65 Commits

Author SHA1 Message Date
Al Viro
4a0fd5bf0f teach SYSCALL_DEFINE<n> how to deal with long long/unsigned long long
... and convert a bunch of SYSCALL_DEFINE ones to SYSCALL_DEFINE<n>,
killing the boilerplate crap around them.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-03-03 22:46:22 -05:00
Al Viro
2903ff019b switch simple cases of fget_light to fdget
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-09-26 22:20:08 -04:00
Al Viro
132ea2479f switch readahead(2) to fget_light()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-09-26 21:10:04 -04:00
Cong Wang
782182e53a mm: move readahead syscall to mm/readahead.c
It is better to define readahead(2) in mm/readahead.c than in
mm/filemap.c.

Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:23 -07:00
Paul Gortmaker
b95f1b31b7 mm: Map most files to use export.h instead of module.h
The files changed within are only using the EXPORT_SYMBOL
macro variants.  They are not using core modular infrastructure
and hence don't need module.h but only the export.h header.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 09:20:12 -04:00
Wu Fengguang
7b1de5868b readahead: readahead page allocations are OK to fail
Pass __GFP_NORETRY|__GFP_NOWARN for readahead page allocations.

readahead page allocations are completely optional.  They are OK to fail
and in particular shall not trigger OOM on themselves.

Reported-by: Dave Young <hidave.darkstar@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:25 -07:00
Jens Axboe
5b417b1873 read-ahead: use plugging
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-10 08:52:26 +01:00
Jens Axboe
7eaceaccab block: remove per-queue plugging
Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().

Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-10 08:52:07 +01:00
Huang Shijie
bf8abe8b92 readahead.c: fix comment
Fix a wrong comment over page_cache_async_readahead().

Signed-off-by: Huang Shijie <shijie8@gmail.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:00 -07:00
Wu Fengguang
70655c06bd readahead: fix NULL filp dereference
btrfs relocate_file_extent_cluster() calls us with NULL filp:

  [ 4005.426805] BUG: unable to handle kernel NULL pointer dereference at 00000021
  [ 4005.426818] IP: [<c109a130>] page_cache_sync_readahead+0x18/0x3e

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Yan Zheng <yanzheng@21cn.com>
Reported-by: Kirill A. Shutemov <kirill@shutemov.name>
Tested-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-07 08:38:03 -07:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Wu Fengguang
0141450f66 readahead: introduce FMODE_RANDOM for POSIX_FADV_RANDOM
This fixes inefficient page-by-page reads on POSIX_FADV_RANDOM.

POSIX_FADV_RANDOM used to set ra_pages=0, which leads to poor performance:
a 16K read will be carried out in 4 _sync_ 1-page reads.

In other places, ra_pages==0 means
- it's ramfs/tmpfs/hugetlbfs/sysfs/configfs
- some IO error happened
where multi-page read IO won't help or should be avoided.

POSIX_FADV_RANDOM actually want a different semantics: to disable the
*heuristic* readahead algorithm, and to use a dumb one which faithfully
submit read IO for whatever application requests.

So introduce a flag FMODE_RANDOM for POSIX_FADV_RANDOM.

Note that the random hint is not likely to help random reads performance
noticeably.  And it may be too permissive on huge request size (its IO
size is not limited by read_ahead_kb).

In Quentin's report (http://lkml.org/lkml/2009/12/24/145), the overall
(NFS read) performance of the application increased by 313%!

Tested-by: Quentin Barnes <qbarnes+nfs@yahoo-inc.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: <stable@kernel.org>			[2.6.33.x]
Cc: <qbarnes+nfs@yahoo-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:25 -08:00
Hisashi Hifumi
65a80b4c61 readahead: add blk_run_backing_dev
I added blk_run_backing_dev on page_cache_async_readahead so readahead I/O
is unpluged to improve throughput on especially RAID environment.

