// SPDX-License-Identifier: GPL-2.0-or-later /* auditsc.c -- System-call auditing support * Handles all system-call specific auditing features. * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * Copyright 2005 Hewlett-Packard Development Company, L.P. * Copyright (C) 2005, 2006 IBM Corporation * All Rights Reserved. * * Written by Rickard E. (Rik) Faith * * Many of the ideas implemented here are from Stephen C. Tweedie, * especially the idea of avoiding a copy by using getname. * * The method for actual interception of syscall entry and exit (not in * this file -- see entry.S) is based on a GPL'd patch written by * okir@suse.de and Copyright 2003 SuSE Linux AG. * * POSIX message queue support added by George Wilson , * 2006. * * The support of additional filter rules compares (>, <, >=, <=) was * added by Dustin Kirkland , 2005. * * Modified by Amy Griffis to collect additional * filesystem information. * * Subject and object context labeling support added by * and for LSPP certification compliance. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // struct open_how #include #include "audit.h" /* flags stating the success for a syscall */ #define AUDITSC_INVALID 0 #define AUDITSC_SUCCESS 1 #define AUDITSC_FAILURE 2 /* no execve audit message should be longer than this (userspace limits), * see the note near the top of audit_log_execve_info() about this value */ #define MAX_EXECVE_AUDIT_LEN 7500 /* max length to print of cmdline/proctitle value during audit */ #define MAX_PROCTITLE_AUDIT_LEN 128 /* number of audit rules */ int audit_n_rules; /* determines whether we collect data for signals sent */ int audit_signals; struct audit_aux_data { struct audit_aux_data *next; int type; }; /* Number of target pids per aux struct. */ #define AUDIT_AUX_PIDS 16 struct audit_aux_data_pids { struct audit_aux_data d; pid_t target_pid[AUDIT_AUX_PIDS]; kuid_t target_auid[AUDIT_AUX_PIDS]; kuid_t target_uid[AUDIT_AUX_PIDS]; unsigned int target_sessionid[AUDIT_AUX_PIDS]; u32 target_sid[AUDIT_AUX_PIDS]; char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; int pid_count; }; struct audit_aux_data_bprm_fcaps { struct audit_aux_data d; struct audit_cap_data fcap; unsigned int fcap_ver; struct audit_cap_data old_pcap; struct audit_cap_data new_pcap; }; struct audit_tree_refs { struct audit_tree_refs *next; struct audit_chunk *c[31]; }; struct audit_nfcfgop_tab { enum audit_nfcfgop op; const char *s; }; static const struct audit_nfcfgop_tab audit_nfcfgs[] = { { AUDIT_XT_OP_REGISTER, "xt_register" }, { AUDIT_XT_OP_REPLACE, "xt_replace" }, { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" }, { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" }, { AUDIT_NFT_OP_INVALID, "nft_invalid" }, }; static int audit_match_perm(struct audit_context *ctx, int mask) { unsigned n; if (unlikely(!ctx)) return 0; n = ctx->major; switch (audit_classify_syscall(ctx->arch, n)) { case AUDITSC_NATIVE: if ((mask & AUDIT_PERM_WRITE) && audit_match_class(AUDIT_CLASS_WRITE, n)) return 1; if ((mask & AUDIT_PERM_READ) && audit_match_class(AUDIT_CLASS_READ, n)) return 1; if ((mask & AUDIT_PERM_ATTR) && audit_match_class(AUDIT_CLASS_CHATTR, n)) return 1; return 0; case AUDITSC_COMPAT: /* 32bit on biarch */ if ((mask & AUDIT_PERM_WRITE) && audit_match_class(AUDIT_CLASS_WRITE_32, n)) return 1; if ((mask & AUDIT_PERM_READ) && audit_match_class(AUDIT_CLASS_READ_32, n)) return 1; if ((mask & AUDIT_PERM_ATTR) && audit_match_class(AUDIT_CLASS_CHATTR_32, n)) return 1; return 0; case AUDITSC_OPEN: return mask & ACC_MODE(ctx->argv[1]); case AUDITSC_OPENAT: return mask & ACC_MODE(ctx->argv[2]); case AUDITSC_SOCKETCALL: return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); case AUDITSC_EXECVE: return mask & AUDIT_PERM_EXEC; case AUDITSC_OPENAT2: return mask & ACC_MODE((u32)ctx->openat2.flags); default: return 0; } } static int audit_match_filetype(struct audit_context *ctx, int val) { struct audit_names *n; umode_t mode = (umode_t)val; if (unlikely(!ctx)) return 0; list_for_each_entry(n, &ctx->names_list, list) { if ((n->ino != AUDIT_INO_UNSET) && ((n->mode & S_IFMT) == mode)) return 1; } return 0; } /* * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; * ->first_trees points to its beginning, ->trees - to the current end of data. * ->tree_count is the number of free entries in array pointed to by ->trees. * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, * it's going to remain 1-element for almost any setup) until we free context itself. * References in it _are_ dropped - at the same time we free/drop aux stuff. */ static void audit_set_auditable(struct audit_context *ctx) { if (!ctx->prio) { ctx->prio = 1; ctx->current_state = AUDIT_STATE_RECORD; } } static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) { struct audit_tree_refs *p = ctx->trees; int left = ctx->tree_count; if (likely(left)) { p->c[--left] = chunk; ctx->tree_count = left; return 1; } if (!p) return 0; p = p->next; if (p) { p->c[30] = chunk; ctx->trees = p; ctx->tree_count = 30; return 1; } return 0; } static int grow_tree_refs(struct audit_context *ctx) { struct audit_tree_refs *p = ctx->trees; ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); if (!ctx->trees) { ctx->trees = p; return 0; } if (p) p->next = ctx->trees; else ctx->first_trees = ctx->trees; ctx->tree_count = 31; return 1; } static void unroll_tree_refs(struct audit_context *ctx, struct audit_tree_refs *p, int count) { struct audit_tree_refs *q; int n; if (!p) { /* we started with empty chain */ p = ctx->first_trees; count = 31; /* if the very first allocation has failed, nothing to do */ if (!p) return; } n = count; for (q = p; q != ctx->trees; q = q->next, n = 31) { while (n--) { audit_put_chunk(q->c[n]); q->c[n] = NULL; } } while (n-- > ctx->tree_count) { audit_put_chunk(q->c[n]); q->c[n] = NULL; } ctx->trees = p; ctx->tree_count = count; } static void free_tree_refs(struct audit_context *ctx) { struct audit_tree_refs *p, *q; for (p = ctx->first_trees; p; p = q) { q = p->next; kfree(p); } } static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) { struct audit_tree_refs *p; int n; if (!tree) return 0; /* full ones */ for (p = ctx->first_trees; p != ctx->trees; p = p->next) { for (n = 0; n < 31; n++) if (audit_tree_match(p->c[n], tree)) return 1; } /* partial */ if (p) { for (n = ctx->tree_count; n < 31; n++) if (audit_tree_match(p->c[n], tree)) return 1; } return 0; } static int audit_compare_uid(kuid_t uid, struct audit_names *name, struct audit_field *f, struct audit_context *ctx) { struct audit_names *n; int rc; if (name) { rc = audit_uid_comparator(uid, f->op, name->uid); if (rc) return rc; } if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { rc = audit_uid_comparator(uid, f->op, n->uid); if (rc) return rc; } } return 0; } static int audit_compare_gid(kgid_t gid, struct audit_names *name, struct audit_field *f, struct audit_context *ctx) { struct audit_names *n; int rc; if (name) { rc = audit_gid_comparator(gid, f->op, name->gid); if (rc) return rc; } if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { rc = audit_gid_comparator(gid, f->op, n->gid); if (rc) return rc; } } return 0; } static int audit_field_compare(struct task_struct *tsk, const struct cred *cred, struct audit_field *f, struct audit_context *ctx, struct audit_names *name) { switch (f->val) { /* process to file object comparisons */ case AUDIT_COMPARE_UID_TO_OBJ_UID: return audit_compare_uid(cred->uid, name, f, ctx); case AUDIT_COMPARE_GID_TO_OBJ_GID: return audit_compare_gid(cred->gid, name, f, ctx); case AUDIT_COMPARE_EUID_TO_OBJ_UID: return audit_compare_uid(cred->euid, name, f, ctx); case AUDIT_COMPARE_EGID_TO_OBJ_GID: return audit_compare_gid(cred->egid, name, f, ctx); case AUDIT_COMPARE_AUID_TO_OBJ_UID: return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); case AUDIT_COMPARE_SUID_TO_OBJ_UID: return audit_compare_uid(cred->suid, name, f, ctx); case AUDIT_COMPARE_SGID_TO_OBJ_GID: return audit_compare_gid(cred->sgid, name, f, ctx); case AUDIT_COMPARE_FSUID_TO_OBJ_UID: return audit_compare_uid(cred->fsuid, name, f, ctx); case AUDIT_COMPARE_FSGID_TO_OBJ_GID: return audit_compare_gid(cred->fsgid, name, f, ctx); /* uid comparisons */ case AUDIT_COMPARE_UID_TO_AUID: return audit_uid_comparator(cred->uid, f->op, audit_get_loginuid(tsk)); case AUDIT_COMPARE_UID_TO_EUID: return audit_uid_comparator(cred->uid, f->op, cred->euid); case AUDIT_COMPARE_UID_TO_SUID: return audit_uid_comparator(cred->uid, f->op, cred->suid); case AUDIT_COMPARE_UID_TO_FSUID: return audit_uid_comparator(cred->uid, f->op, cred->fsuid); /* auid comparisons */ case AUDIT_COMPARE_AUID_TO_EUID: return audit_uid_comparator(audit_get_loginuid(tsk), f->op, cred->euid); case AUDIT_COMPARE_AUID_TO_SUID: return audit_uid_comparator(audit_get_loginuid(tsk), f->op, cred->suid); case AUDIT_COMPARE_AUID_TO_FSUID: return audit_uid_comparator(audit_get_loginuid(tsk), f->op, cred->fsuid); /* euid comparisons */ case AUDIT_COMPARE_EUID_TO_SUID: return audit_uid_comparator(cred->euid, f->op, cred->suid); case AUDIT_COMPARE_EUID_TO_FSUID: return audit_uid_comparator(cred->euid, f->op, cred->fsuid); /* suid comparisons */ case AUDIT_COMPARE_SUID_TO_FSUID: return