Commit Graph

324 Commits

Author SHA1 Message Date
Huang Ying
e39bb6be9f NUMA Balancing: add page promotion counter
Patch series "NUMA balancing: optimize memory placement for memory tiering system", v13

With the advent of various new memory types, some machines will have
multiple types of memory, e.g.  DRAM and PMEM (persistent memory).  The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are different.

After commit c221c0b030 ("device-dax: "Hotplug" persistent memory for
use like normal RAM"), the PMEM could be used as the cost-effective
volatile memory in separate NUMA nodes.  In a typical memory tiering
system, there are CPUs, DRAM and PMEM in each physical NUMA node.  The
CPUs and the DRAM will be put in one logical node, while the PMEM will
be put in another (faked) logical node.

To optimize the system overall performance, the hot pages should be
placed in DRAM node.  To do that, we need to identify the hot pages in
the PMEM node and migrate them to DRAM node via NUMA migration.

In the original NUMA balancing, there are already a set of existing
mechanisms to identify the pages recently accessed by the CPUs in a node
and migrate the pages to the node.  So we can reuse these mechanisms to
build the mechanisms to optimize the page placement in the memory
tiering system.  This is implemented in this patchset.

At the other hand, the cold pages should be placed in PMEM node.  So, we
also need to identify the cold pages in the DRAM node and migrate them
to PMEM node.

In commit 26aa2d199d ("mm/migrate: demote pages during reclaim"), a
mechanism to demote the cold DRAM pages to PMEM node under memory
pressure is implemented.  Based on that, the cold DRAM pages can be
demoted to PMEM node proactively to free some memory space on DRAM node
to accommodate the promoted hot PMEM pages.  This is implemented in this
patchset too.

We have tested the solution with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent Memory
Model.  The test results shows that the pmbench score can improve up to
95.9%.

This patch (of 3):

In a system with multiple memory types, e.g.  DRAM and PMEM, the CPU
and DRAM in one socket will be put in one NUMA node as before, while
the PMEM will be put in another NUMA node as described in the
description of the commit c221c0b030 ("device-dax: "Hotplug"
persistent memory for use like normal RAM").  So, the NUMA balancing
mechanism will identify all PMEM accesses as remote access and try to
promote the PMEM pages to DRAM.

To distinguish the number of the inter-type promoted pages from that of
the inter-socket migrated pages.  A new vmstat count is added.  The
counter is per-node (count in the target node).  So this can be used to
identify promotion imbalance among the NUMA nodes.

Link: https://lkml.kernel.org/r/20220301085329.3210428-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220221084529.1052339-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220221084529.1052339-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00
Yang Yang
e9ea874a8f mm/vmstat: add events for THP max_ptes_* exceeds
There are interfaces to adjust max_ptes_none, max_ptes_swap,
max_ptes_shared values, see
  /sys/kernel/mm/transparent_hugepage/khugepaged/.

But system administrator may not know which value is the best.  So Add
those events to support adjusting max_ptes_* to suitable values.

For example, if default max_ptes_swap value causes too much failures,
and system uses zram whose IO is fast, administrator could increase
max_ptes_swap until THP_SCAN_EXCEED_SWAP_PTE not increase anymore.

Link: https://lkml.kernel.org/r/20211225094036.574157-1-yang.yang29@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Saravanan D <saravanand@fb.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:29 +02:00
Lin Feng
a997058679 mm: vmstat.c: make extfrag_index show more pretty
fragmentation_index may return -1000 and the corresponding formated
value showed by seq_printf will take a negative signatrue, but other
positive formated values don't take a positive signatrue, so the output
becomes unaligned.

before:
  Node 0, zone      DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
  Node 0, zone    DMA32 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
  Node 0, zone   Normal -1.000 -1.000 -1.000 -1.000 0.931 0.966 0.983 0.992 0.996 0.998 0.999

after this patch:
  Node 0, zone      DMA -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
  Node 0, zone    DMA32 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
  Node 0, zone   Normal -1.000 -1.000 -1.000 -1.000  0.931  0.966  0.983  0.992  0.996  0.998  0.999

Link: https://lkml.kernel.org/r/20211019103241.134797-1-linf@wangsu.com
Signed-off-by: Lin Feng <linf@wangsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:42 -07:00
Liu Shixin
af1c31acc8 mm/vmstat: annotate data race for zone->free_area[order].nr_free
KCSAN reports a data-race on v5.10 which also exists on mainline:

  BUG: KCSAN: data-race in extfrag_for_order+0x33/0x2d0

  race at unknown origin, with read to 0xffff9ee9bfffab48 of 8 bytes by task 34 on cpu 1:
   extfrag_for_order+0x33/0x2d0
   kcompactd+0x5f0/0xce0
   kthread+0x1f9/0x220
   ret_from_fork+0x22/0x30

  Reported by Kernel Concurrency Sanitizer on:
  CPU: 1 PID: 34 Comm: kcompactd0 Not tainted 5.10.0+ #2
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014

Access to zone->free_area[order].nr_free in extfrag_for_order() and
frag_show_print() is lockless.  That's intentional and the stats are a
rough estimate anyway.  Annotate them with data_race().

[liushixin2@huawei.com: add comments]
  Link: https://lkml.kernel.org/r/20210918084655.2696522-1-liushixin2@huawei.com

Link: https://lkml.kernel.org/r/20210908015606.3999871-1-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:41 -07:00
Mel Gorman
8cd7c588de mm/vmscan: throttle reclaim until some writeback completes if congested
Patch series "Remove dependency on congestion_wait in mm/", v5.

This series that removes all calls to congestion_wait in mm/ and deletes
wait_iff_congested.  It's not a clever implementation but
congestion_wait has been broken for a long time [1].

Even if congestion throttling worked, it was never a great idea.  While
excessive dirty/writeback pages at the tail of the LRU is one
possibility that reclaim may be slow, there is also the problem of too
many pages being isolated and reclaim failing for other reasons
(elevated references, too many pages isolated, excessive LRU contention
etc).

This series replaces the "congestion" throttling with 3 different types.

 - If there are too many dirty/writeback pages, sleep until a timeout or
   enough pages get cleaned

 - If too many pages are isolated, sleep until enough isolated pages are
   either reclaimed or put back on the LRU

 - If no progress is being made, direct reclaim tasks sleep until
   another task makes progress with acceptable efficiency.

This was initially tested with a mix of workloads that used to trigger
corner cases that no longer work.  A new test case was created called
"stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly
created XFS filesystem.  Note that it may be necessary to increase the
timeout of ssh if executing remotely as ssh itself can get throttled and
the connection may timeout.

stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4
to check the impact as the number of direct reclaimers increase.  It has
four types of worker.

 - One "anon latency" worker creates small mappings with mmap() and
   times how long it takes to fault the mapping reading it 4K at a time

 - X file writers which is fio randomly writing X files where the total
   size of the files add up to the allowed dirty_ratio. fio is allowed
   to run for a warmup period to allow some file-backed pages to
   accumulate. The duration of the warmup is based on the best-case
   linear write speed of the storage.

 - Y file readers which is fio randomly reading small files

 - Z anon memory hogs which continually map (100-dirty_ratio)% of memory

 - Total estimated WSS = (100+dirty_ration) percentage of memory

X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4

The intent is to maximise the total WSS with a mix of file and anon
memory where some anonymous memory must be swapped and there is a high
likelihood of dirty/writeback pages reaching the end of the LRU.

The test can be configured to have no background readers to stress
dirty/writeback pages.  The results below are based on having zero
readers.

The short summary of the results is that the series works and stalls
until some event occurs but the timeouts may need adjustment.