The normal case is, if page N become uptodate at time T(N), then T(N) <=
T(N+1) holds.  With RAID (and NFS to some degree), there is no strict
ordering, the data arrival time depends on runtime status of individual
disks, which breaks that formula.  So in do_generic_file_read(), just
after submitting the async readahead IO request, the current page may well
be uptodate, so the page won't be locked, and the block device won't be
implicitly unplugged:

               if (PageReadahead(page))
                        page_cache_async_readahead()
                if (!PageUptodate(page))
                                goto page_not_up_to_date;
                //...
page_not_up_to_date:
                lock_page_killable(page);

Therefore explicit unplugging can help.

Following is the test result with dd.

#dd if=testdir/testfile of=/dev/null bs=16384

-2.6.30-rc6
1048576+0 records in
1048576+0 records out
17179869184 bytes (17 GB) copied, 224.182 seconds, 76.6 MB/s

-2.6.30-rc6-patched
1048576+0 records in
1048576+0 records out
17179869184 bytes (17 GB) copied, 206.465 seconds, 83.2 MB/s

(7Disks RAID-0 Array)

-2.6.30-rc6
1054976+0 records in
1054976+0 records out
17284726784 bytes (17 GB) copied, 212.233 seconds, 81.4 MB/s

-2.6.30-rc6-patched
1054976+0 records out
17284726784 bytes (17 GB) copied, 198.878 seconds, 86.9 MB/s

(7Disks RAID-5 Array)

The patch was found to improve performance with the SCST scsi target
driver.  See
http://sourceforge.net/mailarchive/forum.php?thread_name=a0272b440906030714g67eabc5k8f847fb1e538cc62%40mail.gmail.com&forum_name=scst-devel

[akpm@linux-foundation.org: unbust comment layout]
[akpm@linux-foundation.org: "fix" CONFIG_BLOCK=n]
Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: Ronald <intercommit@gmail.com>
Cc: Bart Van Assche <bart.vanassche@gmail.com>
Cc: Vladislav Bolkhovitin <vst@vlnb.net>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-17 15:45:32 -08:00
Wu Fengguang
10be0b372c readahead: introduce context readahead algorithm
Introduce page cache context based readahead algorithm.
This is to better support concurrent read streams in general.

RATIONALE
---------
The current readahead algorithm detects interleaved reads in a _passive_ way.
Given a sequence of interleaved streams 1,1001,2,1002,3,4,1003,5,1004,1005,6,...
By checking for (offset == prev_offset + 1), it will discover the sequentialness
between 3,4 and between 1004,1005, and start doing sequential readahead for the
individual streams since page 4 and page 1005.

The context readahead algorithm guarantees to discover the sequentialness no
matter how the streams are interleaved. For the above example, it will start
sequential readahead since page 2 and 1002.

The trick is to poke for page @offset-1 in the page cache when it has no other
clues on the sequentialness of request @offset: if the current requenst belongs
to a sequential stream, that stream must have accessed page @offset-1 recently,
and the page will still be cached now. So if page @offset-1 is there, we can
take request @offset as a sequential access.

BENEFICIARIES
-------------
- strictly interleaved reads  i.e. 1,1001,2,1002,3,1003,...
  the current readahead will take them as silly random reads;
  the context readahead will take them as two sequential streams.

- cooperative IO processes   i.e. NFS and SCST
  They create a thread pool, farming off (sequential) IO requests to different
  threads which will be performing interleaved IO.

  It was not easy(or possible) to reliably tell from file->f_ra all those
  cooperative processes working on the same sequential stream, since they will
  have different file->f_ra instances. And NFSD's file->f_ra is particularly
  unusable, since their file objects are dynamically created for each request.
  The nfsd does have code trying to restore the f_ra bits, but not satisfactory.

  The new scheme is to detect the sequential pattern via looking up the page
  cache, which provides one single and consistent view of the pages recently
  accessed. That makes sequential detection for cooperative processes possible.

USER REPORT
-----------
Vladislav recommends the addition of context readahead as a result of his SCST
benchmarks. It leads to 6%~40% performance gains in various cases and achieves
equal performance in others.                http://lkml.org/lkml/2009/3/19/239

OVERHEADS
---------
In theory, it introduces one extra page cache lookup per random read.  However
the below benchmark shows context readahead to be slightly faster, wondering..

