13073 Commits

Author SHA1 Message Date
Miaohe Lin
fdacfd7769 khugepaged: fix wrong result value for trace_mm_collapse_huge_page_isolate()
[ Upstream commit 74e579bf231a337ab3786d59e64bc94f45ca7b3f ]

In writable and !referenced case, the result value should be
SCAN_LACK_REFERENCED_PAGE for trace_mm_collapse_huge_page_isolate()
instead of default 0 (SCAN_FAIL) here.

Link: https://lkml.kernel.org/r/20210306032947.35921-5-linmiaohe@huawei.com
Fixes: 7d2eba0557c1 ("mm: add tracepoint for scanning pages")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-22 10:59:44 +02:00
Jane Chu
e816fbc722 mm/memory-failure: unnecessary amount of unmapping
[ Upstream commit 4d75136be8bf3ae01b0bc3e725b2cdc921e103bd ]

It appears that unmap_mapping_range() actually takes a 'size' as its third
argument rather than a location, the current calling fashion causes
unnecessary amount of unmapping to occur.

Link: https://lkml.kernel.org/r/20210420002821.2749748-1-jane.chu@oracle.com
Fixes: 6100e34b2526e ("mm, memory_failure: Teach memory_failure() about dev_pagemap pages")
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-22 10:59:38 +02:00
Wang Wensheng
c75dd20796 mm/sparse: add the missing sparse_buffer_fini() in error branch
[ Upstream commit 2284f47fe9fe2ed2ef619e5474e155cfeeebd569 ]

sparse_buffer_init() and sparse_buffer_fini() should appear in pair, or a
WARN issue would be through the next time sparse_buffer_init() runs.

Add the missing sparse_buffer_fini() in error branch.

Link: https://lkml.kernel.org/r/20210325113155.118574-1-wangwensheng4@huawei.com
Fixes: 85c77f791390 ("mm/sparse: add new sparse_init_nid() and sparse_init()")
Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-22 10:59:38 +02:00
Linus Torvalds
5e24029791 gup: document and work around "COW can break either way" issue
commit 17839856fd588f4ab6b789f482ed3ffd7c403e1f upstream.

Doing a "get_user_pages()" on a copy-on-write page for reading can be
ambiguous: the page can be COW'ed at any time afterwards, and the
direction of a COW event isn't defined.

Yes, whoever writes to it will generally do the COW, but if the thread
that did the get_user_pages() unmapped the page before the write (and
that could happen due to memory pressure in addition to any outright
action), the writer could also just take over the old page instead.

End result: the get_user_pages() call might result in a page pointer
that is no longer associated with the original VM, and is associated
with - and controlled by - another VM having taken it over instead.

So when doing a get_user_pages() on a COW mapping, the only really safe
thing to do would be to break the COW when getting the page, even when
only getting it for reading.

At the same time, some users simply don't even care.

For example, the perf code wants to look up the page not because it
cares about the page, but because the code simply wants to look up the
physical address of the access for informational purposes, and doesn't
really care about races when a page might be unmapped and remapped
elsewhere.

This adds logic to force a COW event by setting FOLL_WRITE on any
copy-on-write mapping when FOLL_GET (or FOLL_PIN) is used to get a page
pointer as a result.

The current semantics end up being:

 - __get_user_pages_fast(): no change. If you don't ask for a write,
   you won't break COW. You'd better know what you're doing.

 - get_user_pages_fast(): the fast-case "look it up in the page tables
   without anything getting mmap_sem" now refuses to follow a read-only
   page, since it might need COW breaking.  Which happens in the slow
   path - the fast path doesn't know if the memory might be COW or not.

 - get_user_pages() (including the slow-path fallback for gup_fast()):
   for a COW mapping, turn on FOLL_WRITE for FOLL_GET/FOLL_PIN, with
   very similar semantics to FOLL_FORCE.

If it turns out that we want finer granularity (ie "only break COW when
it might actually matter" - things like the zero page are special and
don't need to be broken) we might need to push these semantics deeper
into the lookup fault path.  So if people care enough, it's possible
that we might end up adding a new internal FOLL_BREAK_COW flag to go
with the internal FOLL_COW flag we already have for tracking "I had a
COW".

Alternatively, if it turns out that different callers might want to
explicitly control the forced COW break behavior, we might even want to
make such a flag visible to the users of get_user_pages() instead of
using the above default semantics.

But for now, this is mostly commentary on the issue (this commit message
being a lot bigger than the patch, and that patch in turn is almost all
comments), with that minimal "enable COW breaking early" logic using the
existing FOLL_WRITE behavior.

[ It might be worth noting that we've always had this ambiguity, and it
  could arguably be seen as a user-space issue.

  You only get private COW mappings that could break either way in
  situations where user space is doing cooperative things (ie fork()
  before an execve() etc), but it _is_ surprising and very subtle, and
  fork() is supposed to give you independent address spaces.

  So let's treat this as a kernel issue and make the semantics of
  get_user_pages() easier to understand. Note that obviously a true
  shared mapping will still get a page that can change under us, so this
  does _not_ mean that get_user_pages() somehow returns any "stable"
  page ]

[surenb: backport notes
	Replaced (gup_flags | FOLL_WRITE) with write=1 in gup_pgd_range.
	Removed FOLL_PIN usage in should_force_cow_break since it's missing in
	the earlier kernels.]

Reported-by: Jann Horn <jannh@google.com>
Tested-by: Christoph Hellwig <hch@lst.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill Shutemov <kirill@shutemov.name>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[surenb: backport to 4.19 kernel]
Cc: stable@vger.kernel.org # 4.19.x
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-28 13:16:51 +02:00
Ilya Lipnitskiy
7d1b3f635a mm: fix race by making init_zero_pfn() early_initcall
commit e720e7d0e983bf05de80b231bccc39f1487f0f16 upstream.

There are code paths that rely on zero_pfn to be fully initialized
before core_initcall.  For example, wq_sysfs_init() is a core_initcall
function that eventually results in a call to kernel_execve, which
causes a page fault with a subsequent mmput.  If zero_pfn is not
initialized by then it may not get cleaned up properly and result in an
error:

  BUG: Bad rss-counter state mm:(ptrval) type:MM_ANONPAGES val:1

Here is an analysis of the race as seen on a MIPS device. On this
particular MT7621 device (Ubiquiti ER-X), zero_pfn is PFN 0 until
initialized, at which point it becomes PFN 5120:

  1. wq_sysfs_init calls into kobject_uevent_env at core_initcall:
       kobject_uevent_env+0x7e4/0x7ec
       kset_register+0x68/0x88
       bus_register+0xdc/0x34c
       subsys_virtual_register+0x34/0x78
       wq_sysfs_init+0x1c/0x4c
       do_one_initcall+0x50/0x1a8
       kernel_init_freeable+0x230/0x2c8
       kernel_init+0x10/0x100
       ret_from_kernel_thread+0x14/0x1c

  2. kobject_uevent_env() calls call_usermodehelper_exec() which executes
     kernel_execve asynchronously.

  3. Memory allocations in kernel_execve cause a page fault, bumping the
     MM reference counter:
       add_mm_counter_fast+0xb4/0xc0
       handle_mm_fault+0x6e4/0xea0
       __get_user_pages.part.78+0x190/0x37c
       __get_user_pages_remote+0x128/0x360
       get_arg_page+0x34/0xa0
       copy_string_kernel+0x194/0x2a4
       kernel_execve+0x11c/0x298
       call_usermodehelper_exec_async+0x114/0x194

  4. In case zero_pfn has not been initialized yet, zap_pte_range does
     not decrement the MM_ANONPAGES RSS counter and the BUG message is
     triggered shortly afterwards when __mmdrop checks the ref counters:
       __mmdrop+0x98/0x1d0
       free_bprm+0x44/0x118
       kernel_execve+0x160/0x1d8
       call_usermodehelper_exec_async+0x114/0x194
       ret_from_kernel_thread+0x14/0x1c

To avoid races such as described above, initialize init_zero_pfn at
early_initcall level.  Depending on the architecture, ZERO_PAGE is
either constant or gets initialized even earlier, at paging_init, so
there is no issue with initializing zero_pfn earlier.

Link: https://lkml.kernel.org/r/CALCv0x2YqOXEAy2Q=hafjhHCtTHVodChv1qpM=niAXOpqEbt7w@mail.gmail.com
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: stable@vger.kernel.org
Tested-by: 周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-07 12:48:50 +02:00
Linus Torvalds
c6afb0eeed Revert "mm, slub: consider rest of partial list if acquire_slab() fails"
commit 9b1ea29bc0d7b94d420f96a0f4121403efc3dd85 upstream.

This reverts commit 8ff60eb052eeba95cfb3efe16b08c9199f8121cf.

The kernel test robot reports a huge performance regression due to the
commit, and the reason seems fairly straightforward: when there is
contention on the page list (which is what causes acquire_slab() to
fail), we do _not_ want to just loop and try again, because that will
transfer the contention to the 'n->list_lock' spinlock we hold, and
just make things even worse.

This is admittedly likely a problem only on big machines - the kernel
test robot report comes from a 96-thread dual socket Intel Xeon Gold
6252 setup, but the regression there really is quite noticeable:

   -47.9% regression of stress-ng.rawpkt.ops_per_sec

and the commit that was marked as being fixed (7ced37197196: "slub:
Acquire_slab() avoid loop") actually did the loop exit early very
intentionally (the hint being that "avoid loop" part of that commit
message), exactly to avoid this issue.

The correct thing to do may be to pick some kind of reasonable middle
ground: instead of breaking out of the loop on the very first sign of
contention, or trying over and over and over again, the right thing may
be to re-try _once_, and then give up on the second failure (or pick
your favorite value for "once"..).

Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/lkml/20210301080404.GF12822@xsang-OptiPlex-9020/
Cc: Jann Horn <jannh@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-17 16:43:43 +01:00
Jens Axboe
6ceea9a764 swap: fix swapfile read/write offset
commit caf6912f3f4af7232340d500a4a2008f81b93f14 upstream.

We're not factoring in the start of the file for where to write and
read the swapfile, which leads to very unfortunate side effects of
writing where we should not be...

[This issue only affects swapfiles on filesystems on top of blockdevs
that implement rw_page ops (brd, zram, btt, pmem), and not on top of any
other block devices, in contrast to the upstream commit fix.]

Fixes: dd6bd0d9c7db ("swap: use bdev_read_page() / bdev_write_page()")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Anthony Iliopoulos <ailiop@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 12:19:02 +01:00
Rokudo Yan
638c954653 zsmalloc: account the number of compacted pages correctly
commit 2395928158059b8f9858365fce7713ce7fef62e4 upstream.

There exists multiple path may do zram compaction concurrently.
1. auto-compaction triggered during memory reclaim
2. userspace utils write zram<id>/compaction node

So, multiple threads may call zs_shrinker_scan/zs_compact concurrently.
But pages_compacted is a per zsmalloc pool variable and modification
of the variable is not serialized(through under class->lock).
There are two issues here:
1. the pages_compacted may not equal to total number of pages
freed(due to concurrently add).
2. zs_shrinker_scan may not return the correct number of pages
freed(issued by current shrinker).

