flag became redundant and confusing as its usage is allowed on all
hierarchies.  There are gonna be either the default hierarchy or
legacy ones.  Let's make that clear by removing sane_behavior support
on non-default hierarchies.

This patch replaces cgroup_sane_behavior() with cgroup_on_dfl().  The
comment on top of CGRP_ROOT_SANE_BEHAVIOR is moved to on top of
cgroup_on_dfl() with sane_behavior specific part dropped.

On the default and legacy hierarchies w/o sane_behavior, this
shouldn't cause any behavior differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
2014-07-09 10:08:08 -04:00
Tejun Heo
7450e90bbb cgroup: remove CGRP_ROOT_OPTION_MASK
cgroup_root->flags only contains CGRP_ROOT_* flags and there's no
reason to mask the flags.  Remove CGRP_ROOT_OPTION_MASK.

This doesn't cause any behavior differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-07-09 10:08:07 -04:00
Tejun Heo
af0ba6789c cgroup: implement cgroup_subsys->depends_on
Currently, the blkio subsystem attributes all of writeback IOs to the
root.  One of the issues is that there's no way to tell who originated
a writeback IO from block layer.  Those IOs are usually issued
asynchronously from a task which didn't have anything to do with
actually generating the dirty pages.  The memory subsystem, when
enabled, already keeps track of the ownership of each dirty page and
it's desirable for blkio to piggyback instead of adding its own
per-page tag.

blkio piggybacking on memory is an implementation detail which
preferably should be handled automatically without requiring explicit
userland action.  To achieve that, this patch implements
cgroup_subsys->depends_on which contains the mask of subsystems which
should be enabled together when the subsystem is enabled.

The previous patches already implemented the support for enabled but
invisible subsystems and cgroup_subsys->depends_on can be easily
implemented by updating cgroup_refresh_child_subsys_mask() so that it
calculates cgroup->child_subsys_mask considering
cgroup_subsys->depends_on of the explicitly enabled subsystems.

Documentation/cgroups/unified-hierarchy.txt is updated to explain that
subsystems may not become immediately available after being unused
from userland and that dependency could be a factor in it.  As
subsystems may already keep residual references, this doesn't
significantly change how subsystem rebinding can be used.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
2014-07-08 18:02:57 -04:00
Tejun Heo
b4536f0cab cgroup: implement cgroup_subsys->css_reset()
cgroup is implementing support for subsystem dependency which would
require a way to enable a subsystem even when it's not directly
configured through "cgroup.subtree_control".

The previous patches added support for explicitly and implicitly
enabled subsystems and showing/hiding their interface files.  An
explicitly enabled subsystem may become implicitly enabled if it's
turned off through "cgroup.subtree_control" but there are subsystems
depending on it.  In such cases, the subsystem, as it's turned off
when seen from userland, shouldn't enforce any resource control.
Also, the subsystem may be explicitly turned on later again and its
interface files should be as close to the intial state as possible.

This patch adds cgroup_subsys->css_reset() which is invoked when a css
is hidden.  The callback should disable resource control and reset the
state to the vanilla state.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
2014-07-08 18:02:57 -04:00
Tejun Heo
f63070d350 cgroup: make interface files visible iff enabled on cgroup->subtree_control
cgroup is implementing support for subsystem dependency which would
require a way to enable a subsystem even when it's not directly
configured through "cgroup.subtree_control".

The preceding patch distinguished cgroup->subtree_control and
->child_subsys_mask where the former is the subsystems explicitly
configured by the userland and the latter is all enabled subsystems
currently is equal to the former but will include subsystems
implicitly enabled through dependency.

Subsystems which are enabled due to dependency shouldn't be visible to
userland.  This patch updates cgroup_subtree_control_write() and
create_css() such that interface files are not created for implicitly
enabled subsytems.

* @visible paramter is added to create_css().  Interface files are
  created only when true.

* If an already implicitly enabled subsystem is turned on through
  "cgroup.subtree_control", the existing css should be used.  css
  draining is skipped.

* cgroup_subtree_control_write() computes the new target
  cgroup->child_subsys_mask and create/kill or show/hide csses
  accordingly.

As the two subsystem masks are still kept identical, this patch
doesn't introduce any behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
2014-07-08 18:02:57 -04:00
Tejun Heo
667c249171 cgroup: introduce cgroup->subtree_control
cgroup is implementing support for subsystem dependency which would
require a way to enable a subsystem even when it's not directly
configured through "cgroup.subtree_control".

Previously, cgroup->child_subsys_mask directly reflected
"cgroup.subtree_control" and the enabled subsystems in the child
cgroups.  This patch adds cgroup->subtree_control which
"cgroup.subtree_control" operates on.  cgroup->child_subsys_mask is
now calculated from cgroup->subtree_control by
cgroup_refresh_child_subsys_mask(), which sets it identical to
cgroup->subtree_control for now.