Randomly reading 200MB amount of data on a sparse file, repeat 20 times for
each block size. The average throughputs are:

                       	original ra	context ra	gain
 4K random reads:	 65.561MB/s	 65.648MB/s	+0.1%
16K random reads:	124.767MB/s	124.951MB/s	+0.1%
64K random reads: 	162.123MB/s	162.278MB/s	+0.1%

Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Tested-by: Vladislav Bolkhovitin <vst@vlnb.net>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:30 -07:00
Wu Fengguang
045a2529a3 readahead: move the random read case to bottom
Split all readahead cases, and move the random one to bottom.

No behavior changes.

This is to prepare for the introduction of context readahead, and make it
easy for inserting accounting/tracing points for each case.

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Vladislav Bolkhovitin <vst@vlnb.net>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:30 -07:00
Wu Fengguang
d30a11004e readahead: record mmap read-around states in file_ra_state
Mmap read-around now shares the same code style and data structure with
readahead code.

This also removes do_page_cache_readahead().  Its last user, mmap
read-around, has been changed to call ra_submit().

The no-readahead-if-congested logic is dumped by the way.  Users will be
pretty sensitive about the slow loading of executables.  So it's
unfavorable to disabled mmap read-around on a congested queue.

[akpm@linux-foundation.org: coding-style fixes]
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:29 -07:00
Wu Fengguang
51daa88ebd readahead: remove sync/async readahead call dependency
The readahead call scheme is error-prone in that it expects the call sites
to check for async readahead after doing a sync one.  I.e.

			if (!page)
				page_cache_sync_readahead();
			page = find_get_page();
			if (page && PageReadahead(page))
				page_cache_async_readahead();

This is because PG_readahead could be set by a sync readahead for the
_current_ newly faulted in page, and the readahead code simply expects one
more callback on the same page to start the async readahead.  If the
caller fails to do so, it will miss the PG_readahead bits and never able
to start an async readahead.

Eliminate this insane constraint by piggy-backing the async part into the
current readahead window.

Now if an async readahead should be started immediately after a sync one,
the readahead logic itself will do it.  So the following code becomes
valid: (the 'else' in particular)

			if (!page)
				page_cache_sync_readahead();
			else if (PageReadahead(page))
				page_cache_async_readahead();

Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:29 -07:00
Wu Fengguang
160334a0cf readahead: increase interleaved readahead size
Make sure interleaved readahead size is larger than request size.  This
also makes the readahead window grow up more quickly.

Reported-by: Xu Chenfeng <xcf@ustc.edu.cn>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:29 -07:00
Wu Fengguang
caca7cb748 readahead: remove one unnecessary radix tree lookup
(hit_readahead_marker != 0) means the page at @offset is present, so we
can search for non-present page starting from @offset+1.

Reported-by: Xu Chenfeng <xcf@ustc.edu.cn>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:28 -07:00
Wu Fengguang
fc31d16add readahead: apply max_sane_readahead() limit in ondemand_readahead()
Just in case someone aggressively sets a huge readahead size.

Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:28 -07:00
Wu Fengguang
f7e839dd36 readahead: move max_sane_readahead() calls into force_page_cache_readahead()
Impact: code simplification.

Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:28 -07:00
David Howells
266cf658ef FS-Cache: Recruit a page flags for cache management
Recruit a page flag to aid in cache management.  The following extra flag is
defined:

 (1) PG_fscache (PG_private_2)

     The marked page is backed by a local cache and is pinning resources in the
     cache driver.

If PG_fscache is set, then things that checked for PG_private will now also
check for that.  This includes things like truncation and page invalidation.
The function page_has_private() had been added to make the checks for both
PG_private and PG_private_2 at the same time.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:36 +01:00
David Howells
03fb3d2af9 FS-Cache: Release page->private after failed readahead
The attached patch causes read_cache_pages() to release page-private data on a
page for which add_to_page_cache() fails.  If the filler function fails, then
the problematic page is left attached to the pagecache (with appropriate flags
set, one presumes) and the remaining to-be-attached pages are invalidated and
discarded.  This permits pages with caching references associated with them to
be cleaned up.