The test results are not broken down by patch as the series should be
treated as one block that replaces a broken throttling mechanism with a
working one.

Finally, three machines were tested but I'm reporting the worst set of
results.  The other two machines had much better latencies for example.

First the results of the "anon latency" latency

  stutterp
                                5.15.0-rc1             5.15.0-rc1
                                   vanilla mm-reclaimcongest-v5r4
  Amean     mmap-4      31.4003 (   0.00%)   2661.0198 (-8374.52%)
  Amean     mmap-7      38.1641 (   0.00%)    149.2891 (-291.18%)
  Amean     mmap-12     60.0981 (   0.00%)    187.8105 (-212.51%)
  Amean     mmap-21    161.2699 (   0.00%)    213.9107 ( -32.64%)
  Amean     mmap-30    174.5589 (   0.00%)    377.7548 (-116.41%)
  Amean     mmap-48   8106.8160 (   0.00%)   1070.5616 (  86.79%)
  Stddev    mmap-4      41.3455 (   0.00%)  27573.9676 (-66591.66%)
  Stddev    mmap-7      53.5556 (   0.00%)   4608.5860 (-8505.23%)
  Stddev    mmap-12    171.3897 (   0.00%)   5559.4542 (-3143.75%)
  Stddev    mmap-21   1506.6752 (   0.00%)   5746.2507 (-281.39%)
  Stddev    mmap-30    557.5806 (   0.00%)   7678.1624 (-1277.05%)
  Stddev    mmap-48  61681.5718 (   0.00%)  14507.2830 (  76.48%)
  Max-90    mmap-4      31.4243 (   0.00%)     83.1457 (-164.59%)
  Max-90    mmap-7      41.0410 (   0.00%)     41.0720 (  -0.08%)
  Max-90    mmap-12     66.5255 (   0.00%)     53.9073 (  18.97%)
  Max-90    mmap-21    146.7479 (   0.00%)    105.9540 (  27.80%)
  Max-90    mmap-30    193.9513 (   0.00%)     64.3067 (  66.84%)
  Max-90    mmap-48    277.9137 (   0.00%)    591.0594 (-112.68%)
  Max       mmap-4    1913.8009 (   0.00%) 299623.9695 (-15555.96%)
  Max       mmap-7    2423.9665 (   0.00%) 204453.1708 (-8334.65%)
  Max       mmap-12   6845.6573 (   0.00%) 221090.3366 (-3129.64%)
  Max       mmap-21  56278.6508 (   0.00%) 213877.3496 (-280.03%)
  Max       mmap-30  19716.2990 (   0.00%) 216287.6229 (-997.00%)
  Max       mmap-48 477923.9400 (   0.00%) 245414.8238 (  48.65%)

For most thread counts, the time to mmap() is unfortunately increased.
In earlier versions of the series, this was lower but a large number of
throttling events were reaching their timeout increasing the amount of
inefficient scanning of the LRU.  There is no prioritisation of reclaim
tasks making progress based on each tasks rate of page allocation versus
progress of reclaim.  The variance is also impacted for high worker
counts but in all cases, the differences in latency are not
statistically significant due to very large maximum outliers.  Max-90
shows that 90% of the stalls are comparable but the Max results show the
massive outliers which are increased to to stalling.

It is expected that this will be very machine dependant.  Due to the
test design, reclaim is difficult so allocations stall and there are
variances depending on whether THPs can be allocated or not.  The amount
of memory will affect exactly how bad the corner cases are and how often
they trigger.  The warmup period calculation is not ideal as it's based
on linear writes where as fio is randomly writing multiple files from
multiple tasks so the start state of the test is variable.  For example,
these are the latencies on a single-socket machine that had more memory

  Amean     mmap-4      42.2287 (   0.00%)     49.6838 * -17.65%*
  Amean     mmap-7     216.4326 (   0.00%)     47.4451 *  78.08%*
  Amean     mmap-12   2412.0588 (   0.00%)     51.7497 (  97.85%)
  Amean     mmap-21   5546.2548 (   0.00%)     51.8862 (  99.06%)
  Amean     mmap-30   1085.3121 (   0.00%)     72.1004 (  93.36%)

The overall system CPU usage and elapsed time is as follows

                    5.15.0-rc3  5.15.0-rc3
                       vanilla mm-reclaimcongest-v5r4
  Duration User        6989.03      983.42
  Duration System      7308.12      799.68
  Duration Elapsed     2277.67     2092.98

The patches reduce system CPU usage by 89% as the vanilla kernel is rarely
stalling.

The high-level /proc/vmstats show

                                       5.15.0-rc1     5.15.0-rc1
                                          vanilla mm-reclaimcongest-v5r2
  Ops Direct pages scanned          1056608451.00   503594991.00
  Ops Kswapd pages scanned           109795048.00   147289810.00
  Ops Kswapd pages reclaimed          63269243.00    31036005.00
  Ops Direct pages reclaimed          10803973.00     6328887.00
  Ops Kswapd efficiency %                   57.62          21.07
  Ops Kswapd velocity                    48204.98       57572.86
  Ops Direct efficiency %                    1.02           1.26
  Ops Direct velocity                   463898.83      196845.97

Kswapd scanned less pages but the detailed pattern is different.  The
vanilla kernel scans slowly over time where as the patches exhibits
burst patterns of scan activity.  Direct reclaim scanning is reduced by
52% due to stalling.

The pattern for stealing pages is also slightly different.  Both kernels
exhibit spikes but the vanilla kernel when reclaiming shows pages being
reclaimed over a period of time where as the patches tend to reclaim in
spikes.  The difference is that vanilla is not throttling and instead
scanning constantly finding some pages over time where as the patched
kernel throttles and reclaims in spikes.

  Ops Percentage direct scans               90.59          77.37

For direct reclaim, vanilla scanned 90.59% of pages where as with the
patches, 77.37% were direct reclaim due to throttling

  Ops Page writes by reclaim           2613590.00     1687131.00

Page writes from reclaim context are reduced.

  Ops Page writes anon                 2932752.00     1917048.00

And there is less swapping.

  Ops Page reclaim immediate         996248528.00   107664764.00

The number of pages encountered at the tail of the LRU tagged for
immediate reclaim but still dirty/writeback is reduced by 89%.

  Ops Slabs scanned                     164284.00      153608.00

Slab scan activity is similar.

ftrace was used to gather stall activity

  Vanilla
  -------
      1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000
      2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000
      8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000
     29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000
  82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0

The fast majority of wait_iff_congested calls do not stall at all.  What
is likely happening is that cond_resched() reschedules the task for a
short period when the BDI is not registering congestion (which it never
will in this test setup).

      1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000
      2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000
      4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000
    380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000
    778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000

congestion_wait if called always exceeds the timeout as there is no
trigger to wake it up.

Bottom line: Vanilla will throttle but it's not effective.

Patch series
------------

Kswapd throttle activity was always due to scanning pages tagged for
immediate reclaim at the tail of the LRU

      1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK
      4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK
      5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK
      6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK
     11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK
     11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK
     94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK
    112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK

The majority of events did not stall or stalled for a short period.
Roughly 16% of stalls reached the timeout before expiry.  For direct
reclaim, the number of times stalled for each reason were

   6624 reason=VMSCAN_THROTTLE_ISOLATED
  93246 reason=VMSCAN_THROTTLE_NOPROGRESS
  96934 reason=VMSCAN_THROTTLE_WRITEBACK

The most common reason to stall was due to excessive pages tagged for
immediate reclaim at the tail of the LRU followed by a failure to make
forward.  A relatively small number were due to too many pages isolated
from the LRU by parallel threads

For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was

      9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED
     12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED
     83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED
   6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED

Most did not stall at all.  A small number reached the timeout.