This will allow using cgroup->child_subsys_mask for all the enabled
subsystems including the implicit ones and ->subtree_control for
tracking the explicitly requested ones.  This patch keeps the two
masks identical and doesn't introduce any behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
2014-07-08 18:02:56 -04:00
Tejun Heo
5533e01144 cgroup: disallow debug controller on the default hierarchy
The debug controller, as its name suggests, exposes cgroup core
internals to userland to aid debugging.  Unfortunately, except for the
name, there's no provision to prevent its usage in production
configurations and the controller is widely enabled and mounted
leaking internal details to userland.  Like most other debug
information, the information exposed by debug isn't interesting even
for debugging itself once the related parts are working reliably.

This controller has no reason for existing.  This patch implements
cgrp_dfl_root_inhibit_ss_mask which can suppress specific subsystems
on the default hierarchy and adds the debug subsystem to it so that it
can be gradually deprecated as usages move towards the unified
hierarchy.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-05-19 16:37:06 -04:00
Tejun Heo
6f4524d355 cgroup: implement css_tryget()
Implement css_tryget() which tries to grab a cgroup_subsys_state's
reference as long as it already hasn't reached zero.  Combined with
the recent css iterator changes to include offline && !released csses
during traversal, this can be used to access csses regardless of its
online state.

v2: Take the new flag CSS_NO_REF into account.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
2014-05-16 13:22:52 -04:00
Tejun Heo
f3d4650015 cgroup: convert cgroup_has_live_children() into css_has_online_children()
Now that cgroup liveliness and css onliness are the same state,
convert cgroup_has_live_children() into css_has_online_children() so
that it can be used for actual csses too.  The function now uses
css_for_each_child() for iteration and is published.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-16 13:22:52 -04:00
Tejun Heo
184faf3232 cgroup: use CSS_ONLINE instead of CGRP_DEAD
Use CSS_ONLINE on the self css to indicate whether a cgroup has been
killed instead of CGRP_DEAD.  This will allow re-using css online test
for cgroup liveliness test.  This doesn't introduce any functional
change.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-16 13:22:51 -04:00
Tejun Heo
c2931b70a3 cgroup: iterate cgroup_subsys_states directly
Currently, css_next_child() is implemented as finding the next child
cgroup which has the css enabled, which used to be the only way to do
it as only cgroups participated in sibling lists and thus could be
iteratd.  This works as long as what's required during iteration is
not missing online csses; however, it turns out that there are use
cases where offlined but not yet released csses need to be iterated.
This is difficult to implement through cgroup iteration the unified
hierarchy as there may be multiple dying csses for the same subsystem
associated with single cgroup.

After the recent changes, the cgroup self and regular csses behave
identically in how they're linked and unlinked from the sibling lists
including assertion of CSS_RELEASED and css_next_child() can simply
switch to iterating csses directly.  This both simplifies the logic
and ensures that all visible non-released csses are included in the
iteration whether there are multiple dying csses for a subsystem or
not.

As all other iterators depend on css_next_child() for sibling
iteration, this changes behaviors of all css iterators.  Add and
update explanations on the css states which are included in traversal
to all iterators.

As css iteration could always contain offlined csses, this shouldn't
break any of the current users and new usages which need iteration of
all on and offline csses can make use of the new semantics.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
2014-05-16 13:22:51 -04:00
Tejun Heo
de3f034182 cgroup: introduce CSS_RELEASED and reduce css iteration fallback window
css iterations allow the caller to drop RCU read lock.  As long as the
caller keeps the current position accessible, it can simply re-grab
RCU read lock later and continue iteration.  This is achieved by using
CGRP_DEAD to detect whether the current positions next pointer is safe
to dereference and if not re-iterate from the beginning to the next
position using ->serial_nr.

CGRP_DEAD is used as the marker to invalidate the next pointer and the
only requirement is that the marker is set before the next sibling
starts its RCU grace period.  Because CGRP_DEAD is set at the end of
cgroup_destroy_locked() but the cgroup is unlinked when the reference
count reaches zero, we currently have a rather large window where this
fallback re-iteration logic can be triggered.

This patch introduces CSS_RELEASED which is set when a css is unlinked
from its sibling list.  This still keeps the re-iteration logic
working while drastically reducing the window of its activation.
While at it, rewrite the comment in css_next_child() to reflect the
new flag and better explain the synchronization.

This will also enable iterating csses directly instead of through
cgroups.

v2: CSS_RELEASED now assigned to 1 << 2 as 1 << 0 is used by
    CSS_NO_REF.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-16 13:22:49 -04:00
Tejun Heo
0cb51d71c1 cgroup: move cgroup->serial_nr into cgroup_subsys_state
We're moving towards using cgroup_subsys_states as the fundamental
structural blocks.  All csses including the cgroup->self and actual
ones now form trees through css->children and ->sibling which follow
the same rules as what cgroup->children and ->sibling followed.  This
patch moves cgroup->serial_nr which is used to implement css iteration
into css.

