/* * exynos_thermal.c - Samsung EXYNOS TMU (Thermal Management Unit) * * Copyright (C) 2011 Samsung Electronics * Donggeun Kim * Amit Daniel Kachhap * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Exynos generic registers */ #define EXYNOS_TMU_REG_TRIMINFO 0x0 #define EXYNOS_TMU_REG_CONTROL 0x20 #define EXYNOS_TMU_REG_STATUS 0x28 #define EXYNOS_TMU_REG_CURRENT_TEMP 0x40 #define EXYNOS_TMU_REG_INTEN 0x70 #define EXYNOS_TMU_REG_INTSTAT 0x74 #define EXYNOS_TMU_REG_INTCLEAR 0x78 #define EXYNOS_TMU_TRIM_TEMP_MASK 0xff #define EXYNOS_TMU_GAIN_SHIFT 8 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT 24 #define EXYNOS_TMU_CORE_ON 3 #define EXYNOS_TMU_CORE_OFF 2 #define EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET 50 /* Exynos4210 specific registers */ #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP 0x44 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0 0x50 #define EXYNOS4210_TMU_REG_TRIG_LEVEL1 0x54 #define EXYNOS4210_TMU_REG_TRIG_LEVEL2 0x58 #define EXYNOS4210_TMU_REG_TRIG_LEVEL3 0x5C #define EXYNOS4210_TMU_REG_PAST_TEMP0 0x60 #define EXYNOS4210_TMU_REG_PAST_TEMP1 0x64 #define EXYNOS4210_TMU_REG_PAST_TEMP2 0x68 #define EXYNOS4210_TMU_REG_PAST_TEMP3 0x6C #define EXYNOS4210_TMU_TRIG_LEVEL0_MASK 0x1 #define EXYNOS4210_TMU_TRIG_LEVEL1_MASK 0x10 #define EXYNOS4210_TMU_TRIG_LEVEL2_MASK 0x100 #define EXYNOS4210_TMU_TRIG_LEVEL3_MASK 0x1000 #define EXYNOS4210_TMU_INTCLEAR_VAL 0x1111 /* Exynos5250 and Exynos4412 specific registers */ #define EXYNOS_TMU_TRIMINFO_CON 0x14 #define EXYNOS_THD_TEMP_RISE 0x50 #define EXYNOS_THD_TEMP_FALL 0x54 #define EXYNOS_EMUL_CON 0x80 #define EXYNOS_TRIMINFO_RELOAD 0x1 #define EXYNOS_TMU_CLEAR_RISE_INT 0x111 #define EXYNOS_TMU_CLEAR_FALL_INT (0x111 << 16) #define EXYNOS_MUX_ADDR_VALUE 6 #define EXYNOS_MUX_ADDR_SHIFT 20 #define EXYNOS_TMU_TRIP_MODE_SHIFT 13 #define EFUSE_MIN_VALUE 40 #define EFUSE_MAX_VALUE 100 /* In-kernel thermal framework related macros & definations */ #define SENSOR_NAME_LEN 16 #define MAX_TRIP_COUNT 8 #define MAX_COOLING_DEVICE 4 #define ACTIVE_INTERVAL 500 #define IDLE_INTERVAL 10000 #define MCELSIUS 1000 /* CPU Zone information */ #define PANIC_ZONE 4 #define WARN_ZONE 3 #define MONITOR_ZONE 2 #define SAFE_ZONE 1 #define GET_ZONE(trip) (trip + 2) #define GET_TRIP(zone) (zone - 2) #define EXYNOS_ZONE_COUNT 3 struct exynos_tmu_data { struct exynos_tmu_platform_data *pdata; struct resource *mem; void __iomem *base; int irq; enum soc_type soc; struct work_struct irq_work; struct mutex lock; struct clk *clk; u8 temp_error1, temp_error2; }; struct thermal_trip_point_conf { int trip_val[MAX_TRIP_COUNT]; int trip_count; }; struct thermal_cooling_conf { struct freq_clip_table freq_data[MAX_TRIP_COUNT]; int freq_clip_count; }; struct thermal_sensor_conf { char name[SENSOR_NAME_LEN]; int (*read_temperature)(void *data); struct thermal_trip_point_conf trip_data; struct thermal_cooling_conf cooling_data; void *private_data; }; struct exynos_thermal_zone { enum thermal_device_mode mode; struct thermal_zone_device *therm_dev; struct thermal_cooling_device *cool_dev[MAX_COOLING_DEVICE]; unsigned int cool_dev_size; struct platform_device *exynos4_dev; struct thermal_sensor_conf *sensor_conf; bool bind; }; static struct exynos_thermal_zone *th_zone; static void exynos_unregister_thermal(void); static int exynos_register_thermal(struct thermal_sensor_conf *sensor_conf); /* Get mode callback functions for