The fix is simple:
1. account the number of pages freed in zs_compact locally.
2. use actomic variable pages_compacted to accumulate total number.

Link: https://lkml.kernel.org/r/20210202122235.26885-1-wu-yan@tcl.com
Fixes: 860c707dca155a56 ("zsmalloc: account the number of compacted pages")
Signed-off-by: Rokudo Yan <wu-yan@tcl.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 12:19:01 +01:00
Li Xinhai
66a013879c mm/hugetlb.c: fix unnecessary address expansion of pmd sharing
commit a1ba9da8f0f9a37d900ff7eff66482cf7de8015e upstream.

The current code would unnecessarily expand the address range.  Consider
one example, (start, end) = (1G-2M, 3G+2M), and (vm_start, vm_end) =
(1G-4M, 3G+4M), the expected adjustment should be keep (1G-2M, 3G+2M)
without expand.  But the current result will be (1G-4M, 3G+4M).  Actually,
the range (1G-4M, 1G) and (3G, 3G+4M) would never been involved in pmd
sharing.

After this patch, we will check that the vma span at least one PUD aligned
size and the start,end range overlap the aligned range of vma.

With above example, the aligned vma range is (1G, 3G), so if (start, end)
range is within (1G-4M, 1G), or within (3G, 3G+4M), then no adjustment to
both start and end.  Otherwise, we will have chance to adjust start
downwards or end upwards without exceeding (vm_start, vm_end).

Mike:

: The 'adjusted range' is used for calls to mmu notifiers and cache(tlb)
: flushing.  Since the current code unnecessarily expands the range in some
: cases, more entries than necessary would be flushed.  This would/could
: result in performance degradation.  However, this is highly dependent on
: the user runtime.  Is there a combination of vma layout and calls to
: actually hit this issue?  If the issue is hit, will those entries
: unnecessarily flushed be used again and need to be unnecessarily reloaded?

Link: https://lkml.kernel.org/r/20210104081631.2921415-1-lixinhai.lxh@gmail.com
Fixes: 75802ca66354 ("mm/hugetlb: fix calculation of adjust_range_if_pmd_sharing_possible")
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-07 12:18:55 +01:00
Mike Kravetz
08831f662b hugetlb: fix update_and_free_page contig page struct assumption
commit dbfee5aee7e54f83d96ceb8e3e80717fac62ad63 upstream.

page structs are not guaranteed to be contiguous for gigantic pages.  The
routine update_and_free_page can encounter a gigantic page, yet it assumes
page structs are contiguous when setting page flags in subpages.

If update_and_free_page encounters non-contiguous page structs, we can see
“BUG: Bad page state in process …” errors.

Non-contiguous page structs are generally not an issue.  However, they can
exist with a specific kernel configuration and hotplug operations.  For
example: Configure the kernel with CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP.  Then, hotplug add memory for the area where
the gigantic page will be allocated.  Zi Yan outlined steps to reproduce
here [1].

[1] https://lore.kernel.org/linux-mm/16F7C58B-4D79-41C5-9B64-A1A1628F4AF2@nvidia.com/

Link: https://lkml.kernel.org/r/20210217184926.33567-1-mike.kravetz@oracle.com
Fixes: 944d9fec8d7a ("hugetlb: add support for gigantic page allocation at runtime")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
2021-03-07 12:18:53 +01:00
Mike Kravetz
669e2d7db2 hugetlb: fix copy_huge_page_from_user contig page struct assumption
commit 3272cfc2525b3a2810a59312d7a1e6f04a0ca3ef upstream.

page structs are not guaranteed to be contiguous for gigantic pages.  The
routine copy_huge_page_from_user can encounter gigantic pages, yet it
assumes page structs are contiguous when copying pages from user space.

Since page structs for the target gigantic page are not contiguous, the
data copied from user space could overwrite other pages not associated
with the gigantic page and cause data corruption.

Non-contiguous page structs are generally not an issue.  However, they can
exist with a specific kernel configuration and hotplug operations.  For
example: Configure the kernel with CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP.  Then, hotplug add memory for the area where
the gigantic page will be allocated.

Link: https://lkml.kernel.org/r/20210217184926.33567-2-mike.kravetz@oracle.com
Fixes: 8fb5debc5fcd ("userfaultfd: hugetlbfs: add hugetlb_mcopy_atomic_pte for userfaultfd support")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-04 09:39:56 +01:00
Miaohe Lin
2d0324108f mm/hugetlb: fix potential double free in hugetlb_register_node() error path
[ Upstream commit cc2205a67dec5a700227a693fc113441e73e4641 ]

In hugetlb_sysfs_add_hstate(), we would do kobject_put() on hstate_kobjs
when failed to create sysfs group but forget to set hstate_kobjs to NULL.
Then in hugetlb_register_node() error path, we may free it again via
hugetlb_unregister_node().

Link: https://lkml.kernel.org/r/20210107123249.36964-1-linmiaohe@huawei.com
Fixes: a3437870160c ("hugetlb: new sysfs interface")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <smuchun@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-04 09:39:50 +01:00
Miaohe Lin
39e913ee4c mm/memory.c: fix potential pte_unmap_unlock pte error
[ Upstream commit 90a3e375d324b2255b83e3dd29e99e2b05d82aaf ]

Since commit 42e4089c7890 ("x86/speculation/l1tf: Disallow non privileged
high MMIO PROT_NONE mappings"), when the first pfn modify is not allowed,
we would break the loop with pte unchanged.  Then the wrong pte - 1 would
be passed to pte_unmap_unlock.

Andi said:

 "While the fix is correct, I'm not sure if it actually is a real bug.
  Is there any architecture that would do something else than unlocking
  the underlying page? If it's just the underlying page then it should
  be always the same page, so no bug"

Link: https://lkml.kernel.org/r/20210109080118.20885-1-linmiaohe@huawei.com
Fixes: 42e4089c789 ("x86/speculation/l1tf: Disallow non privileged high MMIO PROT_NONE mappings")
Signed-off-by: Hongxiang Lou <louhongxiang@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-04 09:39:50 +01:00
Theodore Ts'o
050462f040 memcg: fix a crash in wb_workfn when a device disappears
[ Upstream commit 68f23b89067fdf187763e75a56087550624fdbee ]

Without memcg, there is a one-to-one mapping between the bdi and
bdi_writeback structures.  In this world, things are fairly
straightforward; the first thing bdi_unregister() does is to shutdown
the bdi_writeback structure (or wb), and part of that writeback ensures
that no other work queued against the wb, and that the wb is fully
drained.

With memcg, however, there is a one-to-many relationship between the bdi
and bdi_writeback structures; that is, there are multiple wb objects
which can all point to a single bdi.  There is a refcount which prevents
the bdi object from being released (and hence, unregistered).  So in
theory, the bdi_unregister() *should* only get called once its refcount
goes to zero (bdi_put will drop the refcount, and when it is zero,
release_bdi gets called, which calls bdi_unregister).

Unfortunately, del_gendisk() in block/gen_hd.c never got the memo about
the Brave New memcg World, and calls bdi_unregister directly.  It does
this without informing the file system, or the memcg code, or anything
else.  This causes the root wb associated with the bdi to be
unregistered, but none of the memcg-specific wb's are shutdown.  So when
one of these wb's are woken up to do delayed work, they try to
dereference their wb->bdi->dev to fetch the device name, but
unfortunately bdi->dev is now NULL, thanks to the bdi_unregister()
called by del_gendisk().  As a result, *boom*.

Fortunately, it looks like the rest of the writeback path is perfectly
happy with bdi->dev and bdi->owner being NULL, so the simplest fix is to
create a bdi_dev_name() function which can handle bdi->dev being NULL.
This also allows us to bulletproof the writeback tracepoints to prevent
them from dereferencing a NULL pointer and crashing the kernel if one is
tracing with memcg's enabled, and an iSCSI device dies or a USB storage
stick is pulled.

The most common way of triggering this will be hotremoval of a device
while writeback with memcg enabled is going on.  It was triggering
several times a day in a heavily loaded production environment.

Google Bug Id: 145475544

Link: https://lore.kernel.org/r/20191227194829.150110-1-tytso@mit.edu
Link: http://lkml.kernel.org/r/20191228005211.163952-1-tytso@mit.edu
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-13 13:51:15 +01:00
Hugh Dickins
081438440a mm: thp: fix MADV_REMOVE deadlock on shmem THP
commit 1c2f67308af4c102b4e1e6cd6f69819ae59408e0 upstream.

Sergey reported deadlock between kswapd correctly doing its usual
lock_page(page) followed by down_read(page->mapping->i_mmap_rwsem), and
madvise(MADV_REMOVE) on an madvise(MADV_HUGEPAGE) area doing
down_write(page->mapping->i_mmap_rwsem) followed by lock_page(page).

This happened when shmem_fallocate(punch hole)'s unmap_mapping_range()
reaches zap_pmd_range()'s call to __split_huge_pmd().  The same deadlock
could occur when partially truncating a mapped huge tmpfs file, or using
fallocate(FALLOC_FL_PUNCH_HOLE) on it.

__split_huge_pmd()'s page lock was added in 5.8, to make sure that any
concurrent use of reuse_swap_page() (holding page lock) could not catch
the anon THP's mapcounts and swapcounts while they were being split.

Fortunately, reuse_swap_page() is never applied to a shmem or file THP
(not even by khugepaged, which checks PageSwapCache before calling), and
anonymous THPs are never created in shmem or file areas: so that
__split_huge_pmd()'s page lock can only be necessary for anonymous THPs,
on which there is no risk of deadlock with i_mmap_rwsem.

Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2101161409470.2022@eggly.anvils
Fixes: c444eb564fb1 ("mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:21:08 +01:00
Muchun Song
6bf5461ae9 mm: hugetlb: remove VM_BUG_ON_PAGE from page_huge_active
commit ecbf4724e6061b4b01be20f6d797d64d462b2bc8 upstream.

The page_huge_active() can be called from scan_movable_pages() which do
not hold a reference count to the HugeTLB page.  So when we call
page_huge_active() from scan_movable_pages(), the HugeTLB page can be
freed parallel.  Then we will trigger a BUG_ON which is in the
page_huge_active() when CONFIG_DEBUG_VM is enabled.  Just remove the
VM_BUG_ON_PAGE.

Link: https://lkml.kernel.org/r/20210115124942.46403-6-songmuchun@bytedance.com
Fixes: 7e1f049efb86 ("mm: hugetlb: cleanup using paeg_huge_active()")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:21:08 +01:00
Muchun Song
532574ae25 mm: hugetlb: fix a race between isolating and freeing page
commit 0eb2df2b5629794020f75e94655e1994af63f0d4 upstream.

There is a race between isolate_huge_page() and __free_huge_page().