Note that all csses, regardless of their types, allocate their serial
numbers from the same monotonically increasing counter.  This doesn't
affect the ordering needed by css iteration or cause any other
material behavior changes.  This will be used to update css iteration.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-16 13:22:49 -04:00
Tejun Heo
d5c419b68e cgroup: move cgroup->sibling and ->children into cgroup_subsys_state
We're moving towards using cgroup_subsys_states as the fundamental
structural blocks.  Let's move cgroup->sibling and ->children into
cgroup_subsys_state.  This is pure move without functional change and
only cgroup->self's fields are actually used.  Other csses will make
use of the fields later.

While at it, update init_and_link_css() so that it zeroes the whole
css before initializing it and remove explicit zeroing of ->flags.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-16 13:22:48 -04:00
Tejun Heo
d51f39b05c cgroup: remove cgroup->parent
cgroup->parent is redundant as cgroup->self.parent can also be used to
determine the parent cgroup and we're moving towards using
cgroup_subsys_states as the fundamental structural blocks.  This patch
introduces cgroup_parent() which follows cgroup->self.parent and
removes cgroup->parent.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-16 13:22:48 -04:00
Tejun Heo
5c9d535b89 cgroup: remove css_parent()
cgroup in general is moving towards using cgroup_subsys_state as the
fundamental structural component and css_parent() was introduced to
convert from using cgroup->parent to css->parent.  It was quite some
time ago and we're moving forward with making css more prominent.

This patch drops the trivial wrapper css_parent() and let the users
dereference css->parent.  While at it, explicitly mark fields of css
which are public and immutable.

v2: New usage from device_cgroup.c converted.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Johannes Weiner <hannes@cmpxchg.org>
2014-05-16 13:22:48 -04:00
Tejun Heo
3b514d24e2 cgroup: skip refcnting on normal root csses and cgrp_dfl_root self css
9395a4500404 ("cgroup: enable refcnting for root csses") enabled
reference counting for root csses (cgroup_subsys_states) so that
cgroup's self csses can be used to manage the lifetime of the
containing cgroups.

Unfortunately, this change was incorrect.  During early init,
cgrp_dfl_root self css refcnt is used.  percpu_ref can't initialized
during early init and its initialization is deferred till
cgroup_init() time.  This means that cpu was using percpu_ref which
wasn't properly initialized.  Due to the way percpu variables are laid
out on x86, this didn't blow up immediately on x86 but ended up
incrementing and decrementing the percpu variable at offset zero,
whatever it may be; however, on other archs, this caused fault and
early boot failure.

As cgroup self csses for root cgroups of non-dfl hierarchies need
working refcounting, we can't revert 9395a4500404.  This patch adds
CSS_NO_REF which explicitly inhibits reference counting on the css and
sets it on all normal (non-self) csses and cgroup_dfl_root self css.

v2: cgrp_dfl_root.self is the offending one.  Set the flag on it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Stephen Warren <swarren@nvidia.com>
Fixes: 9395a4500404 ("cgroup: enable refcnting for root csses")
2014-05-16 13:22:47 -04:00
Tejun Heo
9d755d33f0 cgroup: use cgroup->self.refcnt for cgroup refcnting
Currently cgroup implements refcnting separately using atomic_t
cgroup->refcnt.  The destruction paths of cgroup and css are rather
complex and bear a lot of similiarities including the use of RCU and
bouncing to a work item.

This patch makes cgroup use the refcnt of self css for refcnting
instead of using its own.  This makes cgroup refcnting use css's
percpu refcnt and share the destruction mechanism.

* css_release_work_fn() and css_free_work_fn() are updated to handle
  both csses and cgroups.  This is a bit messy but should do until we
  can make cgroup->self a full css, which currently can't be done
  thanks to multiple hierarchies.

* cgroup_destroy_locked() now performs
  percpu_ref_kill(&cgrp->self.refcnt) instead of cgroup_put(cgrp).

* Negative refcnt sanity check in cgroup_get() is no longer necessary
  as percpu_ref already handles it.

* Similarly, as a cgroup which hasn't been killed will never be
  released regardless of its refcnt value and percpu_ref has sanity
  check on kill, cgroup_is_dead() sanity check in cgroup_put() is no
  longer necessary.

* As whether a refcnt reached zero or not can only be decided after
  the reference count is killed, cgroup_root->cgrp's refcnting can no
  longer be used to decide whether to kill the root or not.  Let's
  make cgroup_kill_sb() explicitly initiate destruction if the root
  doesn't have any children.  This makes sense anyway as unmounted
  cgroup hierarchy without any children should be destroyed.