audit_uid_comparator(cred->suid, f->op, cred->fsuid); /* gid comparisons */ case AUDIT_COMPARE_GID_TO_EGID: return audit_gid_comparator(cred->gid, f->op, cred->egid); case AUDIT_COMPARE_GID_TO_SGID: return audit_gid_comparator(cred->gid, f->op, cred->sgid); case AUDIT_COMPARE_GID_TO_FSGID: return audit_gid_comparator(cred->gid, f->op, cred->fsgid); /* egid comparisons */ case AUDIT_COMPARE_EGID_TO_SGID: return audit_gid_comparator(cred->egid, f->op, cred->sgid); case AUDIT_COMPARE_EGID_TO_FSGID: return audit_gid_comparator(cred->egid, f->op, cred->fsgid); /* sgid comparison */ case AUDIT_COMPARE_SGID_TO_FSGID: return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); default: WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); return 0; } return 0; } /* Determine if any context name data matches a rule's watch data */ /* Compare a task_struct with an audit_rule. Return 1 on match, 0 * otherwise. * * If task_creation is true, this is an explicit indication that we are * filtering a task rule at task creation time. This and tsk == current are * the only situations where tsk->cred may be accessed without an rcu read lock. */ static int audit_filter_rules(struct task_struct *tsk, struct audit_krule *rule, struct audit_context *ctx, struct audit_names *name, enum audit_state *state, bool task_creation) { const struct cred *cred; int i, need_sid = 1; u32 sid; unsigned int sessionid; if (ctx && rule->prio <= ctx->prio) return 0; cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); for (i = 0; i < rule->field_count; i++) { struct audit_field *f = &rule->fields[i]; struct audit_names *n; int result = 0; pid_t pid; switch (f->type) { case AUDIT_PID: pid = task_tgid_nr(tsk); result = audit_comparator(pid, f->op, f->val); break; case AUDIT_PPID: if (ctx) { if (!ctx->ppid) ctx->ppid = task_ppid_nr(tsk); result = audit_comparator(ctx->ppid, f->op, f->val); } break; case AUDIT_EXE: result = audit_exe_compare(tsk, rule->exe); if (f->op == Audit_not_equal) result = !result; break; case AUDIT_UID: result = audit_uid_comparator(cred->uid, f->op, f->uid); break; case AUDIT_EUID: result = audit_uid_comparator(cred->euid, f->op, f->uid); break; case AUDIT_SUID: result = audit_uid_comparator(cred->suid, f->op, f->uid); break; case AUDIT_FSUID: result = audit_uid_comparator(cred->fsuid, f->op, f->uid); break; case AUDIT_GID: result = audit_gid_comparator(cred->gid, f->op, f->gid); if (f->op == Audit_equal) { if (!result) result = groups_search(cred->group_info, f->gid); } else if (f->op == Audit_not_equal) { if (result) result = !groups_search(cred->group_info, f->gid); } break; case AUDIT_EGID: result = audit_gid_comparator(cred->egid, f->op, f->gid); if (f->op == Audit_equal) { if (!result) result = groups_search(cred->group_info, f->gid); } else if (f->op == Audit_not_equal) { if (result) result = !groups_search(cred->group_info, f->gid); } break; case AUDIT_SGID: result = audit_gid_comparator(cred->sgid, f->op, f->gid); break; case AUDIT_FSGID: result = audit_gid_comparator(cred->fsgid, f->op, f->gid); break; case AUDIT_SESSIONID: sessionid = audit_get_sessionid(tsk); result = audit_comparator(sessionid, f->op, f->val); break; case AUDIT_PERS: result = audit_comparator(tsk->personality, f->op, f->val); break; case AUDIT_ARCH: if (ctx) result = audit_comparator(ctx->arch, f->op, f->val); break; case AUDIT_EXIT: if (ctx && ctx->return_valid != AUDITSC_INVALID) result = audit_comparator(ctx->return_code, f->op, f->val); break; case AUDIT_SUCCESS: if (ctx && ctx->return_valid != AUDITSC_INVALID) { if (f->val) result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); else result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); } break; case AUDIT_DEVMAJOR: if (name) { if (audit_comparator(MAJOR(name->dev), f->op, f->val) || audit_comparator(MAJOR(name->rdev), f->op, f->val)) ++result; } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_comparator(MAJOR(n->dev), f->op, f->val) || audit_comparator(MAJOR(n->rdev), f->op, f->val)) { ++result; break; } } } break; case AUDIT_DEVMINOR: if (name) { if (audit_comparator(MINOR(name->dev), f->op, f->val) || audit_comparator(MINOR(name->rdev), f->op, f->val)) ++result; } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_comparator(MINOR(n->dev), f->op, f->val) || audit_comparator(MINOR(n->rdev), f->op, f->val)) { ++result; break; } } } break; case AUDIT_INODE: if (name) result = audit_comparator(name->ino, f->op, f->val); else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_comparator(n->ino, f->op, f->val)) { ++result; break; } } } break; case AUDIT_OBJ_UID: if (name) { result = audit_uid_comparator(name->uid, f->op, f->uid); } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_uid_comparator(n->uid, f->op, f->uid)) { ++result; break; } } } break; case AUDIT_OBJ_GID: if (name) { result = audit_gid_comparator(name->gid, f->op, f->gid); } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_gid_comparator(n->gid, f->op, f->gid)) { ++result; break; } } } break; case AUDIT_WATCH: if (name) { result = audit_watch_compare(rule->watch, name->ino, name->dev); if (f->op == Audit_not_equal) result = !result; } break; case AUDIT_DIR: if (ctx) { result = match_tree_refs(ctx, rule->tree); if (f->op == Audit_not_equal) result = !result; } break; case AUDIT_LOGINUID: result = audit_uid_comparator(audit_get_loginuid(tsk), f->op, f->uid); break; case AUDIT_LOGINUID_SET: result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); break; case AUDIT_SADDR_FAM: if (ctx && ctx->sockaddr) result = audit_comparator(ctx->sockaddr->ss_family, f->op, f->val); break; case AUDIT_SUBJ_USER: case AUDIT_SUBJ_ROLE: case AUDIT_SUBJ_TYPE: case AUDIT_SUBJ_SEN: case AUDIT_SUBJ_CLR: /* NOTE: this may return negative values indicating a temporary error. We simply treat this as a match for now to avoid losing information that may be wanted. An error message will also be logged upon error */ if (f->lsm_rule) { if (need_sid) { /* @tsk should always be equal to * @current with the exception of * fork()/copy_process() in which case * the new @tsk creds are still a dup * of @current's creds so we can still * use security_current_getsecid_subj() * here even though it always refs * @current's creds */ security_current_getsecid_subj(&sid); need_sid = 0; } result = security_audit_rule_match(sid, f->type, f->op, f->lsm_rule); } break; case AUDIT_OBJ_USER: case AUDIT_OBJ_ROLE: case AUDIT_OBJ_TYPE: case AUDIT_OBJ_LEV_LOW: case AUDIT_OBJ_LEV_HIGH: /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR also applies here */ if (f->lsm_rule) { /* Find files that match */ if (name) { result = security_audit_rule_match( name->osid, f->type, f->op, f->lsm_rule); } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (security_audit_rule_match( n->osid, f->type, f->op, f->lsm_rule)) { ++result; break; } } } /* Find ipc objects that match */ if (!ctx || ctx->type != AUDIT_IPC) break; if (security_audit_rule_match(ctx->ipc.osid, f->type, f->op, f->lsm_rule)) ++result; } break; case AUDIT_ARG0: case AUDIT_ARG1: case AUDIT_ARG2: case AUDIT_ARG3: if (ctx) result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); break; case AUDIT_FILTERKEY: /* ignore this field for filtering */ result = 1; break; case AUDIT_PERM: result = audit_match_perm(ctx, f->val); if (f->op == Audit_not_equal) result = !result; break; case AUDIT_FILETYPE: result = audit_match_filetype(ctx, f->val); if (f->op == Audit_not_equal) result = !result; break; case AUDIT_FIELD_COMPARE: result = audit_field_compare(tsk, cred, f, ctx, name); break; } if (!result) return 0; } if (ctx) { if (rule->filterkey) { kfree(ctx->filterkey); ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); } ctx->prio = rule->prio; } switch (rule->action) { case AUDIT_NEVER: *state = AUDIT_STATE_DISABLED; break; case AUDIT_ALWAYS: *state = AUDIT_STATE_RECORD; break; } return 1; } /* At process creation time, we can determine if system-call auditing is * completely disabled for this task. Since we only have the task * structure at this point, we can only check uid and gid. */ static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) { struct audit_entry *e; enum audit_state state; rcu_read_lock(); list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state, true)) { if (state == AUDIT_STATE_RECORD) *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); rcu_read_unlock(); return state; } } rcu_read_unlock(); return AUDIT_STATE_BUILD; } static int audit_in_mask(const struct audit_krule *rule, unsigned long val) { int word, bit; if (val > 0xffffffff) return false; word = AUDIT_WORD(val); if (word >= AUDIT_BITMASK_SIZE) return false; bit = AUDIT_BIT(val); return rule->mask[word] & bit; } /** * __audit_filter_op - common filter helper for operations (syscall/uring/etc) * @tsk: associated task * @ctx: audit context * @list: audit filter list * @name: audit_name (can be NULL) * @op: current syscall/uring_op * * Run the udit filters specified in @list against @tsk using @ctx, * @name, and @op, as necessary; the caller is responsible for ensuring * that the call is made while the RCU read lock is held. The @name * parameter can be NULL, but all others must be specified. * Returns 1/true if the filter