The invalidatepage() address space op is called (indirectly) to do the honours.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03 16:42:35 +01:00
Jens Axboe
26160158d3 Move the default_backing_dev_info out of readahead.c and into backing-dev.c
It really makes no sense to have it in readahead.c, so move it where
it belongs.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-03-26 11:01:33 +01:00
Rik van Riel
4f98a2fee8 vmscan: split LRU lists into anon & file sets
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon").  The latter includes tmpfs.

The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.

This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists.  The big
policy changes are in separate patches.

[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Francois Cami
e1f8e87449 Remove Andrew Morton's old email accounts
People can use the real name an an index into MAINTAINERS to find the
current email address.

Signed-off-by: Francois Cami <francois.cami@free.fr>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-16 11:21:32 -07:00
Nick Piggin
30002ed2e4 mm: readahead scan lockless
radix_tree_next_hole() is implemented as a series of radix_tree_lookup()s.
So it can be called locklessly, under rcu_read_lock().

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:06 -07:00
Peter Zijlstra
cf0ca9fe5d mm: bdi: export BDI attributes in sysfs
Provide a place in sysfs (/sys/class/bdi) for the backing_dev_info object.
This allows us to see and set the various BDI specific variables.

In particular this properly exposes the read-ahead window for all relevant
users and /sys/block/<block>/queue/read_ahead_kb should be deprecated.

With patient help from Kay Sievers and Greg KH

[mszeredi@suse.cz]

 - split off NFS and FUSE changes into separate patches
 - document new sysfs attributes under Documentation/ABI
 - do bdi_class_init as a core_initcall, otherwise the "default" BDI
   won't be initialized
 - remove bdi_init_fmt macro, it's not used very much

[akpm@linux-foundation.org: fix ia64 warning]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Acked-by: Greg KH <greg@kroah.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 08:29:49 -07:00
Randy Dunlap
f7850d932f mm/readahead: fix kernel-doc notation
Fix kernel-doc notation in mm/readahead.c.

Change ":" to ";" so that it doesn't get treated as a doc section heading.
Move the comment block ending "*/" to a line by itself so that the text on
that last line is not lost (dropped).

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-19 18:53:37 -07:00
Peter Zijlstra
e0bf68ddec mm: bdi init hooks
provide BDI constructor/destructor hooks

[akpm@linux-foundation.org: compile fix]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 08:42:45 -07:00
Nick Piggin
eb2be18931 mm: buffered write cleanup
Quite a bit of code is used in maintaining these "cached pages" that are
probably pretty unlikely to get used. It would require a narrow race where
the page is inserted concurrently while this process is allocating a page
in order to create the spare page. Then a multi-page write into an uncached
part of the file, to make use of it.

Next, the buffered write path (and others) uses its own LRU pagevec when it
should be just using the per-CPU LRU pagevec (which will cut down on both data
and code size cacheline footprint). Also, these private LRU pagevecs are
emptied after just a very short time, in contrast with the per-CPU pagevecs
that are persistent. Net result: 7.3 times fewer lru_lock acquisitions required
to add the pages to pagecache for a bulk write (in 4K chunks).

[this gets rid of some cond_resched() calls in readahead.c and mpage.c due
 to clashes in -mm. What put them there, and why? ]

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:54 -07:00
Nick Piggin
0012818810 mm: use lockless radix-tree probe
Probing pages and radix_tree_tagged are lockless operations with the lockless
radix-tree.  Convert these users to RCU locking rather than using tree_lock.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:53 -07:00
Fengguang Wu
535443f515 readahead: remove several readahead macros
Remove VM_MAX_CACHE_HIT, MAX_RA_PAGES and MIN_RA_PAGES.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:52 -07:00
Fengguang Wu
6b10c6c9fb readahead: basic support of interleaved reads
This is a simplified version of the pagecache context based readahead.  It
handles the case of multiple threads reading on the same fd and invalidating
each others' readahead state.  It does the trick by scanning the pagecache and
recovering the current read stream's readahead status.

