On some devices there are HW dependencies for shared frequency and voltage
between devices. It will impact Energy Aware Scheduler (EAS) decision,
where CPUs share the voltage & frequency domain with other CPUs or devices
e.g.
- Mid CPUs + Big CPU
- Little CPU + L3 cache in DSU
- some other device + Little CPUs
Detailed explanation of one example:
When the L3 cache frequency is increased, the affected Little CPUs might
run at higher voltage and frequency. That higher voltage causes higher CPU
power and thus more energy is used for running the tasks. This is
important for background running tasks, which try to run on energy
efficient CPUs.
Therefore, add performance state limits which are applied for the device
(in this case CPU). This is important on SoCs with HW dependencies
mentioned above so that the Energy Aware Scheduler (EAS) does not use
performance states outside the valid min-max range for energy calculation.
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://patch.msgid.link/20241030164126.1263793-2-lukasz.luba@arm.com
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add a function which allows to modify easily the EM after the new voltage
information is available. The device drivers for the chip can adjust
the voltage values after setup. The voltage for the same frequency in OPP
can be different due to chip binning. The voltage impacts the power usage
and the EM power values can be updated to reflect that.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Extract em_table_dup() and em_recalc_and_update() from
em_adjust_new_capacity(). Both functions will be later reused by the
'update EM due to chip binning' functionality.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The EM only supports power in uW. Make sure that it is not possible to
register some downstream driver which doesn't provide power in uW.
The only exception is artificial EM, but that EM is ignored by the rest of
kernel frameworks (thermal, powercap, etc).
Reported-by: PoShao Chen <poshao.chen@mediatek.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During the static checks nr_states has been mentioned by the kernel test
robot. Fix the warning in those 2 places.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The device drivers can modify EM at runtime by providing a new EM table.
The EM is used by the EAS and the em_perf_state::cost stores
pre-calculated value to avoid overhead. This patch provides the API for
device drivers to calculate the cost values properly (and not duplicate
the same code).
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove the old EM table which wasn't able to modify the data. Clean the
unneeded function and refactor the code a bit.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Dump the runtime EM table values which can be modified in time. In order
to do that allocate chunk of debug memory which can be later freed
automatically thanks to devm_kcalloc().
This design can handle the fact that the EM table memory can change
after EM update, so debug code cannot use the pointer from initialization
phase.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model (EM) can be modified at runtime which brings new
possibilities. The em_cpu_energy() is called by the Energy Aware Scheduler
(EAS) in its hot path. The energy calculation uses power value for
a given performance state (ps) and the CPU busy time as percentage for that
given frequency.
It is possible to avoid the division by 'scale_cpu' at runtime, because
EM is updated whenever new max capacity CPU is set in the system.
Use that feature and do the needed division during the calculation of the
coefficient 'ps->cost'. That enhanced 'ps->cost' value can be then just
multiplied simply by utilization:
pd_nrg = ps->cost * \Sum cpu_util
to get the needed energy for whole Performance Domain (PD).
With this optimization and earlier removal of map_util_freq(), the
em_cpu_energy() should run faster on the Big CPU by 1.43x and on the Little
CPU by 1.69x (RockPi 4B board).
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The patch adds needed infrastructure to handle the late CPUs boot, which
might change the previous CPUs capacity values. With this changes the new
CPUs which try to register EM will trigger the needed re-calculations for
other CPUs EMs. Thanks to that the em_per_state::performance values will
be aligned with the CPU capacity information after all CPUs finish the
boot and EM registrations.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The performance doesn't scale linearly with the frequency. Also, it may
be different in different workloads. Some CPUs are designed to be
particularly good at some applications e.g. images or video processing
and other CPUs in different. When those different types of CPUs are
combined in one SoC they should be properly modeled to get max of the HW
in Energy Aware Scheduler (EAS). The Energy Model (EM) provides the
power vs. performance curves to the EAS, but assumes the CPUs capacity
is fixed and scales linearly with the frequency. This patch allows to
adjust the curve on the 'performance' axis as well.
Code speed optimization:
Removing map_util_freq() allows to avoid one division and one
multiplication operations from the EAS hot code path.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add API function em_dev_update_perf_domain() which allows the EM to be
changed safely.