finds a match, 0/false if none are found. */ static int __audit_filter_op(struct task_struct *tsk, struct audit_context *ctx, struct list_head *list, struct audit_names *name, unsigned long op) { struct audit_entry *e; enum audit_state state; list_for_each_entry_rcu(e, list, list) { if (audit_in_mask(&e->rule, op) && audit_filter_rules(tsk, &e->rule, ctx, name, &state, false)) { ctx->current_state = state; return 1; } } return 0; } /** * audit_filter_uring - apply filters to an io_uring operation * @tsk: associated task * @ctx: audit context */ static void audit_filter_uring(struct task_struct *tsk, struct audit_context *ctx) { if (auditd_test_task(tsk)) return; rcu_read_lock(); __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], NULL, ctx->uring_op); rcu_read_unlock(); } /* At syscall exit time, this filter is called if the audit_state is * not low enough that auditing cannot take place, but is also not * high enough that we already know we have to write an audit record * (i.e., the state is AUDIT_STATE_BUILD). */ static void audit_filter_syscall(struct task_struct *tsk, struct audit_context *ctx) { if (auditd_test_task(tsk)) return; rcu_read_lock(); __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], NULL, ctx->major); rcu_read_unlock(); } /* * Given an audit_name check the inode hash table to see if they match. * Called holding the rcu read lock to protect the use of audit_inode_hash */ static int audit_filter_inode_name(struct task_struct *tsk, struct audit_names *n, struct audit_context *ctx) { int h = audit_hash_ino((u32)n->ino); struct list_head *list = &audit_inode_hash[h]; return __audit_filter_op(tsk, ctx, list, n, ctx->major); } /* At syscall exit time, this filter is called if any audit_names have been * collected during syscall processing. We only check rules in sublists at hash * buckets applicable to the inode numbers in audit_names. * Regarding audit_state, same rules apply as for audit_filter_syscall(). */ void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) { struct audit_names *n; if (auditd_test_task(tsk)) return; rcu_read_lock(); list_for_each_entry(n, &ctx->names_list, list) { if (audit_filter_inode_name(tsk, n, ctx)) break; } rcu_read_unlock(); } static inline void audit_proctitle_free(struct audit_context *context) { kfree(context->proctitle.value); context->proctitle.value = NULL; context->proctitle.len = 0; } static inline void audit_free_module(struct audit_context *context) { if (context->type == AUDIT_KERN_MODULE) { kfree(context->module.name); context->module.name = NULL; } } static inline void audit_free_names(struct audit_context *context) { struct audit_names *n, *next; list_for_each_entry_safe(n, next, &context->names_list, list) { list_del(&n->list); if (n->name) putname(n->name); if (n->should_free) kfree(n); } context->name_count = 0; path_put(&context->pwd); context->pwd.dentry = NULL; context->pwd.mnt = NULL; } static inline void audit_free_aux(struct audit_context *context) { struct audit_aux_data *aux; while ((aux = context->aux)) { context->aux = aux->next; kfree(aux); } context->aux = NULL; while ((aux = context->aux_pids)) { context->aux_pids = aux->next; kfree(aux); } context->aux_pids = NULL; } /** * audit_reset_context - reset a audit_context structure * @ctx: the audit_context to reset * * All fields in the audit_context will be reset to an initial state, all * references held by fields will be dropped, and private memory will be * released. When this function returns the audit_context will be suitable * for reuse, so long as the passed context is not NULL or a dummy context. */ static void audit_reset_context(struct audit_context *ctx) { if (!ctx) return; /* if ctx is non-null, reset the "ctx->context" regardless */ ctx->context = AUDIT_CTX_UNUSED; if (ctx->dummy) return; /* * NOTE: It shouldn't matter in what order we release the fields, so * release them in the order in which they appear in the struct; * this gives us some hope of quickly making sure we are * resetting the audit_context properly. * * Other things worth mentioning: * - we don't reset "dummy" * - we don't reset "state", we do reset "current_state" * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD * - much of this is likely overkill, but play it safe for now * - we really need to work on improving the audit_context struct */ ctx->current_state = ctx->state; ctx->serial = 0; ctx->major = 0; ctx->uring_op = 0; ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; memset(ctx->argv, 0, sizeof(ctx->argv)); ctx->return_code = 0; ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); ctx->return_valid = AUDITSC_INVALID; audit_free_names(ctx); if (ctx->state != AUDIT_STATE_RECORD) { kfree(ctx->filterkey); ctx->filterkey = NULL; } audit_free_aux(ctx); kfree(ctx->sockaddr); ctx->sockaddr = NULL; ctx->sockaddr_len = 0; ctx->ppid = 0; ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); ctx->personality = 0; ctx->arch = 0; ctx->target_pid = 0; ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); ctx->target_sessionid = 0; ctx->target_sid = 0; ctx->target_comm[0] = '\0'; unroll_tree_refs(ctx, NULL, 0); WARN_ON(!list_empty(&ctx->killed_trees)); audit_free_module(ctx); ctx->fds[0] = -1; ctx->type = 0; /* reset last for audit_free_*() */ } static inline struct audit_context *audit_alloc_context(enum audit_state state) { struct audit_context *context; context = kzalloc(sizeof(*context), GFP_KERNEL); if (!context) return NULL; context->context = AUDIT_CTX_UNUSED; context->state = state; context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; INIT_LIST_HEAD(&context->killed_trees); INIT_LIST_HEAD(&context->names_list); context->fds[0] = -1; context->return_valid = AUDITSC_INVALID; return context; } /** * audit_alloc - allocate an audit context block for a task * @tsk: task * * Filter on the task information and allocate a per-task audit context * if necessary. Doing so turns on system call auditing for the * specified task. This is called from copy_process, so no lock is * needed. */ int audit_alloc(struct task_struct *tsk) { struct audit_context *context; enum audit_state state; char *key = NULL; if (likely(!audit_ever_enabled)) return 0; state = audit_filter_task(tsk, &key); if (state == AUDIT_STATE_DISABLED) { clear_task_syscall_work(tsk, SYSCALL_AUDIT); return 0; } context = audit_alloc_context(state); if (!context) { kfree(key); audit_log_lost("out of memory in audit_alloc"); return -ENOMEM; } context->filterkey = key; audit_set_context(tsk, context); set_task_syscall_work(tsk, SYSCALL_AUDIT); return 0; } static inline void audit_free_context(struct audit_context *context) { /* resetting is extra work, but it is likely just noise */ audit_reset_context(context); audit_proctitle_free(context); free_tree_refs(context); kfree(context->filterkey); kfree(context); } static int audit_log_pid_context(struct audit_context *context, pid_t pid, kuid_t auid, kuid_t uid, unsigned int sessionid, u32 sid, char *comm) { struct audit_buffer *ab; char *ctx = NULL; u32 len; int rc = 0; ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); if (!ab) return rc; audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, from_kuid(&init_user_ns, auid), from_kuid(&init_user_ns, uid), sessionid); if (sid) { if (security_secid_to_secctx(sid, &ctx, &len)) { audit_log_format(ab, " obj=(none)"); rc = 1; } else { audit_log_format(ab, " obj=%s", ctx); security_release_secctx(ctx, len); } } audit_log_format(ab, " ocomm="); audit_log_untrustedstring(ab, comm); audit_log_end(ab); return rc; } static void audit_log_execve_info(struct audit_context *context, struct audit_buffer **ab) { long len_max; long len_rem; long len_full; long len_buf; long len_abuf = 0; long len_tmp; bool require_data; bool encode; unsigned int iter; unsigned int arg; char *buf_head; char *buf; const char __user *p = (const char __user *)current->mm->arg_start; /* NOTE: this buffer needs to be large enough to hold all the non-arg * data we put in the audit record for this argument (see the * code below) ... at this point in time 96 is plenty */ char abuf[96]; /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the * current value of 7500 is not as important as the fact that it * is less than 8k, a setting of 7500 gives us plenty of wiggle * room if we go over a little bit in the logging below */ WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); len_max = MAX_EXECVE_AUDIT_LEN; /* scratch buffer to hold the userspace args */ buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); if (!buf_head) { audit_panic("out of memory for argv string"); return; } buf = buf_head; audit_log_format(*ab, "argc=%d", context->execve.argc); len_rem = len_max; len_buf = 0; len_full = 0; require_data = true; encode = false; iter = 0; arg = 0; do { /* NOTE: we don't ever want to trust this value for anything * serious, but the audit record format insists we * provide an argument length for really long arguments, * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but * to use strncpy_from_user() to obtain this value for * recording in the log, although we don't use it * anywhere here to avoid a double-fetch problem */ if (len_full == 