/* * linux/drivers/mmc/au1xmmc.c - AU1XX0 MMC driver * * Copyright (c) 2005, Advanced Micro Devices, Inc. * * Developed with help from the 2.4.30 MMC AU1XXX controller including * the following copyright notices: * Copyright (c) 2003-2004 Embedded Edge, LLC. * Portions Copyright (C) 2002 Embedix, Inc * Copyright 2002 Hewlett-Packard Company * 2.6 version of this driver inspired by: * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman, * All Rights Reserved. * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King, * All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* Why is a timer used to detect insert events? * * From the AU1100 MMC application guide: * If the Au1100-based design is intended to support both MultiMediaCards * and 1- or 4-data bit SecureDigital cards, then the solution is to * connect a weak (560KOhm) pull-up resistor to connector pin 1. * In doing so, a MMC card never enters SPI-mode communications, * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective * (the low to high transition will not occur). * * So we use the timer to check the status manually. */ #include <linux/config.h> #include <linux/module.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/mmc/host.h> #include <linux/mmc/protocol.h> #include <asm/io.h> #include <asm/mach-au1x00/au1000.h> #include <asm/mach-au1x00/au1xxx_dbdma.h> #include <asm/mach-au1x00/au1100_mmc.h> #include <asm/scatterlist.h> #include <au1xxx.h> #include "au1xmmc.h" #define DRIVER_NAME "au1xxx-mmc" /* Set this to enable special debugging macros */ /* #define MMC_DEBUG */ #ifdef MMC_DEBUG #define DEBUG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args) #else #define DEBUG(fmt, idx, args...) #endif const struct { u32 iobase; u32 tx_devid, rx_devid; u16 bcsrpwr; u16 bcsrstatus; u16 wpstatus; } au1xmmc_card_table[] = { { SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0, BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP }, #ifndef CONFIG_MIPS_DB1200 { SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1, BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP } #endif }; #define AU1XMMC_CONTROLLER_COUNT \ (sizeof(au1xmmc_card_table) / sizeof(au1xmmc_card_table[0])) /* This array stores pointers for the hosts (used by the IRQ handler) */ struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT]; static int dma = 1; #ifdef MODULE MODULE_PARM(dma, "i"); MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)"); #endif static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask) { u32 val = au_readl(HOST_CONFIG(host)); val |= mask; au_writel(val, HOST_CONFIG(host)); au_sync(); } static inline void FLUSH_FIFO(struct au1xmmc_host *host) { u32 val = au_readl(HOST_CONFIG2(host)); au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host)); au_sync_delay(1); /* SEND_STOP will turn off clock control - this re-enables it */ val &= ~SD_CONFIG2_DF; au_writel(val, HOST_CONFIG2(host)); au_sync(); } static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask) { u32 val = au_readl(HOST_CONFIG(host)); val &= ~mask; au_writel(val, HOST_CONFIG(host)); au_sync(); } static inline void SEND_STOP(struct au1xmmc_host *host) { /* We know the value of CONFIG2, so avoid a read we don't need */ u32 mask = SD_CONFIG2_EN; WARN_ON(host->status != HOST_S_DATA); host->status = HOST_S_STOP; au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host)); au_sync(); /* Send the stop commmand */ au_writel(STOP_CMD, HOST_CMD(host)); } static void au1xmmc_set_power(struct au1xmmc_host *host, int state) { u32 val = au1xmmc_card_table[host->id].bcsrpwr; bcsr->board &= ~val; if (state) bcsr->board |= val; au_sync_delay(1); } static inline int au1xmmc_card_inserted(struct au1xmmc_host *host) { return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus) ? 