mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 07:00:48 +00:00
20 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
James Morris
|
29881c4502 |
Revert "CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #2]"
This reverts commit 14eaddc967b16017d4a1a24d2be6c28ecbe06ed8. David has a better version to come. |
||
David Howells
|
14eaddc967 |
CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #2]
Fix a regression in cap_capable() due to: commit 5ff7711e635b32f0a1e558227d030c7e45b4a465 Author: David Howells <dhowells@redhat.com> Date: Wed Dec 31 02:52:28 2008 +0000 CRED: Differentiate objective and effective subjective credentials on a task The problem is that the above patch allows a process to have two sets of credentials, and for the most part uses the subjective credentials when accessing current's creds. There is, however, one exception: cap_capable(), and thus capable(), uses the real/objective credentials of the target task, whether or not it is the current task. Ordinarily this doesn't matter, since usually the two cred pointers in current point to the same set of creds. However, sys_faccessat() makes use of this facility to override the credentials of the calling process to make its test, without affecting the creds as seen from other processes. One of the things sys_faccessat() does is to make an adjustment to the effective capabilities mask, which cap_capable(), as it stands, then ignores. The affected capability check is in generic_permission(): if (!(mask & MAY_EXEC) || execute_ok(inode)) if (capable(CAP_DAC_OVERRIDE)) return 0; This change splits capable() from has_capability() down into the commoncap and SELinux code. The capable() security op now only deals with the current process, and uses the current process's subjective creds. A new security op - task_capable() - is introduced that can check any task's objective creds. strictly the capable() security op is superfluous with the presence of the task_capable() op, however it should be faster to call the capable() op since two fewer arguments need be passed down through the various layers. This can be tested by compiling the following program from the XFS testsuite: /* * t_access_root.c - trivial test program to show permission bug. * * Written by Michael Kerrisk - copyright ownership not pursued. * Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html */ #include <limits.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <sys/stat.h> #define UID 500 #define GID 100 #define PERM 0 #define TESTPATH "/tmp/t_access" static void errExit(char *msg) { perror(msg); exit(EXIT_FAILURE); } /* errExit */ static void accessTest(char *file, int mask, char *mstr) { printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask)); } /* accessTest */ int main(int argc, char *argv[]) { int fd, perm, uid, gid; char *testpath; char cmd[PATH_MAX + 20]; testpath = (argc > 1) ? argv[1] : TESTPATH; perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM; uid = (argc > 3) ? atoi(argv[3]) : UID; gid = (argc > 4) ? atoi(argv[4]) : GID; unlink(testpath); fd = open(testpath, O_RDWR | O_CREAT, 0); if (fd == -1) errExit("open"); if (fchown(fd, uid, gid) == -1) errExit("fchown"); if (fchmod(fd, perm) == -1) errExit("fchmod"); close(fd); snprintf(cmd, sizeof(cmd), "ls -l %s", testpath); system(cmd); if (seteuid(uid) == -1) errExit("seteuid"); accessTest(testpath, 0, "0"); accessTest(testpath, R_OK, "R_OK"); accessTest(testpath, W_OK, "W_OK"); accessTest(testpath, X_OK, "X_OK"); accessTest(testpath, R_OK | W_OK, "R_OK | W_OK"); accessTest(testpath, R_OK | X_OK, "R_OK | X_OK"); accessTest(testpath, W_OK | X_OK, "W_OK | X_OK"); accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK"); exit(EXIT_SUCCESS); } /* main */ This can be run against an Ext3 filesystem as well as against an XFS filesystem. If successful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns 0 access(/tmp/xxx, W_OK) returns 0 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns 0 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 If unsuccessful, it will show: [root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043 ---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx access(/tmp/xxx, 0) returns 0 access(/tmp/xxx, R_OK) returns -1 access(/tmp/xxx, W_OK) returns -1 access(/tmp/xxx, X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK) returns -1 access(/tmp/xxx, R_OK | X_OK) returns -1 access(/tmp/xxx, W_OK | X_OK) returns -1 access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1 I've also tested the fix with the SELinux and syscalls LTP testsuites. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org> |
||
James Morris
|
12204e24b1 |
security: pass mount flags to security_sb_kern_mount()
Pass mount flags to security_sb_kern_mount(), so security modules can determine if a mount operation is being performed by the kernel. Signed-off-by: James Morris <jmorris@namei.org> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> |