While this is a bit messy, this will allow pushing more bookkeeping
towards cgroup->self and thus handling cgroups and csses in more
uniform way.  In the very long term, it should be possible to
introduce a base subsystem and convert the self css to a proper one
making things whole lot simpler and unified.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-14 09:15:02 -04:00
Tejun Heo
9395a45004 cgroup: enable refcnting for root csses
Currently, css_get(), css_tryget() and css_tryget_online() are noops
for root csses as an optimization; however, we're planning to use css
refcnts to track of cgroup lifetime too and root cgroups also need to
be reference counted.  Since css has been converted to percpu_refcnt,
the overhead of refcnting is miniscule and this optimization isn't too
meaningful anymore.  Furthermore, controllers which optimize the root
cgroup often never even invoke these functions in their hot paths.

This patch enables refcnting for root csses too.  This makes CSS_ROOT
flag unused and removes it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-14 09:15:02 -04:00
Tejun Heo
249f3468a2 cgroup: remove cgroup_destory_css_killed()
cgroup_destroy_css_killed() is cgroup destruction stage which happens
after all csses are offlined.  After the recent updates, it no longer
does anything other than putting the base reference.  This patch
removes the function and makes cgroup_destroy_locked() put the base
ref at the end isntead.

This also makes cgroup->nr_css unnecessary.  Removed.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-14 09:15:01 -04:00
Tejun Heo
9d800df12d cgroup: rename cgroup->dummy_css to ->self and move it to the top
cgroup->dummy_css is used as the placeholder css when performing css
oriended operations on the cgroup.  We're gonna shift more cgroup
management to this css.  Let's rename it to ->self and move it to the
top.

This is pure rename and field relocation.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-14 09:15:00 -04:00
Tejun Heo
b7fc5ad235 cgroup: remove cgroup->control_kn
Now that cgroup_subtree_control_write() has access to the associated
kernfs_open_file and thus the kernfs_node, there's no need to cache it
in cgroup->control_kn on creation.  Remove cgroup->control_kn and use
@of->kn directly.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-13 12:16:22 -04:00
Tejun Heo
6770c64e5c cgroup: replace cftype->trigger() with cftype->write()
cftype->trigger() is pointless.  It's trivial to ignore the input
buffer from a regular ->write() operation.  Convert all ->trigger()
users to ->write() and remove ->trigger().

This patch doesn't introduce any visible behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
2014-05-13 12:16:21 -04:00
Tejun Heo
451af504df cgroup: replace cftype->write_string() with cftype->write()
Convert all cftype->write_string() users to the new cftype->write()
which maps directly to kernfs write operation and has full access to
kernfs and cgroup contexts.  The conversions are mostly mechanical.

* @css and @cft are accessed using of_css() and of_cft() accessors
  respectively instead of being specified as arguments.

* Should return @nbytes on success instead of 0.

* @buf is not trimmed automatically.  Trim if necessary.  Note that
  blkcg and netprio don't need this as the parsers already handle
  whitespaces.

cftype->write_string() has no user left after the conversions and
removed.

While at it, remove unnecessary local variable @p in
cgroup_subtree_control_write() and stale comment about
CGROUP_LOCAL_BUFFER_SIZE in cgroup_freezer.c.

This patch doesn't introduce any visible behavior changes.

v2: netprio was missing from conversion.  Converted.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Aristeu Rozanski <arozansk@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: "David S. Miller" <davem@davemloft.net>
2014-05-13 12:16:21 -04:00
Tejun Heo
b41686401e cgroup: implement cftype->write()
During the recent conversion to kernfs, cftype's seq_file operations
are updated so that they are directly mapped to kernfs operations and
thus can fully access the associated kernfs and cgroup contexts;
however, write path hasn't seen similar updates and none of the
existing write operations has access to, for example, the associated
kernfs_open_file.

Let's introduce a new operation cftype->write() which maps directly to
the kernfs write operation and has access to all the arguments and
contexts.  This will replace ->write_string() and ->trigger() and ease
manipulation of kernfs active protection from cgroup file operations.

Two accessors - of_cft() and of_css() - are introduced to enable
accessing the associated cgroup context from cftype->write() which
only takes kernfs_open_file for the context information.  The
accessors for seq_file operations - seq_cft() and seq_css() - are
rewritten to wrap the of_ accessors.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-13 12:16:21 -04:00
Tejun Heo
ec903c0c85 cgroup: rename css_tryget*() to css_tryget_online*()
Unlike the more usual refcnting, what css_tryget() provides is the
distinction between online and offline csses instead of protection
against upping a refcnt which already reached zero.  cgroup is
planning to provide actual tryget which fails if the refcnt already
reached zero.  Let's rename the existing trygets so that they clearly
indicate that they're onliness.

I thought about keeping the existing names as-are and introducing new
names for the planned actual tryget; however, given that each
controller participates in the synchronization of the online state, it
seems worthwhile to make it explicit that these functions are about
on/offline state.