  CPU0:                                     CPU1:

  if (PageHuge(page))
                                            put_page(page)
                                              __free_huge_page(page)
                                                  spin_lock(&hugetlb_lock)
                                                  update_and_free_page(page)
                                                    set_compound_page_dtor(page,
                                                      NULL_COMPOUND_DTOR)
                                                  spin_unlock(&hugetlb_lock)
    isolate_huge_page(page)
      // trigger BUG_ON
      VM_BUG_ON_PAGE(!PageHead(page), page)
      spin_lock(&hugetlb_lock)
      page_huge_active(page)
        // trigger BUG_ON
        VM_BUG_ON_PAGE(!PageHuge(page), page)
      spin_unlock(&hugetlb_lock)

When we isolate a HugeTLB page on CPU0.  Meanwhile, we free it to the
buddy allocator on CPU1.  Then, we can trigger a BUG_ON on CPU0, because
it is already freed to the buddy allocator.

Link: https://lkml.kernel.org/r/20210115124942.46403-5-songmuchun@bytedance.com
Fixes: c8721bbbdd36 ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:21:08 +01:00
Muchun Song
db510d8f98 mm: hugetlb: fix a race between freeing and dissolving the page
commit 7ffddd499ba6122b1a07828f023d1d67629aa017 upstream.

There is a race condition between __free_huge_page()
and dissolve_free_huge_page().

  CPU0:                         CPU1:

  // page_count(page) == 1
  put_page(page)
    __free_huge_page(page)
                                dissolve_free_huge_page(page)
                                  spin_lock(&hugetlb_lock)
                                  // PageHuge(page) && !page_count(page)
                                  update_and_free_page(page)
                                  // page is freed to the buddy
                                  spin_unlock(&hugetlb_lock)
      spin_lock(&hugetlb_lock)
      clear_page_huge_active(page)
      enqueue_huge_page(page)
      // It is wrong, the page is already freed
      spin_unlock(&hugetlb_lock)

The race window is between put_page() and dissolve_free_huge_page().

We should make sure that the page is already on the free list when it is
dissolved.

As a result __free_huge_page would corrupt page(s) already in the buddy
allocator.

Link: https://lkml.kernel.org/r/20210115124942.46403-4-songmuchun@bytedance.com
Fixes: c8721bbbdd36 ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:21:08 +01:00
Muchun Song
b6e04c19c5 mm: hugetlbfs: fix cannot migrate the fallocated HugeTLB page
commit 585fc0d2871c9318c949fbf45b1f081edd489e96 upstream.

If a new hugetlb page is allocated during fallocate it will not be
marked as active (set_page_huge_active) which will result in a later
isolate_huge_page failure when the page migration code would like to
move that page.  Such a failure would be unexpected and wrong.

Only export set_page_huge_active, just leave clear_page_huge_active as
static.  Because there are no external users.

Link: https://lkml.kernel.org/r/20210115124942.46403-3-songmuchun@bytedance.com
Fixes: 70c3547e36f5 (hugetlbfs: add hugetlbfs_fallocate())
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10 09:21:08 +01:00
Roman Gushchin
50b2181099 memblock: do not start bottom-up allocations with kernel_end
[ Upstream commit 2dcb3964544177c51853a210b6ad400de78ef17d ]

With kaslr the kernel image is placed at a random place, so starting the
bottom-up allocation with the kernel_end can result in an allocation
failure and a warning like this one:

  hugetlb_cma: reserve 2048 MiB, up to 2048 MiB per node
  ------------[ cut here ]------------
  memblock: bottom-up allocation failed, memory hotremove may be affected
  WARNING: CPU: 0 PID: 0 at mm/memblock.c:332 memblock_find_in_range_node+0x178/0x25a
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper Not tainted 5.10.0+ #1169
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
  RIP: 0010:memblock_find_in_range_node+0x178/0x25a
  Code: e9 6d ff ff ff 48 85 c0 0f 85 da 00 00 00 80 3d 9b 35 df 00 00 75 15 48 c7 c7 c0 75 59 88 c6 05 8b 35 df 00 01 e8 25 8a fa ff <0f> 0b 48 c7 44 24 20 ff ff ff ff 44 89 e6 44 89 ea 48 c7 c1 70 5c
  RSP: 0000:ffffffff88803d18 EFLAGS: 00010086 ORIG_RAX: 0000000000000000
  RAX: 0000000000000000 RBX: 0000000240000000 RCX: 00000000ffffdfff
  RDX: 00000000ffffdfff RSI: 00000000ffffffea RDI: 0000000000000046
  RBP: 0000000100000000 R08: ffffffff88922788 R09: 0000000000009ffb
  R10: 00000000ffffe000 R11: 3fffffffffffffff R12: 0000000000000000
  R13: 0000000000000000 R14: 0000000080000000 R15: 00000001fb42c000
  FS:  0000000000000000(0000) GS:ffffffff88f71000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: ffffa080fb401000 CR3: 00000001fa80a000 CR4: 00000000000406b0
  Call Trace:
    memblock_alloc_range_nid+0x8d/0x11e
    cma_declare_contiguous_nid+0x2c4/0x38c
    hugetlb_cma_reserve+0xdc/0x128
    flush_tlb_one_kernel+0xc/0x20
    native_set_fixmap+0x82/0xd0
    flat_get_apic_id+0x5/0x10
    register_lapic_address+0x8e/0x97
    setup_arch+0x8a5/0xc3f
    start_kernel+0x66/0x547
    load_ucode_bsp+0x4c/0xcd
    secondary_startup_64_no_verify+0xb0/0xbb
  random: get_random_bytes called from __warn+0xab/0x110 with crng_init=0
  ---[ end trace f151227d0b39be70 ]---

At the same time, the kernel image is protected with memblock_reserve(),
so we can just start searching at PAGE_SIZE.  In this case the bottom-up
allocation has the same chances to success as a top-down allocation, so
there is no reason to fallback in the case of a failure.  All together it
simplifies the logic.

Link: https://lkml.kernel.org/r/20201217201214.3414100-2-guro@fb.com
Fixes: 8fabc623238e ("powerpc: Ensure that swiotlb buffer is allocated from low memory")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Wonhyuk Yang <vvghjk1234@gmail.com>
Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-10 09:21:06 +01:00
Wang Hai
08b227d9f3 Revert "mm/slub: fix a memory leak in sysfs_slab_add()"
commit 757fed1d0898b893d7daa84183947c70f27632f3 upstream.

This reverts commit dde3c6b72a16c2db826f54b2d49bdea26c3534a2.

syzbot report a double-free bug. The following case can cause this bug.

 - mm/slab_common.c: create_cache(): if the __kmem_cache_create() fails,
   it does:

	out_free_cache:
		kmem_cache_free(kmem_cache, s);

 - but __kmem_cache_create() - at least for slub() - will have done

	sysfs_slab_add(s)
		-> sysfs_create_group() .. fails ..
		-> kobject_del(&s->kobj); .. which frees s ...

We can't remove the kmem_cache_free() in create_cache(), because other
error cases of __kmem_cache_create() do not free this.

So, revert the commit dde3c6b72a16 ("mm/slub: fix a memory leak in
sysfs_slab_add()") to fix this.

Reported-by: syzbot+d0bd96b4696c1ef67991@syzkaller.appspotmail.com
Fixes: dde3c6b72a16 ("mm/slub: fix a memory leak in sysfs_slab_add()")
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Wang Hai <wanghai38@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-30 13:32:11 +01:00
Lecopzer Chen
1ad3d65c19 kasan: fix incorrect arguments passing in kasan_add_zero_shadow
commit 5dabd1712cd056814f9ab15f1d68157ceb04e741 upstream.

kasan_remove_zero_shadow() shall use original virtual address, start and
size, instead of shadow address.

Link: https://lkml.kernel.org/r/20210103063847.5963-1-lecopzer@gmail.com
Fixes: 0207df4fa1a86 ("kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN")
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-27 11:05:43 +01:00
Lecopzer Chen
5cb8624526 kasan: fix unaligned address is unhandled in kasan_remove_zero_shadow
commit a11a496ee6e2ab6ed850233c96b94caf042af0b9 upstream.

During testing kasan_populate_early_shadow and kasan_remove_zero_shadow,
if the shadow start and end address in kasan_remove_zero_shadow() is not
aligned to PMD_SIZE, the remain unaligned PTE won't be removed.

In the test case for kasan_remove_zero_shadow():

    shadow_start: 0xffffffb802000000, shadow end: 0xffffffbfbe000000

    3-level page table:
      PUD_SIZE: 0x40000000 PMD_SIZE: 0x200000 PAGE_SIZE: 4K

0xffffffbf80000000 ~ 0xffffffbfbdf80000 will not be removed because in
kasan_remove_pud_table(), kasan_pmd_table(*pud) is true but the next
address is 0xffffffbfbdf80000 which is not aligned to PUD_SIZE.

In the correct condition, this should fallback to the next level
kasan_remove_pmd_table() but the condition flow always continue to skip
the unaligned part.

Fix by correcting the condition when next and addr are neither aligned.

Link: https://lkml.kernel.org/r/20210103135621.83129-1-lecopzer@gmail.com
Fixes: 0207df4fa1a86 ("kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN")
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-27 11:05:42 +01:00
Jann Horn
21a466aed7 mm, slub: consider rest of partial list if acquire_slab() fails
commit 8ff60eb052eeba95cfb3efe16b08c9199f8121cf upstream.

acquire_slab() fails if there is contention on the freelist of the page
(probably because some other CPU is concurrently freeing an object from
the page).  In that case, it might make sense to look for a different page
(since there might be more remote frees to the page from other CPUs, and
we don't want contention on struct page).

However, the current code accidentally stops looking at the partial list
completely in that case.  Especially on kernels without CONFIG_NUMA set,
this means that get_partial() fails and new_slab_objects() falls back to
new_slab(), allocating new pages.  This could lead to an unnecessary
increase in memory fragmentation.

Link: https://lkml.kernel.org/r/20201228130853.1871516-1-jannh@google.com
Fixes: 7ced37197196 ("slub: Acquire_slab() avoid loop")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-19 18:22:38 +01:00
Miaohe Lin
bba1a0da5b mm/hugetlb: fix potential missing huge page size info
commit 0eb98f1588c2cc7a79816d84ab18a55d254f481c upstream.

The huge page size is encoded for VM_FAULT_HWPOISON errors only.  So if
we return VM_FAULT_HWPOISON, huge page size would just be ignored.

Link: https://lkml.kernel.org/r/20210107123449.38481-1-linmiaohe@huawei.com
Fixes: aa50d3a7aa81 ("Encode huge page size for VM_FAULT_HWPOISON errors")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-19 18:22:35 +01:00
Qian Cai
2498ae2460 mm/swapfile: do not sleep with a spin lock held
commit b11a76b37a5aa7b07c3e3eeeaae20b25475bddd3 upstream.

We can't call kvfree() with a spin lock held, so defer it.  Fixes a
might_sleep() runtime warning.