1 : 0; } static inline int au1xmmc_card_readonly(struct au1xmmc_host *host) { return (bcsr->status & au1xmmc_card_table[host->id].wpstatus) ? 1 : 0; } static void au1xmmc_finish_request(struct au1xmmc_host *host) { struct mmc_request *mrq = host->mrq; host->mrq = NULL; host->flags &= HOST_F_ACTIVE; host->dma.len = 0; host->dma.dir = 0; host->pio.index = 0; host->pio.offset = 0; host->pio.len = 0; host->status = HOST_S_IDLE; bcsr->disk_leds |= (1 << 8); mmc_request_done(host->mmc, mrq); } static void au1xmmc_tasklet_finish(unsigned long param) { struct au1xmmc_host *host = (struct au1xmmc_host *) param; au1xmmc_finish_request(host); } static int au1xmmc_send_command(struct au1xmmc_host *host, int wait, struct mmc_command *cmd) { u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT); switch (mmc_resp_type(cmd)) { case MMC_RSP_R1: mmccmd |= SD_CMD_RT_1; break; case MMC_RSP_R1B: mmccmd |= SD_CMD_RT_1B; break; case MMC_RSP_R2: mmccmd |= SD_CMD_RT_2; break; case MMC_RSP_R3: mmccmd |= SD_CMD_RT_3; break; } switch(cmd->opcode) { case MMC_READ_SINGLE_BLOCK: case SD_APP_SEND_SCR: mmccmd |= SD_CMD_CT_2; break; case MMC_READ_MULTIPLE_BLOCK: mmccmd |= SD_CMD_CT_4; break; case MMC_WRITE_BLOCK: mmccmd |= SD_CMD_CT_1; break; case MMC_WRITE_MULTIPLE_BLOCK: mmccmd |= SD_CMD_CT_3; break; case MMC_STOP_TRANSMISSION: mmccmd |= SD_CMD_CT_7; break; } au_writel(cmd->arg, HOST_CMDARG(host)); au_sync(); if (wait) IRQ_OFF(host, SD_CONFIG_CR); au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host)); au_sync(); /* Wait for the command to go on the line */ while(1) { if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO)) break; } /* Wait for the command to come back */ if (wait) { u32 status = au_readl(HOST_STATUS(host)); while(!(status & SD_STATUS_CR)) status = au_readl(HOST_STATUS(host)); /* Clear the CR status */ au_writel(SD_STATUS_CR, HOST_STATUS(host)); IRQ_ON(host, SD_CONFIG_CR); } return MMC_ERR_NONE; } static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status) { struct mmc_request *mrq = host->mrq; struct mmc_data *data; u32 crc; WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP); if (host->mrq == NULL) return; data = mrq->cmd->data; if (status == 0) status = au_readl(HOST_STATUS(host)); /* The transaction is really over when the SD_STATUS_DB bit is clear */ while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB)) status = au_readl(HOST_STATUS(host)); data->error = MMC_ERR_NONE; dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir); /* Process any errors */ crc = (status & (SD_STATUS_WC | SD_STATUS_RC)); if (host->flags & HOST_F_XMIT) crc |= ((status & 0x07) == 0x02) ? 0 : 1; if (crc) data->error = MMC_ERR_BADCRC; /* Clear the CRC bits */ au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host)); data->bytes_xfered = 0; if (data->error == MMC_ERR_NONE) { if (host->flags & HOST_F_DMA) { u32 chan = DMA_CHANNEL(host); chan_tab_t *c = *((chan_tab_t **) chan); au1x_dma_chan_t *cp = c->chan_ptr; data->bytes_xfered = cp->ddma_bytecnt; } else data->bytes_xfered = (data->blocks * (1 << data->blksz_bits)) - host->pio.len; } au1xmmc_finish_request(host); } static void au1xmmc_tasklet_data(unsigned long param) { struct au1xmmc_host *host = (struct au1xmmc_host *) param; u32 status = au_readl(HOST_STATUS(host)); au1xmmc_data_complete(host, status); } #define AU1XMMC_MAX_TRANSFER 8 static void au1xmmc_send_pio(struct au1xmmc_host *host) { struct mmc_data *data = 0; int sg_len, max, count = 0; unsigned char *sg_ptr; u32 status = 0; struct scatterlist *sg; data = host->mrq->data; if (!