Rename css_tryget() to css_tryget_online() and css_tryget_from_dir()
to css_tryget_online_from_dir().  This is pure rename.

v2: cgroup_freezer grew new usages of css_tryget().  Update
    accordingly.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
2014-05-13 12:11:01 -04:00
Tejun Heo
f21a4f7594 Merge branch 'for-3.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup into for-3.16
Pull to receive e37a06f10994 ("cgroup: fix the retry path of
cgroup_mount()") to avoid unnecessary conflicts with planned
cgroup_tree_mutex removal and also to be able to remove the temp fix
added by 36c38fb7144a ("blkcg: use trylock on blkcg_pol_mutex in
blkcg_reset_stats()") afterwards.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-05-13 11:30:04 -04:00
Tejun Heo
d39ea871c3 Merge branch 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu into for-3.16
Pull to receive percpu_ref_tryget[_live]() changes.  Planned cgroup
changes will make use of them.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-05-13 11:27:24 -04:00
Tejun Heo
5024ae29cd cgroup: introduce task_css_is_root()
Determining the css of a task usually requires RCU read lock as that's
the only thing which keeps the returned css accessible till its
reference is acquired; however, testing whether a task belongs to the
root can be performed without dereferencing the returned css by
comparing the returned pointer against the root one in init_css_set[]
which never changes.

Implement task_css_is_root() which can be invoked in any context.
This will be used by the scheduled cgroup_freezer change.

v2: cgroup no longer supports modular controllers.  No need to export
    init_css_set.  Pointed out by Li.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-13 11:26:27 -04:00
Tejun Heo
2070d50e1c percpu-refcount: rename percpu_ref_tryget() to percpu_ref_tryget_live()
percpu_ref_tryget() is different from the usual tryget semantics in
that it fails if the refcnt is in its dying stage even if the refcnt
hasn't reached zero yet.  We're about to introduce the more
conventional tryget and the current one has only one user.  Let's
rename it to percpu_ref_tryget_live() so that it explicitly signifies
the peculiarities of its semantics.

This is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Kent Overstreet <kmo@daterainc.com>
2014-05-09 15:42:15 -04:00
Tejun Heo
2b53f41fa8 cgroup: remove unused CGRP_SANE_BEHAVIOR
This cgroup flag has never been used.  Only CGRP_ROOT_SANE_BEHAVIOR is
used.  Remove it.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-05-07 09:21:56 -04:00
Tejun Heo
15a4c835e4 cgroup, memcg: implement css->id and convert css_from_id() to use it
Until now, cgroup->id has been used to identify all the associated
csses and css_from_id() takes cgroup ID and returns the matching css
by looking up the cgroup and then dereferencing the css associated
with it; however, now that the lifetimes of cgroup and css are
separate, this is incorrect and breaks on the unified hierarchy when a
controller is disabled and enabled back again before the previous
instance is released.

This patch adds css->id which is a subsystem-unique ID and converts
css_from_id() to look up by the new css->id instead.  memcg is the
only user of css_from_id() and also converted to use css->id instead.

For traditional hierarchies, this shouldn't make any functional
difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-04 15:09:14 -04:00
Tejun Heo
7d699ddb2b cgroup, memcg: allocate cgroup ID from 1
Currently, cgroup->id is allocated from 0, which is always assigned to
the root cgroup; unfortunately, memcg wants to use ID 0 to indicate
invalid IDs and ends up incrementing all IDs by one.

It's reasonable to reserve 0 for special purposes.  This patch updates
cgroup core so that ID 0 is not used and the root cgroups get ID 1.
The ID incrementing is removed form memcg.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-04 15:09:13 -04:00
Tejun Heo
69dfa00ccb cgroup: make flags and subsys_masks unsigned int
There's no reason to use atomic bitops for cgroup_subsys_state->flags,
cgroup_root->flags and various subsys_masks.  This patch updates those
to use bitwise and/or operations instead and converts them form
unsigned long to unsigned int.

This makes the fields occupy (marginally) smaller space and makes it
clear that they don't require atomicity.

This patch doesn't cause any behavior difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-05-04 15:09:13 -04:00
Tejun Heo
842b597ee0 cgroup: implement cgroup.populated for the default hierarchy
cgroup users often need a way to determine when a cgroup's
subhierarchy becomes empty so that it can be cleaned up.  cgroup
currently provides release_agent for it; unfortunately, this mechanism
is riddled with issues.

* It delivers events by forking and execing a userland binary
  specified as the release_agent.  This is a long deprecated method of
  notification delivery.  It's extremely heavy, slow and cumbersome to
  integrate with larger infrastructure.

* There is single monitoring point at the root.  There's no way to
  delegate management of a subtree.

* The event isn't recursive.  It triggers when a cgroup doesn't have
  any tasks or child cgroups.  Events for internal nodes trigger only
  after all children are removed.  This again makes it impossible to
  delegate management of a subtree.

* Events are filtered from the kernel side.  "notify_on_release" file
  is used to subscribe to or suppress release event.  This is
  unnecessarily complicated and probably done this way because event
  delivery itself was expensive.

