16 Commits

Author SHA1 Message Date
Eric Dumazet
8309cf66fd [PATCH] x86_64: Bug correction in populate_memnodemap()
As reported by Keith Mannthey, there are problems in populate_memnodemap()

The bug was that the compute_hash_shift() was returning 31, with incorrect
initialization of memnodemap[]

To correct the bug, we must use (1UL << shift) instead of (1 << shift) to
avoid an integer overflow, and we must check that shift < 64 to avoid an
infinite loop.

Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-12-12 22:31:16 -08:00
Bob Picco
d3ee871e63 [PATCH] x86_64: Fix sparse mem
Fix up booting with sparse mem enabled. Otherwise it would just
cause an early PANIC at boot.

Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-14 19:55:18 -08:00
Magnus Damm
ffd10a2b77 [PATCH] x86_64: Make node boundaries consistent
The current x86_64 NUMA memory code is inconsequent when it comes to node
memory ranges. The exact behaviour varies depending on which config option
that is used.

setup_node_bootmem() has start and end as arguments and these are used to
calculate the size of the node like this: (end - start). This is all fine
if end is pointing to the first non-available byte. The problem is that the
current x86_64 code sometimes treats it as the last present byte and sometimes
as the first non-available byte. The result is that some configurations might
lose a page at the end of the range.

This patch tries to fix CONFIG_ACPI_NUMA, CONFIG_K8_NUMA and CONFIG_NUMA_EMU
so they all treat the end variable as the first non-available byte. This is
the same way as the single node code.

The patch is boot tested on dual x86_64 hardware with the above configurations,
but maybe the removed code is needed as some workaround?

Signed-off-by: Magnus Damm <magnus@valinux.co.jp>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-14 19:55:17 -08:00
Eric Dumazet
529a340402 [PATCH] x86_64: Optimize NUMA node hash function
Compute the highest possible value for memnode_shift, in order to reduce
footprint of memnodemap[] to the minimum, thus making all users
(phys_to_nid(), kfree()), more cache friendly.

Before the patch :

 Node 0 MemBase 0000000000000000 Limit 00000001ffffffff
 Node 1 MemBase 0000000200000000 Limit 00000003ffffffff
 Using 23 for the hash shift. Max adder is 3ffffffff

After the patch :

 Node 0 MemBase 0000000000000000 Limit 00000001ffffffff
 Node 1 MemBase 0000000200000000 Limit 00000003ffffffff
 Using 33 for the hash shift.

In this case, only 2 bytes of memnodemap[] are used, instead of 2048

Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-14 19:55:15 -08:00
Andi Kleen
69d81fcde7 [PATCH] x86_64: Speed up numa_node_id by putting it directly into the PDA
Not go from the CPU number to an mapping array.
Mode number is often used now in fast paths.

This also adds a generic numa_node_id to all the topology includes

Suggested by Eric Dumazet

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-14 19:55:14 -08:00
Andi Kleen
a2f1b42490 [PATCH] x86_64: Add 4GB DMA32 zone
Add a new 4GB GFP_DMA32 zone between the GFP_DMA and GFP_NORMAL zones.

As a bit of historical background: when the x86-64 port
was originally designed we had some discussion if we should
use a 16MB DMA zone like i386 or a 4GB DMA zone like IA64 or
both. Both was ruled out at this point because it was in early
2.4 when VM is still quite shakey and had bad troubles even
dealing with one DMA zone.  We settled on the 16MB DMA zone mainly
because we worried about older soundcards and the floppy.

But this has always caused problems since then because
device drivers had trouble getting enough DMA able memory. These days
the VM works much better and the wide use of NUMA has proven
it can deal with many zones successfully.

So this patch adds both zones.

This helps drivers who need a lot of memory below 4GB because
their hardware is not accessing more (graphic drivers - proprietary
and free ones, video frame buffer drivers, sound drivers etc.).
Previously they could only use IOMMU+16MB GFP_DMA, which
was not enough memory.

Another common problem is that hardware who has full memory
addressing for >4GB misses it for some control structures in memory
(like transmit rings or other metadata).  They tended to allocate memory
in the 16MB GFP_DMA or the IOMMU/swiotlb then using pci_alloc_consistent,
but that can tie up a lot of precious 16MB GFPDMA/IOMMU/swiotlb memory
(even on AMD systems the IOMMU tends to be quite small) especially if you have
many devices.  With the new zone pci_alloc_consistent can just put
this stuff into memory below 4GB which works better.

One argument was still if the zone should be 4GB or 2GB. The main
motivation for 2GB would be an unnamed not so unpopular hardware
raid controller (mostly found in older machines from a particular four letter
company) who has a strange 2GB restriction in firmware. But
that one works ok with swiotlb/IOMMU anyways, so it doesn't really
need GFP_DMA32. I chose 4GB to be compatible with IA64 and because
it seems to be the most common restriction.

The new zone is so far added only for x86-64.

For other architectures who don't set up this
new zone nothing changes. Architectures can set a compatibility
define in Kconfig CONFIG_DMA_IS_DMA32 that will define GFP_DMA32
as GFP_DMA. Otherwise it's a nop because on 32bit architectures
it's normally not needed because GFP_NORMAL (=0) is DMA able
enough.

One problem is still that GFP_DMA means different things on different
architectures. e.g. some drivers used to have #ifdef ia64  use GFP_DMA
(trusting it to be 4GB) #elif __x86_64__ (use other hacks like
the swiotlb because 16MB is not enough) ... . This was quite
ugly and is now obsolete.