Fixes: 873d7bcfd066 ("mm/swapfile.c: use kvzalloc for swap_info_struct allocation")
Signed-off-by: Qian Cai <qcai@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201202151549.10350-1-qcai@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-11 13:25:02 +01:00
Yang Shi
7517a38342 mm: list_lru: set shrinker map bit when child nr_items is not zero
commit 8199be001a470209f5c938570cc199abb012fe53 upstream.

When investigating a slab cache bloat problem, significant amount of
negative dentry cache was seen, but confusingly they neither got shrunk
by reclaimer (the host has very tight memory) nor be shrunk by dropping
cache.  The vmcore shows there are over 14M negative dentry objects on
lru, but tracing result shows they were even not scanned at all.

Further investigation shows the memcg's vfs shrinker_map bit is not set.
So the reclaimer or dropping cache just skip calling vfs shrinker.  So
we have to reboot the hosts to get the memory back.

I didn't manage to come up with a reproducer in test environment, and
the problem can't be reproduced after rebooting.  But it seems there is
race between shrinker map bit clear and reparenting by code inspection.
The hypothesis is elaborated as below.

The memcg hierarchy on our production environment looks like:

                root
               /    \
          system   user

The main workloads are running under user slice's children, and it
creates and removes memcg frequently.  So reparenting happens very often
under user slice, but no task is under user slice directly.

So with the frequent reparenting and tight memory pressure, the below
hypothetical race condition may happen:

       CPU A                            CPU B
reparent
    dst->nr_items == 0
                                 shrinker:
                                     total_objects == 0
    add src->nr_items to dst
    set_bit
                                     return SHRINK_EMPTY
                                     clear_bit
child memcg offline
    replace child's kmemcg_id with
    parent's (in memcg_offline_kmem())
                                  list_lru_del() between shrinker runs
                                     see parent's kmemcg_id
                                     dec dst->nr_items
reparent again
    dst->nr_items may go negative
    due to concurrent list_lru_del()

                                 The second run of shrinker:
                                     read nr_items without any
                                     synchronization, so it may
                                     see intermediate negative
                                     nr_items then total_objects
                                     may return 0 coincidently

                                     keep the bit cleared
    dst->nr_items != 0
    skip set_bit
    add scr->nr_item to dst

After this point dst->nr_item may never go zero, so reparenting will not
set shrinker_map bit anymore.  And since there is no task under user
slice directly, so no new object will be added to its lru to set the
shrinker map bit either.  That bit is kept cleared forever.

How does list_lru_del() race with reparenting? It is because reparenting
replaces children's kmemcg_id to parent's without protecting from
nlru->lock, so list_lru_del() may see parent's kmemcg_id but actually
deleting items from child's lru, but dec'ing parent's nr_items, so the
parent's nr_items may go negative as commit 2788cf0c401c ("memcg:
reparent list_lrus and free kmemcg_id on css offline") says.

Since it is impossible that dst->nr_items goes negative and
src->nr_items goes zero at the same time, so it seems we could set the
shrinker map bit iff src->nr_items != 0.  We could synchronize
list_lru_count_one() and reparenting with nlru->lock, but it seems
checking src->nr_items in reparenting is the simplest and avoids lock
contention.

Fixes: fae91d6d8be5 ("mm/list_lru.c: set bit in memcg shrinker bitmap on first list_lru item appearance")
Suggested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>	[4.19]
Link: https://lkml.kernel.org/r/20201202171749.264354-1-shy828301@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-11 13:25:02 +01:00
Gerald Schaefer
dc94f8e932 mm/userfaultfd: do not access vma->vm_mm after calling handle_userfault()
commit bfe8cc1db02ab243c62780f17fc57f65bde0afe1 upstream.

Alexander reported a syzkaller / KASAN finding on s390, see below for
complete output.

In do_huge_pmd_anonymous_page(), the pre-allocated pagetable will be
freed in some cases.  In the case of userfaultfd_missing(), this will
happen after calling handle_userfault(), which might have released the
mmap_lock.  Therefore, the following pte_free(vma->vm_mm, pgtable) will
access an unstable vma->vm_mm, which could have been freed or re-used
already.

For all architectures other than s390 this will go w/o any negative
impact, because pte_free() simply frees the page and ignores the
passed-in mm.  The implementation for SPARC32 would also access
mm->page_table_lock for pte_free(), but there is no THP support in
SPARC32, so the buggy code path will not be used there.

For s390, the mm->context.pgtable_list is being used to maintain the 2K
pagetable fragments, and operating on an already freed or even re-used
mm could result in various more or less subtle bugs due to list /
pagetable corruption.

Fix this by calling pte_free() before handle_userfault(), similar to how
it is already done in __do_huge_pmd_anonymous_page() for the WRITE /
non-huge_zero_page case.

Commit 6b251fc96cf2c ("userfaultfd: call handle_userfault() for
userfaultfd_missing() faults") actually introduced both, the
do_huge_pmd_anonymous_page() and also __do_huge_pmd_anonymous_page()
changes wrt to calling handle_userfault(), but only in the latter case
it put the pte_free() before calling handle_userfault().

  BUG: KASAN: use-after-free in do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744
  Read of size 8 at addr 00000000962d6988 by task syz-executor.0/9334

  CPU: 1 PID: 9334 Comm: syz-executor.0 Not tainted 5.10.0-rc1-syzkaller-07083-g4c9720875573 #0
  Hardware name: IBM 3906 M04 701 (KVM/Linux)
  Call Trace:
    do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744
    create_huge_pmd mm/memory.c:4256 [inline]
    __handle_mm_fault+0xe6e/0x1068 mm/memory.c:4480
    handle_mm_fault+0x288/0x748 mm/memory.c:4607
    do_exception+0x394/0xae0 arch/s390/mm/fault.c:479
    do_dat_exception+0x34/0x80 arch/s390/mm/fault.c:567
    pgm_check_handler+0x1da/0x22c arch/s390/kernel/entry.S:706
    copy_from_user_mvcos arch/s390/lib/uaccess.c:111 [inline]
    raw_copy_from_user+0x3a/0x88 arch/s390/lib/uaccess.c:174
    _copy_from_user+0x48/0xa8 lib/usercopy.c:16
    copy_from_user include/linux/uaccess.h:192 [inline]
    __do_sys_sigaltstack kernel/signal.c:4064 [inline]
    __s390x_sys_sigaltstack+0xc8/0x240 kernel/signal.c:4060
    system_call+0xe0/0x28c arch/s390/kernel/entry.S:415

  Allocated by task 9334:
    slab_alloc_node mm/slub.c:2891 [inline]
    slab_alloc mm/slub.c:2899 [inline]
    kmem_cache_alloc+0x118/0x348 mm/slub.c:2904
    vm_area_dup+0x9c/0x2b8 kernel/fork.c:356
    __split_vma+0xba/0x560 mm/mmap.c:2742
    split_vma+0xca/0x108 mm/mmap.c:2800
    mlock_fixup+0x4ae/0x600 mm/mlock.c:550
    apply_vma_lock_flags+0x2c6/0x398 mm/mlock.c:619
    do_mlock+0x1aa/0x718 mm/mlock.c:711
    __do_sys_mlock2 mm/mlock.c:738 [inline]
    __s390x_sys_mlock2+0x86/0xa8 mm/mlock.c:728
    system_call+0xe0/0x28c arch/s390/kernel/entry.S:415

  Freed by task 9333:
    slab_free mm/slub.c:3142 [inline]
    kmem_cache_free+0x7c/0x4b8 mm/slub.c:3158
    __vma_adjust+0x7b2/0x2508 mm/mmap.c:960
    vma_merge+0x87e/0xce0 mm/mmap.c:1209
    userfaultfd_release+0x412/0x6b8 fs/userfaultfd.c:868
    __fput+0x22c/0x7a8 fs/file_table.c:281
    task_work_run+0x200/0x320 kernel/task_work.c:151
    tracehook_notify_resume include/linux/tracehook.h:188 [inline]
    do_notify_resume+0x100/0x148 arch/s390/kernel/signal.c:538
    system_call+0xe6/0x28c arch/s390/kernel/entry.S:416

  The buggy address belongs to the object at 00000000962d6948 which belongs to the cache vm_area_struct of size 200
  The buggy address is located 64 bytes inside of 200-byte region [00000000962d6948, 00000000962d6a10)
  The buggy address belongs to the page: page:00000000313a09fe refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x962d6 flags: 0x3ffff00000000200(slab)
  raw: 3ffff00000000200 000040000257e080 0000000c0000000c 000000008020ba00
  raw: 0000000000000000 000f001e00000000 ffffffff00000001 0000000096959501
  page dumped because: kasan: bad access detected
  page->mem_cgroup:0000000096959501

  Memory state around the buggy address:
   00000000962d6880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   00000000962d6900: 00 fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb
  >00000000962d6980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                        ^
   00000000962d6a00: fb fb fc fc fc fc fc fc fc fc 00 00 00 00 00 00
   00000000962d6a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  ==================================================================

Fixes: 6b251fc96cf2c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults")
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: <stable@vger.kernel.org>	[4.3+]
Link: https://lkml.kernel.org/r/20201110190329.11920-1-gerald.schaefer@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-24 13:27:26 +01:00
Dongli Zhang
082b21d034 page_frag: Recover from memory pressure
[ Upstream commit d8c19014bba8f565d8a2f1f46b4e38d1d97bf1a7 ]

The ethernet driver may allocate skb (and skb->data) via napi_alloc_skb().
This ends up to page_frag_alloc() to allocate skb->data from
page_frag_cache->va.

During the memory pressure, page_frag_cache->va may be allocated as
pfmemalloc page. As a result, the skb->pfmemalloc is always true as
skb->data is from page_frag_cache->va. The skb will be dropped if the
sock (receiver) does not have SOCK_MEMALLOC. This is expected behaviour
under memory pressure.

However, once kernel is not under memory pressure any longer (suppose large
amount of memory pages are just reclaimed), the page_frag_alloc() may still
re-use the prior pfmemalloc page_frag_cache->va to allocate skb->data. As a
result, the skb->pfmemalloc is always true unless page_frag_cache->va is
re-allocated, even if the kernel is not under memory pressure any longer.

Here is how kernel runs into issue.

1. The kernel is under memory pressure and allocation of
PAGE_FRAG_CACHE_MAX_ORDER in __page_frag_cache_refill() will fail. Instead,
the pfmemalloc page is allocated for page_frag_cache->va.

2: All skb->data from page_frag_cache->va (pfmemalloc) will have
skb->pfmemalloc=true. The skb will always be dropped by sock without
SOCK_MEMALLOC. This is an expected behaviour.

3. Suppose a large amount of pages are reclaimed and kernel is not under
memory pressure any longer. We expect skb->pfmemalloc drop will not happen.

4. Unfortunately, page_frag_alloc() does not proactively re-allocate
page_frag_alloc->va and will always re-use the prior pfmemalloc page. The
skb->pfmemalloc is always true even kernel is not under memory pressure any
longer.

Fix this by freeing and re-allocating the page instead of recycling it.