Concurrent updaters are serialized with a mutex and the removal of memory
that will not be used any more is carried out with the help of RCU.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The runtime modified EM table can be provided from drivers. Create
mechanism which allows safely allocate and free the table for device
drivers. The same table can be used by the EAS in task scheduler code
paths, so make sure the memory is not freed when the device driver module
is unloaded.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The new runtime table can be populated with a new power data to better
reflect the actual efficiency of the device e.g. CPU. The power can vary
over time e.g. due to the SoC temperature change. Higher temperature can
increase power values. For longer running scenarios, such as game or
camera, when also other devices are used (e.g. GPU, ISP) the CPU power can
change. The new EM framework is able to addresses this issue and change
the EM data at runtime safely.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Split the process of allocation and data initialization for the EM table.
The upcoming changes for modifiable EM will use it.
This change is not expected to alter the general functionality.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Subsequent changes will introduce a case in which 'cb->get_cost' may
not be set in em_compute_costs(), so add a check to ensure that it is
not NULL before attempting to dereference it.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Move the EM costs computation code into a new dedicated function,
em_compute_costs(), that can be reused in other places in the future.
This change is not expected to alter the general functionality.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model might be updated at runtime and the energy efficiency
for each OPP may change. Thus, there is a need to update also the
cpufreq framework and make it aligned to the new values. In order to
do that, use a first active CPU from the Performance Domain. This is
needed since the first CPU in the cpumask might be offline when we
run this code path.
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In order to prepare the code for the modifiable EM perf_state table,
make em_cpufreq_update_efficiencies() take a pointer to the EM table
as its second argument and modify it to use that new argument instead
of the 'table' member of dev->em_pd.
No functional impact.
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Fix missing newline for the string long in the error code path.
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The milli-Watts precision causes rounding errors while calculating
efficiency cost for each OPP. This is especially visible in the 'simple'
Energy Model (EM), where the power for each OPP is provided from OPP
framework. This can cause some OPPs to be marked inefficient, while
using micro-Watts precision that might not happen.
Update all EM users which access 'power' field and assume the value is
in milli-Watts.
Solve also an issue with potential overflow in calculation of energy
estimation on 32bit machine. It's needed now since the power value
(thus the 'cost' as well) are higher.
Example calculation which shows the rounding error and impact:
power = 'dyn-power-coeff' * volt_mV * volt_mV * freq_MHz
power_a_uW = (100 * 600mW * 600mW * 500MHz) / 10^6 = 18000
power_a_mW = (100 * 600mW * 600mW * 500MHz) / 10^9 = 18
power_b_uW = (100 * 605mW * 605mW * 600MHz) / 10^6 = 21961
power_b_mW = (100 * 605mW * 605mW * 600MHz) / 10^9 = 21
max_freq = 2000MHz
cost_a_mW = 18 * 2000MHz/500MHz = 72
cost_a_uW = 18000 * 2000MHz/500MHz = 72000
cost_b_mW = 21 * 2000MHz/600MHz = 70 // <- artificially better
cost_b_uW = 21961 * 2000MHz/600MHz = 73203
The 'cost_b_mW' (which is based on old milli-Watts) is misleadingly
better that the 'cost_b_uW' (this patch uses micro-Watts) and such
would have impact on the 'inefficient OPPs' information in the Cpufreq
framework. This patch set removes the rounding issue.
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In commit e458716a92 ("PM: EM: Mark inefficiencies in CPUFreq"),
cpufreq_cpu_get() is called without a cpufreq_cpu_put(), permanently
increasing the reference counts of the policy struct.
Decrement the reference count once the policy struct is not used
anymore.
Fixes: e458716a92 ("PM: EM: Mark inefficiencies in CPUFreq")
Tested-by: Cristian Marussi <cristian.marussi@arm.com>
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Reviewed-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model gets more bits used in 'flags'. Avoid adding another
debugfs file just to print what is the status of a new flag. Simply
remove old debugfs files and add one generic which prints all flags
as a hex value.
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The .active_power() callback passes the device pointer when it's called.
Aligned with a convetion present in other subsystems and pass the 'dev'
as a first argument. It looks more cleaner.
