322 Commits

Author SHA1 Message Date
S.Caglar Onur
f05111f501 mm/page_alloc.c: fix indentation
zlc_setup(): handle jiffies wraparound
(10ed273f5016c582413dfbc468dd084957d847e1) changes tab with spaces

Signed-off-by: S.Caglar Onur <caglar@pardus.org.tr>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:20 -07:00
Mel Gorman
19770b3260 mm: filter based on a nodemask as well as a gfp_mask
The MPOL_BIND policy creates a zonelist that is used for allocations
controlled by that mempolicy.  As the per-node zonelist is already being
filtered based on a zone id, this patch adds a version of __alloc_pages() that
takes a nodemask for further filtering.  This eliminates the need for
MPOL_BIND to create a custom zonelist.

A positive benefit of this is that allocations using MPOL_BIND now use the
local node's distance-ordered zonelist instead of a custom node-id-ordered
zonelist.  I.e., pages will be allocated from the closest allowed node with
available memory.

[Lee.Schermerhorn@hp.com: Mempolicy: update stale documentation and comments]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask rework]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:19 -07:00
Mel Gorman
dd1a239f6f mm: have zonelist contains structs with both a zone pointer and zone_idx
Filtering zonelists requires very frequent use of zone_idx().  This is costly
as it involves a lookup of another structure and a substraction operation.  As
the zone_idx is often required, it should be quickly accessible.  The node idx
could also be stored here if it was found that accessing zone->node is
significant which may be the case on workloads where nodemasks are heavily
used.

This patch introduces a struct zoneref to store a zone pointer and a zone
index.  The zonelist then consists of an array of these struct zonerefs which
are looked up as necessary.  Helpers are given for accessing the zone index as
well as the node index.

[kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers]
[hugh@veritas.com: mm-have-zonelist: fix memcg ooms]
[hugh@veritas.com: just return do_try_to_free_pages]
[hugh@veritas.com: do_try_to_free_pages gfp_mask redundant]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Mel Gorman
54a6eb5c47 mm: use two zonelist that are filtered by GFP mask
Currently a node has two sets of zonelists, one for each zone type in the
system and a second set for GFP_THISNODE allocations.  Based on the zones
allowed by a gfp mask, one of these zonelists is selected.  All of these
zonelists consume memory and occupy cache lines.

This patch replaces the multiple zonelists per-node with two zonelists.  The
first contains all populated zones in the system, ordered by distance, for
fallback allocations when the target/preferred node has no free pages.  The
second contains all populated zones in the node suitable for GFP_THISNODE
allocations.

An iterator macro is introduced called for_each_zone_zonelist() that interates
through each zone allowed by the GFP flags in the selected zonelist.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Mel Gorman
18ea7e710d mm: remember what the preferred zone is for zone_statistics
On NUMA, zone_statistics() is used to record events like numa hit, miss and
foreign.  It assumes that the first zone in a zonelist is the preferred zone.
When multiple zonelists are replaced by one that is filtered, this is no
longer the case.

This patch records what the preferred zone is rather than assuming the first
zone in the zonelist is it.  This simplifies the reading of later patches in
this set.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Mel Gorman
0e88460da6 mm: introduce node_zonelist() for accessing the zonelist for a GFP mask
Introduce a node_zonelist() helper function.  It is used to lookup the
appropriate zonelist given a node and a GFP mask.  The patch on its own is a
cleanup but it helps clarify parts of the two-zonelist-per-node patchset.  If
necessary, it can be merged with the next patch in this set without problems.

Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Mel Gorman
dac1d27bc8 mm: use zonelists instead of zones when direct reclaiming pages
The following patches replace multiple zonelists per node with two zonelists
that are filtered based on the GFP flags.  The patches as a set fix a bug with
regard to the use of MPOL_BIND and ZONE_MOVABLE.  With this patchset, the
MPOL_BIND will apply to the two highest zones when the highest zone is
ZONE_MOVABLE.  This should be considered as an alternative fix for the
MPOL_BIND+ZONE_MOVABLE in 2.6.23 to the previously discussed hack that filters
only custom zonelists.

The first patch cleans up an inconsistency where direct reclaim uses
zonelist->zones where other places use zonelist.

The second patch introduces a helper function node_zonelist() for looking up
the appropriate zonelist for a GFP mask which simplifies patches later in the
set.

The third patch defines/remembers the "preferred zone" for numa statistics, as
it is no longer always the first zone in a zonelist.

The forth patch replaces multiple zonelists with two zonelists that are
filtered.  The two zonelists are due to the fact that the memoryless patchset
introduces a second set of zonelists for __GFP_THISNODE.

The fifth patch introduces helper macros for retrieving the zone and node
indices of entries in a zonelist.

The final patch introduces filtering of the zonelists based on a nodemask.
Two zonelists exist per node, one for normal allocations and one for
__GFP_THISNODE.

Performance results varied depending on the machine configuration.  In real
workloads the gain/loss will depend on how much the userspace portion of the
benchmark benefits from having more cache available due to reduced referencing
of zonelists.