This patch implements interface file "cgroup.populated" which can be
used to monitor whether the cgroup's subhierarchy has tasks in it or
not.  Its value is 0 if there is no task in the cgroup and its
descendants; otherwise, 1, and kernfs_notify() notificaiton is
triggers when the value changes, which can be monitored through poll
and [di]notify.

This is a lot ligther and simpler and trivially allows delegating
management of subhierarchy - subhierarchy monitoring can block further
propgation simply by putting itself or another process in the root of
the subhierarchy and monitor events that it's interested in from there
without interfering with monitoring higher in the tree.

v2: Patch description updated as per Serge.

v3: "cgroup.subtree_populated" renamed to "cgroup.populated".  The
    subtree_ prefix was a bit confusing because
    "cgroup.subtree_control" uses it to denote the tree rooted at the
    cgroup sans the cgroup itself while the populated state includes
    the cgroup itself.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Lennart Poettering <lennart@poettering.net>
2014-04-25 18:28:02 -04:00
Tejun Heo
f8f22e53a2 cgroup: implement dynamic subtree controller enable/disable on the default hierarchy
cgroup is switching away from multiple hierarchies and will use one
unified default hierarchy where controllers can be dynamically enabled
and disabled per subtree.  The default hierarchy will serve as the
unified hierarchy to which all controllers are attached and a css on
the default hierarchy would need to also serve the tasks of descendant
cgroups which don't have the controller enabled - ie. the tree may be
collapsed from leaf towards root when viewed from specific
controllers.  This has been implemented through effective css in the
previous patches.

This patch finally implements dynamic subtree controller
enable/disable on the default hierarchy via a new knob -
"cgroup.subtree_control" which controls which controllers are enabled
on the child cgroups.  Let's assume a hierarchy like the following.

  root - A - B - C
               \ D

root's "cgroup.subtree_control" determines which controllers are
enabled on A.  A's on B.  B's on C and D.  This coincides with the
fact that controllers on the immediate sub-level are used to
distribute the resources of the parent.  In fact, it's natural to
assume that resource control knobs of a child belong to its parent.
Enabling a controller in "cgroup.subtree_control" declares that
distribution of the respective resources of the cgroup will be
controlled.  Note that this means that controller enable states are
shared among siblings.

The default hierarchy has an extra restriction - only cgroups which
don't contain any task may have controllers enabled in
"cgroup.subtree_control".  Combined with the other properties of the
default hierarchy, this guarantees that, from the view point of
controllers, tasks are only on the leaf cgroups.  In other words, only
leaf csses may contain tasks.  This rules out situations where child
cgroups compete against internal tasks of the parent, which is a
competition between two different types of entities without any clear
way to determine resource distribution between the two.  Different
controllers handle it differently and all the implemented behaviors
are ambiguous, ad-hoc, cumbersome and/or just wrong.  Having this
structural constraints imposed from cgroup core removes the burden
from controller implementations and enables showing one consistent
behavior across all controllers.

When a controller is enabled or disabled, css associations for the
controller in the subtrees of each child should be updated.  After
enabling, the whole subtree of a child should point to the new css of
the child.  After disabling, the whole subtree of a child should point
to the cgroup's css.  This is implemented by first updating cgroup
states such that cgroup_e_css() result points to the appropriate css
and then invoking cgroup_update_dfl_csses() which migrates all tasks
in the affected subtrees to the self cgroup on the default hierarchy.

* When read, "cgroup.subtree_control" lists all the currently enabled
  controllers on the children of the cgroup.

* White-space separated list of controller names prefixed with either
  '+' or '-' can be written to "cgroup.subtree_control".  The ones
  prefixed with '+' are enabled on the controller and '-' disabled.

* A controller can be enabled iff the parent's
  "cgroup.subtree_control" enables it and disabled iff no child's
  "cgroup.subtree_control" has it enabled.

* If a cgroup has tasks, no controller can be enabled via
  "cgroup.subtree_control".  Likewise, if "cgroup.subtree_control" has
  some controllers enabled, tasks can't be migrated into the cgroup.

* All controllers which aren't bound on other hierarchies are
  automatically associated with the root cgroup of the default
  hierarchy.  All the controllers which are bound to the default
  hierarchy are listed in the read-only file "cgroup.controllers" in
  the root directory.

* "cgroup.controllers" in all non-root cgroups is read-only file whose
  content is equal to that of "cgroup.subtree_control" of the parent.
  This indicates which controllers can be used in the cgroup's
  "cgroup.subtree_control".

This is still experimental and there are some holes, one of which is
that ->can_attach() failure during cgroup_update_dfl_csses() may leave
the cgroups in an undefined state.  The issues will be addressed by
future patches.

v2: Non-root cgroups now also have "cgroup.controllers".