References: https://lore.kernel.org/lkml/20201103193239.1807-1-dongli.zhang@oracle.com/
References: https://lore.kernel.org/linux-mm/20201105042140.5253-1-willy@infradead.org/
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Cc: Bert Barbe <bert.barbe@oracle.com>
Cc: Rama Nichanamatlu <rama.nichanamatlu@oracle.com>
Cc: Venkat Venkatsubra <venkat.x.venkatsubra@oracle.com>
Cc: Manjunath Patil <manjunath.b.patil@oracle.com>
Cc: Joe Jin <joe.jin@oracle.com>
Cc: SRINIVAS <srinivas.eeda@oracle.com>
Fixes: 79930f5892e1 ("net: do not deplete pfmemalloc reserve")
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20201115201029.11903-1-dongli.zhang@oracle.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-24 13:27:18 +01:00
Shijie Luo
d4fea27ffc mm: mempolicy: fix potential pte_unmap_unlock pte error
commit 3f08842098e842c51e3b97d0dcdebf810b32558e upstream.

When flags in queue_pages_pte_range don't have MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL bits, code breaks and passing origin pte - 1 to
pte_unmap_unlock seems like not a good idea.

queue_pages_pte_range can run in MPOL_MF_MOVE_ALL mode which doesn't
migrate misplaced pages but returns with EIO when encountering such a
page.  Since commit a7f40cfe3b7a ("mm: mempolicy: make mbind() return
-EIO when MPOL_MF_STRICT is specified") and early break on the first pte
in the range results in pte_unmap_unlock on an underflow pte.  This can
lead to lockups later on when somebody tries to lock the pte resp.
page_table_lock again..

Fixes: a7f40cfe3b7a ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified")
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Cc: Shijie Luo <luoshijie1@huawei.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201019074853.50856-1-luoshijie1@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-10 12:35:57 +01:00
Suren Baghdasaryan
a3d0ceee71 mm, oom_adj: don't loop through tasks in __set_oom_adj when not necessary
[ Upstream commit 67197a4f28d28d0b073ab0427b03cb2ee5382578 ]

Currently __set_oom_adj loops through all processes in the system to keep
oom_score_adj and oom_score_adj_min in sync between processes sharing
their mm.  This is done for any task with more that one mm_users, which
includes processes with multiple threads (sharing mm and signals).
However for such processes the loop is unnecessary because their signal
structure is shared as well.

Android updates oom_score_adj whenever a tasks changes its role
(background/foreground/...) or binds to/unbinds from a service, making it
more/less important.  Such operation can happen frequently.  We noticed
that updates to oom_score_adj became more expensive and after further
investigation found out that the patch mentioned in "Fixes" introduced a
regression.  Using Pixel 4 with a typical Android workload, write time to
oom_score_adj increased from ~3.57us to ~362us.  Moreover this regression
linearly depends on the number of multi-threaded processes running on the
system.

Mark the mm with a new MMF_MULTIPROCESS flag bit when task is created with
(CLONE_VM && !CLONE_THREAD && !CLONE_VFORK).  Change __set_oom_adj to use
MMF_MULTIPROCESS instead of mm_users to decide whether oom_score_adj
update should be synchronized between multiple processes.  To prevent
races between clone() and __set_oom_adj(), when oom_score_adj of the
process being cloned might be modified from userspace, we use
oom_adj_mutex.  Its scope is changed to global.

The combination of (CLONE_VM && !CLONE_THREAD) is rarely used except for
the case of vfork().  To prevent performance regressions of vfork(), we
skip taking oom_adj_mutex and setting MMF_MULTIPROCESS when CLONE_VFORK is
specified.  Clearing the MMF_MULTIPROCESS flag (when the last process
sharing the mm exits) is left out of this patch to keep it simple and
because it is believed that this threading model is rare.  Should there
ever be a need for optimizing that case as well, it can be done by hooking
into the exit path, likely following the mm_update_next_owner pattern.

With the combination of (CLONE_VM && !CLONE_THREAD && !CLONE_VFORK) being
quite rare, the regression is gone after the change is applied.

[surenb@google.com: v3]
  Link: https://lkml.kernel.org/r/20200902012558.2335613-1-surenb@google.com

Fixes: 44a70adec910 ("mm, oom_adj: make sure processes sharing mm have same view of oom_score_adj")
Reported-by: Tim Murray <timmurray@google.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Eugene Syromiatnikov <esyr@redhat.com>
Cc: Christian Kellner <christian@kellner.me>
Cc: Adrian Reber <areber@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Alexey Gladkov <gladkov.alexey@gmail.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Bernd Edlinger <bernd.edlinger@hotmail.de>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200824153036.3201505-1-surenb@google.com
Debugged-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29 09:55:15 +01:00
Ralph Campbell
2761fff65f mm/memcg: fix device private memcg accounting
[ Upstream commit 9a137153fc8798a89d8fce895cd0a06ea5b8e37c ]

The code in mc_handle_swap_pte() checks for non_swap_entry() and returns
NULL before checking is_device_private_entry() so device private pages are
never handled.  Fix this by checking for non_swap_entry() after handling
device private swap PTEs.

I assume the memory cgroup accounting would be off somehow when moving
a process to another memory cgroup.  Currently, the device private page
is charged like a normal anonymous page when allocated and is uncharged
when the page is freed so I think that path is OK.

Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Link: https://lkml.kernel.org/r/20201009215952.2726-1-rcampbell@nvidia.com
xFixes: c733a82874a7 ("mm/memcontrol: support MEMORY_DEVICE_PRIVATE")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29 09:55:15 +01:00
Vijay Balakrishna
94c5167581 mm: khugepaged: recalculate min_free_kbytes after memory hotplug as expected by khugepaged
commit 4aab2be0983031a05cb4a19696c9da5749523426 upstream.

When memory is hotplug added or removed the min_free_kbytes should be
recalculated based on what is expected by khugepaged.  Currently after
hotplug, min_free_kbytes will be set to a lower default and higher
default set when THP enabled is lost.

This change restores min_free_kbytes as expected for THP consumers.

[vijayb@linux.microsoft.com: v5]
  Link: https://lkml.kernel.org/r/1601398153-5517-1-git-send-email-vijayb@linux.microsoft.com

Fixes: f000565adb77 ("thp: set recommended min free kbytes")
Signed-off-by: Vijay Balakrishna <vijayb@linux.microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Allen Pais <apais@microsoft.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/1600305709-2319-2-git-send-email-vijayb@linux.microsoft.com
Link: https://lkml.kernel.org/r/1600204258-13683-1-git-send-email-vijayb@linux.microsoft.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-14 10:31:26 +02:00
Hugh Dickins
fbe96d5aab mm/khugepaged: fix filemap page_to_pgoff(page) != offset
commit 033b5d77551167f8c24ca862ce83d3e0745f9245 upstream.

There have been elusive reports of filemap_fault() hitting its
VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page) on kernels built
with CONFIG_READ_ONLY_THP_FOR_FS=y.

Suren has hit it on a kernel with CONFIG_READ_ONLY_THP_FOR_FS=y and
CONFIG_NUMA is not set: and he has analyzed it down to how khugepaged
without NUMA reuses the same huge page after collapse_file() failed
(whereas NUMA targets its allocation to the respective node each time).
And most of us were usually testing with CONFIG_NUMA=y kernels.

collapse_file(old start)
  new_page = khugepaged_alloc_page(hpage)
  __SetPageLocked(new_page)
  new_page->index = start // hpage->index=old offset
  new_page->mapping = mapping
  xas_store(&xas, new_page)

                          filemap_fault
                            page = find_get_page(mapping, offset)
                            // if offset falls inside hpage then
                            // compound_head(page) == hpage
                            lock_page_maybe_drop_mmap()
                              __lock_page(page)

  // collapse fails
  xas_store(&xas, old page)
  new_page->mapping = NULL
  unlock_page(new_page)

collapse_file(new start)
  new_page = khugepaged_alloc_page(hpage)
  __SetPageLocked(new_page)
  new_page->index = start // hpage->index=new offset
  new_page->mapping = mapping // mapping becomes valid again

                            // since compound_head(page) == hpage
                            // page_to_pgoff(page) got changed
                            VM_BUG_ON_PAGE(page_to_pgoff(page) != offset)

An initial patch replaced __SetPageLocked() by lock_page(), which did
fix the race which Suren illustrates above.  But testing showed that it's
not good enough: if the racing task's __lock_page() gets delayed long
after its find_get_page(), then it may follow collapse_file(new start)'s
successful final unlock_page(), and crash on the same VM_BUG_ON_PAGE.

It could be fixed by relaxing filemap_fault()'s VM_BUG_ON_PAGE to a
check and retry (as is done for mapping), with similar relaxations in
find_lock_entry() and pagecache_get_page(): but it's not obvious what
else might get caught out; and khugepaged non-NUMA appears to be unique
in exposing a page to page cache, then revoking, without going through
a full cycle of freeing before reuse.

Instead, non-NUMA khugepaged_prealloc_page() release the old page
if anyone else has a reference to it (1% of cases when I tested).

Although never reported on huge tmpfs, I believe its find_lock_entry()
has been at similar risk; but huge tmpfs does not rely on khugepaged
for its normal working nearly so much as READ_ONLY_THP_FOR_FS does.

Reported-by: Denis Lisov <dennis.lissov@gmail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=206569
Link: https://lore.kernel.org/linux-mm/?q=20200219144635.3b7417145de19b65f258c943%40linux-foundation.org
Reported-by: Qian Cai <cai@lca.pw>
Link: https://lore.kernel.org/linux-xfs/?q=20200616013309.GB815%40lca.pw
Reported-and-analyzed-by: Suren Baghdasaryan <surenb@google.com>
Fixes: 87c460a0bded ("mm/khugepaged: collapse_shmem() without freezing new_page")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org # v4.9+
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-14 10:31:23 +02:00
Laurent Dufour
b6f69f72c1 mm: don't rely on system state to detect hot-plug operations
commit f85086f95fa36194eb0db5cd5c12e56801b98523 upstream.

In register_mem_sect_under_node() the system_state's value is checked to
detect whether the call is made during boot time or during an hot-plug
operation.  Unfortunately, that check against SYSTEM_BOOTING is wrong
because regular memory is registered at SYSTEM_SCHEDULING state.  In
addition, memory hot-plug operation can be triggered at this system
state by the ACPI [1].  So checking against the system state is not
enough.