These are the range of performance losses/gains when running against
2.6.24-rc4-mm1.  The set and these machines are a mix of i386, x86_64 and
ppc64 both NUMA and non-NUMA.
			     loss   to  gain
Total CPU time on Kernbench: -0.86% to  1.13%
Elapsed   time on Kernbench: -0.79% to  0.76%
page_test from aim9:         -4.37% to  0.79%
brk_test  from aim9:         -0.71% to  4.07%
fork_test from aim9:         -1.84% to  4.60%
exec_test from aim9:         -0.71% to  1.08%

This patch:

The allocator deals with zonelists which indicate the order in which zones
should be targeted for an allocation.  Similarly, direct reclaim of pages
iterates over an array of zones.  For consistency, this patch converts direct
reclaim to use a zonelist.  No functionality is changed by this patch.  This
simplifies zonelist iterators in the next patch.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:18 -07:00
Mike Travis
c5f59f0833 nodemask: use new node_to_cpumask_ptr function
* Use new node_to_cpumask_ptr.  This creates a pointer to the
    cpumask for a given node.  This definition is in mm patch:

	asm-generic-add-node_to_cpumask_ptr-macro.patch

  * Use new set_cpus_allowed_ptr function.

Depends on:
	[mm-patch]: asm-generic-add-node_to_cpumask_ptr-macro.patch
	[sched-devel]: sched: add new set_cpus_allowed_ptr function
	[x86/latest]: x86: add cpus_scnprintf function

Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Greg Banks <gnb@melbourne.sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19 19:44:59 +02:00
Hugh Dickins
9442ec9df4 memcg: bad page if page_cgroup when free
Replace free_hot_cold_page's VM_BUG_ON(page_get_page_cgroup(page)) by a "Bad
page state" and clear: most users don't have CONFIG_DEBUG_VM on, and if it
were set here, it'd likely cause corruption when the page is reused.

Don't use page_assign_page_cgroup to clear it: that should be private to
memcontrol.c, and always called with the lock taken; and memmap_init_zone
doesn't need it either - like page->mapping and other pointers throughout the
kernel, Linux assumes pointers in zeroed structures are NULL pointers.

Instead use page_reset_bad_cgroup, added to memcontrol.h for this only.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:15 -08:00
KOSAKI Motohiro
10ed273f50 zlc_setup(): handle jiffies wraparound
jiffies subtraction may cause an overflow problem.  It should be using
time_after().

[akpm@linux-foundation.org: include jiffies.h]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:10 -08:00
Alexander van Heukelum
b5a0e01132 Solve section mismatch for free_area_init_core.
WARNING: vmlinux.o(.meminit.text+0x649):
Section mismatch in reference from the
function free_area_init_core() to the function .init.text:setup_usemap()
The function __meminit free_area_init_core() references
a function __init setup_usemap().
If free_area_init_core is only used by setup_usemap then
annotate free_area_init_core with a matching annotation.

The warning is covers this stack of functions in mm/page_alloc.c:

alloc_bootmem_node must be marked __init.
alloc_bootmem_node is used by setup_usemap, if !SPARSEMEM.
(usemap_size is only used by setup_usemap, if !SPARSEMEM.)
setup_usemap is only used by free_area_init_core.
free_area_init_core is only used by free_area_init_node.

free_area_init_node is used by:
arch/alpha/mm/numa.c: __init paging_init()
arch/arm/mm/init.c: __init bootmem_init_node()
arch/avr32/mm/init.c: __init paging_init()
arch/cris/arch-v10/mm/init.c: __init paging_init()
arch/cris/arch-v32/mm/init.c: __init paging_init()
arch/m32r/mm/discontig.c: __init zone_sizes_init()
arch/m32r/mm/init.c: __init zone_sizes_init()
arch/m68k/mm/motorola.c: __init paging_init()
arch/m68k/mm/sun3mmu.c: __init paging_init()
arch/mips/sgi-ip27/ip27-memory.c: __init paging_init()
arch/parisc/mm/init.c: __init paging_init()
arch/sparc/mm/srmmu.c: __init srmmu_paging_init()
arch/sparc/mm/sun4c.c: __init sun4c_paging_init()
arch/sparc64/mm/init.c: __init paging_init()
mm/page_alloc.c: __init free_area_init_nodes()
mm/page_alloc.c: __init free_area_init()
and
mm/memory_hotplug.c: hotadd_new_pgdat()

hotadd_new_pgdat can not be an __init function, but:

It is compiled for MEMORY_HOTPLUG configurations only
MEMORY_HOTPLUG depends on SPARSEMEM || X86_64_ACPI_NUMA
X86_64_ACPI_NUMA depends on X86_64
ARCH_FLATMEM_ENABLE depends on X86_32
ARCH_DISCONTIGMEM_ENABLE depends on X86_32
So X86_64_ACPI_NUMA implies SPARSEMEM, right?

So we can mark the stack of functions __init for !SPARSEMEM, but we must mark
them __meminit for SPARSEMEM configurations.  This is ok, because then the
calls to alloc_bootmem_node are also avoided.