For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over
the map

      1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS
      1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS
      1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS
      1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS
      2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS
      3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS
      3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS
      3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS
      4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS
      5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS
      5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS
      5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS
      5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS
      6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS
      7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS
      7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS
      7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS
      7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS
      8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS
      8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS
      8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS
      9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS
      9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS
      9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS
     10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS
     10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS
     10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS
     11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS
     12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS
     13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS
     13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS
     14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS
     14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS
     14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS
     16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS
     17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS
     17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS
     17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS
     18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS
     20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS
     20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS
     20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS
     21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS
     23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS
     23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS
     25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS
     25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS
     26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS
     27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS
     28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS
     29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS
     30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS
     30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS
     31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS
     32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS
     33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS
     35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS
     35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS
     36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS
     36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS
     37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS
     38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS
     40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS
     43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS
     55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS
     56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS
     58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS
     59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS
     61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS
     71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS
     71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS
     79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS
     82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS
     82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS
     85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS
     85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS
     88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS
     90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS
     90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS
     94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS
    118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS
    119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS
    126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS
    146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS
    148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS
    148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS
    159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS
    178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS
    183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS
    237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS
    266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS
    313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS
    347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS
    470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS
    559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS
    964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS
   2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS
   2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS
   7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS
  22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS
  51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS

The full timeout is often hit but a large number also do not stall at
all.  The remainder slept a little allowing other reclaim tasks to make
progress.

While this timeout could be further increased, it could also negatively
impact worst-case behaviour when there is no prioritisation of what task
should make progress.

For VMSCAN_THROTTLE_WRITEBACK, the breakdown was

      1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK
      2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK
      3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK
      5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK
      5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK
      6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK
      7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK
     11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK
     12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK
     16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK
     24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK
     28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK
     30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK
     30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK
     32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK
     42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK
     77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK
     99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK
    137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK
    190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK
    339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK
    518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK
    852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK
   3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK
   7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK
  83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK

The majority hit the timeout in direct reclaim context although a
sizable number did not stall at all.  This is very different to kswapd
where only a tiny percentage of stalls due to writeback reached the
timeout.

Bottom line, the throttling appears to work and the wakeup events may
limit worst case stalls.  There might be some grounds for adjusting
timeouts but it's likely futile as the worst-case scenarios depend on
the workload, memory size and the speed of the storage.  A better
approach to improve the series further would be to prioritise tasks
based on their rate of allocation with the caveat that it may be very
expensive to track.

This patch (of 5):

Page reclaim throttles on wait_iff_congested under the following
conditions:

 - kswapd is encountering pages under writeback and marked for immediate
   reclaim implying that pages are cycling through the LRU faster than
   pages can be cleaned.

 - Direct reclaim will stall if all dirty pages are backed by congested
   inodes.

wait_iff_congested is almost completely broken with few exceptions.
This patch adds a new node-based workqueue and tracks the number of
throttled tasks and pages written back since throttling started.  If
enough pages belonging to the node are written back then the throttled
tasks will wake early.  If not, the throttled tasks sleeps until the
timeout expires.

[neilb@suse.de: Uninterruptible sleep and simpler wakeups]
[hdanton@sina.com: Avoid race when reclaim starts]
[vbabka@suse.cz: vmstat irq-safe api, clarifications]

Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1]
Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: NeilBrown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: "Darrick J . Wong" <djwong@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:40 -07:00
Liangcai Fan
a6ea8b5b9f mm/page_alloc.c: show watermark_boost of zone in zoneinfo
min/low/high_wmark_pages(z) is defined as

  (z->_watermark[WMARK_MIN/LOW/HIGH] + z->watermark_boost)

If kswapd is frequently woken up due to the increase of
min/low/high_wmark_pages, printing watermark_boost can quickly locate
whether watermark_boost or _watermark[WMARK_MIN/LOW/HIGH] caused
min/low/high_wmark_pages to increase.

Link: https://lkml.kernel.org/r/1632472566-12246-1-git-send-email-liangcaifan19@gmail.com
Signed-off-by: Liangcai Fan <liangcaifan19@gmail.com>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Geert Uytterhoeven
ebeac3ea99 mm: move fold_vm_numa_events() to fix NUMA without SMP
If CONFIG_NUMA=y, but CONFIG_SMP=n (e.g. sh/migor_defconfig):

    sh4-linux-gnu-ld: mm/vmstat.o: in function `vmstat_start': vmstat.c:(.text+0x97c): undefined reference to `fold_vm_numa_events'
    sh4-linux-gnu-ld: drivers/base/node.o: in function `node_read_vmstat': node.c:(.text+0x140): undefined reference to `fold_vm_numa_events'
    sh4-linux-gnu-ld: drivers/base/node.o: in function `node_read_numastat': node.c:(.text+0x1d0): undefined reference to `fold_vm_numa_events'

Fix this by moving fold_vm_numa_events() outside the SMP-only section.

Link: https://lkml.kernel.org/r/9d16ccdd9ef32803d7100c84f737de6a749314fb.1631781495.git.geert+renesas@glider.be
Fixes: f19298b951 ("mm/vmstat: convert NUMA statistics to basic NUMA counters")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Gon Solo <gonsolo@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:38 -07:00
Ingo Molnar
c68ed79457 mm/vmstat: protect per cpu variables with preempt disable on RT
Disable preemption on -RT for the vmstat code.  On vanila the code runs in
IRQ-off regions while on -RT it may not when stats are updated under a
local_lock.  "preempt_disable" ensures that the same resources is not
updated in parallel due to preemption.

This patch differs from the preempt-rt version where __count_vm_event and
__count_vm_events are also protected.  The counters are explicitly
"allowed to be to be racy" so there is no need to protect them from
preemption.  Only the accurate page stats that are updated by a
read-modify-write need protection.  This patch also differs in that a
preempt_[en|dis]able_rt helper is not used.  As vmstat is the only user of
the helper, it was suggested that it be open-coded in vmstat.c instead of
risking the helper being used in unnecessary contexts.

Link: https://lkml.kernel.org/r/20210805160019.1137-2-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Linus Torvalds
14726903c8 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "173 patches.

  Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
  pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
  bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
  hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
  oom-kill, migration, ksm, percpu, vmstat, and madvise)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
  mm/madvise: add MADV_WILLNEED to process_madvise()
  mm/vmstat: remove unneeded return value
  mm/vmstat: simplify the array size calculation
  mm/vmstat: correct some wrong comments
  mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
  selftests: vm: add COW time test for KSM pages
  selftests: vm: add KSM merging time test
  mm: KSM: fix data type
  selftests: vm: add KSM merging across nodes test
  selftests: vm: add KSM zero page merging test
  selftests: vm: add KSM unmerge test
  selftests: vm: add KSM merge test
  mm/migrate: correct kernel-doc notation
  mm: wire up syscall process_mrelease
  mm: introduce process_mrelease system call
  memblock: make memblock_find_in_range method private
  mm/mempolicy.c: use in_task() in mempolicy_slab_node()
  mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
  mm/mempolicy: advertise new MPOL_PREFERRED_MANY
  mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
  ...
2021-09-03 10:08:28 -07:00
Miaohe Lin
33090af973 mm/vmstat: remove unneeded return value
The return value of pagetypeinfo_showfree and pagetypeinfo_showblockcount
are unused now.  Remove them.

Link: https://lkml.kernel.org/r/20210715122911.15700-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:18 -07:00
Miaohe Lin
64632fd3eb mm/vmstat: simplify the array size calculation
We can replace the array_num * sizeof(array[0]) with sizeof(array) to
simplify the code.

