Remove gfn_to_pfn_cache_invalidate_start()'s unused @may_block parameter,
which was leftover from KVM's abandoned (for now) attempt to support guest
usage of gfn_to_pfn caches.
Fixes: a4bff3df51 ("KVM: pfncache: remove KVM_GUEST_USES_PFN usage")
Reported-by: Like Xu <like.xu.linux@gmail.com>
Cc: Paul Durrant <paul@xen.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240305003742.245767-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Introduce an ioctl(), KVM_CREATE_GUEST_MEMFD, to allow creating file-based
memory that is tied to a specific KVM virtual machine and whose primary
purpose is to serve guest memory.
A guest-first memory subsystem allows for optimizations and enhancements
that are kludgy or outright infeasible to implement/support in a generic
memory subsystem. With guest_memfd, guest protections and mapping sizes
are fully decoupled from host userspace mappings. E.g. KVM currently
doesn't support mapping memory as writable in the guest without it also
being writable in host userspace, as KVM's ABI uses VMA protections to
define the allow guest protection. Userspace can fudge this by
establishing two mappings, a writable mapping for the guest and readable
one for itself, but that’s suboptimal on multiple fronts.
Similarly, KVM currently requires the guest mapping size to be a strict
subset of the host userspace mapping size, e.g. KVM doesn’t support
creating a 1GiB guest mapping unless userspace also has a 1GiB guest
mapping. Decoupling the mappings sizes would allow userspace to precisely
map only what is needed without impacting guest performance, e.g. to
harden against unintentional accesses to guest memory.
Decoupling guest and userspace mappings may also allow for a cleaner
alternative to high-granularity mappings for HugeTLB, which has reached a
bit of an impasse and is unlikely to ever be merged.
A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to mmap() guest memory).
More immediately, being able to map memory into KVM guests without mapping
said memory into the host is critical for Confidential VMs (CoCo VMs), the
initial use case for guest_memfd. While AMD's SEV and Intel's TDX prevent
untrusted software from reading guest private data by encrypting guest
memory with a key that isn't usable by the untrusted host, projects such
as Protected KVM (pKVM) provide confidentiality and integrity *without*
relying on memory encryption. And with SEV-SNP and TDX, accessing guest
private memory can be fatal to the host, i.e. KVM must be prevent host
userspace from accessing guest memory irrespective of hardware behavior.
Attempt #1 to support CoCo VMs was to add a VMA flag to mark memory as
being mappable only by KVM (or a similarly enlightened kernel subsystem).
That approach was abandoned largely due to it needing to play games with
PROT_NONE to prevent userspace from accessing guest memory.
Attempt #2 to was to usurp PG_hwpoison to prevent the host from mapping
guest private memory into userspace, but that approach failed to meet
several requirements for software-based CoCo VMs, e.g. pKVM, as the kernel
wouldn't easily be able to enforce a 1:1 page:guest association, let alone
a 1:1 pfn:gfn mapping. And using PG_hwpoison does not work for memory
that isn't backed by 'struct page', e.g. if devices gain support for
exposing encrypted memory regions to guests.
Attempt #3 was to extend the memfd() syscall and wrap shmem to provide
dedicated file-based guest memory. That approach made it as far as v10
before feedback from Hugh Dickins and Christian Brauner (and others) led
to it demise.
Hugh's objection was that piggybacking shmem made no sense for KVM's use
case as KVM didn't actually *want* the features provided by shmem. I.e.
KVM was using memfd() and shmem to avoid having to manage memory directly,
not because memfd() and shmem were the optimal solution, e.g. things like
read/write/mmap in shmem were dead weight.
Christian pointed out flaws with implementing a partial overlay (wrapping
only _some_ of shmem), e.g. poking at inode_operations or super_operations
would show shmem stuff, but address_space_operations and file_operations
would show KVM's overlay. Paraphrashing heavily, Christian suggested KVM
stop being lazy and create a proper API.
Link: https://lore.kernel.org/all/20201020061859.18385-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210416154106.23721-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210824005248.200037-1-seanjc@google.com
Link: https://lore.kernel.org/all/20211111141352.26311-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/20221202061347.1070246-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/ff5c5b97-acdf-9745-ebe5-c6609dd6322e@google.com
Link: https://lore.kernel.org/all/20230418-anfallen-irdisch-6993a61be10b@brauner
Link: https://lore.kernel.org/all/ZEM5Zq8oo+xnApW9@google.com
Link: https://lore.kernel.org/linux-mm/20230306191944.GA15773@monkey
Link: https://lore.kernel.org/linux-mm/ZII1p8ZHlHaQ3dDl@casper.infradead.org
Cc: Fuad Tabba <tabba@google.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Cc: Ackerley Tng <ackerleytng@google.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Maciej Szmigiero <mail@maciej.szmigiero.name>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Quentin Perret <qperret@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Wang <wei.w.wang@intel.com>
Cc: Liam Merwick <liam.merwick@oracle.com>
Cc: Isaku Yamahata <isaku.yamahata@gmail.com>
Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Co-developed-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Ackerley Tng <ackerleytng@google.com>
Signed-off-by: Ackerley Tng <ackerleytng@google.com>
Co-developed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-17-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No code is using KVM_MMU_READ_LOCK() or KVM_MMU_READ_UNLOCK(). They
used to be in virt/kvm/pfncache.c:
KVM_MMU_READ_LOCK(kvm);
retry = mmu_notifier_retry_hva(kvm, mmu_seq, uhva);
KVM_MMU_READ_UNLOCK(kvm);
However, since 58cd407ca4 ("KVM: Fix multiple races in gfn=>pfn cache
refresh", 2022-05-25) the code is only relying on the MMU notifier's
invalidation count and sequence number.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20221207120617.9409-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new "interruptible" flag showing that the caller is willing to be
interrupted by signals during the __gfn_to_pfn_memslot() request. Wire it
up with a FOLL_INTERRUPTIBLE flag that we've just introduced.
This prepares KVM to be able to respond to SIGUSR1 (for QEMU that's the
SIGIPI) even during e.g. handling an userfaultfd page fault.
No functional change intended.
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221011195809.557016-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SPDX comments use use /* */ style comments in headers anad
// style comments in .c files. Also fix two spelling mistakes.
Signed-off-by: Tom Rix <trix@redhat.com>
Message-Id: <20220410153840.55506-1-trix@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can be used in two modes. There is an atomic mode where the cached
mapping is accessed while holding the rwlock, and a mode where the
physical address is used by a vCPU in guest mode.
For the latter case, an invalidation will wake the vCPU with the new
KVM_REQ_GPC_INVALIDATE, and the architecture will need to refresh any
caches it still needs to access before entering guest mode again.
Only one vCPU can be targeted by the wake requests; it's simple enough
to make it wake all vCPUs or even a mask but I don't see a use case for
that additional complexity right now.
Invalidation happens from the invalidate_range_start MMU notifier, which
needs to be able to sleep in order to wake the vCPU and wait for it.
This means that revalidation potentially needs to "wait" for the MMU
operation to complete and the invalidate_range_end notifier to be
invoked. Like the vCPU when it takes a page fault in that period, we
just spin — fixing that in a future patch by implementing an actual
*wait* may be another part of shaving this particularly hirsute yak.
As noted in the comments in the function itself, the only case where
the invalidate_range_start notifier is expected to be called *without*
being able to sleep is when the OOM reaper is killing the process. In
that case, we expect the vCPU threads already to have exited, and thus
there will be nothing to wake, and no reason to wait. So we clear the
KVM_REQUEST_WAIT bit and send the request anyway, then complain loudly
if there actually *was* anything to wake up.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>