Compile-tested on:
silly minimal config
defconfig x86_32
defconfig x86_64
defconfig x86_64 -HIBERNATION +MEMORY_HOTPLUG

Signed-off-by: Alexander van Heukelum <heukelum@fastmail.fm>
Reviewed-by: Sam Ravnborg <sam@ravnborg.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-23 17:13:24 -08:00
Harvey Harrison
edde08f2a8 misc: removal of final callers using fastcall
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 09:22:31 -08:00
Balbir Singh
8a9f3ccd24 Memory controller: memory accounting
Add the accounting hooks.  The accounting is carried out for RSS and Page
Cache (unmapped) pages.  There is now a common limit and accounting for both.
The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap()
time.  Page cache is accounted at add_to_page_cache(),
__delete_from_page_cache().  Swap cache is also accounted for.

Each page's page_cgroup is protected with the last bit of the
page_cgroup pointer, this makes handling of race conditions involving
simultaneous mappings of a page easier.  A reference count is kept in the
page_cgroup to deal with cases where a page might be unmapped from the RSS
of all tasks, but still lives in the page cache.

Credits go to Vaidyanathan Srinivasan for helping with reference counting work
of the page cgroup.  Almost all of the page cache accounting code has help
from Vaidyanathan Srinivasan.

[hugh@veritas.com: fix swapoff breakage]
[akpm@linux-foundation.org: fix locking]
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: <Valdis.Kletnieks@vt.edu>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07 08:42:18 -08:00
Larry Woodman
e6f3602d2c Include count of pagecache pages in show_mem() output
The show_mem() output does not include the total number of pagecache
pages.  This would be helpful when analyzing the debug information in
the /var/log/messages file after OOM kills occur.

This patch includes the total pagecache pages in that output.

Signed-off-by: Larry Woodman <lwoodman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:19 -08:00
Harvey Harrison
920c7a5d0c mm: remove fastcall from mm/
fastcall is always defined to be empty, remove it

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:18 -08:00
Andi Kleen
1e548deb5d page allocator: remove unused arguments in zone_init_free_lists()
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:18 -08:00
Christoph Lameter
3dfa5721f1 Page allocator: get rid of the list of cold pages
We have repeatedly discussed if the cold pages still have a point. There is
one way to join the two lists: Use a single list and put the cold pages at the
end and the hot pages at the beginning. That way a single list can serve for
both types of allocations.

The discussion of the RFC for this and Mel's measurements indicate that
there may not be too much of a point left to having separate lists for
hot and cold pages (see http://marc.info/?t=119492914200001&r=1&w=2).

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Martin Bligh <mbligh@mbligh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:18 -08:00
Christoph Lameter
9f8f217253 Page allocator: clean up pcp draining functions
- Add comments explaing how drain_pages() works.

- Eliminate useless functions

- Rename drain_all_local_pages to drain_all_pages(). It does drain
  all pages not only those of the local processor.

- Eliminate useless interrupt off / on sequences. drain_pages()
  disables interrupts on its own. The execution thread is
  pinned to processor by the caller. So there is no need to
  disable interrupts.

- Put drain_all_pages() declaration in gfp.h and remove the
  declarations from suspend.h and from mm/memory_hotplug.c

- Make software suspend call drain_all_pages(). The draining
  of processor local pages is may not the right approach if
  software suspend wants to support SMP. If they call drain_all_pages
  then we can make drain_pages() static.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Daniel Walker <dwalker@mvista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:17 -08:00
Sam Ravnborg
1d6f4e60e7 mm: fix section mismatch warning in page_alloc.c
With CONFIG_HOTPLUG=n and CONFIG_HOTPLUG_CPU=y we saw
following warning:
WARNING: mm/built-in.o(.text+0x6864): Section mismatch: reference to .init.text: (between 'process_zones' and 'pageset_cpuup_callback')

The culprit was zone_batchsize() which were annotated __devinit but used
from process_zones() which is annotated __cpuinit.  zone_batchsize() are
used from another function annotated __meminit so the only valid option is
to drop the annotation of zone_batchsize() so we know it is always valid to
use it.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-01-17 15:38:58 -08:00
Thomas Bogendoerfer
467bc461d2 Fix crash with FLAT_MEMORY and ARCH_PFN_OFFSET != 0
When using FLAT_MEMORY and ARCH_PFN_OFFSET is not 0, the kernel crashes in
memmap_init_zone().  This bug got introduced by commit
c713216deebd95d2b0ab38fef8bb2361c0180c2d

Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Bob Picco <bob.picco@hp.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Andi Kleen <ak@muc.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Keith Mannthey" <kmannth@gmail.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-01-08 16:10:36 -08:00
Mel Gorman
81eabcbe0b mm: fix page allocation for larger I/O segments
In some cases the IO subsystem is able to merge requests if the pages are
adjacent in physical memory.  This was achieved in the allocator by having
expand() return pages in physically contiguous order in situations were a
large buddy was split.  However, list-based anti-fragmentation changed the
order pages were returned in to avoid searching in buffered_rmqueue() for a
page of the appropriate migrate type.