||
David Howells
|
3a3b7ce933 |
CRED: Allow kernel services to override LSM settings for task actions
Allow kernel services to override LSM settings appropriate to the actions performed by a task by duplicating a set of credentials, modifying it and then using task_struct::cred to point to it when performing operations on behalf of a task. This is used, for example, by CacheFiles which has to transparently access the cache on behalf of a process that thinks it is doing, say, NFS accesses with a potentially inappropriate (with respect to accessing the cache) set of credentials. This patch provides two LSM hooks for modifying a task security record: (*) security_kernel_act_as() which allows modification of the security datum with which a task acts on other objects (most notably files). (*) security_kernel_create_files_as() which allows modification of the security datum that is used to initialise the security data on a file that a task creates. The patch also provides four new credentials handling functions, which wrap the LSM functions: (1) prepare_kernel_cred() Prepare a set of credentials for a kernel service to use, based either on a daemon's credentials or on init_cred. All the keyrings are cleared. (2) set_security_override() Set the LSM security ID in a set of credentials to a specific security context, assuming permission from the LSM policy. (3) set_security_override_from_ctx() As (2), but takes the security context as a string. (4) set_create_files_as() Set the file creation LSM security ID in a set of credentials to be the same as that on a particular inode. Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> [Smack changes] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org> |
||
David Howells
|
a6f76f23d2 |
CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org> |
||
David Howells
|
d84f4f992c |
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org> |
||
David Howells
|
745ca2475a |
CRED: Pass credentials through dentry_open()
Pass credentials through dentry_open() so that the COW creds patch can have SELinux's flush_unauthorized_files() pass the appropriate creds back to itself when it opens its null chardev. The security_dentry_open() call also now takes a creds pointer, as does the dentry_open hook in struct security_operations. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org> |
||
David Howells
|
f1752eec61 |
CRED: Detach the credentials from task_struct
Detach the credentials from task_struct, duplicating them in copy_process() and releasing them in __put_task_struct(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org> |
||
David Howells
|
5cd9c58fbe |
security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags the target process if that is not the current process and it is trying to change its own flags in a different way at the same time. __capable() is using neither atomic ops nor locking to protect t->flags. This patch removes __capable() and introduces has_capability() that doesn't set PF_SUPERPRIV on the process being queried. This patch further splits security_ptrace() in two: (1) security_ptrace_may_access(). This passes judgement on whether one process may access another only (PTRACE_MODE_ATTACH for ptrace() and PTRACE_MODE_READ for /proc), and takes a pointer to the child process. current is the parent. (2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only, and takes only a pointer to the parent process. current is the child. In Smack and commoncap, this uses has_capability() to determine whether the parent will be permitted to use PTRACE_ATTACH if normal checks fail. This does not set PF_SUPERPRIV. Two of the instances of __capable() actually only act on current, and so have been changed to calls to capable(). Of the places that were using __capable(): (1) The OOM killer calls __capable() thrice when weighing the killability of a process. All of these now use has_capability(). (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see whether the parent was allowed to trace any process. As mentioned above, these have been split. For PTRACE_ATTACH and /proc, capable() is now used, and for PTRACE_TRACEME, has_capability() is used. (3) cap_safe_nice() only ever saw current, so now uses capable(). (4) smack_setprocattr() rejected accesses to tasks other than current just after calling __capable(), so the order of these two tests have been switched and capable() is used instead. (5) In smack_file_send_sigiotask(), we need to allow privileged processes to receive SIGIO on files they're manipulating. (6) In smack_task_wait(), we let a process wait for a privileged process, whether or not the process doing the waiting is privileged. I've tested this with the LTP SELinux and syscalls testscripts. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Morris <jmorris@namei.org> |
||
Al Viro
|