The consequence is that on system with interleaved node's ranges like this:

 Early memory node ranges
   node   1: [mem 0x0000000000000000-0x000000011fffffff]
   node   2: [mem 0x0000000120000000-0x000000014fffffff]
   node   1: [mem 0x0000000150000000-0x00000001ffffffff]
   node   0: [mem 0x0000000200000000-0x000000048fffffff]
   node   2: [mem 0x0000000490000000-0x00000007ffffffff]

This can be seen on PowerPC LPAR after multiple memory hot-plug and
hot-unplug operations are done.  At the next reboot the node's memory
ranges can be interleaved and since the call to link_mem_sections() is
made in topology_init() while the system is in the SYSTEM_SCHEDULING
state, the node's id is not checked, and the sections registered to
multiple nodes:

  $ ls -l /sys/devices/system/memory/memory21/node*
  total 0
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node1 -> ../../node/node1
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node2 -> ../../node/node2

In that case, the system is able to boot but if later one of theses
memory blocks is hot-unplugged and then hot-plugged, the sysfs
inconsistency is detected and this is triggering a BUG_ON():

  kernel BUG at /Users/laurent/src/linux-ppc/mm/memory_hotplug.c:1084!
  Oops: Exception in kernel mode, sig: 5 [#1]
  LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in: rpadlpar_io rpaphp pseries_rng rng_core vmx_crypto gf128mul binfmt_misc ip_tables x_tables xfs libcrc32c crc32c_vpmsum autofs4
  CPU: 8 PID: 10256 Comm: drmgr Not tainted 5.9.0-rc1+ #25
  Call Trace:
    add_memory_resource+0x23c/0x340 (unreliable)
    __add_memory+0x5c/0xf0
    dlpar_add_lmb+0x1b4/0x500
    dlpar_memory+0x1f8/0xb80
    handle_dlpar_errorlog+0xc0/0x190
    dlpar_store+0x198/0x4a0
    kobj_attr_store+0x30/0x50
    sysfs_kf_write+0x64/0x90
    kernfs_fop_write+0x1b0/0x290
    vfs_write+0xe8/0x290
    ksys_write+0xdc/0x130
    system_call_exception+0x160/0x270
    system_call_common+0xf0/0x27c

This patch addresses the root cause by not relying on the system_state
value to detect whether the call is due to a hot-plug operation.  An
extra parameter is added to link_mem_sections() detailing whether the
operation is due to a hot-plug operation.

[1] According to Oscar Salvador, using this qemu command line, ACPI
memory hotplug operations are raised at SYSTEM_SCHEDULING state:

  $QEMU -enable-kvm -machine pc -smp 4,sockets=4,cores=1,threads=1 -cpu host -monitor pty \
        -m size=$MEM,slots=255,maxmem=4294967296k  \
        -numa node,nodeid=0,cpus=0-3,mem=512 -numa node,nodeid=1,mem=512 \
        -object memory-backend-ram,id=memdimm0,size=134217728 -device pc-dimm,node=0,memdev=memdimm0,id=dimm0,slot=0 \
        -object memory-backend-ram,id=memdimm1,size=134217728 -device pc-dimm,node=0,memdev=memdimm1,id=dimm1,slot=1 \
        -object memory-backend-ram,id=memdimm2,size=134217728 -device pc-dimm,node=0,memdev=memdimm2,id=dimm2,slot=2 \
        -object memory-backend-ram,id=memdimm3,size=134217728 -device pc-dimm,node=0,memdev=memdimm3,id=dimm3,slot=3 \
        -object memory-backend-ram,id=memdimm4,size=134217728 -device pc-dimm,node=1,memdev=memdimm4,id=dimm4,slot=4 \
        -object memory-backend-ram,id=memdimm5,size=134217728 -device pc-dimm,node=1,memdev=memdimm5,id=dimm5,slot=5 \
        -object memory-backend-ram,id=memdimm6,size=134217728 -device pc-dimm,node=1,memdev=memdimm6,id=dimm6,slot=6 \

Fixes: 4fbce633910e ("mm/memory_hotplug.c: make register_mem_sect_under_node() a callback of walk_memory_range()")
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200915094143.79181-3-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-07 08:00:08 +02:00
Laurent Dufour
25eaea1b33 mm: replace memmap_context by meminit_context
commit c1d0da83358a2316d9be7f229f26126dbaa07468 upstream.

Patch series "mm: fix memory to node bad links in sysfs", v3.

Sometimes, firmware may expose interleaved memory layout like this:

 Early memory node ranges
   node   1: [mem 0x0000000000000000-0x000000011fffffff]
   node   2: [mem 0x0000000120000000-0x000000014fffffff]
   node   1: [mem 0x0000000150000000-0x00000001ffffffff]
   node   0: [mem 0x0000000200000000-0x000000048fffffff]
   node   2: [mem 0x0000000490000000-0x00000007ffffffff]

In that case, we can see memory blocks assigned to multiple nodes in
sysfs:

  $ ls -l /sys/devices/system/memory/memory21
  total 0
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node1 -> ../../node/node1
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node2 -> ../../node/node2
  -rw-r--r-- 1 root root 65536 Aug 24 05:27 online
  -r--r--r-- 1 root root 65536 Aug 24 05:27 phys_device
  -r--r--r-- 1 root root 65536 Aug 24 05:27 phys_index
  drwxr-xr-x 2 root root     0 Aug 24 05:27 power
  -r--r--r-- 1 root root 65536 Aug 24 05:27 removable
  -rw-r--r-- 1 root root 65536 Aug 24 05:27 state
  lrwxrwxrwx 1 root root     0 Aug 24 05:25 subsystem -> ../../../../bus/memory
  -rw-r--r-- 1 root root 65536 Aug 24 05:25 uevent
  -r--r--r-- 1 root root 65536 Aug 24 05:27 valid_zones

The same applies in the node's directory with a memory21 link in both
the node1 and node2's directory.

This is wrong but doesn't prevent the system to run.  However when
later, one of these memory blocks is hot-unplugged and then hot-plugged,
the system is detecting an inconsistency in the sysfs layout and a
BUG_ON() is raised:

  kernel BUG at /Users/laurent/src/linux-ppc/mm/memory_hotplug.c:1084!
  LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in: rpadlpar_io rpaphp pseries_rng rng_core vmx_crypto gf128mul binfmt_misc ip_tables x_tables xfs libcrc32c crc32c_vpmsum autofs4
  CPU: 8 PID: 10256 Comm: drmgr Not tainted 5.9.0-rc1+ #25
  Call Trace:
    add_memory_resource+0x23c/0x340 (unreliable)
    __add_memory+0x5c/0xf0
    dlpar_add_lmb+0x1b4/0x500
    dlpar_memory+0x1f8/0xb80
    handle_dlpar_errorlog+0xc0/0x190
    dlpar_store+0x198/0x4a0
    kobj_attr_store+0x30/0x50
    sysfs_kf_write+0x64/0x90
    kernfs_fop_write+0x1b0/0x290
    vfs_write+0xe8/0x290
    ksys_write+0xdc/0x130
    system_call_exception+0x160/0x270
    system_call_common+0xf0/0x27c

This has been seen on PowerPC LPAR.

The root cause of this issue is that when node's memory is registered,
the range used can overlap another node's range, thus the memory block
is registered to multiple nodes in sysfs.

There are two issues here:

 (a) The sysfs memory and node's layouts are broken due to these
     multiple links

 (b) The link errors in link_mem_sections() should not lead to a system
     panic.

To address (a) register_mem_sect_under_node should not rely on the
system state to detect whether the link operation is triggered by a hot
plug operation or not.  This is addressed by the patches 1 and 2 of this
series.

Issue (b) will be addressed separately.

This patch (of 2):

The memmap_context enum is used to detect whether a memory operation is
due to a hot-add operation or happening at boot time.

Make it general to the hotplug operation and rename it as
meminit_context.

There is no functional change introduced by this patch

Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J . Wysocki" <rafael@kernel.org>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200915094143.79181-1-ldufour@linux.ibm.com
Link: https://lkml.kernel.org/r/20200915132624.9723-1-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-07 08:00:08 +02:00
Gao Xiang
f3e8ed3d33 mm, THP, swap: fix allocating cluster for swapfile by mistake
commit 41663430588c737dd735bad5a0d1ba325dcabd59 upstream.

SWP_FS is used to make swap_{read,write}page() go through the
filesystem, and it's only used for swap files over NFS.  So, !SWP_FS
means non NFS for now, it could be either file backed or device backed.
Something similar goes with legacy SWP_FILE.

So in order to achieve the goal of the original patch, SWP_BLKDEV should
be used instead.

FS corruption can be observed with SSD device + XFS + fragmented
swapfile due to CONFIG_THP_SWAP=y.

I reproduced the issue with the following details:

Environment:

  QEMU + upstream kernel + buildroot + NVMe (2 GB)

Kernel config:

  CONFIG_BLK_DEV_NVME=y
  CONFIG_THP_SWAP=y

Some reproducible steps:

  mkfs.xfs -f /dev/nvme0n1
  mkdir /tmp/mnt
  mount /dev/nvme0n1 /tmp/mnt
  bs="32k"
  sz="1024m"    # doesn't matter too much, I also tried 16m
  xfs_io -f -c "pwrite -R -b $bs 0 $sz" -c "fdatasync" /tmp/mnt/sw
  xfs_io -f -c "pwrite -R -b $bs 0 $sz" -c "fdatasync" /tmp/mnt/sw
  xfs_io -f -c "pwrite -R -b $bs 0 $sz" -c "fdatasync" /tmp/mnt/sw
  xfs_io -f -c "pwrite -F -S 0 -b $bs 0 $sz" -c "fdatasync" /tmp/mnt/sw
  xfs_io -f -c "pwrite -R -b $bs 0 $sz" -c "fsync" /tmp/mnt/sw

  mkswap /tmp/mnt/sw
  swapon /tmp/mnt/sw

  stress --vm 2 --vm-bytes 600M   # doesn't matter too much as well

Symptoms:
 - FS corruption (e.g. checksum failure)
 - memory corruption at: 0xd2808010
 - segfault

Fixes: f0eea189e8e9 ("mm, THP, swap: Don't allocate huge cluster for file backed swap device")
Fixes: 38d8b4e6bdc8 ("mm, THP, swap: delay splitting THP during swap out")
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Eric Sandeen <esandeen@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200820045323.7809-1-hsiangkao@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-01 13:14:53 +02:00
Qian Cai
8cc3afd53d mm/swap_state: fix a data race in swapin_nr_pages
[ Upstream commit d6c1f098f2a7ba62627c9bc17cda28f534ef9e4a ]

"prev_offset" is a static variable in swapin_nr_pages() that can be
accessed concurrently with only mmap_sem held in read mode as noticed by
KCSAN,

 BUG: KCSAN: data-race in swap_cluster_readahead / swap_cluster_readahead

 write to 0xffffffff92763830 of 8 bytes by task 14795 on cpu 17:
  swap_cluster_readahead+0x2a6/0x5e0
  swapin_readahead+0x92/0x8dc
  do_swap_page+0x49b/0xf20
  __handle_mm_fault+0xcfb/0xd70
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x715
  page_fault+0x34/0x40

 1 lock held by (dnf)/14795:
  #0: ffff897bd2e98858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
  do_user_addr_fault at arch/x86/mm/fault.c:1405
  (inlined by) do_page_fault at arch/x86/mm/fault.c:1535
 irq event stamp: 83493
 count_memcg_event_mm+0x1a6/0x270
 count_memcg_event_mm+0x119/0x270
 __do_softirq+0x365/0x589
 irq_exit+0xa2/0xc0

 read to 0xffffffff92763830 of 8 bytes by task 1 on cpu 22:
  swap_cluster_readahead+0xfd/0x5e0
  swapin_readahead+0x92/0x8dc
  do_swap_page+0x49b/0xf20
  __handle_mm_fault+0xcfb/0xd70
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x715
  page_fault+0x34/0x40

 1 lock held by systemd/1:
  #0: ffff897c38f14858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
 irq event stamp: 43530289
 count_memcg_event_mm+0x1a6/0x270
 count_memcg_event_mm+0x119/0x270
 __do_softirq+0x365/0x589
 irq_exit+0xa2/0xc0

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200402213748.2237-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:47 +02:00
Jaewon Kim
6bee7991f6 mm/mmap.c: initialize align_offset explicitly for vm_unmapped_area
[ Upstream commit 09ef5283fd96ac424ef0e569626f359bf9ab86c9 ]

On passing requirement to vm_unmapped_area, arch_get_unmapped_area and
arch_get_unmapped_area_topdown did not set align_offset.  Internally on
both unmapped_area and unmapped_area_topdown, if info->align_mask is 0,
then info->align_offset was meaningless.