This patch restores behaviour of rmqueue_bulk() preserving the physical
order of pages returned by the allocator without incurring increased search
costs for anti-fragmentation.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Mark Lord <mlord@pobox.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 19:28:16 -08:00
Mel Gorman
ba72cb8cb0 Fix boot problem with iSeries lacking hugepage support
Ordinarily the size of a pageblock is determined at compile-time based on the
hugepage size. On PPC64, the hugepage size is determined at runtime based on
what is supported by the machine. With legacy machines such as iSeries that
do not support hugepages, HPAGE_SHIFT is 0. This results in pageblock_order
being set to -PAGE_SHIFT and a crash results shortly afterwards.

This patch adds a function to select a sensible value for pageblock order by
default when HUGETLB_PAGE_SIZE_VARIABLE is set. It checks that HPAGE_SHIFT
is a sensible value before using the hugepage size; if it is not MAX_ORDER-1
is used.

This is a fix for 2.6.24.

Credit goes to Stephen Rothwell for identifying the bug and testing candidate
patches.  Additional credit goes to Andy Whitcroft for spotting a problem
with respects to IA-64 before releasing. Additional credit to David Gibson
for testing with the libhugetlbfs test suite.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Tested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-29 09:24:51 -08:00
Hugh Dickins
09f345da75 prep_zero_page: remove bogus BUG_ON
2.6.11 gave __GFP_ZERO's prep_zero_page a bogus "highmem may have to wait"
assertion.  Presumably added under the misconception that clear_highpage
uses nonatomic kmap; but then and now it uses kmap_atomic, so no problem.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-28 11:04:28 -08:00
Linus Torvalds
44048d700b Revert "Bias the placement of kernel pages at lower PFNs"
This reverts commit 5adc5be7cd1bcef6bb64f5255d2a33f20a3cf5be.

Alexey Dobriyan reports that it causes huge slowdowns under some loads,
in his case a "mkfs.ext2" on a 30G partition.  With the placement bias,
the mkfs took over four minutes, with it reverted it's back to about ten
seconds for Alexey.

Reported-and-tested-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-12 14:14:44 -08:00
Simon Arlott
183ff22bb6 spelling fixes: mm/
Spelling fixes in mm/.

Signed-off-by: Simon Arlott <simon@fire.lp0.eu>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
2007-10-20 01:27:18 +02:00
David Rientjes
ff0ceb9deb oom: serialize out of memory calls
A final allocation attempt with a very high watermark needs to be attempted
before invoking out_of_memory().  OOM killer serialization needs to occur
before this final attempt, otherwise tasks attempting to OOM-lock all zones in
its zonelist may spin and acquire the lock unnecessarily after the OOM
condition has already been alleviated.

If the final allocation does succeed, the zonelist is simply OOM-unlocked and
__alloc_pages() returns the page.  Otherwise, the OOM killer is invoked.

If the task cannot acquire OOM-locks on all zones in its zonelist, it is put
to sleep and the allocation is retried when it gets rescheduled.  One of its
zones is already marked as being in the OOM killer so it'll hopefully be
getting some free memory soon, at least enough to satisfy a high watermark
allocation attempt.  This prevents needlessly killing a task when the OOM
condition would have already been alleviated if it had simply been given
enough time.

Cc: Andrea Arcangeli <andrea@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:45 -07:00
David Rientjes
e815af95f9 oom: change all_unreclaimable zone member to flags
Convert the int all_unreclaimable member of struct zone to unsigned long
flags.  This can now be used to specify several different zone flags such as
all_unreclaimable and reclaim_in_progress, which can now be removed and
converted to a per-zone flag.

Flags are set and cleared as follows:

	zone_set_flag(struct zone *zone, zone_flags_t flag)
	zone_clear_flag(struct zone *zone, zone_flags_t flag)

Defines the first zone flags, ZONE_ALL_UNRECLAIMABLE and ZONE_RECLAIM_LOCKED,
which have the same semantics as the old zone->all_unreclaimable and
zone->reclaim_in_progress, respectively.  Also converts all current users that
set or clear either flag to use the new interface.

Helper functions are defined to test the flags:

	int zone_is_all_unreclaimable(const struct zone *zone)
	int zone_is_reclaim_locked(const struct zone *zone)

All flag operators are of the atomic variety because there are currently
readers that are implemented that do not take zone->lock.

[akpm@linux-foundation.org: add needed include]
Cc: Andrea Arcangeli <andrea@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:45 -07:00
David Rientjes
5a3135c2e7 oom: move prototypes to appropriate header file
Move the OOM killer's extern function prototypes to include/linux/oom.h and
include it where necessary.

[clg@fr.ibm.com: build fix]
Cc: Andrea Arcangeli <andrea@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:45 -07:00
KAMEZAWA Hiroyuki
0c0e619589 memory unplug: page offline
Logic.
 - set all pages in  [start,end)  as isolated migration-type.
   by this, all free pages in the range will be not-for-use.
 - Migrate all LRU pages in the range.
 - Test all pages in the range's refcnt is zero or not.