Link: https://lkml.kernel.org/r/20210715122911.15700-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:18 -07:00
Miaohe Lin
ea15ba17b4 mm/vmstat: correct some wrong comments
Patch series "Cleanup for vmstat".

This series contains cleanups to remove unneeded return value, correct
wrong comment and simplify the array size calculation.  More details can
be found in the respective changelogs.

This patch (of 3):

Correct wrong fls(mem+1) to fls(mem)+1 and remove the duplicated comment
with quiet_vmstat().

Link: https://lkml.kernel.org/r/20210715122911.15700-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210715122911.15700-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:18 -07:00
Yang Shi
668e4147d8 mm/vmscan: add page demotion counter
Account the number of demoted pages.

Add pgdemote_kswapd and pgdemote_direct VM counters showed in
/proc/vmstat.

[ daveh:
   - __count_vm_events() a bit, and made them look at the THP
     size directly rather than getting data from migrate_pages()
]

Link: https://lkml.kernel.org/r/20210721063926.3024591-5-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-6-ying.huang@intel.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Wei Xu <weixugc@google.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:16 -07:00
Sebastian Andrzej Siewior
7625eccd18 mm: Replace deprecated CPU-hotplug functions.
The functions get_online_cpus() and put_online_cpus() have been
deprecated during the CPU hotplug rework. They map directly to
cpus_read_lock() and cpus_read_unlock().

Replace deprecated CPU-hotplug functions with the official version.
The behavior remains unchanged.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210803141621.780504-21-bigeasy@linutronix.de
2021-08-28 01:46:17 +02:00
Mel Gorman
3ac44a346a mm/vmstat: inline NUMA event counter updates
__count_numa_event is small enough to be treated similarly to
__count_vm_event so inline it.

Link: https://lkml.kernel.org/r/20210512095458.30632-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:54 -07:00
Mel Gorman
f19298b951 mm/vmstat: convert NUMA statistics to basic NUMA counters
NUMA statistics are maintained on the zone level for hits, misses, foreign
etc but nothing relies on them being perfectly accurate for functional
correctness.  The counters are used by userspace to get a general overview
of a workloads NUMA behaviour but the page allocator incurs a high cost to
maintain perfect accuracy similar to what is required for a vmstat like
NR_FREE_PAGES.  There even is a sysctl vm.numa_stat to allow userspace to
turn off the collection of NUMA statistics like NUMA_HIT.

This patch converts NUMA_HIT and friends to be NUMA events with similar
accuracy to VM events.  There is a possibility that slight errors will be
introduced but the overall trend as seen by userspace will be similar.
The counters are no longer updated from vmstat_refresh context as it is
unnecessary overhead for counters that may never be read by userspace.
Note that counters could be maintained at the node level to save space but
it would have a user-visible impact due to /proc/zoneinfo.

[lkp@intel.com: Fix misplaced closing brace for !CONFIG_NUMA]

Link: https://lkml.kernel.org/r/20210512095458.30632-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:54 -07:00
Mel Gorman
28f836b677 mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues.  For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used.  Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.

This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.

Why local_lock?  PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst

   local_irq_disable();
   spin_lock(&lock);

The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock).  While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately.  To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed.  That is a
custom lock that is similar, but worse, than local_lock.  Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long.  By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking.  As a
bonus, local_lock also means that PROVE_LOCKING does something useful.

After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do.  The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.

The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency.  Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.

Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock.  The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer.  The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.

No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT.  However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series.  Focusing on the array
variant of the bulk page allocator reveals the following.

(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size

         Baseline        Patched
 1       56.383          54.225 (+3.83%)
 2       40.047          35.492 (+11.38%)
 3       37.339          32.643 (+12.58%)
 4       35.578          30.992 (+12.89%)
 8       33.592          29.606 (+11.87%)
 16      32.362          28.532 (+11.85%)
 32      31.476          27.728 (+11.91%)
 64      30.633          27.252 (+11.04%)
 128     30.596          27.090 (+11.46%)

While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.

This patch (of 9):

The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists.  This is inconsistent because the vmstats for a
node are stored on a dedicated structure.  The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.

This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures.  It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).

Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.

[mgorman@techsingularity.net: make it W=1 cleaner]
  Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
  Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]

Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:54 -07:00
Ingo Molnar
f0953a1bba mm: fix typos in comments
Fix ~94 single-word typos in locking code comments, plus a few
very obvious grammar mistakes.

Link: https://lkml.kernel.org/r/20210322212624.GA1963421@gmail.com
Link: https://lore.kernel.org/r/20210322205203.GB1959563@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Bhaskar Chowdhury <unixbhaskar@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-07 00:26:35 -07:00
Saravanan D
575299ea18 x86/mm: track linear mapping split events
To help with debugging the sluggishness caused by TLB miss/reload, we
introduce monotonic hugepage [direct mapped] split event counts since
system state: SYSTEM_RUNNING to be displayed as part of /proc/vmstat in
x86 servers

The lifetime split event information will be displayed at the bottom of
/proc/vmstat
  ....
  swap_ra 0
  swap_ra_hit 0
  direct_map_level2_splits 94
  direct_map_level3_splits 4
  nr_unstable 0
  ....

One of the many lasting sources of direct hugepage splits is kernel
tracing (kprobes, tracepoints).

Note that the kernel's code segment [512 MB] points to the same physical
addresses that have been already mapped in the kernel's direct mapping
range.

Source : Documentation/x86/x86_64/mm.rst

When we enable kernel tracing, the kernel has to modify
attributes/permissions of the text segment hugepages that are direct
mapped causing them to split.

Kernel's direct mapped hugepages do not coalesce back after split and
remain in place for the remainder of the lifetime.

An instance of direct page splits when we turn on dynamic kernel tracing
....
cat /proc/vmstat | grep -i direct_map_level
direct_map_level2_splits 784
direct_map_level3_splits 12
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @ [pid, comm] =
count(); }'
cat /proc/vmstat | grep -i
direct_map_level
direct_map_level2_splits 789
direct_map_level3_splits 12
....

Link: https://lkml.kernel.org/r/20210218235744.1040634-1-saravanand@fb.com
Signed-off-by: Saravanan D <saravanand@fb.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:25 -07:00
Hugh Dickins
c675790972 mm: /proc/sys/vm/stat_refresh stop checking monotonic numa stats
All of the VM NUMA stats are event counts, incremented never
decremented: it is not very useful for vmstat_refresh() to check them
throughout their first aeon, then warn on them throughout their next.

Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2102251514110.13363@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:25 -07:00
Hugh Dickins
75083aae11 mm: /proc/sys/vm/stat_refresh skip checking known negative stats
vmstat_refresh() can occasionally catch nr_zone_write_pending and
nr_writeback when they are transiently negative.  The reason is partly
that the interrupt which decrements them in test_clear_page_writeback()
can come in before __test_set_page_writeback() got to increment them;
but transient negatives are still seen even when that is prevented, and
I am not yet certain why (but see Roman's note below).  Those stats are
not buggy, they have never been seen to drift away from 0 permanently:
so just avoid the annoyance of showing a warning on them.

Similarly avoid showing a warning on nr_free_cma: CMA users have seen
that one reported negative from /proc/sys/vm/stat_refresh too, but it
does drift away permanently: I believe that's because its incrementation
and decrementation are decided by page migratetype, but the migratetype
of a pageblock is not guaranteed to be constant.

Roman Gushchin points out:
 "For performance reasons, vmstat counters are incremented and
  decremented using per-cpu batches. vmstat_refresh() flushes the
  per-cpu batches on all CPUs, to get values as accurate as possible;
  but this method is not atomic, so the resulting value is not always
  precise.