The algorithm works in a opportunistic way, in that it does not try to detect
interleaved reads _actively_, which requires a probe into the page cache
(which means a little more overhead for random reads).  It only tries to
handle a previously started sequential readahead whose state was overwritten
by another concurrent stream, and it can do this job pretty well.

Negative and positive examples(or what you can expect from it):

1) it cannot detect and serve perfect request-by-request interleaved reads
   right:
	time	stream 1  stream 2
	0 	1
	1 	          1001
	2 	2
	3 	          1002
	4 	3
	5 	          1003
	6 	4
	7 	          1004
	8 	5
	9	          1005

Here no single readahead will be carried out.

2) However, if it's two concurrent reads by two threads, the chance of the
   initial sequential readahead be started is huge. Once the first sequential
   readahead is started for a stream, this patch will ensure that the readahead
   window continues to rampup and won't be disturbed by other streams.

	time	stream 1  stream 2
	0 	1
	1 	2
	2 	          1001
	3 	3
	4 	          1002
	5 	          1003
	6 	4
	7 	5
	8 	          1004
	9 	6
	10	          1005
	11	7
	12	          1006
	13	          1007

Here stream 1 will start a readahead at page 2, and stream 2 will start its
first readahead at page 1003.  From then on the two streams will be served
right.

Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:52 -07:00
Fengguang Wu
f4e6b498d6 readahead: combine file_ra_state.prev_index/prev_offset into prev_pos
Combine the file_ra_state members
				unsigned long prev_index
				unsigned int prev_offset
into
				loff_t prev_pos

It is more consistent and better supports huge files.

Thanks to Peter for the nice proposal!

[akpm@linux-foundation.org: fix shift overflow]
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:52 -07:00
Fengguang Wu
937085aa35 readahead: compacting file_ra_state
Use 'unsigned int' instead of 'unsigned long' for readahead sizes.

This helps reduce memory consumption on 64bit CPU when a lot of files are
opened.

CC: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:52 -07:00
Jens Axboe
f5ff8422bb Fix warnings with !CONFIG_BLOCK
Hide everything in blkdev.h with CONFIG_BLOCK isn't set, and fixup
the (few) files that fail to build because they were relying on blkdev.h
pulling in extra includes for them.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-10-10 09:25:57 +02:00
Fengguang Wu
f9acc8c7b3 readahead: sanify file_ra_state names
Rename some file_ra_state variables and remove some accessors.

It results in much simpler code.
Kudos to Rusty!

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Rusty Russell
cf914a7d65 readahead: split ondemand readahead interface into two functions
Split ondemand readahead interface into two functions.  I think this makes it
a little clearer for non-readahead experts (like Rusty).

Internally they both call ondemand_readahead(), but the page argument is
changed to an obvious boolean flag.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Fengguang Wu
fe3cba17c4 mm: share PG_readahead and PG_reclaim
Share the same page flag bit for PG_readahead and PG_reclaim.

One is used only on file reads, another is only for emergency writes.  One
is used mostly for fresh/young pages, another is for old pages.

Combinations of possible interactions are:

a) clear PG_reclaim => implicit clear of PG_readahead
	it will delay an asynchronous readahead into a synchronous one
	it actually does _good_ for readahead:
		the pages will be reclaimed soon, it's readahead thrashing!
		in this case, synchronous readahead makes more sense.

b) clear PG_readahead => implicit clear of PG_reclaim
	one(and only one) page will not be reclaimed in time
	it can be avoided by checking PageWriteback(page) in readahead first

c) set PG_reclaim => implicit set of PG_readahead
	will confuse readahead and make it restart the size rampup process
	it's a trivial problem, and can mostly be avoided by checking
	PageWriteback(page) first in readahead

d) set PG_readahead => implicit set of PG_reclaim
	PG_readahead will never be set on already cached pages.
	PG_reclaim will always be cleared on dirtying a page.
	so not a problem.