0) len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; /* read more data from userspace */ if (require_data) { /* can we make more room in the buffer? */ if (buf != buf_head) { memmove(buf_head, buf, len_buf); buf = buf_head; } /* fetch as much as we can of the argument */ len_tmp = strncpy_from_user(&buf_head[len_buf], p, len_max - len_buf); if (len_tmp == -EFAULT) { /* unable to copy from userspace */ send_sig(SIGKILL, current, 0); goto out; } else if (len_tmp == (len_max - len_buf)) { /* buffer is not large enough */ require_data = true; /* NOTE: if we are going to span multiple * buffers force the encoding so we stand * a chance at a sane len_full value and * consistent record encoding */ encode = true; len_full = len_full * 2; p += len_tmp; } else { require_data = false; if (!encode) encode = audit_string_contains_control( buf, len_tmp); /* try to use a trusted value for len_full */ if (len_full < len_max) len_full = (encode ? len_tmp * 2 : len_tmp); p += len_tmp + 1; } len_buf += len_tmp; buf_head[len_buf] = '\0'; /* length of the buffer in the audit record? */ len_abuf = (encode ? len_buf * 2 : len_buf + 2); } /* write as much as we can to the audit log */ if (len_buf >= 0) { /* NOTE: some magic numbers here - basically if we * can't fit a reasonable amount of data into the * existing audit buffer, flush it and start with * a new buffer */ if ((sizeof(abuf) + 8) > len_rem) { len_rem = len_max; audit_log_end(*ab); *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); if (!*ab) goto out; } /* create the non-arg portion of the arg record */ len_tmp = 0; if (require_data || (iter > 0) || ((len_abuf + sizeof(abuf)) > len_rem)) { if (iter == 0) { len_tmp += snprintf(&abuf[len_tmp], sizeof(abuf) - len_tmp, " a%d_len=%lu", arg, len_full); } len_tmp += snprintf(&abuf[len_tmp], sizeof(abuf) - len_tmp, " a%d[%d]=", arg, iter++); } else len_tmp += snprintf(&abuf[len_tmp], sizeof(abuf) - len_tmp, " a%d=", arg); WARN_ON(len_tmp >= sizeof(abuf)); abuf[sizeof(abuf) - 1] = '\0'; /* log the arg in the audit record */ audit_log_format(*ab, "%s", abuf); len_rem -= len_tmp; len_tmp = len_buf; if (encode) { if (len_abuf > len_rem) len_tmp = len_rem / 2; /* encoding */ audit_log_n_hex(*ab, buf, len_tmp); len_rem -= len_tmp * 2; len_abuf -= len_tmp * 2; } else { if (len_abuf > len_rem) len_tmp = len_rem - 2; /* quotes */ audit_log_n_string(*ab, buf, len_tmp); len_rem -= len_tmp + 2; /* don't subtract the "2" because we still need * to add quotes to the remaining string */ len_abuf -= len_tmp; } len_buf -= len_tmp; buf += len_tmp; } /* ready to move to the next argument? */ if ((len_buf == 0) && !require_data) { arg++; iter = 0; len_full = 0; require_data = true; encode = false; } } while (arg < context->execve.argc); /* NOTE: the caller handles the final audit_log_end() call */ out: kfree(buf_head); } static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) { if (cap_isclear(*cap)) { audit_log_format(ab, " %s=0", prefix); return; } audit_log_format(ab, " %s=%016llx", prefix, cap->val); } static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) { if (name->fcap_ver == -1) { audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); return; } audit_log_cap(ab, "cap_fp", &name->fcap.permitted); audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", name->fcap.fE, name->fcap_ver, from_kuid(&init_user_ns, name->fcap.rootid)); } static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) { const struct audit_ntp_data *ntp = &context->time.ntp_data; const struct timespec64 *tk = &context->time.tk_injoffset; static const char * const ntp_name[] = { "offset", "freq", "status", "tai", "tick", "adjust", }; int type; if (context->type == AUDIT_TIME_ADJNTPVAL) { for (type = 0; type < AUDIT_NTP_NVALS; type++) { if (ntp->vals[type].newval != ntp->vals[type].oldval) { if (!*ab) { *ab = audit_log_start(context, GFP_KERNEL, AUDIT_TIME_ADJNTPVAL); if (!*ab) return; } audit_log_format(*ab, "op=%s old=%lli new=%lli", ntp_name[type], ntp->vals[type].oldval, ntp->vals[type].newval); audit_log_end(*ab); *ab = NULL; } } } if (tk->tv_sec != 0 || tk->tv_nsec != 0) { if (!*ab) { *ab = audit_log_start(context, GFP_KERNEL, AUDIT_TIME_INJOFFSET); if (!*ab) return; } audit_log_format(*ab, "sec=%lli nsec=%li", (long long)tk->tv_sec, tk->tv_nsec); audit_log_end(*ab); *ab = NULL; } } static void show_special(struct audit_context *context, int *call_panic) { struct audit_buffer *ab; int i; ab = audit_log_start(context, GFP_KERNEL, context->type); if (!ab) return; switch (context->type) { case AUDIT_SOCKETCALL: { int nargs = context->socketcall.nargs; audit_log_format(ab, "nargs=%d", nargs); for (i = 0; i < nargs; i++) audit_log_format(ab, " a%d=%lx", i, context->socketcall.args[i]); break; } case AUDIT_IPC: { u32 osid = context->ipc.osid; audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", from_kuid(&init_user_ns, context->ipc.uid), from_kgid(&init_user_ns, context->ipc.gid), context->ipc.mode); if (osid) { char *ctx = NULL; u32 len; if (security_secid_to_secctx(osid, &ctx, &len)) { audit_log_format(ab, " osid=%u", osid); *call_panic = 1; } else { audit_log_format(ab, " obj=%s", ctx); security_release_secctx(ctx, len); } } if (context->ipc.has_perm) { audit_log_end(ab); ab = audit_log_start(context, GFP_KERNEL, AUDIT_IPC_SET_PERM); if (unlikely(!ab)) return; audit_log_format(ab, "qbytes=%lx ouid=%u ogid=%u mode=%#ho", context->ipc.qbytes, context->ipc.perm_uid, context->ipc.perm_gid, context->ipc.perm_mode); } break; } case AUDIT_MQ_OPEN: audit_log_format(ab, "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " "mq_msgsize=%ld mq_curmsgs=%ld", context->mq_open.oflag, context->mq_open.mode, context->mq_open.attr.mq_flags, context->mq_open.attr.mq_maxmsg, context->mq_open.attr.mq_msgsize, context->mq_open.attr.mq_curmsgs); break; case AUDIT_MQ_SENDRECV: audit_log_format(ab, "mqdes=%d msg_len=%zd msg_prio=%u " "abs_timeout_sec=%lld abs_timeout_nsec=%ld", context->mq_sendrecv.mqdes, context->mq_sendrecv.msg_len, context->mq_sendrecv.msg_prio, (long long) context->mq_sendrecv.abs_timeout.tv_sec, context->mq_sendrecv.abs_timeout.tv_nsec); break; case AUDIT_MQ_NOTIFY: audit_log_format(ab, "mqdes=%d sigev_signo=%d", context->mq_notify.mqdes, context->mq_notify.sigev_signo); break; case AUDIT_MQ_GETSETATTR: { struct mq_attr *attr = &context->mq_getsetattr.mqstat; audit_log_format(ab, "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " "mq_curmsgs=%ld ", context->mq_getsetattr.mqdes, attr->mq_flags, attr->mq_maxmsg, attr->mq_msgsize, attr->mq_curmsgs); break; } case AUDIT_CAPSET: audit_log_format(ab, "pid=%d", context->capset.pid); audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); break; case AUDIT_MMAP: audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, context->mmap.flags); break; case AUDIT_OPENAT2: audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", context->openat2.flags, context->openat2.mode, context->openat2.resolve); break; case AUDIT_EXECVE: audit_log_execve_info(context, &ab); break; case AUDIT_KERN_MODULE: audit_log_format(ab, "name="); if (context->module.name) { audit_log_untrustedstring(ab, context->module.name); } else audit_log_format(ab, "(null)"); break; case AUDIT_TIME_ADJNTPVAL: case AUDIT_TIME_INJOFFSET: /* this call deviates from the rest, eating the buffer */ audit_log_time(context, &ab); break; } audit_log_end(ab); } static inline int audit_proctitle_rtrim(char *proctitle, int len) { char *end = proctitle + len - 1; while (end > proctitle && !isprint(*end)) end--; /* catch the case where proctitle is only 1 non-print character */ len = end - proctitle + 1; len -= isprint(proctitle[len-1]) == 0; return len; } /* * audit_log_name - produce AUDIT_PATH record from struct audit_names * @context: audit_context for the task * @n: audit_names structure with reportable details * @path: optional path to report instead of audit_names->name * @record_num: record number to report when handling a list of names * @call_panic: optional pointer to int that will be updated if secid fails */ static void audit_log_name(struct audit_context *context, struct audit_names *n, const struct path *path, int record_num, int *call_panic) { struct audit_buffer *ab; ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); if (!ab) return; audit_log_format(ab, "item=%d", record_num); if (path) audit_log_d_path(ab, " name=", path); else if (n->name) { switch (n->name_len) { case AUDIT_NAME_FULL: /* log the full path */ audit_log_format(ab, " name="); audit_log_untrustedstring(ab, n->name->name); break; case 0: /* name was specified as a relative path and the * directory component is the cwd */ if (context->pwd.dentry && context->pwd.mnt) audit_log_d_path(ab, " name=", &context->pwd); else audit_log_format(ab, " name=(null)"); break; default: /* log the name's directory component */ audit_log_format(ab, " name="); audit_log_n_untrustedstring(ab, n->name->name, n->name_len); } } else audit_log_format(ab, " name=(null)"); if (n->ino != AUDIT_INO_UNSET) audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", n->ino, MAJOR(n->dev), MINOR(n->dev), n->mode, from_kuid(&init_user_ns, n->uid), from_kgid(&init_user_ns, n->gid), MAJOR(n->rdev), MINOR(n->rdev)); if (n->osid != 0) { char *ctx = NULL; u32 len; if (security_secid_to_secctx( n->osid, &ctx, &len)) { audit_log_format(ab, " osid=%u", n->osid); if (call_panic) *call_panic = 2; } else { audit_log_format(ab, " obj=%s", ctx); security_release_secctx(ctx, len); } } /* log the audit_names record type */ switch (n->type) { case AUDIT_TYPE_NORMAL: audit_log_format(ab, " nametype=NORMAL"); break; case AUDIT_TYPE_PARENT: audit_log_format(ab, " nametype=PARENT"); break; case AUDIT_TYPE_CHILD_DELETE: audit_log_format(ab, " nametype=DELETE"); break; case AUDIT_TYPE_CHILD_CREATE: audit_log_format(ab, " nametype=CREATE"); break; default: audit_log_format(ab, " nametype=UNKNOWN"); break; } audit_log_fcaps(ab, n); audit_log_end(ab); } static void audit_log_proctitle(void) { int res; char *buf; char *msg = "(null)"; int len = strlen(msg); struct audit_context *context = audit_context(); struct audit_buffer *ab; ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); if (!ab) return; /* audit_panic or being filtered */ audit_log_format(ab, "proctitle="); /* Not cached */ if (!context->proctitle.value) { buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); if (!buf) goto out; /* Historically called this from procfs naming */ res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); if (res == 0) { kfree(buf); goto out; } res = audit_proctitle_rtrim(buf, res); if (res == 0) { kfree(buf); goto out; } context->proctitle.value = buf; context->proctitle.len = res; } msg = context->proctitle.value; len = context->proctitle.len; out: audit_log_n_untrustedstring(ab, msg, len); audit_log_end(ab); } /** * audit_log_uring - generate a AUDIT_URINGOP record * @ctx: the audit context */ static void audit_log_uring(struct audit_context *ctx) { struct audit_buffer *ab; const struct cred *cred; ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); if (!ab) return; cred = current_cred(); audit_log_format(ab, "uring_op=%d", ctx->uring_op); if (ctx->return_valid != AUDITSC_INVALID) audit_log_format(ab, " success=%s exit=%ld", (ctx->return_valid == AUDITSC_SUCCESS ? "yes" : "no"), ctx->return_code); audit_log_format(ab, " items=%d" " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" " fsuid=%u egid=%u sgid=%u fsgid=%u", ctx->name_count, task_ppid_nr(current), task_tgid_nr(current), from_kuid(&init_user_ns, cred->uid), from_kgid(&init_user_ns, cred->gid), from_kuid(&init_user_ns, cred->euid), from_kuid(&init_user_ns, cred->suid), from_kuid(&init_user_ns, cred->fsuid), from_kgid(&init_user_ns, cred->egid), from_kgid(&init_user_ns, cred->sgid), from_kgid(&init_user_ns, cred->fsgid)); audit_log_task_context(ab); audit_log_key(ab, ctx->filterkey); audit_log_end(ab); } static void audit_log_exit(void) { int i, call_panic = 0; struct audit_context *context = audit_context(); struct audit_buffer *ab; struct audit_aux_data *aux; struct audit_names *n; context->personality = current->personality; switch (context->context) { case AUDIT_CTX_SYSCALL: ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); if (!ab) return; audit_log_format(ab, "arch=%x syscall=%d", context->arch, context->major); if (context->personality != PER_LINUX) audit_log_format(ab, " per=%lx", context->personality); if (context->return_valid != AUDITSC_INVALID) audit_log_format(ab, " success=%s exit=%ld", (context->return_valid == AUDITSC_SUCCESS ? "yes" : "no"), context->return_code); audit_log_format(ab, " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", context->argv[0], context->argv[1], context->argv[2], context->argv[3], context->name_count); audit_log_task_info(ab); audit_log_key(ab, context->filterkey); audit_log_end(ab); break; case AUDIT_CTX_URING: audit_log_uring(context); break; default: BUG(); break; } for (aux = context->aux; aux; aux = aux->next) { ab = audit_log_start(context, GFP_KERNEL, aux->type); if (!ab) continue; /* audit_panic has been called */ switch (aux->type) { case AUDIT_BPRM_FCAPS: { struct audit_aux_data_bprm_fcaps *axs = (void *)aux; audit_log_format(ab, "fver=%x", axs->fcap_ver); audit_log_cap(ab, "fp", &axs->fcap.permitted); audit_log_cap(ab, "fi", &axs->fcap.inheritable); audit_log_format(ab, " fe=%d", axs->fcap.fE); audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); audit_log_cap(ab, "pp", &axs->new_pcap.permitted); audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); audit_log_cap(ab, "pe", &axs->new_pcap.effective); audit_log_cap(ab, "pa", &axs->new_pcap.ambient); audit_log_format(ab, " frootid=%d", from_kuid(&init_user_ns, axs->fcap.rootid)); break; } } audit_log_end(ab); } if (context->type) show_special(context, &call_panic); if (context->fds[0] >= 0) { ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); if (ab) { audit_log_format(ab, "fd0=%d fd1=%d", context->fds[0], context->fds[1]); audit_log_end(ab); } } if (context->sockaddr_len) { ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); if (ab) { audit_log_format(ab, "saddr="); audit_log_n_hex(ab, (void *)context->sockaddr, context->sockaddr_len); audit_log_end(ab); } } for (aux = context->aux_pids; aux; aux = aux->next) { struct audit_aux_data_pids *axs = (void *)aux; for (i = 0; i < axs->pid_count; i++) if (audit_log_pid_context(context, axs->target_pid[i], axs->target_auid[i], axs->target_uid[i], axs->target_sessionid[i], axs->target_sid[i], axs->target_comm[i])) call_panic = 1; } if (context->target_pid && audit_log_pid_context(context, context->target_pid, context->target_auid, context->target_uid, context->target_sessionid, context->target_sid, context->target_comm)) call_panic = 1; if (context->pwd.dentry && context->pwd.mnt) { ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); if (ab) { audit_log_d_path(ab, "cwd=", &context->pwd); audit_log_end(ab); } } i = 0; list_for_each_entry(n, &context->names_list, list) { if (n->hidden) continue; audit_log_name(context, n, NULL, i++, &call_panic); } if (context->context == AUDIT_CTX_SYSCALL) audit_log_proctitle(); /* Send end of event record to help user space know we are finished */ ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); if (ab) audit_log_end(ab); if (call_panic) audit_panic("error in audit_log_exit()"); } /** * __audit_free - free a per-task audit context * @tsk: task whose audit context block to free * * Called from copy_process, do_exit, and the io_uring code */ void __audit_free(struct task_struct *tsk) { struct audit_context *context = tsk->audit_context; if (!context) return; /* this may generate CONFIG_CHANGE records */ if (!list_empty(&context->killed_trees)) audit_kill_trees(context); /* We are called either by do_exit() or the fork() error handling code; * in the former case tsk == current and in the latter tsk is a * random task_struct that doesn't have any meaningful data we * need to log via audit_log_exit(). */ if (tsk == current && !context->dummy) { context->return_valid = AUDITSC_INVALID; context->return_code = 0; if (context->context == AUDIT_CTX_SYSCALL) { audit_filter_syscall(tsk, context); audit_filter_inodes(tsk, context); if (context->current_state == AUDIT_STATE_RECORD) audit_log_exit(); } else if (context->context == AUDIT_CTX_URING) { /* TODO: verify this case is real and valid */ audit_filter_uring(tsk, context); audit_filter_inodes(tsk, context); if (context->current_state == AUDIT_STATE_RECORD) audit_log_uring(context); } } audit_set_context(tsk, NULL); audit_free_context(context); } /** * audit_return_fixup - fixup the return codes in the audit_context * @ctx: the audit_context * @success: true/false value to indicate if the operation succeeded or not * @code: operation return code * * We need to fixup the return code in the audit logs if the actual return * codes are later going to be fixed by the arch specific signal handlers. */ static void audit_return_fixup(struct audit_context *ctx, int success, long code) { /* * This is actually a test for: * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) * * but is faster than a bunch of || */ if (unlikely(code <= -ERESTARTSYS) && (code >= -ERESTART_RESTARTBLOCK) && (code != -ENOIOCTLCMD)) ctx->return_code = -EINTR; else ctx->return_code = code; ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); } /** * __audit_uring_entry - prepare the kernel task's audit context for io_uring * @op: the io_uring opcode * * This is similar to audit_syscall_entry() but is intended for use by io_uring * operations. This function should only ever be called from * audit_uring_entry() as we rely on the audit context checking present in that * function. */ void __audit_uring_entry(u8 op) { struct audit_context *ctx = audit_context(); if (ctx->state == AUDIT_STATE_DISABLED) return; /* * NOTE: It's possible that we can be called from the process' context * before it returns to userspace, and before audit_syscall_exit() * is called. In this case there is not much to do, just record * the io_uring details and return. */ ctx->uring_op = op; if (ctx->context == AUDIT_CTX_SYSCALL) return; ctx->dummy = !audit_n_rules; if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) ctx->prio = 0; ctx->context = AUDIT_CTX_URING; ctx->current_state = ctx->state; ktime_get_coarse_real_ts64(&ctx->ctime); } /** * __audit_uring_exit - wrap up the kernel task's audit