  As a consequence, for those counters whose actual value is close to 0,
  a small negative value may occasionally be reported. If the value is
  small and the state is transient, it is not an indication of an error"

Link: https://lore.kernel.org/linux-mm/20200714173747.3315771-1-guro@fb.com/
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2103012158540.7549@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Roman Gushchin <guro@fb.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:25 -07:00
Hugh Dickins
6d99a4c029 mm: no more EINVAL from /proc/sys/vm/stat_refresh
EINVAL was good for drawing the refresher's attention to a warning in
dmesg, but became very tiresome when running test suites scripted with
"set -e": an underflow from a bug in one feature would cause unrelated
tests much later to fail, just because their /proc/sys/vm/stat_refresh
touch failed with that error.  Stop doing that.

Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2102251510410.13363@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:25 -07:00
Hugh Dickins
76d8cc3c8f mm: restore node stat checking in /proc/sys/vm/stat_refresh
In v4.7 commit 52b6f46bc1 ("mm: /proc/sys/vm/stat_refresh to force
vmstat update") introduced vmstat_refresh(), with its vmstat underflow
checking; then in v4.8 commit 75ef718405 ("mm, vmstat: add
infrastructure for per-node vmstats") split NR_VM_NODE_STAT_ITEMS out of
NR_VM_ZONE_STAT_ITEMS without updating vmstat_refresh(): so it has been
missing out much of the vmstat underflow checking ever since.

Reinstate it.

Thanks to Roman Gushchin <guro@fb.com> for tangentially pointing this out.

Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2102251502240.13363@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:25 -07:00
Minchan Kim
bbb269206f mm: vmstat: add cma statistics
Since CMA is used more widely, it's worth to have CMA allocation
statistics into vmstat.  With it, we could know how agressively system
uses cma allocation and how often it fails.

Link: https://lkml.kernel.org/r/20210302183346.3707237-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: John Dias <joaodias@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:24 -07:00
Jiang Biao
fbcc8183a4 mm/vmstat.c: erase latency in vmstat_shepherd
Many 100us+ latencies have been deteceted in vmstat_shepherd() on CPX
platform which has 208 logic cpus.  And vmstat_shepherd is queued every
second, which could make the case worse.

Add schedule point in vmstat_shepherd() to erase the latency.

Link: https://lkml.kernel.org/r/20210111035526.1511-1-benbjiang@tencent.com
Signed-off-by: Jiang Biao <benbjiang@tencent.com>
Reported-by: Bin Lai <robinlai@tencent.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:00 -08:00
Johannes Weiner
629484ae73 mm: vmstat: add some comments on internal storage of byte items
Byte-accounted items are used for slab object accounting at the cgroup
level, because the objects in a slab page can belong to different cgroups.
At the global level these items always change in multiples of whole slab
pages.  The vmstat code exploits this and stores these items as pages
internally, which allows for more compact per-cpu data.

This optimization isn't self-evident from the asserts and the division in
the stat update functions.  Provide the reader with some context.

Link: https://lkml.kernel.org/r/20210202184411.118614-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:00 -08:00
Johannes Weiner
2bbd00aef0 mm: vmstat: fix NOHZ wakeups for node stat changes
On NOHZ, the periodic vmstat flushers on each CPU can go to sleep and
won't wake up until stat changes are detected in the per-cpu deltas of the
zone vmstat counters.

In commit 75ef718405 ("mm, vmstat: add infrastructure for per-node
vmstats") per-node counters were introduced, and subsequently most stats
were moved from the zone to the node level.  However, the node counters
weren't added to the NOHZ wakeup detection.

In theory this can cause per-cpu errors to remain in the user-reported
stats indefinitely.  In practice this only affects a handful of sub
counters (file_mapped, dirty and writeback e.g.) because other page state
changes at the node level likely involve a change at the zone level as
well (alloc and free, lru ops).  Also, nobody has complained.

Fix it up for completeness: wake up vmstat refreshing on node changes.
Also remove the BUILD_BUG_ONs that assert counter size; we haven't relied
on it since we added sizeof() to the range calculation in commit
13c9aaf7fa ("mm/vmstat.c: fix NUMA statistics updates").

Link: https://lkml.kernel.org/r/20210202184342.118513-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:00 -08:00
David Hildenbrand
3c381db1fa mm/page_alloc: count CMA pages per zone and print them in /proc/zoneinfo
Let's count the number of CMA pages per zone and print them in
/proc/zoneinfo.

Having access to the total number of CMA pages per zone is helpful for
debugging purposes to know where exactly the CMA pages ended up, and to
figure out how many pages of a zone might behave differently, even after
some of these pages might already have been allocated.

As one example, CMA pages part of a kernel zone cannot be used for
ordinary kernel allocations but instead behave more like ZONE_MOVABLE.

For now, we are only able to get the global nr+free cma pages from
/proc/meminfo and the free cma pages per zone from /proc/zoneinfo.

Example after this patch when booting a 6 GiB QEMU VM with
"hugetlb_cma=2G":
  # cat /proc/zoneinfo | grep cma
          cma      0
        nr_free_cma  0
          cma      0
        nr_free_cma  0
          cma      524288
        nr_free_cma  493016
          cma      0
          cma      0
  # cat /proc/meminfo | grep Cma
  CmaTotal:        2097152 kB
  CmaFree:         1972064 kB

Note: We print even without CONFIG_CMA, just like "nr_free_cma"; this way,
      one can be sure when spotting "cma 0", that there are definetly no
      CMA pages located in a zone.

[david@redhat.com: v2]
  Link: https://lkml.kernel.org/r/20210128164533.18566-1-david@redhat.com
[david@redhat.com: v3]
  Link: https://lkml.kernel.org/r/20210129113451.22085-1-david@redhat.com

Link: https://lkml.kernel.org/r/20210127101813.6370-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:00 -08:00
Shakeel Butt
b603894248 mm: memcg: add swapcache stat for memcg v2
This patch adds swapcache stat for the cgroup v2.  The swapcache
represents the memory that is accounted against both the memory and the
swap limit of the cgroup.  The main motivation behind exposing the
swapcache stat is for enabling users to gracefully migrate from cgroup
v1's memsw counter to cgroup v2's memory and swap counters.

Cgroup v1's memsw limit allows users to limit the memory+swap usage of a
workload but without control on the exact proportion of memory and swap.
Cgroup v2 provides separate limits for memory and swap which enables more
control on the exact usage of memory and swap individually for the
workload.

With some little subtleties, the v1's memsw limit can be switched with the
sum of the v2's memory and swap limits.  However the alternative for memsw
usage is not yet available in cgroup v2.  Exposing per-cgroup swapcache
stat enables that alternative.  Adding the memory usage and swap usage and
subtracting the swapcache will approximate the memsw usage.  This will
help in the transparent migration of the workloads depending on memsw
usage and limit to v2' memory and swap counters.

The reasons these applications are still interested in this approximate
memsw usage are: (1) these applications are not really interested in two
separate memory and swap usage metrics.  A single usage metric is more
simple to use and reason about for them.

(2) The memsw usage metric hides the underlying system's swap setup from
the applications.  Applications with multiple instances running in a
datacenter with heterogeneous systems (some have swap and some don't) will
keep seeing a consistent view of their usage.

[akpm@linux-foundation.org: fix CONFIG_SWAP=n build]

Link: https://lkml.kernel.org/r/20210108155813.2914586-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
69473e5de8 mm: memcontrol: convert NR_ANON_THPS account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_ANON_THPS account to pages.  This patch is consistent
with 8f182270df ("mm/swap.c: flush lru pvecs on compound page arrival").
Doing this also can make the unit of vmstat counters more unified.
Finally, the unit of the vmstat counters are pages, kB and bytes.  The
B/KB suffix can tell us that the unit is bytes or kB.  The rest which is
without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Mike Rapoport
5e545df329 arm: remove CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
ARM is the only architecture that defines CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
which in turn enables memmap_valid_within() function that is intended to
verify existence  of struct page associated with a pfn when there are holes
in the memory map.