But commit df529cabb7a2 ("mm: mmap: add trace point of
vm_unmapped_area") always prints info->align_offset even though it is
uninitialized.

Fix this uninitialized value issue by setting it to 0 explicitly.

Before:
  vm_unmapped_area: addr=0x755b155000 err=0 total_vm=0x15aaf0 flags=0x1 len=0x109000 lo=0x8000 hi=0x75eed48000 mask=0x0 ofs=0x4022

After:
  vm_unmapped_area: addr=0x74a4ca1000 err=0 total_vm=0x168ab1 flags=0x1 len=0x9000 lo=0x8000 hi=0x753d94b000 mask=0x0 ofs=0x0

Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20200409094035.19457-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:42 +02:00
Qian Cai
b73c744019 mm/vmscan.c: fix data races using kswapd_classzone_idx
[ Upstream commit 5644e1fbbfe15ad06785502bbfe5751223e5841d ]

pgdat->kswapd_classzone_idx could be accessed concurrently in
wakeup_kswapd().  Plain writes and reads without any lock protection
result in data races.  Fix them by adding a pair of READ|WRITE_ONCE() as
well as saving a branch (compilers might well optimize the original code
in an unintentional way anyway).  While at it, also take care of
pgdat->kswapd_order and non-kswapd threads in allow_direct_reclaim().  The
data races were reported by KCSAN,

 BUG: KCSAN: data-race in wakeup_kswapd / wakeup_kswapd

 write to 0xffff9f427ffff2dc of 4 bytes by task 7454 on cpu 13:
  wakeup_kswapd+0xf1/0x400
  wakeup_kswapd at mm/vmscan.c:3967
  wake_all_kswapds+0x59/0xc0
  wake_all_kswapds at mm/page_alloc.c:4241
  __alloc_pages_slowpath+0xdcc/0x1290
  __alloc_pages_slowpath at mm/page_alloc.c:4512
  __alloc_pages_nodemask+0x3bb/0x450
  alloc_pages_vma+0x8a/0x2c0
  do_anonymous_page+0x16e/0x6f0
  __handle_mm_fault+0xcd5/0xd40
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x6f9
  page_fault+0x34/0x40

 1 lock held by mtest01/7454:
  #0: ffff9f425afe8808 (&mm->mmap_sem#2){++++}, at:
 do_page_fault+0x143/0x6f9
 do_user_addr_fault at arch/x86/mm/fault.c:1405
 (inlined by) do_page_fault at arch/x86/mm/fault.c:1539
 irq event stamp: 6944085
 count_memcg_event_mm+0x1a6/0x270
 count_memcg_event_mm+0x119/0x270
 __do_softirq+0x34c/0x57c
 irq_exit+0xa2/0xc0

 read to 0xffff9f427ffff2dc of 4 bytes by task 7472 on cpu 38:
  wakeup_kswapd+0xc8/0x400
  wake_all_kswapds+0x59/0xc0
  __alloc_pages_slowpath+0xdcc/0x1290
  __alloc_pages_nodemask+0x3bb/0x450
  alloc_pages_vma+0x8a/0x2c0
  do_anonymous_page+0x16e/0x6f0
  __handle_mm_fault+0xcd5/0xd40
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x6f9
  page_fault+0x34/0x40

 1 lock held by mtest01/7472:
  #0: ffff9f425a9ac148 (&mm->mmap_sem#2){++++}, at:
 do_page_fault+0x143/0x6f9
 irq event stamp: 6793561
 count_memcg_event_mm+0x1a6/0x270
 count_memcg_event_mm+0x119/0x270
 __do_softirq+0x34c/0x57c
 irq_exit+0xa2/0xc0

 BUG: KCSAN: data-race in kswapd / wakeup_kswapd

 write to 0xffff90973ffff2dc of 4 bytes by task 820 on cpu 6:
  kswapd+0x27c/0x8d0
  kthread+0x1e0/0x200
  ret_from_fork+0x27/0x50

 read to 0xffff90973ffff2dc of 4 bytes by task 6299 on cpu 0:
  wakeup_kswapd+0xf3/0x450
  wake_all_kswapds+0x59/0xc0
  __alloc_pages_slowpath+0xdcc/0x1290
  __alloc_pages_nodemask+0x3bb/0x450
  alloc_pages_vma+0x8a/0x2c0
  do_anonymous_page+0x170/0x700
  __handle_mm_fault+0xc9f/0xd00
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x6f9
  page_fault+0x34/0x40

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/1582749472-5171-1-git-send-email-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:41 +02:00
Xianting Tian
cebefe4f6f mm/filemap.c: clear page error before actual read
[ Upstream commit faffdfa04fa11ccf048cebdde73db41ede0679e0 ]

Mount failure issue happens under the scenario: Application forked dozens
of threads to mount the same number of cramfs images separately in docker,
but several mounts failed with high probability.  Mount failed due to the
checking result of the page(read from the superblock of loop dev) is not
uptodate after wait_on_page_locked(page) returned in function cramfs_read:

   wait_on_page_locked(page);
   if (!PageUptodate(page)) {
      ...
   }

The reason of the checking result of the page not uptodate: systemd-udevd
read the loopX dev before mount, because the status of loopX is Lo_unbound
at this time, so loop_make_request directly trigger the calling of io_end
handler end_buffer_async_read, which called SetPageError(page).  So It
caused the page can't be set to uptodate in function
end_buffer_async_read:

   if(page_uptodate && !PageError(page)) {
      SetPageUptodate(page);
   }

Then mount operation is performed, it used the same page which is just
accessed by systemd-udevd above, Because this page is not uptodate, it
will launch a actual read via submit_bh, then wait on this page by calling
wait_on_page_locked(page).  When the I/O of the page done, io_end handler
end_buffer_async_read is called, because no one cleared the page
error(during the whole read path of mount), which is caused by
systemd-udevd reading, so this page is still in "PageError" status, which
can't be set to uptodate in function end_buffer_async_read, then caused
mount failure.

But sometimes mount succeed even through systemd-udeved read loopX dev
just before, The reason is systemd-udevd launched other loopX read just
between step 3.1 and 3.2, the steps as below:

1, loopX dev default status is Lo_unbound;
2, systemd-udved read loopX dev (page is set to PageError);
3, mount operation
   1) set loopX status to Lo_bound;
   ==>systemd-udevd read loopX dev<==
   2) read loopX dev(page has no error)
   3) mount succeed

As the loopX dev status is set to Lo_bound after step 3.1, so the other
loopX dev read by systemd-udevd will go through the whole I/O stack, part
of the call trace as below:

   SYS_read
      vfs_read
          do_sync_read
              blkdev_aio_read
                 generic_file_aio_read
                     do_generic_file_read:
                        ClearPageError(page);
                        mapping->a_ops->readpage(filp, page);

here, mapping->a_ops->readpage() is blkdev_readpage.  In latest kernel,
some function name changed, the call trace as below:

   blkdev_read_iter
      generic_file_read_iter
         generic_file_buffered_read:
            /*
             * A previous I/O error may have been due to temporary
             * failures, eg. mutipath errors.
             * Pg_error will be set again if readpage fails.
             */
            ClearPageError(page);
            /* Start the actual read. The read will unlock the page*/
            error=mapping->a_ops->readpage(flip, page);

We can see ClearPageError(page) is called before the actual read,
then the read in step 3.2 succeed.

This patch is to add the calling of ClearPageError just before the actual
read of read path of cramfs mount.  Without the patch, the call trace as
below when performing cramfs mount:

   do_mount
      cramfs_read
         cramfs_blkdev_read
            read_cache_page
               do_read_cache_page:
                  filler(data, page);
                  or
                  mapping->a_ops->readpage(data, page);

With the patch, the call trace as below when performing mount:

   do_mount
      cramfs_read
         cramfs_blkdev_read
            read_cache_page:
               do_read_cache_page:
                  ClearPageError(page); <== new add
                  filler(data, page);
                  or
                  mapping->a_ops->readpage(data, page);

With the patch, mount operation trigger the calling of
ClearPageError(page) before the actual read, the page has no error if no
additional page error happen when I/O done.

Signed-off-by: Xianting Tian <xianting_tian@126.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jan Kara <jack@suse.cz>
Cc: <yubin@h3c.com>
Link: http://lkml.kernel.org/r/1583318844-22971-1-git-send-email-xianting_tian@126.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:41 +02:00
Nathan Chancellor
afe001488e mm/kmemleak.c: use address-of operator on section symbols
[ Upstream commit b0d14fc43d39203ae025f20ef4d5d25d9ccf4be1 ]

Clang warns:

  mm/kmemleak.c:1955:28: warning: array comparison always evaluates to a constant [-Wtautological-compare]
        if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
                                  ^
  mm/kmemleak.c:1955:60: warning: array comparison always evaluates to a constant [-Wtautological-compare]
        if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)

These are not true arrays, they are linker defined symbols, which are just
addresses.  Using the address of operator silences the warning and does
not change the resulting assembly with either clang/ld.lld or gcc/ld
(tested with diff + objdump -Dr).

Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://github.com/ClangBuiltLinux/linux/issues/895
Link: http://lkml.kernel.org/r/20200220051551.44000-1-natechancellor@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:41 +02:00
Kirill A. Shutemov
2b294ac325 mm: avoid data corruption on CoW fault into PFN-mapped VMA
[ Upstream commit c3e5ea6ee574ae5e845a40ac8198de1fb63bb3ab ]

Jeff Moyer has reported that one of xfstests triggers a warning when run
on DAX-enabled filesystem:

	WARNING: CPU: 76 PID: 51024 at mm/memory.c:2317 wp_page_copy+0xc40/0xd50
	...
	wp_page_copy+0x98c/0xd50 (unreliable)
	do_wp_page+0xd8/0xad0
	__handle_mm_fault+0x748/0x1b90
	handle_mm_fault+0x120/0x1f0
	__do_page_fault+0x240/0xd70
	do_page_fault+0x38/0xd0
	handle_page_fault+0x10/0x30

The warning happens on failed __copy_from_user_inatomic() which tries to
copy data into a CoW page.