In summary,
	a)   we get better behavior
	b,d) possible interactions can be avoided
	c)   racy condition exists that might affect readahead, but the chance
	     is _really_ low, and the hurt on readahead is trivial.

Compound pages also use PG_reclaim, but for now they do not interact with
reclaim/readahead code.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Fengguang Wu
c743d96b6d readahead: remove the old algorithm
Remove the old readahead algorithm.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Steven Pratt <slpratt@austin.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Fengguang Wu
122a21d11c readahead: on-demand readahead logic
This is a minimal readahead algorithm that aims to replace the current one.
It is more flexible and reliable, while maintaining almost the same behavior
and performance.  Also it is full integrated with adaptive readahead.

It is designed to be called on demand:
	- on a missing page, to do synchronous readahead
	- on a lookahead page, to do asynchronous readahead

In this way it eliminated the awkward workarounds for cache hit/miss,
readahead thrashing, retried read, and unaligned read.  It also adopts the
data structure introduced by adaptive readahead, parameterizes readahead
pipelining with `lookahead_index', and reduces the current/ahead windows to
one single window.

HEURISTICS

The logic deals with four cases:

	- sequential-next
		found a consistent readahead window, so push it forward

	- random
		standalone small read, so read as is

	- sequential-first
		create a new readahead window for a sequential/oversize request

	- lookahead-clueless
		hit a lookahead page not associated with the readahead window,
		so create a new readahead window and ramp it up

In each case, three parameters are determined:

	- readahead index: where the next readahead begins
	- readahead size:  how much to readahead
	- lookahead size:  when to do the next readahead (for pipelining)

BEHAVIORS

The old behaviors are maximally preserved for trivial sequential/random reads.
Notable changes are:

	- It no longer imposes strict sequential checks.
	  It might help some interleaved cases, and clustered random reads.
	  It does introduce risks of a random lookahead hit triggering an
	  unexpected readahead. But in general it is more likely to do good
	  than to do evil.

	- Interleaved reads are supported in a minimal way.
	  Their chances of being detected and proper handled are still low.

	- Readahead thrashings are better handled.
	  The current readahead leads to tiny average I/O sizes, because it
	  never turn back for the thrashed pages.  They have to be fault in
	  by do_generic_mapping_read() one by one.  Whereas the on-demand
	  readahead will redo readahead for them.

OVERHEADS

The new code reduced the overheads of

	- excessively calling the readahead routine on small sized reads
	  (the current readahead code insists on seeing all requests)

	- doing a lot of pointless page-cache lookups for small cached files
	  (the current readahead only turns itself off after 256 cache hits,
	  unfortunately most files are < 1MB, so never see that chance)

That accounts for speedup of
	- 0.3% on 1-page sequential reads on sparse file
	- 1.2% on 1-page cache hot sequential reads
	- 3.2% on 256-page cache hot sequential reads
	- 1.3% on cache hot `tar /lib`

However, it does introduce one extra page-cache lookup per cache miss, which
impacts random reads slightly. That's 1% overheads for 1-page random reads on
sparse file.

PERFORMANCE

The basic benchmark setup is
	- 2.6.20 kernel with on-demand readahead
	- 1MB max readahead size
	- 2.9GHz Intel Core 2 CPU
	- 2GB memory
	- 160G/8M Hitachi SATA II 7200 RPM disk

The benchmarks show that
	- it maintains the same performance for trivial sequential/random reads
	- sysbench/OLTP performance on MySQL gains up to 8%
	- performance on readahead thrashing gains up to 3 times

iozone throughput (KB/s): roughly the same
==========================================
iozone -c -t1 -s 4096m -r 64k