Todo:
 - allocate migration destination page from better area.
 - confirm page_count(page)== 0 && PageReserved(page) page is safe to be freed..
 (I don't like this kind of page but..
 - Find out pages which cannot be migrated.
 - more running tests.
 - Use reclaim for unplugging other memory type area.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:02 -07:00
KAMEZAWA Hiroyuki
a5d76b54a3 memory unplug: page isolation
Implement generic chunk-of-pages isolation method by using page grouping ops.

This patch add MIGRATE_ISOLATE to MIGRATE_TYPES. By this
 - MIGRATE_TYPES increases.
 - bitmap for migratetype is enlarged.

pages of MIGRATE_ISOLATE migratetype will not be allocated even if it is free.
By this, you can isolated *freed* pages from users. How-to-free pages is not
a purpose of this patch. You may use reclaim and migrate codes to free pages.

If start_isolate_page_range(start,end) is called,
 - migratetype of the range turns to be MIGRATE_ISOLATE  if
   its type is MIGRATE_MOVABLE. (*) this check can be updated if other
   memory reclaiming works make progress.
 - MIGRATE_ISOLATE is not on migratetype fallback list.
 - All free pages and will-be-freed pages are isolated.
To check all pages in the range are isolated or not,  use test_pages_isolated(),
To cancel isolation, use undo_isolate_page_range().

Changes V6 -> V7
 - removed unnecessary #ifdef

There are HOLES_IN_ZONE handling codes...I'm glad if we can remove them..

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:02 -07:00
Mel Gorman
48f13bf3e7 Breakout page_order() to internal.h to avoid special knowledge of the buddy allocator
The statistics patch later needs to know what order a free page is on the free
lists.  Rather than having special knowledge of page_private() when
PageBuddy() is set, this patch places out page_order() in internal.h and adds
a VM_BUG_ON to catch using it on non-PageBuddy pages.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:01 -07:00
Adrian Bunk
484f51f820 mm/page_alloc.c: make code static
This patch makes needlessly global code static.

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:01 -07:00
Mel Gorman
467c996c1e Print out statistics in relation to fragmentation avoidance to /proc/pagetypeinfo
This patch provides fragmentation avoidance statistics via /proc/pagetypeinfo.
 The information is collected only on request so there is no runtime overhead.
 The statistics are in three parts:

The first part prints information on the size of blocks that pages are
being grouped on and looks like

Page block order: 10
Pages per block:  1024

The second part is a more detailed version of /proc/buddyinfo and looks like

Free pages count per migrate type at order       0      1      2      3      4      5      6      7      8      9     10
Node    0, zone      DMA, type    Unmovable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type  Reclaimable      1      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type      Movable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type      Reserve      0      4      4      0      0      0      0      1      0      1      0
Node    0, zone   Normal, type    Unmovable    111      8      4      4      2      3      1      0      0      0      0
Node    0, zone   Normal, type  Reclaimable    293     89      8      0      0      0      0      0      0      0      0
Node    0, zone   Normal, type      Movable      1      6     13      9      7      6      3      0      0      0      0
Node    0, zone   Normal, type      Reserve      0      0      0      0      0      0      0      0      0      0      4

The third part looks like

Number of blocks type     Unmovable  Reclaimable      Movable      Reserve
Node 0, zone      DMA            0            1            2            1
Node 0, zone   Normal            3           17           94            4

To walk the zones within a node with interrupts disabled, walk_zones_in_node()
is introduced and shared between /proc/buddyinfo, /proc/zoneinfo and
/proc/pagetypeinfo to reduce code duplication.  It seems specific to what
vmstat.c requires but could be broken out as a general utility function in
mmzone.c if there were other other potential users.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
d9c2340052 Do not depend on MAX_ORDER when grouping pages by mobility
Currently mobility grouping works at the MAX_ORDER_NR_PAGES level.  This makes
sense for the majority of users where this is also the huge page size.
However, on platforms like ia64 where the huge page size is runtime
configurable it is desirable to group at a lower order.  On x86_64 and
occasionally on x86, the hugepage size may not always be MAX_ORDER_NR_PAGES.

This patch groups pages together based on the value of HUGETLB_PAGE_ORDER.  It
uses a compile-time constant if possible and a variable where the huge page
size is runtime configurable.

It is assumed that grouping should be done at the lowest sensible order and
that the user would not want to override this.  If this is not true,
page_block order could be forced to a variable initialised via a boot-time
kernel parameter.

One potential issue with this patch is that IA64 now parses hugepagesz with
early_param() instead of __setup().  __setup() is called after the memory
allocator has been initialised and the pageblock bitmaps already setup.  In
tests on one IA64 there did not seem to be any problem with using
early_param() and in fact may be more correct as it guarantees the parameter
is handled before the parsing of hugepages=.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
d100313fd6 Fix calculation in move_freepages_block for counting pages
move_freepages_block() returns the number of blocks moved.  This value is used
to determine if a block of pages should be stolen for the exclusive use of a
migrate type or not.  However, the value returned is being used correctly.
This patch fixes the calculation to return the number of base pages that have
been moved.