This happens because of race between MADV_DONTNEED and CoW page fault:

	CPU0					CPU1
 handle_mm_fault()
   do_wp_page()
     wp_page_copy()
       do_wp_page()
					madvise(MADV_DONTNEED)
					  zap_page_range()
					    zap_pte_range()
					      ptep_get_and_clear_full()
					      <TLB flush>
	 __copy_from_user_inatomic()
	 sees empty PTE and fails
	 WARN_ON_ONCE(1)
	 clear_page()

The solution is to re-try __copy_from_user_inatomic() under PTL after
checking that PTE is matches the orig_pte.

The second copy attempt can still fail, like due to non-readable PTE, but
there's nothing reasonable we can do about, except clearing the CoW page.

Reported-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Jeff Moyer <jmoyer@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Justin He <Justin.He@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200218154151.13349-1-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:36 +02:00
Steven Price
f9cb6b6124 mm: pagewalk: fix termination condition in walk_pte_range()
[ Upstream commit c02a98753e0a36ba65a05818626fa6adeb4e7c97 ]

If walk_pte_range() is called with a 'end' argument that is beyond the
last page of memory (e.g.  ~0UL) then the comparison between 'addr' and
'end' will always fail and the loop will be infinite.  Instead change the
comparison to >= while accounting for overflow.

Link: http://lkml.kernel.org/r/20191218162402.45610-15-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:32 +02:00
Vasily Averin
52f5a09ab7 mm/swapfile.c: swap_next should increase position index
[ Upstream commit 10c8d69f314d557d94d74ec492575ae6a4f1eb1c ]

If seq_file .next fuction does not change position index, read after
some lseek can generate unexpected output.

In Aug 2018 NeilBrown noticed commit 1f4aace60b0e ("fs/seq_file.c:
simplify seq_file iteration code and interface") "Some ->next functions
do not increment *pos when they return NULL...  Note that such ->next
functions are buggy and should be fixed.  A simple demonstration is

  dd if=/proc/swaps bs=1000 skip=1

Choose any block size larger than the size of /proc/swaps.  This will
always show the whole last line of /proc/swaps"

Described problem is still actual.  If you make lseek into middle of
last output line following read will output end of last line and whole
last line once again.

  $ dd if=/proc/swaps bs=1  # usual output
  Filename				Type		Size	Used	Priority
  /dev/dm-0                               partition	4194812	97536	-2
  104+0 records in
  104+0 records out
  104 bytes copied

  $ dd if=/proc/swaps bs=40 skip=1    # last line was generated twice
  dd: /proc/swaps: cannot skip to specified offset
  v/dm-0                               partition	4194812	97536	-2
  /dev/dm-0                               partition	4194812	97536	-2
  3+1 records in
  3+1 records out
  131 bytes copied

https://bugzilla.kernel.org/show_bug.cgi?id=206283

Link: http://lkml.kernel.org/r/bd8cfd7b-ac95-9b91-f9e7-e8438bd5047d@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jann Horn <jannh@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Kees Cook <keescook@chromium.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:32 +02:00
Jia He
8579a04403 mm: fix double page fault on arm64 if PTE_AF is cleared
[ Upstream commit 83d116c53058d505ddef051e90ab27f57015b025 ]

When we tested pmdk unit test [1] vmmalloc_fork TEST3 on arm64 guest, there
will be a double page fault in __copy_from_user_inatomic of cow_user_page.

To reproduce the bug, the cmd is as follows after you deployed everything:
make -C src/test/vmmalloc_fork/ TEST_TIME=60m check

Below call trace is from arm64 do_page_fault for debugging purpose:
[  110.016195] Call trace:
[  110.016826]  do_page_fault+0x5a4/0x690
[  110.017812]  do_mem_abort+0x50/0xb0
[  110.018726]  el1_da+0x20/0xc4
[  110.019492]  __arch_copy_from_user+0x180/0x280
[  110.020646]  do_wp_page+0xb0/0x860
[  110.021517]  __handle_mm_fault+0x994/0x1338
[  110.022606]  handle_mm_fault+0xe8/0x180
[  110.023584]  do_page_fault+0x240/0x690
[  110.024535]  do_mem_abort+0x50/0xb0
[  110.025423]  el0_da+0x20/0x24

The pte info before __copy_from_user_inatomic is (PTE_AF is cleared):
[ffff9b007000] pgd=000000023d4f8003, pud=000000023da9b003,
               pmd=000000023d4b3003, pte=360000298607bd3

As told by Catalin: "On arm64 without hardware Access Flag, copying from
user will fail because the pte is old and cannot be marked young. So we
always end up with zeroed page after fork() + CoW for pfn mappings. we
don't always have a hardware-managed access flag on arm64."

This patch fixes it by calling pte_mkyoung. Also, the parameter is
changed because vmf should be passed to cow_user_page()

Add a WARN_ON_ONCE when __copy_from_user_inatomic() returns error
in case there can be some obscure use-case (by Kirill).

[1] https://github.com/pmem/pmdk/tree/master/src/test/vmmalloc_fork

Signed-off-by: Jia He <justin.he@arm.com>
Reported-by: Yibo Cai <Yibo.Cai@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:14:24 +02:00
Xunlei Pang
1aa7a9e5ee mm: memcg: fix memcg reclaim soft lockup
commit e3336cab2579012b1e72b5265adf98e2d6e244ad upstream.

We've met softlockup with "CONFIG_PREEMPT_NONE=y", when the target memcg
doesn't have any reclaimable memory.

It can be easily reproduced as below:

  watchdog: BUG: soft lockup - CPU#0 stuck for 111s![memcg_test:2204]
  CPU: 0 PID: 2204 Comm: memcg_test Not tainted 5.9.0-rc2+ #12
  Call Trace:
    shrink_lruvec+0x49f/0x640
    shrink_node+0x2a6/0x6f0
    do_try_to_free_pages+0xe9/0x3e0
    try_to_free_mem_cgroup_pages+0xef/0x1f0
    try_charge+0x2c1/0x750
    mem_cgroup_charge+0xd7/0x240
    __add_to_page_cache_locked+0x2fd/0x370
    add_to_page_cache_lru+0x4a/0xc0
    pagecache_get_page+0x10b/0x2f0
    filemap_fault+0x661/0xad0
    ext4_filemap_fault+0x2c/0x40
    __do_fault+0x4d/0xf9
    handle_mm_fault+0x1080/0x1790

It only happens on our 1-vcpu instances, because there's no chance for
oom reaper to run to reclaim the to-be-killed process.

Add a cond_resched() at the upper shrink_node_memcgs() to solve this
issue, this will mean that we will get a scheduling point for each memcg
in the reclaimed hierarchy without any dependency on the reclaimable
memory in that memcg thus making it more predictable.

Suggested-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/1598495549-67324-1-git-send-email-xlpang@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Julius Hemanth Pitti <jpitti@cisco.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-26 18:01:32 +02:00
Ralph Campbell
ec56646e3b mm/thp: fix __split_huge_pmd_locked() for migration PMD
[ Upstream commit ec0abae6dcdf7ef88607c869bf35a4b63ce1b370 ]

A migrating transparent huge page has to already be unmapped.  Otherwise,
the page could be modified while it is being copied to a new page and data
could be lost.  The function __split_huge_pmd() checks for a PMD migration
entry before calling __split_huge_pmd_locked() leading one to think that
__split_huge_pmd_locked() can handle splitting a migrating PMD.

However, the code always increments the page->_mapcount and adjusts the
memory control group accounting assuming the page is mapped.

Also, if the PMD entry is a migration PMD entry, the call to
is_huge_zero_pmd(*pmd) is incorrect because it calls pmd_pfn(pmd) instead
of migration_entry_to_pfn(pmd_to_swp_entry(pmd)).  Fix these problems by
checking for a PMD migration entry.

Fixes: 84c3fc4e9c56 ("mm: thp: check pmd migration entry in common path")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>	[4.14+]
Link: https://lkml.kernel.org/r/20200903183140.19055-1-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-26 18:01:28 +02:00
Sunghyun Jin
5afd52f302 percpu: fix first chunk size calculation for populated bitmap
commit b3b33d3c43bbe0177d70653f4e889c78cc37f097 upstream.

Variable populated, which is a member of struct pcpu_chunk, is used as a
unit of size of unsigned long.
However, size of populated is miscounted. So, I fix this minor part.

Fixes: 8ab16c43ea79 ("percpu: change the number of pages marked in the first_chunk pop bitmap")
Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Sunghyun Jin <mcsmonk@gmail.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-23 12:11:01 +02:00
Muchun Song
221ea9a3da mm/hugetlb: fix a race between hugetlb sysctl handlers
commit 17743798d81238ab13050e8e2833699b54e15467 upstream.

There is a race between the assignment of `table->data` and write value
to the pointer of `table->data` in the __do_proc_doulongvec_minmax() on
the other thread.

  CPU0:                                 CPU1:
                                        proc_sys_write
  hugetlb_sysctl_handler                  proc_sys_call_handler
  hugetlb_sysctl_handler_common             hugetlb_sysctl_handler
    table->data = &tmp;                       hugetlb_sysctl_handler_common
                                                table->data = &tmp;
      proc_doulongvec_minmax
        do_proc_doulongvec_minmax           sysctl_head_finish
          __do_proc_doulongvec_minmax         unuse_table
            i = table->data;
            *i = val;  // corrupt CPU1's stack

Fix this by duplicating the `table`, and only update the duplicate of
it.  And introduce a helper of proc_hugetlb_doulongvec_minmax() to
simplify the code.

The following oops was seen:

    BUG: kernel NULL pointer dereference, address: 0000000000000000
    #PF: supervisor instruction fetch in kernel mode
    #PF: error_code(0x0010) - not-present page
    Code: Bad RIP value.
    ...
    Call Trace:
     ? set_max_huge_pages+0x3da/0x4f0
     ? alloc_pool_huge_page+0x150/0x150
     ? proc_doulongvec_minmax+0x46/0x60
     ? hugetlb_sysctl_handler_common+0x1c7/0x200
     ? nr_hugepages_store+0x20/0x20
     ? copy_fd_bitmaps+0x170/0x170
     ? hugetlb_sysctl_handler+0x1e/0x20
     ? proc_sys_call_handler+0x2f1/0x300
     ? unregister_sysctl_table+0xb0/0xb0
     ? __fd_install+0x78/0x100
     ? proc_sys_write+0x14/0x20
     ? __vfs_write+0x4d/0x90
     ? vfs_write+0xef/0x240
     ? ksys_write+0xc0/0x160
     ? __ia32_sys_read+0x50/0x50
     ? __close_fd+0x129/0x150
     ? __x64_sys_write+0x43/0x50
     ? do_syscall_64+0x6c/0x200
     ? entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: e5ff215941d5 ("hugetlb: multiple hstates for multiple page sizes")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/20200828031146.43035-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-09 19:04:32 +02:00