thermal zone */ static int exynos_get_mode(struct thermal_zone_device *thermal, enum thermal_device_mode *mode) { if (th_zone) *mode = th_zone->mode; return 0; } /* Set mode callback functions for thermal zone */ static int exynos_set_mode(struct thermal_zone_device *thermal, enum thermal_device_mode mode) { if (!th_zone->therm_dev) { pr_notice("thermal zone not registered\n"); return 0; } mutex_lock(&th_zone->therm_dev->lock); if (mode == THERMAL_DEVICE_ENABLED) th_zone->therm_dev->polling_delay = IDLE_INTERVAL; else th_zone->therm_dev->polling_delay = 0; mutex_unlock(&th_zone->therm_dev->lock); th_zone->mode = mode; thermal_zone_device_update(th_zone->therm_dev); pr_info("thermal polling set for duration=%d msec\n", th_zone->therm_dev->polling_delay); return 0; } /* Get trip type callback functions for thermal zone */ static int exynos_get_trip_type(struct thermal_zone_device *thermal, int trip, enum thermal_trip_type *type) { switch (GET_ZONE(trip)) { case MONITOR_ZONE: case WARN_ZONE: *type = THERMAL_TRIP_ACTIVE; break; case PANIC_ZONE: *type = THERMAL_TRIP_CRITICAL; break; default: return -EINVAL; } return 0; } /* Get trip temperature callback functions for thermal zone */ static int exynos_get_trip_temp(struct thermal_zone_device *thermal, int trip, unsigned long *temp) { if (trip < GET_TRIP(MONITOR_ZONE) || trip > GET_TRIP(PANIC_ZONE)) return -EINVAL; *temp = th_zone->sensor_conf->trip_data.trip_val[trip]; /* convert the temperature into millicelsius */ *temp = *temp * MCELSIUS; return 0; } /* Get critical temperature callback functions for thermal zone */ static int exynos_get_crit_temp(struct thermal_zone_device *thermal, unsigned long *temp) { int ret; /* Panic zone */ ret = exynos_get_trip_temp(thermal, GET_TRIP(PANIC_ZONE), temp); return ret; } static int exynos_get_frequency_level(unsigned int cpu, unsigned int freq) { int i = 0, ret = -EINVAL; struct cpufreq_frequency_table *table = NULL; #ifdef CONFIG_CPU_FREQ table = cpufreq_frequency_get_table(cpu); #endif if (!table) return ret; while (table[i].frequency != CPUFREQ_TABLE_END) { if (table[i].frequency == CPUFREQ_ENTRY_INVALID) continue; if (table[i].frequency == freq) return i; i++; } return ret; } /* Bind callback functions for thermal zone */ static int exynos_bind(struct thermal_zone_device *thermal, struct thermal_cooling_device *cdev) { int ret = 0, i, tab_size, level; struct freq_clip_table *tab_ptr, *clip_data; struct thermal_sensor_conf *data = th_zone->sensor_conf; tab_ptr = (struct freq_clip_table *)data->cooling_data.freq_data; tab_size = data->cooling_data.freq_clip_count; if (tab_ptr == NULL || tab_size == 0) return -EINVAL; /* find the cooling device registered*/ for (i = 0; i < th_zone->cool_dev_size; i++) if (cdev == th_zone->cool_dev[i]) break; /* No matching cooling device */ if (i == th_zone->cool_dev_size) return 0; /* Bind the thermal zone to the cpufreq cooling device */ for (i = 0; i < tab_size; i++) { clip_data = (struct freq_clip_table *)&(tab_ptr[i]); level = exynos_get_frequency_level(0, clip_data->freq_clip_max); if (level < 0) return 0; switch (GET_ZONE(i)) { case MONITOR_ZONE: case WARN_ZONE: if (thermal_zone_bind_cooling_device(thermal, i, cdev, level, level)) { pr_err("error binding cdev inst %d\n", i); ret = -EINVAL; } th_zone->bind = true; break; default: ret = -EINVAL; } } return ret; } /* Unbind callback functions for thermal zone */ static int exynos_unbind(struct