This should be considered a fix to the patch
move-free-pages-between-lists-on-steal.patch

Credit to Andy Whitcroft for spotting the problem.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
64c5e135bf don't group high order atomic allocations
Grouping high-order atomic allocations together was intended to allow
bursty users of atomic allocations to work such as e1000 in situations
where their preallocated buffers were depleted.  This did not work in at
least one case with a wireless network adapter needing order-1 allocations
frequently.  To resolve that, the free pages used for min_free_kbytes were
moved to separate contiguous blocks with the patch
bias-the-location-of-pages-freed-for-min_free_kbytes-in-the-same-max_order_nr_pages-blocks.

It is felt that keeping the free pages in the same contiguous blocks should
be sufficient for bursty short-lived high-order atomic allocations to
succeed, maybe even with the e1000.  Even if there is a failure, increasing
the value of min_free_kbytes will free pages as contiguous bloks in
contrast to the standard buddy allocator which makes no attempt to keep the
minimum number of free pages contiguous.

This patch backs out grouping high order atomic allocations together to
determine if it is really needed or not.  If a new report comes in about
high-order atomic allocations failing, the feature can be reintroduced to
determine if it fixes the problem or not.  As a side-effect, this patch
reduces by 1 the number of bits required to track the mobility type of
pages within a MAX_ORDER_NR_PAGES block.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
ac0e5b7a6b remove PAGE_GROUP_BY_MOBILITY
Grouping pages by mobility can be disabled at compile-time. This was
considered undesirable by a number of people. However, in the current stack of
patches, it is not a simple case of just dropping the configurable patch as it
would cause merge conflicts.  This patch backs out the configuration option.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
56fd56b868 Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block.  When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free.  This allows the occasional high atomic allocation to
succeed up until the point the blocks are split.  In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears.  Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.

On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available.  A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator.  This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.

A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.

This patch addresses the problem on the desktop machine booted with
mem=256mb.  It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes.  These
blocks are only fallen back to when there is no other free pages.  Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type.  The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.

This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages.  In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.

This effect has been observed on the test machine.  min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE.  min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.

This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together.  It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not.  If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher.  Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.

Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.

[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
46dafbca2b Be more agressive about stealing when MIGRATE_RECLAIMABLE allocations fallback
MIGRATE_RECLAIMABLE allocations tend to be very bursty in nature like when
updatedb starts.  It is likely this will occur in situations where MAX_ORDER
blocks of pages are not free.  This means that updatedb can scatter
MIGRATE_RECLAIMABLE pages throughout the address space.  This patch is more
agressive about stealing blocks of pages for MIGRATE_RECLAIMABLE.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
5adc5be7cd Bias the placement of kernel pages at lower PFNs
This patch chooses blocks with lower PFNs when placing kernel allocations.
This is particularly important during fallback in low memory situations to
stop unmovable pages being placed throughout the entire address space.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
9ef9acb05a Do not group pages by mobility type on low memory systems
Grouping pages by mobility can only successfully operate when there are more
MAX_ORDER_NR_PAGES areas than mobility types.  When there are insufficient
areas, fallbacks cannot be avoided.  This has noticeable performance impacts
on machines with small amounts of memory in comparison to MAX_ORDER_NR_PAGES.
For example, on IA64 with a configuration including huge pages spans 1GiB with
MAX_ORDER_NR_PAGES so would need at least 4GiB of RAM before grouping pages by
mobility would be useful.  In comparison, an x86 would need 16MB.

This patch checks the size of vm_total_pages in build_all_zonelists(). If
there are not enough areas,  mobility is effectivly disabled by considering
all allocations as the same type (UNMOVABLE).  This is achived via a
__read_mostly flag.

With this patch, performance is comparable to disabling grouping pages
by mobility at compile-time on a test machine with insufficient memory.
With this patch, it is reasonable to get rid of grouping pages by mobility
a compile-time option.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
e010487dbe Group high-order atomic allocations
In rare cases, the kernel needs to allocate a high-order block of pages
without sleeping.  For example, this is the case with e1000 cards configured
to use jumbo frames.  Migrating or reclaiming pages in this situation is not
an option.

This patch groups these allocations together as much as possible by adding a
new MIGRATE_TYPE.  The MIGRATE_HIGHATOMIC type are exactly what they sound
like.  Care is taken that pages of other migrate types do not use the same
blocks as high-order atomic allocations.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
e12ba74d8f Group short-lived and reclaimable kernel allocations
This patch marks a number of allocations that are either short-lived such as
network buffers or are reclaimable such as inode allocations.  When something
like updatedb is called, long-lived and unmovable kernel allocations tend to
be spread throughout the address space which increases fragmentation.

This patch groups these allocations together as much as possible by adding a
new MIGRATE_TYPE.  The MIGRATE_RECLAIMABLE type is for allocations that can be
reclaimed on demand, but not moved.  i.e.  they can be migrated by deleting
them and re-reading the information from elsewhere.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
c361be55b3 Move free pages between lists on steal
When a fallback occurs, there will be free pages for one allocation type
stored on the list for another.  When a large steal occurs, this patch will
move all the free pages within one list to the other.