b77b0646ef |
[PATCH] pass MAY_OPEN to vfs_permission() explicitly
... and get rid of the last "let's deduce mask from nameidata->flags" bit. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
James Morris
|
6f0f0fd496 |
security: remove register_security hook
The register security hook is no longer required, as the capability module is always registered. LSMs wishing to stack capability as a secondary module should do so explicitly. Signed-off-by: James Morris <jmorris@namei.org> Acked-by: Stephen Smalley <sds@tycho.nsa.gov> Acked-by: Greg Kroah-Hartman <gregkh@suse.de> |
||
Miklos Szeredi
|
5915eb5386 |
security: remove dummy module
Remove the dummy module and make the "capability" module the default. Compile and boot tested. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org> |
||
Andrew G. Morgan
|
3898b1b4eb |
capabilities: implement per-process securebits
Filesystem capability support makes it possible to do away with (set)uid-0 based privilege and use capabilities instead. That is, with filesystem support for capabilities but without this present patch, it is (conceptually) possible to manage a system with capabilities alone and never need to obtain privilege via (set)uid-0. Of course, conceptually isn't quite the same as currently possible since few user applications, certainly not enough to run a viable system, are currently prepared to leverage capabilities to exercise privilege. Further, many applications exist that may never get upgraded in this way, and the kernel will continue to want to support their setuid-0 base privilege needs. Where pure-capability applications evolve and replace setuid-0 binaries, it is desirable that there be a mechanisms by which they can contain their privilege. In addition to leveraging the per-process bounding and inheritable sets, this should include suppressing the privilege of the uid-0 superuser from the process' tree of children. The feature added by this patch can be leveraged to suppress the privilege associated with (set)uid-0. This suppression requires CAP_SETPCAP to initiate, and only immediately affects the 'current' process (it is inherited through fork()/exec()). This reimplementation differs significantly from the historical support for securebits which was system-wide, unwieldy and which has ultimately withered to a dead relic in the source of the modern kernel. With this patch applied a process, that is capable(CAP_SETPCAP), can now drop all legacy privilege (through uid=0) for itself and all subsequently fork()'d/exec()'d children with: prctl(PR_SET_SECUREBITS, 0x2f); This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is enabled at configure time. [akpm@linux-foundation.org: fix uninitialised var warning] [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY] Signed-off-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Reviewed-by: James Morris <jmorris@namei.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Paul Moore <paul.moore@hp.com> Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Serge Hallyn
|
aedb60a67c |
file capabilities: remove cap_task_kill()
The original justification for cap_task_kill() was as follows: check_kill_permission() does appropriate uid equivalence checks. However with file capabilities it becomes possible for an unprivileged user to execute a file with file capabilities resulting in a more privileged task with the same uid. However now that cap_task_kill() always returns 0 (permission granted) when p->uid==current->uid, the whole hook is worthless, and only likely to create more subtle problems in the corner cases where it might still be called but return -EPERM. Those cases are basically when uids are different but euid/suid is equivalent as per the check in check_kill_permission(). One example of a still-broken application is 'at' for non-root users. This patch removes cap_task_kill(). Signed-off-by: Serge Hallyn <serge@hallyn.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Earlier-version-tested-by: Luiz Fernando N. Capitulino <lcapitulino@mandriva.com.br> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Serge E. Hallyn
|
b53767719b |
Implement file posix capabilities
Implement file posix capabilities. This allows programs to be given a subset of root's powers regardless of who runs them, without having to use setuid and giving the binary all of root's powers. This version works with Kaigai Kohei's userspace tools, found at http://www.kaigai.gr.jp/index.php. For more information on how to use this patch, Chris Friedhoff has posted a nice page at http://www.friedhoff.org/fscaps.html. Changelog: Nov 27: Incorporate fixes from Andrew Morton (security-introduce-file-caps-tweaks and security-introduce-file-caps-warning-fix) Fix Kconfig dependency. Fix change signaling behavior when file caps are not compiled in. Nov 13: Integrate comments from Alexey: Remove CONFIG_ ifdef from capability.h, and use %zd for printing a size_t. Nov 13: Fix endianness warnings by sparse as suggested by Alexey Dobriyan. Nov 09: Address warnings of unused variables at cap_bprm_set_security when file capabilities are disabled, and simultaneously clean up the code a little, by pulling the new code into a helper function. Nov 08: For pointers to required userspace tools and how to use them, see http://www.friedhoff.org/fscaps.html. Nov 07: Fix the calculation of the highest bit checked in check_cap_sanity(). Nov 07: Allow file caps to be enabled without CONFIG_SECURITY, since capabilities are the default. Hook cap_task_setscheduler when !CONFIG_SECURITY. Move capable(TASK_KILL) to end of cap_task_kill to reduce audit messages. Nov 05: Add secondary calls in selinux/hooks.c to task_setioprio and task_setscheduler so that selinux and capabilities with file cap support can be stacked. Sep 05: As Seth Arnold points out, uid checks are out of place for capability code. Sep 01: Define task_setscheduler, task_setioprio, cap_task_kill, and task_setnice to make sure a user cannot affect a process in which they called a program with some fscaps. One remaining question is the note under task_setscheduler: are we ok with CAP_SYS_NICE being sufficient to confine a process to a cpuset? It is a semantic change, as without fsccaps, attach_task doesn't allow CAP_SYS_NICE to override the uid equivalence check. But since it uses security_task_setscheduler, which elsewhere is used where CAP_SYS_NICE can be used to override the uid equivalence check, fixing it might be tough. task_setscheduler note: this also controls cpuset:attach_task. Are we ok with CAP_SYS_NICE being used to confine to a cpuset? task_setioprio task_setnice sys_setpriority uses this (through set_one_prio) for another process. Need same checks as setrlimit Aug 21: Updated secureexec implementation to reflect the fact that euid and uid might be the same and nonzero, but the process might still have elevated caps. Aug 15: Handle endianness of xattrs. Enforce capability version match between kernel and disk. Enforce that no bits beyond the known max capability are set, else return -EPERM. With this extra processing, it may be worth reconsidering doing all the work at bprm_set_security rather than d_instantiate. Aug 10: Always call getxattr at bprm_set_security, rather than caching it at d_instantiate. [morgan@kernel.org: file-caps clean up for linux/capability.h] [bunk@kernel.org: unexport cap_inode_killpriv] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Andrew Morgan <morgan@kernel.org> Signed-off-by: Andrew Morgan <morgan@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
James Morris
|
20510f2f4e |
security: Convert LSM into a static interface
Convert LSM into a static interface, as the ability to unload a security module is not required by in-tree users and potentially complicates the overall security architecture. Needlessly exported LSM symbols have been unexported, to help reduce API abuse. Parameters for the capability and root_plug modules are now specified at boot. The SECURITY_FRAMEWORK_VERSION macro has also been removed. In a nutshell, there is no safe way to unload an LSM. The modular interface is thus unecessary and broken infrastructure. It is used only by out-of-tree modules, which are often binary-only, illegal, abusive of the API and dangerous, e.g. silently re-vectoring SELinux. [akpm@linux-foundation.org: cleanups] [akpm@linux-foundation.org: USB Kconfig fix] [randy.dunlap@oracle.com: fix LSM kernel-doc] Signed-off-by: James Morris <jmorris@namei.org> Acked-by: Chris Wright <chrisw@sous-sol.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: "Serge E. Hallyn" <serue@us.ibm.com> Acked-by: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Randy Dunlap
|
e63340ae6b |
header cleaning: don't include smp_lock.h when not used
Remove includes of <linux/smp_lock.h> where it is not used/needed. Suggested by Al Viro. Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc, sparc64, and arm (all 59 defconfigs). Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jörn Engel
|
6ab3d5624e |
Remove obsolete #include <linux/config.h>
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de> |
||
Sam Ravnborg
|
367cb70421 |
kbuild: un-stringnify KBUILD_MODNAME
Now when kbuild passes KBUILD_MODNAME with "" do not __stringify it when used. Remove __stringnify for all users. This also fixes the output of: $ ls -l /sys/module/ drwxr-xr-x 4 root root 0 2006-01-05 14:24 pcmcia drwxr-xr-x 4 root root 0 2006-01-05 14:24 pcmcia_core drwxr-xr-x 3 root root 0 2006-01-05 14:24 "processor" drwxr-xr-x 3 root root 0 2006-01-05 14:24 "psmouse" The quoting of the module names will be gone again. Thanks to GregKH + Kay Sievers for reproting this. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> |
||
Linus Torvalds
|
1da177e4c3 |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip! |