			       2.6.20          on-demand      gain
first run
	  "  Initial write "   61437.27        64521.53      +5.0%
	  "        Rewrite "   47893.02        48335.20      +0.9%
	  "           Read "   62111.84        62141.49      +0.0%
	  "        Re-read "   62242.66        62193.17      -0.1%
	  "   Reverse Read "   50031.46        49989.79      -0.1%
	  "    Stride read "    8657.61         8652.81      -0.1%
	  "    Random read "   13914.28        13898.23      -0.1%
	  " Mixed workload "   19069.27        19033.32      -0.2%
	  "   Random write "   14849.80        14104.38      -5.0%
	  "         Pwrite "   62955.30        65701.57      +4.4%
	  "          Pread "   62209.99        62256.26      +0.1%

second run
	  "  Initial write "   60810.31        66258.69      +9.0%
	  "        Rewrite "   49373.89        57833.66     +17.1%
	  "           Read "   62059.39        62251.28      +0.3%
	  "        Re-read "   62264.32        62256.82      -0.0%
	  "   Reverse Read "   49970.96        50565.72      +1.2%
	  "    Stride read "    8654.81         8638.45      -0.2%
	  "    Random read "   13901.44        13949.91      +0.3%
	  " Mixed workload "   19041.32        19092.04      +0.3%
	  "   Random write "   14019.99        14161.72      +1.0%
	  "         Pwrite "   64121.67        68224.17      +6.4%
	  "          Pread "   62225.08        62274.28      +0.1%

In summary, writes are unstable, reads are pretty close on average:

			  access pattern  2.6.20  on-demand   gain
				   Read  62085.61  62196.38  +0.2%
				Re-read  62253.49  62224.99  -0.0%
			   Reverse Read  50001.21  50277.75  +0.6%
			    Stride read   8656.21   8645.63  -0.1%
			    Random read  13907.86  13924.07  +0.1%
	 		 Mixed workload  19055.29  19062.68  +0.0%
				  Pread  62217.53  62265.27  +0.1%

aio-stress: roughly the same
============================
aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso
aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso

					2.6.20      on-demand  delta
			sequential	 92.57s      92.54s    -0.0%
			random		311.87s     312.15s    +0.1%

sysbench fileio: roughly the same
=================================
sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \
	 --file-total-size=4G --file-block-size=64K \
	 --num-threads=001 --max-requests=10000 --max-time=900 run

				threads    2.6.20   on-demand    delta
		first run
				      1   59.1974s    59.2262s  +0.0%
				      2   58.0575s    58.2269s  +0.3%
				      4   48.0545s    47.1164s  -2.0%
				      8   41.0684s    41.2229s  +0.4%
				     16   35.8817s    36.4448s  +1.6%
				     32   32.6614s    32.8240s  +0.5%
				     64   23.7601s    24.1481s  +1.6%
				    128   24.3719s    23.8225s  -2.3%
				    256   23.2366s    22.0488s  -5.1%

		second run
				      1   59.6720s    59.5671s  -0.2%
				      8   41.5158s    41.9541s  +1.1%
				     64   25.0200s    23.9634s  -4.2%
				    256   22.5491s    20.9486s  -7.1%

Note that the numbers are not very stable because of the writes.
The overall performance is close when we sum all seconds up:

                sum all up               495.046s    491.514s   -0.7%

sysbench oltp (trans/sec): up to 8% gain
========================================
sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \
	 --mysql-socket=/var/run/mysqld/mysqld.sock \
	 --mysql-user=root --mysql-password=readahead \
	 --num-threads=064 --max-requests=10000 --max-time=900 run

	10000-transactions run
				threads    2.6.20   on-demand    gain
				      1     62.81       64.56   +2.8%
				      2     67.97       70.93   +4.4%
				      4     81.81       85.87   +5.0%
				      8     94.60       97.89   +3.5%
				     16     99.07      104.68   +5.7%
				     32     95.93      104.28   +8.7%
				     64     96.48      103.68   +7.5%
	5000-transactions run
				      1     48.21       48.65   +0.9%
				      8     68.60       70.19   +2.3%
				     64     70.57       74.72   +5.9%
	2000-transactions run
				      1     37.57       38.04   +1.3%
				      2     38.43       38.99   +1.5%
				      4     45.39       46.45   +2.3%
				      8     51.64       52.36   +1.4%
				     16     54.39       55.18   +1.5%
				     32     52.13       54.49   +4.5%
				     64     54.13       54.61   +0.9%