thermal_zone_device *thermal, struct thermal_cooling_device *cdev) { int ret = 0, i, tab_size; struct thermal_sensor_conf *data = th_zone->sensor_conf; if (th_zone->bind == false) return 0; tab_size = data->cooling_data.freq_clip_count; if (tab_size == 0) return -EINVAL; /* find the cooling device registered*/ for (i = 0; i < th_zone->cool_dev_size; i++) if (cdev == th_zone->cool_dev[i]) break; /* No matching cooling device */ if (i == th_zone->cool_dev_size) return 0; /* Bind the thermal zone to the cpufreq cooling device */ for (i = 0; i < tab_size; i++) { switch (GET_ZONE(i)) { case MONITOR_ZONE: case WARN_ZONE: if (thermal_zone_unbind_cooling_device(thermal, i, cdev)) { pr_err("error unbinding cdev inst=%d\n", i); ret = -EINVAL; } th_zone->bind = false; break; default: ret = -EINVAL; } } return ret; } /* Get temperature callback functions for thermal zone */ static int exynos_get_temp(struct thermal_zone_device *thermal, unsigned long *temp) { void *data; if (!th_zone->sensor_conf) { pr_info("Temperature sensor not initialised\n"); return -EINVAL; } data = th_zone->sensor_conf->private_data; *temp = th_zone->sensor_conf->read_temperature(data); /* convert the temperature into millicelsius */ *temp = *temp * MCELSIUS; return 0; } /* Get the temperature trend */ static int exynos_get_trend(struct thermal_zone_device *thermal, int trip, enum thermal_trend *trend) { if (thermal->temperature >= trip) *trend = THERMAL_TREND_RAISING; else *trend = THERMAL_TREND_DROPPING; return 0; } /* Operation callback functions for thermal zone */ static struct thermal_zone_device_ops const exynos_dev_ops = { .bind = exynos_bind, .unbind = exynos_unbind, .get_temp = exynos_get_temp, .get_trend = exynos_get_trend, .get_mode = exynos_get_mode, .set_mode = exynos_set_mode, .get_trip_type = exynos_get_trip_type, .get_trip_temp = exynos_get_trip_temp, .get_crit_temp = exynos_get_crit_temp, }; /* * This function may be called from interrupt based temperature sensor * when threshold is changed. */ static void exynos_report_trigger(void) { unsigned int i; char data[10]; char *envp[] = { data, NULL }; if (!th_zone || !th_zone->therm_dev) return; if (th_zone->bind == false) { for (i = 0; i < th_zone->cool_dev_size; i++) { if (!th_zone->cool_dev[i]) continue; exynos_bind(th_zone->therm_dev, th_zone->cool_dev[i]); } } thermal_zone_device_update(th_zone->therm_dev); mutex_lock(&th_zone->therm_dev->lock); /* Find the level for which trip happened */ for (i = 0; i < th_zone->sensor_conf->trip_data.trip_count; i++) { if (th_zone->therm_dev->last_temperature < th_zone->sensor_conf->trip_data.trip_val[i] * MCELSIUS) break; } if (th_zone->mode == THERMAL_DEVICE_ENABLED) { if (i > 0) th_zone->therm_dev->polling_delay = ACTIVE_INTERVAL; else th_zone->therm_dev->polling_delay = IDLE_INTERVAL; } snprintf(data, sizeof(data), "%u", i); kobject_uevent_env(&th_zone->therm_dev->device.kobj, KOBJ_CHANGE, envp); mutex_unlock(&th_zone->therm_dev->lock); } /* Register with the in-kernel thermal management */ static int exynos_register_thermal(struct thermal_sensor_conf *sensor_conf) { int ret; struct cpumask mask_val; if (!sensor_conf || !sensor_conf->read_temperature) { pr_err("Temperature sensor not initialised\n"); return -EINVAL; } th_zone = kzalloc(sizeof(struct exynos_thermal_zone), GFP_KERNEL); if (!th_zone) return -ENOMEM; th_zone->sensor_conf = sensor_conf; cpumask_set_cpu(0, &mask_val); th_zone->cool_dev[0] = cpufreq_cooling_register(&mask_val); if (IS_ERR(th_zone->cool_dev[0])) { pr_err("Failed to register cpufreq cooling device\n"); ret = -EINVAL; goto err_unregister; } th_zone->cool_dev_size++; th_zone->therm_dev = thermal_zone_device_register(sensor_conf->name, EXYNOS_ZONE_COUNT, 0, NULL, &exynos_dev_ops, 0, IDLE_INTERVAL); if (IS_ERR(th_zone->therm_dev)) { pr_err("Failed to register thermal zone device\n"); ret = -EINVAL; goto err_unregister; } th_zone->mode = THERMAL_DEVICE_ENABLED; pr_info("Exynos: Kernel Thermal management registered\n"); return 0; err_unregister: exynos_unregister_thermal(); return ret; } /* Un-Register with the in-kernel thermal management */ static void exynos_unregister_thermal(void) { int i; if (th_zone && th_zone->therm_dev) thermal_zone_device_unregister(th_zone->therm_dev); for (i = 0; i < th_zone->cool_dev_size; i++) { if (th_zone && th_zone->cool_dev[i]) cpufreq_cooling_unregister(th_zone->cool_dev[i]); } kfree(th_zone); pr_info("Exynos: Kernel Thermal management unregistered\n"); } /* * TMU treats temperature as a mapped temperature code. * The temperature is converted differently depending on the calibration type. */ static int temp_to_code(struct exynos_tmu_data *data, u8 temp) { struct exynos_tmu_platform_data *pdata = data->pdata; int temp_code; if (data->soc == SOC_ARCH_EXYNOS4210) /* temp should range between 25 and 125 */ if (temp < 25 || temp > 125) { temp_code = -EINVAL; goto out; } switch (pdata->cal_type) { case TYPE_TWO_POINT_TRIMMING: temp_code = (temp - 25) * (data->temp_error2 - data->temp_error1) / (85 - 25) + data->temp_error1; break; case TYPE_ONE_POINT_TRIMMING: temp_code = temp + data->temp_error1 - 25; break; default: temp_code = temp + EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET; break; } out: return temp_code; } /* * Calculate a temperature value from a temperature code. * The unit of the temperature is degree Celsius. */ static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code) { struct exynos_tmu_platform_data *pdata = data->pdata; int temp; if (data->soc == SOC_ARCH_EXYNOS4210) /* temp_code should range between 75 and 175 */ if (temp_code < 75 || temp_code > 175) { temp = -ENODATA; goto out; } switch (pdata->cal_type) { case TYPE_TWO_POINT_TRIMMING: temp = (temp_code - data->temp_error1) * (85 - 25) / (data->temp_error2 - data->temp_error1) + 25; break; case TYPE_ONE_POINT_TRIMMING: temp = temp_code - data->temp_error1 + 25; break; default: temp = temp_code - EXYNOS_TMU_DEF_CODE_TO_TEMP_OFFSET; break; } out: return temp; } static int exynos_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct exynos_tmu_platform_data *pdata = data->pdata; unsigned int status, trim_info, rising_threshold; int ret = 0, threshold_code; mutex_lock(&data->lock); clk_enable(data->clk); status = readb(data->base + EXYNOS_TMU_REG_STATUS); if (!status) { ret = -EBUSY; goto out; } if (data->soc == SOC_ARCH_EXYNOS) { __raw_writel(EXYNOS_TRIMINFO_RELOAD, data->base + EXYNOS_TMU_TRIMINFO_CON); } /* Save trimming info in order to perform calibration */ trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); data->temp_error1 = trim_info & EXYNOS_TMU_TRIM_TEMP_MASK; data->temp_error2 = ((trim_info >> 8) & EXYNOS_TMU_TRIM_TEMP_MASK); if ((EFUSE_MIN_VALUE > data->temp_error1) || (data->temp_error1 > EFUSE_MAX_VALUE) || (data->temp_error2 != 0)) data->temp_error1 = pdata->efuse_value; if (data->soc == SOC_ARCH_EXYNOS4210) { /* Write temperature code for threshold */ threshold_code = temp_to_code(data, pdata->threshold); if (threshold_code < 0) { ret = threshold_code; goto out; } writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP); writeb(pdata->trigger_levels[0], data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL0); writeb(pdata->trigger_levels[1], data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL1); writeb(pdata->trigger_levels[2], data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL2); writeb(pdata->trigger_levels[3], data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL3); writel(EXYNOS4210_TMU_INTCLEAR_VAL, data->base + EXYNOS_TMU_REG_INTCLEAR); } else if (data->soc == SOC_ARCH_EXYNOS) { /* Write temperature code for threshold */ threshold_code = temp_to_code(data, pdata->trigger_levels[0]); if (threshold_code < 0) { ret = threshold_code; goto out; } rising_threshold = threshold_code; threshold_code = temp_to_code(data, pdata->trigger_levels[1]); if (threshold_code < 0) { ret = threshold_code; goto out; } rising_threshold |= (threshold_code << 8); threshold_code = temp_to_code(data, pdata->trigger_levels[2]); if (threshold_code < 0) { ret = threshold_code; goto out; } rising_threshold |= (threshold_code << 16); writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE); writel(0, data->base + EXYNOS_THD_TEMP_FALL); writel(EXYNOS_TMU_CLEAR_RISE_INT|EXYNOS_TMU_CLEAR_FALL_INT, data->base + EXYNOS_TMU_REG_INTCLEAR); } out: clk_disable(data->clk); mutex_unlock(&data->lock); return ret; } static void exynos_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct exynos_tmu_platform_data *pdata = data->pdata; unsigned int con, interrupt_en; mutex_lock(&data->lock); clk_enable(data->clk); con = pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT | pdata->gain << EXYNOS_TMU_GAIN_SHIFT; if (data->soc == SOC_ARCH_EXYNOS) { con |= pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT; con |= (EXYNOS_MUX_ADDR_VALUE << EXYNOS_MUX_ADDR_SHIFT); } if (on) { con |= EXYNOS_TMU_CORE_ON; interrupt_en = pdata->trigger_level3_en << 12 | pdata->trigger_level2_en << 8 | pdata->trigger_level1_en << 4 | pdata->trigger_level0_en; } else { con |= EXYNOS_TMU_CORE_OFF; interrupt_en = 0; /* Disable all interrupts */ } writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN); writel(con, data->base + EXYNOS_TMU_REG_CONTROL); clk_disable(data->clk); mutex_unlock(&data->lock); } static int exynos_tmu_read(struct exynos_tmu_data *data) { u8 temp_code; int temp; mutex_lock(&data->lock); clk_enable(data->clk); temp_code = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP); temp = code_to_temp(data, temp_code); clk_disable(data->clk); mutex_unlock(&data->lock); return temp; } static void exynos_tmu_work(struct work_struct *work) { struct exynos_tmu_data *data = container_of(work, struct exynos_tmu_data, irq_work); mutex_lock(&data->lock); clk_enable(data->clk); if (data->soc == SOC_ARCH_EXYNOS) writel(EXYNOS_TMU_CLEAR_RISE_INT, data->base + EXYNOS_TMU_REG_INTCLEAR); else writel(EXYNOS4210_TMU_INTCLEAR_VAL, data->base + EXYNOS_TMU_REG_INTCLEAR); clk_disable(data->clk); mutex_unlock(&data->lock); exynos_report_trigger(); enable_irq(data->irq); } static irqreturn_t exynos_tmu_irq(int irq, void *id) { struct exynos_tmu_data *data = id; disable_irq_nosync(irq); schedule_work(&data->irq_work); return IRQ_HANDLED; } static struct thermal_sensor_conf