Adjust all affected drivers which implement that API callback.
Suggested-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model (EM) allows to provide the 'cost' values when the device
driver provides the .get_cost() optional callback. This removes
restriction which is in the EM calculation function of the 'cost'
for each performance state. Now, the driver is in charge of providing
the right values which are then used by Energy Aware Scheduler.
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model (EM) can be used on platforms which are missing real
power information. Those platforms would implement .get_cost() which
populates needed values for the Energy Aware Scheduler (EAS). The EAS
doesn't use 'power' fields from EM, but other frameworks might use them.
Thus, to avoid miss-usage of this specific type of EM, introduce a new
flags which can be checked by other frameworks.
Signed-off-by: Pierre Gondois <Pierre.Gondois@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model has a 1:1 mapping between OPPs and performance states
(em_perf_state). If a CPUFreq driver registers an Energy Model,
inefficiencies found by the latter can be applied to CPUFreq.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The new performance domain flag EM_PERF_DOMAIN_SKIP_INEFFICIENCIES allows
to not take into account inefficient states when estimating energy
consumption. This intends to let the Energy Model know that CPUFreq itself
will skip inefficiencies and such states don't need to be part of the
estimation anymore.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Merge the current "milliwatts" option into a "flag" field. This intends to
prepare the extension of this structure for inefficient states support in
the Energy Model.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some SoCs, such as the sd855 have OPPs within the same performance domain,
whose cost is higher than others with a higher frequency. Even though
those OPPs are interesting from a cooling perspective, it makes no sense
to use them when the device can run at full capacity. Those OPPs handicap
the performance domain, when choosing the most energy-efficient CPU and
are wasting energy. They are inefficient.
Hence, add support for such OPPs to the Energy Model. The table can now
be read skipping inefficient performance states (and by extension,
inefficient OPPs).
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Reviewed-by: Matthias Kaehlcke <mka@chromium.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently, a debug message is printed if an inefficient state is detected
in the Energy Model. Unfortunately, it won't detect if the first state is
inefficient or if two successive states are. Fix this behavior.
Fixes: 27871f7a8a (PM: Introduce an Energy Model management framework)
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Matthias Kaehlcke <mka@chromium.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model (EM) provides useful information about device power in
each performance state to other subsystems like: Energy Aware Scheduler
(EAS). The energy calculation in EAS does arithmetic operation based on
the EM em_cpu_energy(). Current implementation of that function uses
em_perf_state::cost as a pre-computed cost coefficient equal to:
cost = power * max_frequency / frequency.
The 'power' is expressed in milli-Watts (or in abstract scale).
There are corner cases when the EAS energy calculation for two Performance
Domains (PDs) return the same value. The EAS compares these values to
choose smaller one. It might happen that this values are equal due to
rounding error. In such scenario, we need better resolution, e.g. 1000
times better. To provide this possibility increase the resolution in the
em_perf_state::cost for 64-bit architectures. The cost of increasing
resolution on 32-bit is pretty high (64-bit division) and is not justified
since there are no new 32bit big.LITTLE EAS systems expected which would
benefit from this higher resolution.
This patch allows to avoid the rounding to milli-Watt errors, which might
occur in EAS energy estimation for each PD. The rounding error is common
for small tasks which have small utilization value.
There are two places in the code where it makes a difference:
1. In the find_energy_efficient_cpu() where we are searching for
best_delta. We might suffer there when two PDs return the same result,
like in the example below.
Scenario:
Low utilized system e.g. ~200 sum_util for PD0 and ~220 for PD1. There
are quite a few small tasks ~10-15 util. These tasks would suffer for
the rounding error. These utilization values are typical when running games
on Android. One of our partners has reported 5..10mA less battery drain
when running with increased resolution.