That's interesting results. Some investigations show that
	- MySQL is accessing the db file non-uniformly: some parts are
	  more hot than others
	- It is mostly doing 4-page random reads, and sometimes doing two
	  reads in a row, the latter one triggers a 16-page readahead.
	- The on-demand readahead leaves many lookahead pages (flagged
	  PG_readahead) there. Many of them will be hit, and trigger
	  more readahead pages. Which might save more seeks.
	- Naturally, the readahead windows tend to lie in hot areas,
	  and the lookahead pages in hot areas is more likely to be hit.
	- The more overall read density, the more possible gain.

That also explains the adaptive readahead tricks for clustered random reads.

readahead thrashing: 3 times better
===================================
We boot kernel with "mem=128m single", and start a 100KB/s stream on every
second, until reaching 200 streams.

			      max throughput     min avg I/O size
		2.6.20:            5MB/s               16KB
		on-demand:        15MB/s              140KB

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Steven Pratt <slpratt@austin.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Fengguang Wu
5ce1110b92 readahead: data structure and routines
Extend struct file_ra_state to support the on-demand readahead logic.  Also
define some helpers for it.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Steven Pratt <slpratt@austin.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:44 -07:00
Fengguang Wu
f615bfca46 readahead: MIN_RA_PAGES/MAX_RA_PAGES macros
Define two convenient macros for read-ahead:
	- MAX_RA_PAGES: rounded down counterpart of VM_MAX_READAHEAD
	- MIN_RA_PAGES: rounded _up_ counterpart of VM_MIN_READAHEAD

Note that the rounded up MIN_RA_PAGES will work flawlessly with _large_
page sizes like 64k.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Steven Pratt <slpratt@austin.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:43 -07:00
Fengguang Wu
46fc3e7b4e readahead: add look-ahead support to __do_page_cache_readahead()
Add look-ahead support to __do_page_cache_readahead().

It works by
	- mark the Nth backwards page with PG_readahead,
	(which instructs the page's first reader to invoke readahead)
	- and only do the marking for newly allocated pages.
	(to prevent blindly doing readahead on already cached pages)

Look-ahead is a technique to achieve I/O pipelining:

While the application is working through a chunk of cached pages, the kernel
reads-ahead the next chunk of pages _before_ time of need.  It effectively
hides low level I/O latencies to high level applications.

Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Cc: Steven Pratt <slpratt@austin.ibm.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:43 -07:00
Jan Kara
6ce745ed39 readahead: code cleanup
Rename file_ra_state.prev_page to prev_index and file_ra_state.offset to
prev_offset.  Also update of prev_index in do_generic_mapping_read() is now
moved close to the update of prev_offset.

[wfg@mail.ustc.edu.cn: fix it]
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:52 -07:00
Jan Kara
ec0f163722 readahead: improve heuristic detecting sequential reads
Introduce ra.offset and store in it an offset where the previous read
ended.  This way we can detect whether reads are really sequential (and
thus we should not mark the page as accessed repeatedly) or whether they
are random and just happen to be in the same page (and the page should
really be marked accessed again).

Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:52 -07:00
Christoph Lameter
05a0416be2 [PATCH] Drop __get_zone_counts()
Values are readily available via ZVC per node and global sums.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:18 -08:00
Andrew Morton
8bde37f08f [PATCH] io-accounting-read-accounting nfs fix
nfs's ->readpages uses read_cache_pages().  Wire it up there.

[wfg@mail.ustc.edu.cn: account only successful nfs/fuse reads]
Cc: Jay Lan <jlan@sgi.com>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Chris Sturtivant <csturtiv@sgi.com>
Cc: Tony Ernst <tee@sgi.com>
Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net>
Cc: David Wright <daw@sgi.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 09:55:41 -08:00
Josef Sipek
e9536ae720 [PATCH] struct path: convert mm
Signed-off-by: Josef Sipek <jsipek@fsl.cs.sunysb.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 08:28:47 -08:00