However, the ARCH_HAS_HOLES_MEMORYMODEL also enables HAVE_ARCH_PFN_VALID
and arch-specific pfn_valid() implementation that also deals with the holes
in the memory map.

The only two users of memmap_valid_within() call this function after
a call to pfn_valid() so the memmap_valid_within() check becomes redundant.

Remove CONFIG_ARCH_HAS_HOLES_MEMORYMODEL and memmap_valid_within() and rely
entirely on ARM's implementation of pfn_valid() that is now enabled
unconditionally.

Link: https://lkml.kernel.org/r/20201101170454.9567-9-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Meelis Roos <mroos@linux.ee>
Cc: Michael Schmitz <schmitzmic@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:42 -08:00
Shakeel Butt
f0c0c115fb mm: memcontrol: account pagetables per node
For many workloads, pagetable consumption is significant and it makes
sense to expose it in the memory.stat for the memory cgroups.  However at
the moment, the pagetables are accounted per-zone.  Converting them to
per-node and using the right interface will correctly account for the
memory cgroups as well.

[akpm@linux-foundation.org: export __mod_lruvec_page_state to modules for arch/mips/kvm/]

Link: https://lkml.kernel.org/r/20201130212541.2781790-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Miaohe Lin
406100762a mm/vmstat.c: use helper macro abs()
Use helper macro abs() to simplify the "x > t || x < -t" cmp.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200905084008.15748-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
Linus Torvalds
b25d1dc947 Merge branch 'simplify-do_wp_page'
Merge emailed patches from Peter Xu:
 "This is a small series that I picked up from Linus's suggestion to
  simplify cow handling (and also make it more strict) by checking
  against page refcounts rather than mapcounts.

  This makes uffd-wp work again (verified by running upmapsort)"

Note: this is horrendously bad timing, and making this kind of
fundamental vm change after -rc3 is not at all how things should work.
The saving grace is that it really is a a nice simplification:

 8 files changed, 29 insertions(+), 120 deletions(-)

The reason for the bad timing is that it turns out that commit
17839856fd ("gup: document and work around 'COW can break either way'
issue" broke not just UFFD functionality (as Peter noticed), but Mikulas
Patocka also reports that it caused issues for strace when running in a
DAX environment with ext4 on a persistent memory setup.

And we can't just revert that commit without re-introducing the original
issue that is a potential security hole, so making COW stricter (and in
the process much simpler) is a step to then undoing the forced COW that
broke other uses.

Link: https://lore.kernel.org/lkml/alpine.LRH.2.02.2009031328040.6929@file01.intranet.prod.int.rdu2.redhat.com/

* emailed patches from Peter Xu <peterx@redhat.com>:
  mm: Add PGREUSE counter
  mm/gup: Remove enfornced COW mechanism
  mm/ksm: Remove reuse_ksm_page()
  mm: do_wp_page() simplification
2020-09-04 09:31:54 -07:00
Peter Xu
798a6b87ec mm: Add PGREUSE counter
This accounts for wp_page_reuse() case, where we reused a page for COW.

Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-04 09:25:20 -07:00
Baoquan He
a8a4b7aeaf Revert "mm/vmstat.c: do not show lowmem reserve protection information of empty zone"
This reverts commit 26e7deadaa.

Sonny reported that one of their tests started failing on the latest
kernel on their Chrome OS platform.  The root cause is that the above
commit removed the protection line of empty zone, while the parser used in
the test relies on the protection line to mark the end of each zone.

Let's revert it to avoid breaking userspace testing or applications.

Fixes: 26e7deadaa ("mm/vmstat.c: do not show lowmem reserve protection information of empty zone)"
Reported-by: Sonny Rao <sonnyrao@chromium.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>	[5.8.x]
Link: http://lkml.kernel.org/r/20200811075412.12872-1-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:56 -07:00
Anshuman Khandual
1a5bae25e3 mm/vmstat: add events for THP migration without split
Add following new vmstat events which will help in validating THP
migration without split.  Statistics reported through these new VM events
will help in performance debugging.

1. THP_MIGRATION_SUCCESS
2. THP_MIGRATION_FAILURE
3. THP_MIGRATION_SPLIT

In addition, these new events also update normal page migration statistics
appropriately via PGMIGRATE_SUCCESS and PGMIGRATE_FAILURE.  While here,
this updates current trace event 'mm_migrate_pages' to accommodate now
available THP statistics.

[akpm@linux-foundation.org: s/hpage_nr_pages/thp_nr_pages/]
[ziy@nvidia.com: v2]
  Link: http://lkml.kernel.org/r/C5E3C65C-8253-4638-9D3C-71A61858BB8B@nvidia.com
[anshuman.khandual@arm.com: s/thp_nr_pages/hpage_nr_pages/]
  Link: http://lkml.kernel.org/r/1594287583-16568-1-git-send-email-anshuman.khandual@arm.com

Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Link: http://lkml.kernel.org/r/1594080415-27924-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:57 -07:00
Nitin Gupta
d34c0a7599 mm: use unsigned types for fragmentation score
Proactive compaction uses per-node/zone "fragmentation score" which is
always in range [0, 100], so use unsigned type of these scores as well as
for related constants.

Signed-off-by: Nitin Gupta <nigupta@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200618010319.13159-1-nigupta@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:56 -07:00
Nitin Gupta
facdaa917c mm: proactive compaction
For some applications, we need to allocate almost all memory as hugepages.
However, on a running system, higher-order allocations can fail if the
memory is fragmented.  Linux kernel currently does on-demand compaction as
we request more hugepages, but this style of compaction incurs very high
latency.  Experiments with one-time full memory compaction (followed by
hugepage allocations) show that kernel is able to restore a highly
fragmented memory state to a fairly compacted memory state within <1 sec
for a 32G system.  Such data suggests that a more proactive compaction can
help us allocate a large fraction of memory as hugepages keeping
allocation latencies low.

For a more proactive compaction, the approach taken here is to define a
new sysctl called 'vm.compaction_proactiveness' which dictates bounds for
external fragmentation which kcompactd tries to maintain.

The tunable takes a value in range [0, 100], with a default of 20.

Note that a previous version of this patch [1] was found to introduce too
many tunables (per-order extfrag{low, high}), but this one reduces them to
just one sysctl.  Also, the new tunable is an opaque value instead of
asking for specific bounds of "external fragmentation", which would have
been difficult to estimate.  The internal interpretation of this opaque
value allows for future fine-tuning.

Currently, we use a simple translation from this tunable to [low, high]
"fragmentation score" thresholds (low=100-proactiveness, high=low+10%).
The score for a node is defined as weighted mean of per-zone external
fragmentation.  A zone's present_pages determines its weight.

To periodically check per-node score, we reuse per-node kcompactd threads,
which are woken up every 500 milliseconds to check the same.  If a node's
score exceeds its high threshold (as derived from user-provided
proactiveness value), proactive compaction is started until its score
reaches its low threshold value.  By default, proactiveness is set to 20,
which implies threshold values of low=80 and high=90.

This patch is largely based on ideas from Michal Hocko [2].  See also the
LWN article [3].