[y-goto@jp.fujitsu.com: fix BUG_ON check at move_freepages()]
[apw@shadowen.org: Move to using pfn_valid_within()]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andy Whitcroft <andyw@uk.ibm.com>
Cc: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
e2c55dc87f Drain per-cpu lists when high-order allocations fail
Per-cpu pages can accidentally cause fragmentation because they are free, but
pinned pages in an otherwise contiguous block.  When this patch is applied,
the per-cpu caches are drained after the direct-reclaim is entered if the
requested order is greater than 0.  It simply reuses the code used by suspend
and hotplug.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman
b92a6edd4b Add a configure option to group pages by mobility
The grouping mechanism has some memory overhead and a more complex allocation
path.  This patch allows the strategy to be disabled for small memory systems
or if it is known the workload is suffering because of the strategy.  It also
acts to show where the page groupings strategy interacts with the standard
buddy allocator.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Joel Schopp <jschopp@austin.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman
535131e692 Choose pages from the per-cpu list based on migration type
The freelists for each migrate type can slowly become polluted due to the
per-cpu list.  Consider what happens when the following happens

1. A 2^(MAX_ORDER-1) list is reserved for __GFP_MOVABLE pages
2. An order-0 page is allocated from the newly reserved block
3. The page is freed and placed on the per-cpu list
4. alloc_page() is called with GFP_KERNEL as the gfp_mask
5. The per-cpu list is used to satisfy the allocation

This results in a kernel page is in the middle of a migratable region. This
patch prevents this leak occuring by storing the MIGRATE_ type of the page in
page->private. On allocate, a page will only be returned of the desired type,
else more pages will be allocated. This may temporarily allow a per-cpu list
to go over the pcp->high limit but it'll be corrected on the next free. Care
is taken to preserve the hotness of pages recently freed.

The additional code is not measurably slower for the workloads we've tested.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman
b2a0ac8875 Split the free lists for movable and unmovable allocations
This patch adds the core of the fragmentation reduction strategy.  It works by
grouping pages together based on their ability to migrate or be reclaimed.
Basically, it works by breaking the list in zone->free_area list into
MIGRATE_TYPES number of lists.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Mel Gorman
835c134ec4 Add a bitmap that is used to track flags affecting a block of pages
Here is the latest revision of the anti-fragmentation patches.  Of particular
note in this version is special treatment of high-order atomic allocations.
Care is taken to group them together and avoid grouping pages of other types
near them.  Artifical tests imply that it works.  I'm trying to get the
hardware together that would allow setting up of a "real" test.  If anyone
already has a setup and test that can trigger the atomic-allocation problem,
I'd appreciate a test of these patches and a report.  The second major change
is that these patches will apply cleanly with patches that implement
anti-fragmentation through zones.

kernbench shows effectively no performance difference varying between -0.2%
and +2% on a variety of test machines.  Success rates for huge page allocation
are dramatically increased.  For example, on a ppc64 machine, the vanilla
kernel was only able to allocate 1% of memory as a hugepage and this was due
to a single hugepage reserved as min_free_kbytes.  With these patches applied,
17% was allocatable as superpages.  With reclaim-related fixes from Andy
Whitcroft, it was 40% and further reclaim-related improvements should increase
this further.

Changelog Since V28
o Group high-order atomic allocations together
o It is no longer required to set min_free_kbytes to 10% of memory. A value
  of 16384 in most cases will be sufficient
o Now applied with zone-based anti-fragmentation
o Fix incorrect VM_BUG_ON within buffered_rmqueue()
o Reorder the stack so later patches do not back out work from earlier patches
o Fix bug were journal pages were being treated as movable
o Bias placement of non-movable pages to lower PFNs
o More agressive clustering of reclaimable pages in reactions to workloads
  like updatedb that flood the size of inode caches

Changelog Since V27

o Renamed anti-fragmentation to Page Clustering. Anti-fragmentation was giving
  the mistaken impression that it was the 100% solution for high order
  allocations. Instead, it greatly increases the chances high-order
  allocations will succeed and lays the foundation for defragmentation and
  memory hot-remove to work properly
o Redefine page groupings based on ability to migrate or reclaim instead of
  basing on reclaimability alone
o Get rid of spurious inits
o Per-cpu lists are no longer split up per-type. Instead the per-cpu list is
  searched for a page of the appropriate type
o Added more explanation commentary
o Fix up bug in pageblock code where bitmap was used before being initalised

Changelog Since V26
o Fix double init of lists in setup_pageset

Changelog Since V25
o Fix loop order of for_each_rclmtype_order so that order of loop matches args
o gfpflags_to_rclmtype uses gfp_t instead of unsigned long
o Rename get_pageblock_type() to get_page_rclmtype()
o Fix alignment problem in move_freepages()
o Add mechanism for assigning flags to blocks of pages instead of page->flags
o On fallback, do not examine the preferred list of free pages a second time

The purpose of these patches is to reduce external fragmentation by grouping
pages of related types together.  When pages are migrated (or reclaimed under
memory pressure), large contiguous pages will be freed.