These should be now converted to use GFP_DMA32 unconditionally. I haven't done
this yet. Or best only use pci_alloc_consistent/dma_alloc_coherent
which will use GFP_DMA32 transparently.

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-14 19:55:13 -08:00
Ravikiran G Thirumalai
85cc5135ac [PATCH] x86_64 early numa init fix
The tests Alok carried out on Petr's box confirmed that cpu_to_node[BP] is
not setup early enough by numa_init_array due to the x86_64 changes in
2.6.14-rc*, and unfortunately set wrongly by the work around code in
numa_init_array().  cpu_to_node[0] gets set with 1 early and later gets set
properly to 0 during identify_cpu() when all cpus are brought up, but
confusing the numa slab in the process.

Here is a quick fix for this.  The right fix obviously is to have
cpu_to_node[bsp] setup early for numa_init_array().  The following patch
will fix the problem now, and the code can stay on even when
cpu_to_node{BP] gets fixed early correctly.

Thanks to Petr for access to his box.

Signed off by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-30 12:41:20 -07:00
Ravikiran G Thirumalai
e6a045a5b8 [PATCH] x86_64: fix the BP node_to_cpumask
Fix the BP node_to_cpumask.  2.6.14-rc* broke the boot cpu bit as the
cpu_to_node(0) is now not setup early enough for numa_init_array.
cpu_to_node[] is setup much later at srat_detect_node on acpi srat based
em64t machines.  This seems like a problem on amd machines too, Tested on
em64t though.  /sys/devices/system/node/node0/cpumap shows up sanely after
this patch.

Signed off by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-30 12:41:20 -07:00
Andi Kleen
3f098c2605 [PATCH] x86-64: Support dualcore and 8 socket systems in k8 fallback node parsing
In particular on systems where the local APIC space and node space
is very different from the Linux CPU number space.

Previously the older NUMA setup code directly parsing the K8
northbridge registers had some issues on 8 socket or dual core
systems. This patch fixes them.

This is mainly done by fixing some confusion between Linux
CPU numbers and local APIC ids. We now pass the local APIC IDs
to later code, which avoids mismatches.

Also add some heuristics to detect cases where the Hypertransport
nodeids and the local APIC IDs don't match, but are shifted
by a constant offset.

This is still all quite hackish, hopefully BIOS writers fill
in correct SRATs instead.

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-12 10:49:56 -07:00
Andi Kleen
0b07e984fc [PATCH] x86-64: Don't assign CPU numbers in SRAT parsing
Do that later when the CPU boots. SRAT just stores the APIC<->Node
mapping node. This fixes problems on systems where the order
of SRAT entries does not match the MADT.

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-12 10:49:55 -07:00
Ravikiran G Thirumalai
6c231b7bab [PATCH] Additions to .data.read_mostly section
Mark variables which are usually accessed for reads with __readmostly.

Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-07 16:57:33 -07:00
Andi Kleen
485761bd6a [PATCH] x86_64: Tell VM about holes in nodes
Some nodes can have large holes on x86-64.

This fixes problems with the VM allowing too many dirty pages because it
overestimates the number of available RAM in a node.  In extreme cases you
can end up with all RAM filled with dirty pages which can lead to deadlocks
and other nasty behaviour.

This patch just tells the VM about the known holes from e820.  Reserved
(like the kernel text or mem_map) is still not taken into account, but that
should be only a few percent error now.

Small detail is that the flat setup uses the NUMA free_area_init_node() now
too because it offers more flexibility.

(akpm: lotsa thanks to Martin for working this problem out)

Cc: Martin Bligh <mbligh@mbligh.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-26 19:37:12 -07:00
Keith Mannthey
b684664fd4 [PATCH] x86_64: Fix overflow in NUMA hash function setup
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-28 21:46:00 -07:00
Ashok Raj
e6982c671c [PATCH] x86_64: Change init sections for CPU hotplug support
This patch adds __cpuinit and __cpuinitdata sections that need to exist past
boot to support cpu hotplug.

Caveat: This is done *only* for EM64T CPU Hotplug support, on request from
Andi Kleen.  Much of the generic hotplug code in kernel, and none of the other
archs that support CPU hotplug today, i386, ia64, ppc64, s390 and parisc dont
mark sections with __cpuinit, but only mark them as __devinit, and
__devinitdata.

If someone is motivated to change generic code, we need to make sure all
existing hotplug code does not break, on other arch's that dont use __cpuinit,
and __cpudevinit.

Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Acked-by: Andi Kleen <ak@muc.de>
Acked-by: Zwane Mwaikambo <zwane@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:30 -07:00
Matt Tolentino
bbfceef47f [PATCH] add x86-64 specific support for sparsemem
This patch adds in the necessary support for sparsemem such that x86-64
kernels may use sparsemem as an alternative to discontigmem for NUMA
kernels.  Note that this does no preclude one from continuing to build NUMA
kernels using discontigmem, but merely allows the option to build NUMA
kernels with sparsemem.

Interestingly, the use of sparsemem in lieu of discontigmem in NUMA kernels
results in reduced text size for otherwise equivalent kernels as shown in
the example builds below:

   text	   data	    bss	    dec	    hex	filename
2371036	 765884	1237108	4374028	 42be0c	vmlinux.discontig
2366549	 776484	1302772	4445805	 43d66d	vmlinux.sparse

Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 09:45:07 -07:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00