Performance data
================

System: x64_64, 1T RAM, 80 CPU threads.
Kernel: 5.6.0-rc3 + this patch

echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/defrag

Before starting the driver, the system was fragmented from a userspace
program that allocates all memory and then for each 2M aligned section,
frees 3/4 of base pages using munmap.  The workload is mainly anonymous
userspace pages, which are easy to move around.  I intentionally avoided
unmovable pages in this test to see how much latency we incur when
hugepage allocations hit direct compaction.

1. Kernel hugepage allocation latencies

With the system in such a fragmented state, a kernel driver then allocates
as many hugepages as possible and measures allocation latency:

(all latency values are in microseconds)

- With vanilla 5.6.0-rc3

  percentile latency
  –––––––––– –––––––
	   5    7894
	  10    9496
	  25   12561
	  30   15295
	  40   18244
	  50   21229
	  60   27556
	  75   30147
	  80   31047
	  90   32859
	  95   33799

Total 2M hugepages allocated = 383859 (749G worth of hugepages out of 762G
total free => 98% of free memory could be allocated as hugepages)

- With 5.6.0-rc3 + this patch, with proactiveness=20

sysctl -w vm.compaction_proactiveness=20

  percentile latency
  –––––––––– –––––––
	   5       2
	  10       2
	  25       3
	  30       3
	  40       3
	  50       4
	  60       4
	  75       4
	  80       4
	  90       5
	  95     429

Total 2M hugepages allocated = 384105 (750G worth of hugepages out of 762G
total free => 98% of free memory could be allocated as hugepages)

2. JAVA heap allocation

In this test, we first fragment memory using the same method as for (1).

Then, we start a Java process with a heap size set to 700G and request the
heap to be allocated with THP hugepages.  We also set THP to madvise to
allow hugepage backing of this heap.

/usr/bin/time
 java -Xms700G -Xmx700G -XX:+UseTransparentHugePages -XX:+AlwaysPreTouch

The above command allocates 700G of Java heap using hugepages.

- With vanilla 5.6.0-rc3

17.39user 1666.48system 27:37.89elapsed

- With 5.6.0-rc3 + this patch, with proactiveness=20

8.35user 194.58system 3:19.62elapsed

Elapsed time remains around 3:15, as proactiveness is further increased.

Note that proactive compaction happens throughout the runtime of these
workloads.  The situation of one-time compaction, sufficient to supply
hugepages for following allocation stream, can probably happen for more
extreme proactiveness values, like 80 or 90.

In the above Java workload, proactiveness is set to 20.  The test starts
with a node's score of 80 or higher, depending on the delay between the
fragmentation step and starting the benchmark, which gives more-or-less
time for the initial round of compaction.  As t he benchmark consumes
hugepages, node's score quickly rises above the high threshold (90) and
proactive compaction starts again, which brings down the score to the low
threshold level (80).  Repeat.

bpftrace also confirms proactive compaction running 20+ times during the
runtime of this Java benchmark.  kcompactd threads consume 100% of one of
the CPUs while it tries to bring a node's score within thresholds.

Backoff behavior
================

Above workloads produce a memory state which is easy to compact.  However,
if memory is filled with unmovable pages, proactive compaction should
essentially back off.  To test this aspect:

- Created a kernel driver that allocates almost all memory as hugepages
  followed by freeing first 3/4 of each hugepage.
- Set proactiveness=40
- Note that proactive_compact_node() is deferred maximum number of times
  with HPAGE_FRAG_CHECK_INTERVAL_MSEC of wait between each check
  (=> ~30 seconds between retries).

[1] https://patchwork.kernel.org/patch/11098289/
[2] https://lore.kernel.org/linux-mm/20161230131412.GI13301@dhcp22.suse.cz/
[3] https://lwn.net/Articles/817905/

Signed-off-by: Nitin Gupta <nigupta@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Oleksandr Natalenko <oleksandr@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nitin Gupta <ngupta@nitingupta.dev>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Link: http://lkml.kernel.org/r/20200616204527.19185-1-nigupta@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:56 -07:00
Joonsoo Kim
170b04b7ae mm/workingset: prepare the workingset detection infrastructure for anon LRU
To prepare the workingset detection for anon LRU, this patch splits
workingset event counters for refault, activate and restore into anon and
file variants, as well as the refaults counter in struct lruvec.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Shakeel Butt
991e767385 mm: memcontrol: account kernel stack per node
Currently the kernel stack is being accounted per-zone.  There is no need
to do that.  In addition due to being per-zone, memcg has to keep a
separate MEMCG_KERNEL_STACK_KB.  Make the stat per-node and deprecate
MEMCG_KERNEL_STACK_KB as memcg_stat_item is an extension of
node_stat_item.  In addition localize the kernel stack stats updates to
account_kernel_stack().

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200630161539.1759185-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin
ea426c2a7d mm: memcg: prepare for byte-sized vmstat items
To implement per-object slab memory accounting, we need to convert slab
vmstat counters to bytes.  Actually, out of 4 levels of counters: global,
per-node, per-memcg and per-lruvec only two last levels will require
byte-sized counters.  It's because global and per-node counters will be
counting the number of slab pages, and per-memcg and per-lruvec will be
counting the amount of memory taken by charged slab objects.

Converting all vmstat counters to bytes or even all slab counters to bytes
would introduce an additional overhead.  So instead let's store global and
per-node counters in pages, and memcg and lruvec counters in bytes.

To make the API clean all access helpers (both on the read and write
sides) are dealing with bytes.

To avoid back-and-forth conversions a new flavor of read-side helpers is
introduced, which always returns values in pages: node_page_state_pages()
and global_node_page_state_pages().

Actually new helpers are just reading raw values.  Old helpers are simple
wrappers, which will complain on an attempt to read byte value, because at
the moment no one actually needs bytes.

Thanks to Johannes Weiner for the idea of having the byte-sized API on top
of the page-sized internal storage.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Kefeng Wang
01a9956002 mm/vmstat.c: convert to use DEFINE_SEQ_ATTRIBUTE macro
Use DEFINE_SEQ_ATTRIBUTE macro to simplify the code.

Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: http://lkml.kernel.org/r/20200509064031.181091-3-wangkefeng.wang@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:26 -07:00
Linus Torvalds
ee01c4d72a Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "More mm/ work, plenty more to come

  Subsystems affected by this patch series: slub, memcg, gup, kasan,
  pagealloc, hugetlb, vmscan, tools, mempolicy, memblock, hugetlbfs,
  thp, mmap, kconfig"

* akpm: (131 commits)
  arm64: mm: use ARCH_HAS_DEBUG_WX instead of arch defined
  x86: mm: use ARCH_HAS_DEBUG_WX instead of arch defined
  riscv: support DEBUG_WX
  mm: add DEBUG_WX support
  drivers/base/memory.c: cache memory blocks in xarray to accelerate lookup
  mm/thp: rename pmd_mknotpresent() as pmd_mkinvalid()
  powerpc/mm: drop platform defined pmd_mknotpresent()
  mm: thp: don't need to drain lru cache when splitting and mlocking THP
  hugetlbfs: get unmapped area below TASK_UNMAPPED_BASE for hugetlbfs
  sparc32: register memory occupied by kernel as memblock.memory
  include/linux/memblock.h: fix minor typo and unclear comment
  mm, mempolicy: fix up gup usage in lookup_node
  tools/vm/page_owner_sort.c: filter out unneeded line
  mm: swap: memcg: fix memcg stats for huge pages
  mm: swap: fix vmstats for huge pages
  mm: vmscan: limit the range of LRU type balancing
  mm: vmscan: reclaim writepage is IO cost
  mm: vmscan: determine anon/file pressure balance at the reclaim root
  mm: balance LRU lists based on relative thrashing
  mm: only count actual rotations as LRU reclaim cost
  ...
2020-06-03 20:24:15 -07:00
Johannes Weiner
497a6c1b09 mm: keep separate anon and file statistics on page reclaim activity
Having statistics on pages scanned and pages reclaimed for both anon and
file pages makes it easier to evaluate changes to LRU balancing.