context after io_uring * @success: true/false value to indicate if the operation succeeded or not * @code: operation return code * * This is similar to audit_syscall_exit() but is intended for use by io_uring * operations. This function should only ever be called from * audit_uring_exit() as we rely on the audit context checking present in that * function. */ void __audit_uring_exit(int success, long code) { struct audit_context *ctx = audit_context(); if (ctx->dummy) { if (ctx->context != AUDIT_CTX_URING) return; goto out; } audit_return_fixup(ctx, success, code); if (ctx->context == AUDIT_CTX_SYSCALL) { /* * NOTE: See the note in __audit_uring_entry() about the case * where we may be called from process context before we * return to userspace via audit_syscall_exit(). In this * case we simply emit a URINGOP record and bail, the * normal syscall exit handling will take care of * everything else. * It is also worth mentioning that when we are called, * the current process creds may differ from the creds * used during the normal syscall processing; keep that * in mind if/when we move the record generation code. */ /* * We need to filter on the syscall info here to decide if we * should emit a URINGOP record. I know it seems odd but this * solves the problem where users have a filter to block *all* * syscall records in the "exit" filter; we want to preserve * the behavior here. */ audit_filter_syscall(current, ctx); if (ctx->current_state != AUDIT_STATE_RECORD) audit_filter_uring(current, ctx); audit_filter_inodes(current, ctx); if (ctx->current_state != AUDIT_STATE_RECORD) return; audit_log_uring(ctx); return; } /* this may generate CONFIG_CHANGE records */ if (!list_empty(&ctx->killed_trees)) audit_kill_trees(ctx); /* run through both filters to ensure we set the filterkey properly */ audit_filter_uring(current, ctx); audit_filter_inodes(current, ctx); if (ctx->current_state != AUDIT_STATE_RECORD) goto out; audit_log_exit(); out: audit_reset_context(ctx); } /** * __audit_syscall_entry - fill in an audit record at syscall entry * @major: major syscall type (function) * @a1: additional syscall register 1 * @a2: additional syscall register 2 * @a3: additional syscall register 3 * @a4: additional syscall register 4 * * Fill in audit context at syscall entry. This only happens if the * audit context was created when the task was created and the state or * filters demand the audit context be built. If the state from the * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, * then the record will be written at syscall exit time (otherwise, it * will only be written if another part of the kernel requests that it * be written). */ void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4) { struct audit_context *context = audit_context(); enum audit_state state; if (!audit_enabled || !context) return; WARN_ON(context->context != AUDIT_CTX_UNUSED); WARN_ON(context->name_count); if (context->context != AUDIT_CTX_UNUSED || context->name_count) { audit_panic("unrecoverable error in audit_syscall_entry()"); return; } state = context->state; if (state == AUDIT_STATE_DISABLED) return; context->dummy = !audit_n_rules; if (!context->dummy && state == AUDIT_STATE_BUILD) { context->prio = 0; if (auditd_test_task(current)) return; } context->arch = syscall_get_arch(current); context->major = major; context->argv[0] = a1; context->argv[1] = a2; context->argv[2] = a3; context->argv[3] = a4; context->context = AUDIT_CTX_SYSCALL; context->current_state = state; ktime_get_coarse_real_ts64(&context->ctime); } /** * __audit_syscall_exit - deallocate audit context after a system call * @success: success value of the syscall * @return_code: return value of the syscall * * Tear down after system call. If the audit context has been marked as * auditable (either because of the AUDIT_STATE_RECORD state from * filtering, or because some other part of the kernel wrote an audit * message), then write out the syscall information. In call cases, * free the names stored from getname(). */ void __audit_syscall_exit(int success, long return_code) { struct audit_context *context = audit_context(); if (!context || context->dummy || context->context != AUDIT_CTX_SYSCALL) goto out; /* this may generate CONFIG_CHANGE records */ if (!list_empty(&context->killed_trees)) audit_kill_trees(context); audit_return_fixup(context, success, return_code); /* run through both filters to ensure we set the filterkey properly */ audit_filter_syscall(current, context); audit_filter_inodes(current, context); if (context->current_state != AUDIT_STATE_RECORD) goto out; audit_log_exit(); out: audit_reset_context(context); } static inline void handle_one(const struct inode *inode) { struct audit_context *context; struct audit_tree_refs *p; struct audit_chunk *chunk; int count; if (likely(!inode->i_fsnotify_marks)) return; context = audit_context(); p = context->trees; count = context->tree_count; rcu_read_lock(); chunk = audit_tree_lookup(inode); rcu_read_unlock(); if (!chunk) return; if (likely(put_tree_ref(context, chunk))) return; if (unlikely(!grow_tree_refs(context))) { pr_warn("out of memory, audit has lost a tree reference\n"); audit_set_auditable(context); audit_put_chunk(chunk); unroll_tree_refs(context, p, count); return; } put_tree_ref(context, chunk); } static void handle_path(const struct dentry *dentry) { struct audit_context *context; struct audit_tree_refs *p; const struct dentry *d, *parent; struct audit_chunk *drop; unsigned long seq; int count; context = audit_context(); p = context->trees; count = context->tree_count; retry: drop = NULL; d = dentry; rcu_read_lock(); seq = read_seqbegin(&rename_lock); for (;;) { struct inode *inode = d_backing_inode(d); if (inode && unlikely(inode->i_fsnotify_marks)) { struct audit_chunk *chunk; chunk = audit_tree_lookup(inode); if (chunk) { if (unlikely(!put_tree_ref(context, chunk))) { drop = chunk; break; } } } parent = d->d_parent; if (parent == d) break; d = parent; } if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ rcu_read_unlock(); if (!drop) { /* just a race with rename */ unroll_tree_refs(context, p, count); goto retry; } audit_put_chunk(drop); if (grow_tree_refs(context)) { /* OK, got more space */ unroll_tree_refs(context, p, count); goto retry; } /* too bad */ pr_warn("out of memory, audit has lost a tree reference\n"); unroll_tree_refs(context, p, count); audit_set_auditable(context); return; } rcu_read_unlock(); } static struct audit_names *audit_alloc_name(struct audit_context *context, unsigned char type) { struct audit_names *aname; if (context->name_count < AUDIT_NAMES) { aname = &context->preallocated_names[context->name_count]; memset(aname, 0, sizeof(*aname)); } else { aname = kzalloc(sizeof(*aname), GFP_NOFS); if (!aname) return NULL; aname->should_free = true; } aname->ino = AUDIT_INO_UNSET; aname->type = type; list_add_tail(&aname->list, &context->names_list); context->name_count++; if (!context->pwd.dentry) get_fs_pwd(current->fs, &context->pwd); return aname; } /** * __audit_reusename - fill out filename with info from existing entry * @uptr: userland ptr to pathname * * Search the audit_names list for the current audit context. If there is an * existing entry with a matching "uptr" then return the filename * associated with that audit_name. If not, return NULL. */ struct filename * __audit_reusename(const __user char *uptr) { struct audit_context *context = audit_context(); struct audit_names *n; list_for_each_entry(n, &context->names_list, list) { if (!n->name) continue; if (n->name->uptr == uptr) { atomic_inc(&n->name->refcnt); return n->name; } } return NULL; } /** * __audit_getname - add a name to the list * @name: name to add * * Add a name to the list of audit names for this context. * Called from fs/namei.c:getname(). */ void __audit_getname(struct filename *name) { struct audit_context *context = audit_context(); struct audit_names *n; if (context->context == AUDIT_CTX_UNUSED) return; n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); if (!n) return; n->name = name; n->name_len = AUDIT_NAME_FULL; name->aname = n; atomic_inc(&name->refcnt); } static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) { struct cpu_vfs_cap_data caps; int rc; if (!dentry) return 0; rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); if (rc) return rc; name->fcap.permitted = caps.permitted; name->fcap.inheritable = caps.inheritable; name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); name->fcap.rootid = caps.rootid; name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; return 0; } /* Copy inode data into an audit_names. */ static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, struct inode *inode, unsigned int flags) { name->ino = inode->i_ino; name->dev = inode->i_sb->s_dev; name->mode = inode->i_mode; name->uid = inode->i_uid; name->gid = inode->i_gid; name->rdev = inode->i_rdev; security_inode_getsecid(inode, &name->osid); if (flags & AUDIT_INODE_NOEVAL) { name->fcap_ver = -1; return; } audit_copy_fcaps(name, dentry); } /** * __audit_inode - store the inode and device from a lookup * @name: name being audited * @dentry: dentry being audited * @flags: attributes for this particular