Some details:
We have two PDs: PD0 (big) and PD1 (little)
Let's compare w/o patch set ('old') and w/ patch set ('new')
We are comparing energy w/ task and w/o task placed in the PDs
a) 'old' w/o patch set, PD0
task_util = 13
cost = 480
sum_util_w/o_task = 215
sum_util_w_task = 228
scale_cpu = 1024
energy_w/o_task = 480 * 215 / 1024 = 100.78 => 100
energy_w_task = 480 * 228 / 1024 = 106.87 => 106
energy_diff = 106 - 100 = 6
(this is equal to 'old' PD1's energy_diff in 'c)')
b) 'new' w/ patch set, PD0
task_util = 13
cost = 480 * 1000 = 480000
sum_util_w/o_task = 215
sum_util_w_task = 228
energy_w/o_task = 480000 * 215 / 1024 = 100781
energy_w_task = 480000 * 228 / 1024 = 106875
energy_diff = 106875 - 100781 = 6094
(this is not equal to 'new' PD1's energy_diff in 'd)')
c) 'old' w/o patch set, PD1
task_util = 13
cost = 160
sum_util_w/o_task = 283
sum_util_w_task = 293
scale_cpu = 355
energy_w/o_task = 160 * 283 / 355 = 127.55 => 127
energy_w_task = 160 * 296 / 355 = 133.41 => 133
energy_diff = 133 - 127 = 6
(this is equal to 'old' PD0's energy_diff in 'a)')
d) 'new' w/ patch set, PD1
task_util = 13
cost = 160 * 1000 = 160000
sum_util_w/o_task = 283
sum_util_w_task = 293
scale_cpu = 355
energy_w/o_task = 160000 * 283 / 355 = 127549
energy_w_task = 160000 * 296 / 355 = 133408
energy_diff = 133408 - 127549 = 5859
(this is not equal to 'new' PD0's energy_diff in 'b)')
2. Difference in the 6% energy margin filter at the end of
find_energy_efficient_cpu(). With this patch the margin comparison also
has better resolution, so it's possible to have better task placement
thanks to that.
Fixes: 27871f7a8a ("PM: Introduce an Energy Model management framework")
Reported-by: CCJ Yeh <CCj.Yeh@mediatek.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The debugfs directory '/sys/kernel/debug/energy_model' is needed before
the Energy Model registration can happen. With the recent change in
debugfs subsystem it's not allowed to create this directory at early
stage (core_initcall). Thus creating this directory would fail.
Postpone the creation of the EM debug dir to later stage: fs_initcall.
It should be safe since all clients: CPUFreq drivers, Devfreq drivers
will be initialized in later stages.
The custom debug log below prints the time of creation the EM debug dir
at fs_initcall and successful registration of EMs at later stages.
[ 1.505717] energy_model: creating rootdir
[ 3.698307] cpu cpu0: EM: created perf domain
[ 3.709022] cpu cpu1: EM: created perf domain
Fixes: 56348560d4 ("debugfs: do not attempt to create a new file before the filesystem is initalized")
Reported-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model supports power values expressed in milli-Watts or in an
'abstract scale'. Update the related comments is the code to reflect that
state.
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There are different platforms and devices which might use different scale
for the power values. Kernel sub-systems might need to check if all
Energy Model (EM) devices are using the same scale. Address that issue and
store the information inside EM for each device. Thanks to that they can
be easily compared and proper action triggered.
Suggested-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove old function em_register_perf_domain which is no longer needed.
There is em_dev_register_perf_domain that covers old use cases and new as
well.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Quentin Perret <qperret@google.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add support for other devices than CPUs. The registration function
does not require a valid cpumask pointer and is ready to handle new
devices. Some of the internal structures has been reorganized in order to
keep consistent view (like removing per_cpu pd pointers).
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model framework is going to support devices other that CPUs. In
order to make this happen change the callback function and add pointer to
a device as an argument.
Update the related users to use new function and new callback from the
Energy Model.
Acked-by: Quentin Perret <qperret@google.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add now function in the Energy Model framework which is going to support
new devices. This function will help in transition and make it smoother.
For now it still checks if the cpumask is a valid pointer, which will be
removed later when the new structures and infrastructure will be ready.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Quentin Perret <qperret@google.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Energy Model uses concept of performance domain and capacity states in
order to calculate power used by CPUs. Change naming convention from
capacity to performance state would enable wider usage in future, e.g.
upcoming support for other devices other than CPUs.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Quentin Perret <qperret@google.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The recently introduced Energy Model (EM) framework manages power cost
tables of CPUs. These tables are currently only visible from kernel
space. However, in order to debug the behaviour of subsystems that use
the EM (EAS for example), it is often required to know what the power
costs are from userspace.