While at it, clean up the stat-keeping mess for isolation, putback,
reclaim stats etc.  a bit: first the physical LRU operation (isolation and
putback), followed by vmstats, reclaim_stats, and then vm events.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-3-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Baoquan He
26e7deadaa mm/vmstat.c: do not show lowmem reserve protection information of empty zone
Because the lowmem reserve protection of a zone can't tell anything if the
zone is empty, except of adding one more line in /proc/zoneinfo.

Let's remove it from that zone's showing.

Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200402140113.3696-4-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:44 -07:00
Linus Torvalds
cb8e59cc87 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from David Miller:

 1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
    Augusto von Dentz.

 2) Add GSO partial support to igc, from Sasha Neftin.

 3) Several cleanups and improvements to r8169 from Heiner Kallweit.

 4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
    device self-test. From Andrew Lunn.

 5) Start moving away from custom driver versions, use the globally
    defined kernel version instead, from Leon Romanovsky.

 6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.

 7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.

 8) Add sriov and vf support to hinic, from Luo bin.

 9) Support Media Redundancy Protocol (MRP) in the bridging code, from
    Horatiu Vultur.

10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.

11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
    Dubroca. Also add ipv6 support for espintcp.

12) Lots of ReST conversions of the networking documentation, from Mauro
    Carvalho Chehab.

13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
    from Doug Berger.

14) Allow to dump cgroup id and filter by it in inet_diag code, from
    Dmitry Yakunin.

15) Add infrastructure to export netlink attribute policies to
    userspace, from Johannes Berg.

16) Several optimizations to sch_fq scheduler, from Eric Dumazet.

17) Fallback to the default qdisc if qdisc init fails because otherwise
    a packet scheduler init failure will make a device inoperative. From
    Jesper Dangaard Brouer.

18) Several RISCV bpf jit optimizations, from Luke Nelson.

19) Correct the return type of the ->ndo_start_xmit() method in several
    drivers, it's netdev_tx_t but many drivers were using
    'int'. From Yunjian Wang.

20) Add an ethtool interface for PHY master/slave config, from Oleksij
    Rempel.

21) Add BPF iterators, from Yonghang Song.

22) Add cable test infrastructure, including ethool interfaces, from
    Andrew Lunn. Marvell PHY driver is the first to support this
    facility.

23) Remove zero-length arrays all over, from Gustavo A. R. Silva.

24) Calculate and maintain an explicit frame size in XDP, from Jesper
    Dangaard Brouer.

25) Add CAP_BPF, from Alexei Starovoitov.

26) Support terse dumps in the packet scheduler, from Vlad Buslov.

27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.

28) Add devm_register_netdev(), from Bartosz Golaszewski.

29) Minimize qdisc resets, from Cong Wang.

30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
    eliminate set_fs/get_fs calls. From Christoph Hellwig.

* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
  selftests: net: ip_defrag: ignore EPERM
  net_failover: fixed rollback in net_failover_open()
  Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
  Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
  vmxnet3: allow rx flow hash ops only when rss is enabled
  hinic: add set_channels ethtool_ops support
  selftests/bpf: Add a default $(CXX) value
  tools/bpf: Don't use $(COMPILE.c)
  bpf, selftests: Use bpf_probe_read_kernel
  s390/bpf: Use bcr 0,%0 as tail call nop filler
  s390/bpf: Maintain 8-byte stack alignment
  selftests/bpf: Fix verifier test
  selftests/bpf: Fix sample_cnt shared between two threads
  bpf, selftests: Adapt cls_redirect to call csum_level helper
  bpf: Add csum_level helper for fixing up csum levels
  bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
  sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
  crypto/chtls: IPv6 support for inline TLS
  Crypto/chcr: Fixes a coccinile check error
  Crypto/chcr: Fixes compilations warnings
  ...
2020-06-03 16:27:18 -07:00
Linus Torvalds
94709049fb Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:
 "A few little subsystems and a start of a lot of MM patches.

  Subsystems affected by this patch series: squashfs, ocfs2, parisc,
  vfs. With mm subsystems: slab-generic, slub, debug, pagecache, gup,
  swap, memcg, pagemap, memory-failure, vmalloc, kasan"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (128 commits)
  kasan: move kasan_report() into report.c
  mm/mm_init.c: report kasan-tag information stored in page->flags
  ubsan: entirely disable alignment checks under UBSAN_TRAP
  kasan: fix clang compilation warning due to stack protector
  x86/mm: remove vmalloc faulting
  mm: remove vmalloc_sync_(un)mappings()
  x86/mm/32: implement arch_sync_kernel_mappings()
  x86/mm/64: implement arch_sync_kernel_mappings()
  mm/ioremap: track which page-table levels were modified
  mm/vmalloc: track which page-table levels were modified
  mm: add functions to track page directory modifications
  s390: use __vmalloc_node in stack_alloc
  powerpc: use __vmalloc_node in alloc_vm_stack
  arm64: use __vmalloc_node in arch_alloc_vmap_stack
  mm: remove vmalloc_user_node_flags
  mm: switch the test_vmalloc module to use __vmalloc_node
  mm: remove __vmalloc_node_flags_caller
  mm: remove both instances of __vmalloc_node_flags
  mm: remove the prot argument to __vmalloc_node
  mm: remove the pgprot argument to __vmalloc
  ...
2020-06-02 12:21:36 -07:00
NeilBrown
8d92890bd6 mm/writeback: discard NR_UNSTABLE_NFS, use NR_WRITEBACK instead
After an NFS page has been written it is considered "unstable" until a
COMMIT request succeeds.  If the COMMIT fails, the page will be
re-written.

These "unstable" pages are currently accounted as "reclaimable", either
in WB_RECLAIMABLE, or in NR_UNSTABLE_NFS which is included in a
'reclaimable' count.  This might have made sense when sending the COMMIT
required a separate action by the VFS/MM (e.g.  releasepage() used to
send a COMMIT).  However now that all writes generated by ->writepages()
will automatically be followed by a COMMIT (since commit 919e3bd9a8
("NFS: Ensure we commit after writeback is complete")) it makes more
sense to treat them as writeback pages.

So this patch removes NR_UNSTABLE_NFS and accounts unstable pages in
NR_WRITEBACK and WB_WRITEBACK.

A particular effect of this change is that when
wb_check_background_flush() calls wb_over_bg_threshold(), the latter
will report 'true' a lot less often as the 'unstable' pages are no
longer considered 'dirty' (as there is nothing that writeback can do
about them anyway).

Currently wb_check_background_flush() will trigger writeback to NFS even
when there are relatively few dirty pages (if there are lots of unstable
pages), this can result in small writes going to the server (10s of
Kilobytes rather than a Megabyte) which hurts throughput.  With this
patch, there are fewer writes which are each larger on average.

Where the NR_UNSTABLE_NFS count was included in statistics
virtual-files, the entry is retained, but the value is hard-coded as
zero.  static trace points and warning printks which mentioned this
counter no longer report it.

[akpm@linux-foundation.org: re-layout comment]
[akpm@linux-foundation.org: fix printk warning]
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Acked-by: Michal Hocko <mhocko@suse.com>	[mm]
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Link: http://lkml.kernel.org/r/87d06j7gqa.fsf@notabene.neil.brown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:08 -07:00
Sami Tolvanen
628d06a48f scs: Add page accounting for shadow call stack allocations
This change adds accounting for the memory allocated for shadow stacks.

Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
2020-05-15 16:35:49 +01:00