entry */ void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags) { struct audit_context *context = audit_context(); struct inode *inode = d_backing_inode(dentry); struct audit_names *n; bool parent = flags & AUDIT_INODE_PARENT; struct audit_entry *e; struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; int i; if (context->context == AUDIT_CTX_UNUSED) return; rcu_read_lock(); list_for_each_entry_rcu(e, list, list) { for (i = 0; i < e->rule.field_count; i++) { struct audit_field *f = &e->rule.fields[i]; if (f->type == AUDIT_FSTYPE && audit_comparator(inode->i_sb->s_magic, f->op, f->val) && e->rule.action == AUDIT_NEVER) { rcu_read_unlock(); return; } } } rcu_read_unlock(); if (!name) goto out_alloc; /* * If we have a pointer to an audit_names entry already, then we can * just use it directly if the type is correct. */ n = name->aname; if (n) { if (parent) { if (n->type == AUDIT_TYPE_PARENT || n->type == AUDIT_TYPE_UNKNOWN) goto out; } else { if (n->type != AUDIT_TYPE_PARENT) goto out; } } list_for_each_entry_reverse(n, &context->names_list, list) { if (n->ino) { /* valid inode number, use that for the comparison */ if (n->ino != inode->i_ino || n->dev != inode->i_sb->s_dev) continue; } else if (n->name) { /* inode number has not been set, check the name */ if (strcmp(n->name->name, name->name)) continue; } else /* no inode and no name (?!) ... this is odd ... */ continue; /* match the correct record type */ if (parent) { if (n->type == AUDIT_TYPE_PARENT || n->type == AUDIT_TYPE_UNKNOWN) goto out; } else { if (n->type != AUDIT_TYPE_PARENT) goto out; } } out_alloc: /* unable to find an entry with both a matching name and type */ n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); if (!n) return; if (name) { n->name = name; atomic_inc(&name->refcnt); } out: if (parent) { n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; n->type = AUDIT_TYPE_PARENT; if (flags & AUDIT_INODE_HIDDEN) n->hidden = true; } else { n->name_len = AUDIT_NAME_FULL; n->type = AUDIT_TYPE_NORMAL; } handle_path(dentry); audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); } void __audit_file(const struct file *file) { __audit_inode(NULL, file->f_path.dentry, 0); } /** * __audit_inode_child - collect inode info for created/removed objects * @parent: inode of dentry parent * @dentry: dentry being audited * @type: AUDIT_TYPE_* value that we're looking for * * For syscalls that create or remove filesystem objects, audit_inode * can only collect information for the filesystem object's parent. * This call updates the audit context with the child's information. * Syscalls that create a new filesystem object must be hooked after * the object is created. Syscalls that remove a filesystem object * must be hooked prior, in order to capture the target inode during * unsuccessful attempts. */ void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { struct audit_context *context = audit_context(); struct inode *inode = d_backing_inode(dentry); const struct qstr *dname = &dentry->d_name; struct audit_names *n, *found_parent = NULL, *found_child = NULL; struct audit_entry *e; struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; int i; if (context->context == AUDIT_CTX_UNUSED) return; rcu_read_lock(); list_for_each_entry_rcu(e, list, list) { for (i = 0; i < e->rule.field_count; i++) { struct audit_field *f = &e->rule.fields[i]; if (f->type == AUDIT_FSTYPE && audit_comparator(parent->i_sb->s_magic, f->op, f->val) && e->rule.action == AUDIT_NEVER) { rcu_read_unlock(); return; } } } rcu_read_unlock(); if (inode) handle_one(inode); /* look for a parent entry first */ list_for_each_entry(n, &context->names_list, list) { if (!n->name || (n->type != AUDIT_TYPE_PARENT && n->type != AUDIT_TYPE_UNKNOWN)) continue; if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && !audit_compare_dname_path(dname, n->name->name, n->name_len)) { if (n->type == AUDIT_TYPE_UNKNOWN) n->type = AUDIT_TYPE_PARENT; found_parent = n; break; } } cond_resched(); /* is there a matching child entry? */ list_for_each_entry(n, &context->names_list, list) { /* can only match entries that have a name */ if (!n->name || (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) continue; if (!strcmp(dname->name, n->name->name) || !audit_compare_dname_path(dname, n->name->name, found_parent ? found_parent->name_len : AUDIT_NAME_FULL)) { if (n->type == AUDIT_TYPE_UNKNOWN) n->type = type; found_child = n; break; } } if (!found_parent) { /* create a new, "anonymous" parent record */ n = audit_alloc_name(context, AUDIT_TYPE_PARENT); if (!n) return; audit_copy_inode(n, NULL, parent, 0); } if (!found_child) { found_child = audit_alloc_name(context, type); if (!found_child) return; /* Re-use the name belonging to the slot for a matching parent * directory. All names for this context are relinquished in * audit_free_names() */ if (found_parent) { found_child->name = found_parent->name; found_child->name_len = AUDIT_NAME_FULL; atomic_inc(&found_child->name->refcnt); } } if (inode) audit_copy_inode(found_child, dentry, inode, 0); else found_child->ino = AUDIT_INO_UNSET; } EXPORT_SYMBOL_GPL(__audit_inode_child); /** * auditsc_get_stamp - get local copies of audit_context values * @ctx: audit_context for the task * @t: timespec64 to store time recorded in the audit_context * @serial: serial value that is recorded in the audit_context * * Also sets the context as auditable. */ int auditsc_get_stamp(struct audit_context *ctx, struct timespec64 *t, unsigned int *serial) { if (ctx->context == AUDIT_CTX_UNUSED) return 0; if (!ctx->serial) ctx->serial = audit_serial(); t->tv_sec = ctx->ctime.tv_sec; t->tv_nsec = ctx->ctime.tv_nsec; *serial = ctx->serial; if (!ctx->prio) { ctx->prio = 1; ctx->current_state = AUDIT_STATE_RECORD; } return 1; } /** * __audit_mq_open - record audit data for a POSIX MQ open * @oflag: open flag * @mode: mode bits * @attr: queue attributes * */ void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { struct audit_context *context = audit_context(); if (attr) memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); else memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); context->mq_open.oflag = oflag; context->mq_open.mode = mode; context->type = AUDIT_MQ_OPEN; } /** * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive * @mqdes: MQ descriptor * @msg_len: Message length * @msg_prio: Message priority * @abs_timeout: Message timeout in absolute time * */ void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { struct audit_context *context = audit_context(); struct timespec64 *p = &context->mq_sendrecv.abs_timeout; if (abs_timeout) memcpy(p, abs_timeout, sizeof(*p)); else memset(p, 0, sizeof(*p)); context->mq_sendrecv.mqdes = mqdes; context->mq_sendrecv.msg_len = msg_len; context->mq_sendrecv.msg_prio = msg_prio; context->type = AUDIT_MQ_SENDRECV; } /** * __audit_mq_notify - record audit data for a POSIX MQ notify * @mqdes: MQ descriptor * @notification: Notification event * */ void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { struct audit_context *context = audit_context(); if (notification) context->mq_notify.sigev_signo = notification->sigev_signo; else context->mq_notify.sigev_signo = 0; context->mq_notify.mqdes = mqdes; context->type = AUDIT_MQ_NOTIFY; } /** * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute * @mqdes: MQ descriptor * @mqstat: MQ flags * */ void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { struct audit_context *context = audit_context(); context->mq_getsetattr.mqdes = mqdes; context->mq_getsetattr.mqstat = *mqstat; context->type = AUDIT_MQ_GETSETATTR; } /** * __audit_ipc_obj - record audit data for ipc object * @ipcp: ipc permissions * */ void __audit_ipc_obj(struct kern_ipc_perm *ipcp) { struct audit_context *context = audit_context(); context->ipc.uid = ipcp->uid; context->ipc.gid = ipcp->gid; context->ipc.mode = ipcp->mode; context->ipc.has_perm = 0; security_ipc_getsecid(ipcp, &context->ipc.osid); context->type = AUDIT_IPC; } /** * __audit_ipc_set_perm - record audit data for new ipc permissions * @qbytes: msgq bytes * @uid: msgq user id * @gid: msgq group id * @mode: msgq mode (permissions) * * Called only after audit_ipc_obj(). */ void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { struct audit_context *context = audit_context(); context->ipc.qbytes = qbytes; context->ipc.perm_uid = uid; context->ipc.perm_gid = gid; context->ipc.perm_mode = mode; context->ipc.has_perm = 1; } void __audit_bprm(struct linux_binprm *bprm) { struct audit_context *context = audit_context(); context->type = AUDIT_EXECVE; context->execve.argc = bprm->argc; } /** * __audit_socketcall - record audit data for sys_socketcall * @nargs: number of args, which should not be more than AUDITSC_ARGS. * @args: args array * */ int __audit_socketcall(int nargs, unsigned long *args) { struct audit_context *context = audit_context(); if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) return -EINVAL; context->type = AUDIT_SOCKETCALL; context->socketcall.nargs = nargs; memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); return 0; } /** * __audit_fd_pair - record audit data for pipe and socketpair * @fd1: the first file descriptor * @fd2: the second file descriptor * */ void __audit_fd_pair(int fd1, int fd2) { struct audit_context *context = audit_context(); context->fds[0] = fd1; context->fds[1] = fd2; } /** * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto * @len: data length in user space * @a: data address in kernel space * * Returns 0 for success or NULL context or < 0 on error. */ int __audit_sockaddr(int len, void *a) { struct audit_context *context = audit_context(); if (!context->sockaddr) { void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); if (!p) return -ENOMEM; context->sockaddr = p; } context->sockaddr_len = len; memcpy(context->sockaddr, a, len); return 0; } void __audit_ptrace(struct task_struct *t) { struct audit_context *context = audit_context(); context->target_pid = task_tgid_nr(t); context->target_auid = audit_get_loginuid(t); context->target_uid = task_uid(t); context->target_sessionid = audit_get_sessionid(t); security_task_getsecid_obj(t, &context->target_sid); strscpy(context->target_comm, t->comm); } /** * audit_signal_info_syscall - record signal info for syscalls * @t: task being signaled * * If the audit subsystem is being terminated, record the task (pid) * and uid that is doing that. */ int audit_signal_info_syscall(struct task_struct *t) { struct audit_aux_data_pids *axp; struct audit_context *ctx = audit_context(); kuid_t t_uid = task_uid(t); if (!audit_signals || audit_dummy_context()) return 0; /* optimize the common case by putting first signal recipient directly * in audit_context */ if (!ctx->target_pid) { ctx->target_pid = task_tgid_nr(t); ctx->target_auid = audit_get_loginuid(t); ctx->target_uid = t_uid; ctx->target_sessionid = audit_get_sessionid(t); security_task_getsecid_obj(t, &ctx->target_sid); strscpy(ctx->target_comm, t->comm); return 0; } axp = (void *)ctx->aux_pids; if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { axp = kzalloc(sizeof(*axp), GFP_ATOMIC); if (!axp) return -ENOMEM; axp->d.type = AUDIT_OBJ_PID; axp->d.next = ctx->aux_pids; ctx->aux_pids = (void *)axp; } BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); axp->target_pid[axp->pid_count] = task_tgid_nr(t); axp->target_auid[axp->pid_count] = audit_get_loginuid(t); axp->target_uid[axp->pid_count] = t_uid; axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); strscpy(axp->target_comm[axp->pid_count], t->comm); axp->pid_count++; return 0; } /** * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps * @bprm: pointer to the bprm being processed * @new: the proposed new credentials * @old: the old credentials * * Simply check if the proc already has the caps given by the file and if not * store the priv escalation info for later auditing at the end of the syscall * * -Eric */ int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { struct audit_aux_data_bprm_fcaps *ax; struct audit_context *context = audit_context(); struct cpu_vfs_cap_data vcaps; ax = kmalloc(sizeof(*ax), GFP_KERNEL); if (!ax) return -ENOMEM; ax->d.type = AUDIT_BPRM_FCAPS; ax->d.next = context->aux; context->aux = (void *)ax; get_vfs_caps_from_disk(&nop_mnt_idmap, bprm->file->f_path.dentry, &vcaps); ax->fcap.permitted = vcaps.permitted; ax->fcap.inheritable = vcaps.inheritable; ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); ax->fcap.rootid = vcaps.rootid; ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; ax->old_pcap.permitted = old->cap_permitted; ax->old_pcap.inheritable = old->cap_inheritable; ax->old_pcap.effective = old->cap_effective; ax->old_pcap.ambient = old->cap_ambient; ax->new_pcap.permitted = new->cap_permitted; ax->new_pcap.inheritable = new->cap_inheritable; ax->new_pcap.effective = new->cap_effective; ax->new_pcap.ambient = new->cap_ambient; return 0; } /** * __audit_log_capset - store information about the arguments to the capset syscall * @new: the new credentials * @old: the old (current) credentials * * Record the arguments userspace sent to sys_capset for later printing by the * audit system if applicable */ void __audit_log_capset(const struct cred *new, const struct cred *old) { struct audit_context *context = audit_context(); context->capset.pid = task_tgid_nr(current); context->capset.cap.effective = new->cap_effective; context->capset.cap.inheritable = new->cap_effective; context->capset.cap.permitted = new->cap_permitted; context->capset.cap.ambient = new->cap_ambient; context->type = AUDIT_CAPSET; } void __audit_mmap_fd(int fd, int flags) { struct audit_context *context = audit_context(); context->mmap.fd = fd; context->mmap.flags = flags; context->type = AUDIT_MMAP; } void __audit_openat2_how(struct open_how *how) { struct audit_context *context = audit_context(); context->openat2.flags = how->flags; context->openat2.mode = how->mode; context->openat2.resolve = how->resolve; context->type = AUDIT_OPENAT2; } void __audit_log_kern_module(char *name) { struct audit_context *context = audit_context(); context->module.name = kstrdup(name, GFP_KERNEL); if (!context->module.name) audit_log_lost("out of memory in __audit_log_kern_module"); context->type = AUDIT_KERN_MODULE; } void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) { /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ switch (friar->hdr.type) { case FAN_RESPONSE_INFO_NONE: audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", response, FAN_RESPONSE_INFO_NONE); break; case FAN_RESPONSE_INFO_AUDIT_RULE: audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", response, friar->hdr.type, friar->rule_number, friar->subj_trust, friar->obj_trust); } } void __audit_tk_injoffset(struct timespec64 offset) { struct audit_context *context = audit_context(); /* only set type if not already set by NTP */ if (!context->type) context->type = AUDIT_TIME_INJOFFSET; memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); } void __audit_ntp_log(const struct audit_ntp_data *ad) { struct audit_context *context = audit_context(); int type; for (type = 0; type < AUDIT_NTP_NVALS; type++) if (ad->vals[type].newval != ad->vals[type].oldval) { /* unconditionally set type, overwriting TK */ context->type = AUDIT_TIME_ADJNTPVAL; memcpy(&context->time.ntp_data, ad, sizeof(*ad)); break; } } void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { struct audit_buffer *ab; char comm[sizeof(current->comm)]; ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); if (!ab) return; audit_log_format(ab, "table=%s family=%u entries=%u op=%s", name, af, nentries, audit_nfcfgs[op].s); audit_log_format(ab, " pid=%u", task_tgid_nr(current)); audit_log_task_context(ab); /* subj= */ audit_log_format(ab, " comm="); audit_log_untrustedstring(ab, get_task_comm(comm, current)); audit_log_end(ab); } EXPORT_SYMBOL_GPL(__audit_log_nfcfg); static void audit_log_task(struct audit_buffer *ab) { kuid_t auid, uid; kgid_t gid; unsigned int sessionid; char comm[sizeof(current->comm)]; auid = audit_get_loginuid(current); sessionid = audit_get_sessionid(current); current_uid_gid(&uid, &gid); audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", from_kuid(&init_user_ns, auid), from_kuid(&init_user_ns, uid), from_kgid(&init_user_ns, gid), sessionid); audit_log_task_context(ab); audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); audit_log_untrustedstring(ab, get_task_comm(comm, current)); audit_log_d_path_exe(ab, current->mm); } /** * audit_core_dumps - record information about processes that end abnormally * @signr: signal value * * If a process ends with a core dump, something fishy is going on and we * should record the event for investigation. */ void audit_core_dumps(long signr) { struct audit_buffer *ab; if (!audit_enabled) return; if (signr == SIGQUIT) /* don't care for those */ return; ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); if (unlikely(!ab)) return; audit_log_task(ab); audit_log_format(ab, " sig=%ld res=1", signr); audit_log_end(ab); } /** * audit_seccomp - record information about a seccomp action * @syscall: syscall number * @signr: signal value * @code: the seccomp action * * Record the information associated with a seccomp action. Event filtering for * seccomp actions that are not to be logged is done in seccomp_log(). * Therefore, this function forces auditing independent of the audit_enabled * and dummy context state because seccomp actions should be logged even when * audit is not in use. */ void audit_seccomp(unsigned long syscall, long signr, int code) { struct audit_buffer *ab; ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); if (unlikely(!ab)) return; audit_log_task(ab); audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", signr, syscall_get_arch(current), syscall, in_compat_syscall(), KSTK_EIP(current), code); audit_log_end(ab); } void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { struct audit_buffer *ab; if (!audit_enabled) return; ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); if (unlikely(!ab)) return; audit_log_format(ab, "op=seccomp-logging actions=%s old-actions=%s res=%d", names, old_names, res); audit_log_end(ab); } struct list_head *audit_killed_trees(void) { struct audit_context *ctx = audit_context(); if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) return NULL; return &ctx->killed_trees; }