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-04-23 11:13:16 -04:00
Tejun Heo
6803c00628 cgroup: add css_set->dfl_cgrp
To implement the unified hierarchy behavior, we'll need to be able to
determine the associated cgroup on the default hierarchy from css_set.
Let's add css_set->dfl_cgrp so that it can be accessed conveniently
and efficiently.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-04-23 11:13:16 -04:00
Tejun Heo
3ebb2b6ef3 cgroup: teach css_task_iter about effective csses
Currently, css_task_iter iterates tasks associated with a css by
visiting each css_set associated with the owning cgroup and walking
tasks of each of them.  This works fine for !unified hierarchies as
each cgroup has its own css for each associated subsystem on the
hierarchy; however, on the planned unified hierarchy, a cgroup may not
have csses associated and its tasks would be considered associated
with the matching css of the nearest ancestor which has the subsystem
enabled.

This means that on the default unified hierarchy, just walking all
tasks associated with a cgroup isn't enough to walk all tasks which
are associated with the specified css.  If any of its children doesn't
have the matching css enabled, task iteration should also include all
tasks from the subtree.  We already added cgroup->e_csets[] to list
all css_sets effectively associated with a given css and walk css_sets
on that list instead to achieve such iteration.

This patch updates css_task_iter iteration such that it walks css_sets
on cgroup->e_csets[] instead of cgroup->cset_links if iteration is
requested on an non-dummy css.  Thanks to the previous iteration
update, this change can be achieved with the addition of
css_task_iter->ss and minimal updates to css_advance_task_iter() and
css_task_iter_start().

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-04-23 11:13:15 -04:00
Tejun Heo
0f0a2b4fa6 cgroup: reorganize css_task_iter
This patch reorganizes css_task_iter so that adding effective css
support is easier.

* s/->cset_link/->cset_pos/ and s/->task/->task_pos/ for consistency

* ->origin_css is used to determine whether the iteration reached the
  last css_set.  Replace it with explicit ->cset_head so that
  css_advance_task_iter() doesn't have to know the termination
  condition directly.

* css_task_iter_next() currently assumes that it's walking list of
  cgrp_cset_link and reaches into the current cset through the current
  link to determine the termination conditions for task walking.  As
  this won't always be true for effective css walking, add
  ->tasks_head and ->mg_tasks_head and use them to control task
  walking so that css_task_iter_next() doesn't have to know how
  css_sets are being walked.

This patch doesn't make any behavior changes.  The iteration logic
stays unchanged after the patch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-04-23 11:13:15 -04:00
Tejun Heo
2d8f243a5e cgroup: implement cgroup->e_csets[]
On the default unified hierarchy, a cgroup may be associated with
csses of its ancestors, which means that a css of a given cgroup may
be associated with css_sets of descendant cgroups.  This means that we
can't walk all tasks associated with a css by iterating the css_sets
associated with the cgroup as there are css_sets which are pointing to
the css but linked on the descendants.

This patch adds per-subsystem list heads cgroup->e_csets[].  Any
css_set which is pointing to a css is linked to
css->cgroup->e_csets[$SUBSYS_ID] through
css_set->e_cset_node[$SUBSYS_ID].  The lists are protected by
css_set_rwsem and will allow us to walk all css_sets associated with a
given css so that we can find out all associated tasks.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-04-23 11:13:15 -04:00
Tejun Heo
f392e51cd6 cgroup: update cgroup->subsys_mask to ->child_subsys_mask and restore cgroup_root->subsys_mask
944196278d3d ("cgroup: move ->subsys_mask from cgroupfs_root to
cgroup") moved ->subsys_mask from cgroup_root to cgroup to prepare for
the unified hierarhcy; however, it turns out that carrying the
subsys_mask of the children in the parent, instead of itself, is a lot
more natural.  This patch restores cgroup_root->subsys_mask and morphs
cgroup->subsys_mask into cgroup->child_subsys_mask.

* Uses of root->cgrp.subsys_mask are restored to root->subsys_mask.

* Remove automatic setting and clearing of cgrp->subsys_mask and
  instead just inherit ->child_subsys_mask from the parent during
  cgroup creation.  Note that this doesn't affect any current
  behaviors.

* Undo __kill_css() separation.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-04-23 11:13:14 -04:00
Li Zefan
1ec41830e0 cgroup: remove useless argument from cgroup_exit()
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-03-29 09:15:54 -04:00
Tejun Heo
8cbbf2c972 cgroup: implement CFTYPE_ONLY_ON_DFL
This cftype flag makes the file only appear on the default hierarchy.
This will later be used for cgroup.controllers file.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-03-19 10:23:55 -04:00
Tejun Heo
a2dd424750 cgroup: make cgrp_dfl_root mountable
cgrp_dfl_root will be used as the default unified hierarchy.  This
patch makes cgrp_dfl_root mountable by making the following changes.

* cgroup_init_early() now initializes cgrp_dfl_root w/
  CGRP_ROOT_SANE_BEHAVIOR.  The default hierarchy is always sane.

* parse_cgroupfs_options() and cgroup_mount() are updated such that
  cgrp_dfl_root is mounted if sane_behavior is specified w/o any
  subsystems.