exynos_sensor_conf = { .name = "exynos-therm", .read_temperature = (int (*)(void *))exynos_tmu_read, }; #if defined(CONFIG_CPU_EXYNOS4210) static struct exynos_tmu_platform_data const exynos4210_default_tmu_data = { .threshold = 80, .trigger_levels[0] = 5, .trigger_levels[1] = 20, .trigger_levels[2] = 30, .trigger_level0_en = 1, .trigger_level1_en = 1, .trigger_level2_en = 1, .trigger_level3_en = 0, .gain = 15, .reference_voltage = 7, .cal_type = TYPE_ONE_POINT_TRIMMING, .freq_tab[0] = { .freq_clip_max = 800 * 1000, .temp_level = 85, }, .freq_tab[1] = { .freq_clip_max = 200 * 1000, .temp_level = 100, }, .freq_tab_count = 2, .type = SOC_ARCH_EXYNOS4210, }; #define EXYNOS4210_TMU_DRV_DATA (&exynos4210_default_tmu_data) #else #define EXYNOS4210_TMU_DRV_DATA (NULL) #endif #if defined(CONFIG_SOC_EXYNOS5250) || defined(CONFIG_SOC_EXYNOS4412) static struct exynos_tmu_platform_data const exynos_default_tmu_data = { .trigger_levels[0] = 85, .trigger_levels[1] = 103, .trigger_levels[2] = 110, .trigger_level0_en = 1, .trigger_level1_en = 1, .trigger_level2_en = 1, .trigger_level3_en = 0, .gain = 8, .reference_voltage = 16, .noise_cancel_mode = 4, .cal_type = TYPE_ONE_POINT_TRIMMING, .efuse_value = 55, .freq_tab[0] = { .freq_clip_max = 800 * 1000, .temp_level = 85, }, .freq_tab[1] = { .freq_clip_max = 200 * 1000, .temp_level = 103, }, .freq_tab_count = 2, .type = SOC_ARCH_EXYNOS, }; #define EXYNOS_TMU_DRV_DATA (&exynos_default_tmu_data) #else #define EXYNOS_TMU_DRV_DATA (NULL) #endif #ifdef CONFIG_OF static const struct of_device_id exynos_tmu_match[] = { { .compatible = "samsung,exynos4210-tmu", .data = (void *)EXYNOS4210_TMU_DRV_DATA, }, { .compatible = "samsung,exynos5250-tmu", .data = (void *)EXYNOS_TMU_DRV_DATA, }, {}, }; MODULE_DEVICE_TABLE(of, exynos_tmu_match); #else #define exynos_tmu_match NULL #endif static struct platform_device_id exynos_tmu_driver_ids[] = { { .name = "exynos4210-tmu", .driver_data = (kernel_ulong_t)EXYNOS4210_TMU_DRV_DATA, }, { .name = "exynos5250-tmu", .driver_data = (kernel_ulong_t)EXYNOS_TMU_DRV_DATA, }, { }, }; MODULE_DEVICE_TABLE(platform, exynos4_tmu_driver_ids); static inline struct exynos_tmu_platform_data *exynos_get_driver_data( struct platform_device *pdev) { #ifdef CONFIG_OF if (pdev->dev.of_node) { const struct of_device_id *match; match = of_match_node(exynos_tmu_match, pdev->dev.of_node); if (!match) return NULL; return (struct exynos_tmu_platform_data *) match->data; } #endif return (struct exynos_tmu_platform_data *) platform_get_device_id(pdev)->driver_data; } static int __devinit exynos_tmu_probe(struct platform_device *pdev) { struct exynos_tmu_data *data; struct exynos_tmu_platform_data *pdata = pdev->dev.platform_data; int ret, i; if (!pdata) pdata = exynos_get_driver_data(pdev); if (!pdata) { dev_err(&pdev->dev, "No platform init data supplied.\n"); return -ENODEV; } data = kzalloc(sizeof(struct exynos_tmu_data), GFP_KERNEL); if (!data) { dev_err(&pdev->dev, "Failed to allocate driver structure\n"); return -ENOMEM; } data->irq = platform_get_irq(pdev, 0); if (data->irq < 0) { ret = data->irq; dev_err(&pdev->dev, "Failed to get platform irq\n"); goto err_free; } INIT_WORK(&data->irq_work, exynos_tmu_work); data->mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!data->mem) { ret = -ENOENT; dev_err(&pdev->dev, "Failed to get platform resource\n"); goto err_free; } data->mem = request_mem_region(data->mem->start, resource_size(data->mem), pdev->name); if (!data->mem) { ret = -ENODEV; dev_err(&pdev->dev, "Failed to request memory region\n"); goto err_free; } data->base = ioremap(data->mem->start, resource_size(data->mem)); if (!data->base) { ret = -ENODEV; dev_err(&pdev->dev, "Failed to ioremap memory\n"); goto err_mem_region; } ret = request_irq(data->irq, exynos_tmu_irq, IRQF_TRIGGER_RISING, "exynos-tmu", data); if (ret) { dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq); goto err_io_remap; } data->clk = clk_get(NULL, "tmu_apbif"); if (IS_ERR(data->clk)) { ret = PTR_ERR(data->clk); dev_err(&pdev->dev, "Failed to get clock\n"); goto err_irq; } if (pdata->type == SOC_ARCH_EXYNOS || pdata->type == SOC_ARCH_EXYNOS4210) data->soc = pdata->type; else { ret = -EINVAL; dev_err(&pdev->dev, "Platform not supported\n"); goto err_clk; } data->pdata = pdata; platform_set_drvdata(pdev, data); mutex_init(&data->lock); ret = exynos_tmu_initialize(pdev); if (ret) { dev_err(&pdev->dev, "Failed to initialize TMU\n"); goto err_clk; } exynos_tmu_control(pdev, true); /* Register the sensor with thermal management interface */ (&exynos_sensor_conf)->private_data = data; exynos_sensor_conf.trip_data.trip_count = pdata->trigger_level0_en + pdata->trigger_level1_en + pdata->trigger_level2_en + pdata->trigger_level3_en; for (i = 0; i < exynos_sensor_conf.trip_data.trip_count; i++) exynos_sensor_conf.trip_data.trip_val[i] = pdata->threshold + pdata->trigger_levels[i]; exynos_sensor_conf.cooling_data.freq_clip_count = pdata->freq_tab_count; for (i = 0; i < pdata->freq_tab_count; i++) { exynos_sensor_conf.cooling_data.freq_data[i].freq_clip_max = pdata->freq_tab[i].freq_clip_max; exynos_sensor_conf.cooling_data.freq_data[i].temp_level = pdata->freq_tab[i].temp_level; } ret = exynos_register_thermal(&exynos_sensor_conf); if (ret) { dev_err(&pdev->dev, "Failed to register thermal interface\n"); goto err_clk; } return 0; err_clk: platform_set_drvdata(pdev, NULL); clk_put(data->clk); err_irq: free_irq(data->irq, data); err_io_remap: iounmap(data->base); err_mem_region: release_mem_region(data->mem->start, resource_size(data->mem)); err_free: kfree(data); return ret; } static int __devexit exynos_tmu_remove(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); exynos_tmu_control(pdev, false); exynos_unregister_thermal(); clk_put(data->clk); free_irq(data->irq, data); iounmap(data->base); release_mem_region(data->mem->start, resource_size(data->mem)); platform_set_drvdata(pdev, NULL); kfree(data); return 0; } #ifdef CONFIG_PM_SLEEP static int exynos_tmu_suspend(struct device *dev) { exynos_tmu_control(to_platform_device(dev), false); return 0; } static int exynos_tmu_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); exynos_tmu_initialize(pdev); exynos_tmu_control(pdev, true); return 0; } static SIMPLE_DEV_PM_OPS(exynos_tmu_pm, exynos_tmu_suspend, exynos_tmu_resume); #define EXYNOS_TMU_PM (&exynos_tmu_pm) #else #define EXYNOS_TMU_PM NULL #endif static struct platform_driver exynos_tmu_driver = { .driver = { .name = "exynos-tmu", .owner = THIS_MODULE, .pm = EXYNOS_TMU_PM, .of_match_table = exynos_tmu_match, }, .probe = exynos_tmu_probe, .remove = __devexit_p(exynos_tmu_remove), .id_table = exynos_tmu_driver_ids, }; module_platform_driver(exynos_tmu_driver); MODULE_DESCRIPTION("EXYNOS TMU Driver"); MODULE_AUTHOR("Donggeun Kim "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:exynos-tmu");