For this reason, introduce under /sys/kernel/debug/energy_model a set of
directories representing the performance domains of the system. Each
performance domain contains a set of sub-directories representing the
different capacity states (cs) and their attributes, as well as a file
exposing the related CPUs.
The resulting hierarchy is as follows on Arm juno r0 for example:
/sys/kernel/debug/energy_model
├── pd0
│ ├── cpus
│ ├── cs:450000
│ │ ├── cost
│ │ ├── frequency
│ │ └── power
│ ├── cs:575000
│ │ ├── cost
│ │ ├── frequency
│ │ └── power
│ ├── cs:700000
│ │ ├── cost
│ │ ├── frequency
│ │ └── power
│ ├── cs:775000
│ │ ├── cost
│ │ ├── frequency
│ │ └── power
│ └── cs:850000
│ ├── cost
│ ├── frequency
│ └── power
└── pd1
├── cpus
├── cs:1100000
│ ├── cost
│ ├── frequency
│ └── power
├── cs:450000
│ ├── cost
│ ├── frequency
│ └── power
├── cs:625000
│ ├── cost
│ ├── frequency
│ └── power
├── cs:800000
│ ├── cost
│ ├── frequency
│ └── power
└── cs:950000
├── cost
├── frequency
└── power
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Several subsystems in the kernel (task scheduler and/or thermal at the
time of writing) can benefit from knowing about the energy consumed by
CPUs. Yet, this information can come from different sources (DT or
firmware for example), in different formats, hence making it hard to
exploit without a standard API.
As an attempt to address this, introduce a centralized Energy Model
(EM) management framework which aggregates the power values provided
by drivers into a table for each performance domain in the system. The
power cost tables are made available to interested clients (e.g. task
scheduler or thermal) via platform-agnostic APIs. The overall design
is represented by the diagram below (focused on Arm-related drivers as
an example, but applicable to any architecture):
+---------------+ +-----------------+ +-------------+
| Thermal (IPA) | | Scheduler (EAS) | | Other |
+---------------+ +-----------------+ +-------------+
| | em_pd_energy() |
| | em_cpu_get() |
+-----------+ | +--------+
| | |
v v v
+---------------------+
| |
| Energy Model |
| |
| Framework |
| |
+---------------------+
^ ^ ^
| | | em_register_perf_domain()
+----------+ | +---------+
| | |
+---------------+ +---------------+ +--------------+
| cpufreq-dt | | arm_scmi | | Other |
+---------------+ +---------------+ +--------------+
^ ^ ^
| | |
+--------------+ +---------------+ +--------------+
| Device Tree | | Firmware | | ? |
+--------------+ +---------------+ +--------------+
Drivers (typically, but not limited to, CPUFreq drivers) can register
data in the EM framework using the em_register_perf_domain() API. The
calling driver must provide a callback function with a standardized
signature that will be used by the EM framework to build the power
cost tables of the performance domain. This design should offer a lot of
flexibility to calling drivers which are free of reading information
from any location and to use any technique to compute power costs.
Moreover, the capacity states registered by drivers in the EM framework
are not required to match real performance states of the target. This
is particularly important on targets where the performance states are
not known by the OS.
The power cost coefficients managed by the EM framework are specified in
milli-watts. Although the two potential users of those coefficients (IPA
and EAS) only need relative correctness, IPA specifically needs to
compare the power of CPUs with the power of other components (GPUs, for
example), which are still expressed in absolute terms in their
respective subsystems. Hence, specifying the power of CPUs in
milli-watts should help transitioning IPA to using the EM framework
without introducing new problems by keeping units comparable across
sub-systems.
On the longer term, the EM of other devices than CPUs could also be
managed by the EM framework, which would enable to remove the absolute
unit. However, this is not absolutely required as a first step, so this
extension of the EM framework is left for later.
On the client side, the EM framework offers APIs to access the power
cost tables of a CPU (em_cpu_get()), and to estimate the energy
consumed by the CPUs of a performance domain (em_pd_energy()). Clients
such as the task scheduler can then use these APIs to access the shared
data structures holding the Energy Model of CPUs.
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-4-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>