* rebind_subsystems() now populates the root directory of
  cgrp_dfl_root.  Note that the function still guarantees success of
  rebinding subsystems to cgrp_dfl_root.  If populating fails while
  rebinding to cgrp_dfl_root, it whines but ignores the error.

* For backward compatibility, the default hierarchy shows up in
  /proc/$PID/cgroup only after it's explicitly mounted so that
  userland which doesn't make use of it doesn't see any change.

* "current_css_set_cg_links" file of debug cgroup now treats the
  default hierarchy the same as other hierarchies.  This is visible to
  userland.  Given that it's for debug controller, this should be
  fine.

* While at it, implement cgroup_on_dfl() which tests whether a give
  cgroup is on the default hierarchy or not.

The above changes make cgrp_dfl_root mostly equivalent to other
controllers but the actual unified hierarchy behaviors are not
implemented yet.  Let's plug child cgroup creation in cgrp_dfl_root
from create_cgroup() for now.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-03-19 10:23:55 -04:00
Tejun Heo
4d3bb511b5 cgroup: drop const from @buffer of cftype->write_string()
cftype->write_string() just passes on the writeable buffer from kernfs
and there's no reason to add const restriction on the buffer.  The
only thing const achieves is unnecessarily complicating parsing of the
buffer.  Drop const from @buffer.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Daniel Borkmann <dborkman@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>                                           
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
2014-03-19 10:23:54 -04:00
Tejun Heo
3dd06ffa9d cgroup: rename cgroup_dummy_root and related names
The dummy root will be repurposed to serve as the default unified
hierarchy.  Let's rename things in preparation.

* s/cgroup_dummy_root/cgrp_dfl_root/
* s/cgroupfs_root/cgroup_root/ as we don't do fs part directly anymore
* s/cgroup_root->top_cgroup/cgroup_root->cgrp/ for brevity

This is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-03-19 10:23:54 -04:00
Tejun Heo
944196278d cgroup: move ->subsys_mask from cgroupfs_root to cgroup
cgroupfs_root->subsys_mask represents the controllers attached to the
hierarchy.  This patch moves the field to cgroup.  Subsystem
initialization and rebinding updates the top cgroup's subsys_mask.
For !root cgroups, the subsys_mask bits are set from create_css() and
cleared from kill_css(), which effectively means that all cgroups will
have the same subsys_mask as the top cgroup.

While this doesn't make any difference now, this will help
implementation of the default unified hierarchy where !root cgroups
may have subsets of the top_cgroup's subsys_mask.

While at it, __kill_css() is split out of kill_css().  The former
doesn't care about the subsys_mask while the latter becomes noop if
the controller is already killed and clears the matching bit if not
before proceeding to killing the css.  This will be used later by the
default unified hierarchy implementation.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-03-19 10:23:54 -04:00
Tejun Heo
fdce6bf8c5 cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}()
The dummy hierarchy is now a fully functional one and dummy_top has a
kernfs_node associated with it.  Drop the NULL checks in
[pr_cont_]cont_{name|path}() which are no longer necessary.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-03-19 10:23:54 -04:00
Tejun Heo
0e1d768f1b cgroup: drop task_lock() protection around task->cgroups
For optimization, task_lock() is additionally used to protect
task->cgroups.  The optimization is pretty dubious as either
css_set_rwsem is grabbed anyway or PF_EXITING already protects
task->cgroups.  It adds only overhead and confusion at this point.
Let's drop task_[un]lock() and update comments accordingly.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-25 10:04:03 -05:00
Tejun Heo
1958d2d53d cgroup: split process / task migration into four steps
Currently, process / task migration is a single operation which may
fail depending on memory pressure or the involved controllers'
->can_attach() callbacks.  One problem with this approach is migration
of multiple targets.  It's impossible to tell whether a given target
will be successfully migrated beforehand and cgroup core can't keep
track of enough states to roll back after intermediate failure.

This is already an issue with cgroup_transfer_tasks().  Also, we're
gonna need multiple target migration for unified hierarchy.

This patch splits migration into four stages -
cgroup_migrate_add_src(), cgroup_migrate_prepare_dst(),
cgroup_migrate() and cgroup_migrate_finish(), where
cgroup_migrate_prepare_dst() performs all the operations which may
fail due to allocation failure without actually migrating the target.

The four separate stages mean that, disregarding ->can_attach()
failures, the success or failure of multi target migration can be
determined before performing any actual migration.  If preparations of
all targets succeed, the whole thing will succeed.  If not, the whole
operation can fail without any side-effect.

Since the previous patch to use css_set->mg_tasks to keep track of
migration targets, the only thing which may need memory allocation
during migration is the target css_sets.  cgroup_migrate_prepare()
pins all source and target css_sets and link them up.  Note that this
can be performed without holding threadgroup_lock even if the target
is a process.  As long as cgroup_mutex is held, no new css_set can be
put into play.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2014-02-25 10:04:03 -05:00