This patch works by categorising allocations by their ability to migrate;

Movable - The pages may be moved with the page migration mechanism. These are
	generally userspace pages.

Reclaimable - These are allocations for some kernel caches that are
	reclaimable or allocations that are known to be very short-lived.

Unmovable - These are pages that are allocated by the kernel that
	are not trivially reclaimed. For example, the memory allocated for a
	loaded module would be in this category. By default, allocations are
	considered to be of this type

HighAtomic - These are high-order allocations belonging to callers that
	cannot sleep or perform any IO. In practice, this is restricted to
	jumbo frame allocation for network receive. It is assumed that the
	allocations are short-lived

Instead of having one MAX_ORDER-sized array of free lists in struct free_area,
there is one for each type of reclaimability.  Once a 2^MAX_ORDER block of
pages is split for a type of allocation, it is added to the free-lists for
that type, in effect reserving it.  Hence, over time, pages of the different
types can be clustered together.

When the preferred freelists are expired, the largest possible block is taken
from an alternative list.  Buddies that are split from that large block are
placed on the preferred allocation-type freelists to mitigate fragmentation.

This implementation gives best-effort for low fragmentation in all zones.
Ideally, min_free_kbytes needs to be set to a value equal to 4 * (1 <<
(MAX_ORDER-1)) pages in most cases.  This would be 16384 on x86 and x86_64 for
example.

Our tests show that about 60-70% of physical memory can be allocated on a
desktop after a few days uptime.  In benchmarks and stress tests, we are
finding that 80% of memory is available as contiguous blocks at the end of the
test.  To compare, a standard kernel was getting < 1% of memory as large pages
on a desktop and about 8-12% of memory as large pages at the end of stress
tests.

Following this email are 12 patches that implement thie page grouping feature.
 The first patch introduces a mechanism for storing flags related to a whole
block of pages.  Then allocations are split between movable and all other
allocations.  Following that are patches to deal with per-cpu pages and make
the mechanism configurable.  The next patch moves free pages between lists
when partially allocated blocks are used for pages of another migrate type.
The second last patch groups reclaimable kernel allocations such as inode
caches together.  The final patch related to groupings keeps high-order atomic
allocations.

The last two patches are more concerned with control of fragmentation.  The
second last patch biases placement of non-movable allocations towards the
start of memory.  This is with a view of supporting memory hot-remove of DIMMs
with higher PFNs in the future.  The biasing could be enforced a lot heavier
but it would cost.  The last patch agressively clusters reclaimable pages like
inode caches together.

The fragmentation reduction strategy needs to track if pages within a block
can be moved or reclaimed so that pages are freed to the appropriate list.
This patch adds a bitmap for flags affecting a whole a MAX_ORDER block of
pages.

In non-SPARSEMEM configurations, the bitmap is stored in the struct zone and
allocated during initialisation.  SPARSEMEM statically allocates the bitmap in
a struct mem_section so that bitmaps do not have to be resized during memory
hotadd.  This wastes a small amount of memory per unused section (usually
sizeof(unsigned long)) but the complexity of dynamically allocating the memory
is quite high.

Additional credit to Andy Whitcroft who reviewed up an earlier implementation
of the mechanism an suggested how to make it a *lot* cleaner.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00
Lee Schermerhorn
37b07e4163 memoryless nodes: fixup uses of node_online_map in generic code
Here's a cut at fixing up uses of the online node map in generic code.

mm/shmem.c:shmem_parse_mpol()

	Ensure nodelist is subset of nodes with memory.
	Use node_states[N_HIGH_MEMORY] as default for missing
	nodelist for interleave policy.

mm/shmem.c:shmem_fill_super()

	initialize policy_nodes to node_states[N_HIGH_MEMORY]

mm/page-writeback.c:highmem_dirtyable_memory()

	sum over nodes with memory

mm/page_alloc.c:zlc_setup()

	allowednodes - use nodes with memory.

mm/page_alloc.c:default_zonelist_order()

	average over nodes with memory.

mm/page_alloc.c:find_next_best_node()

	skip nodes w/o memory.
	N_HIGH_MEMORY state mask may not be initialized at this time,
	unless we want to depend on early_calculate_totalpages() [see
	below].  Will ZONE_MOVABLE ever be configurable?

mm/page_alloc.c:find_zone_movable_pfns_for_nodes()

	spread kernelcore over nodes with memory.

	This required calling early_calculate_totalpages()
	unconditionally, and populating N_HIGH_MEMORY node
	state therein from nodes in the early_node_map[].
	If we can depend on this, we can eliminate the
	population of N_HIGH_MEMORY mask from __build_all_zonelists()
	and use the N_HIGH_MEMORY mask in find_next_best_node().

mm/mempolicy.c:mpol_check_policy()

	Ensure nodes specified for policy are subset of
	nodes with memory.

[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00