(host->flags & HOST_F_XMIT)) return; /* This is the pointer to the data buffer */ sg = &data->sg[host->pio.index]; sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset; /* This is the space left inside the buffer */ sg_len = data->sg[host->pio.index].length - host->pio.offset; /* Check to if we need less then the size of the sg_buffer */ max = (sg_len > host->pio.len) ? host->pio.len : sg_len; if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER; for(count = 0; count < max; count++ ) { unsigned char val; status = au_readl(HOST_STATUS(host)); if (!(status & SD_STATUS_TH)) break; val = *sg_ptr++; au_writel((unsigned long) val, HOST_TXPORT(host)); au_sync(); } host->pio.len -= count; host->pio.offset += count; if (count == sg_len) { host->pio.index++; host->pio.offset = 0; } if (host->pio.len == 0) { IRQ_OFF(host, SD_CONFIG_TH); if (host->flags & HOST_F_STOP) SEND_STOP(host); tasklet_schedule(&host->data_task); } } static void au1xmmc_receive_pio(struct au1xmmc_host *host) { struct mmc_data *data = 0; int sg_len = 0, max = 0, count = 0; unsigned char *sg_ptr = 0; u32 status = 0; struct scatterlist *sg; data = host->mrq->data; if (!(host->flags & HOST_F_RECV)) return; max = host->pio.len; if (host->pio.index < host->dma.len) { sg = &data->sg[host->pio.index]; sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset; /* This is the space left inside the buffer */ sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset; /* Check to if we need less then the size of the sg_buffer */ if (sg_len < max) max = sg_len; } if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER; for(count = 0; count < max; count++ ) { u32 val; status = au_readl(HOST_STATUS(host)); if (!(status & SD_STATUS_NE)) break; if (status & SD_STATUS_RC) { DEBUG("RX CRC Error [%d + %d].\n", host->id, host->pio.len, count); break; } if (status & SD_STATUS_RO) { DEBUG("RX Overrun [%d + %d]\n", host->id, host->pio.len, count); break; } else if (status & SD_STATUS_RU) { DEBUG("RX Underrun [%d + %d]\n", host->id, host->pio.len, count); break; } val = au_readl(HOST_RXPORT(host)); if (sg_ptr) *sg_ptr++ = (unsigned char) (val & 0xFF); } host->pio.len -= count; host->pio.offset += count; if (sg_len && count == sg_len) { host->pio.index++; host->pio.offset = 0; } if (host->pio.len == 0) { //IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); IRQ_OFF(host, SD_CONFIG_NE); if (host->flags & HOST_F_STOP) SEND_STOP(host); tasklet_schedule(&host->data_task); } } /* static void au1xmmc_cmd_complete This is called when a command has been completed - grab the response and check for errors. Then start the data transfer if it is indicated. */ static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status) { struct mmc_request *mrq = host->mrq; struct mmc_command *cmd; int trans; if (!host->mrq) return; cmd = mrq->cmd; cmd->error = MMC_ERR_NONE; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { u32 r[4]; int i; r[0] = au_readl(host->iobase + SD_RESP3); r[1] = au_readl(host->iobase + SD_RESP2); r[2] = au_readl(host->iobase + SD_RESP1); r[3] = au_readl(host->iobase + SD_RESP0); /* The CRC is omitted from the response, so really * we only got 120 bytes, but the engine expects * 128 bits, so we have to shift things up */ for(i = 0; i < 4; i++) { cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8; if (i != 3) cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24; } } else { /* Techincally, we should be getting all 48 bits of * the response (SD_RESP1 + SD_RESP2), but because * our response omits the CRC, our data ends up * being shifted 8 bits to the right. In this case, * that means that the OSR data starts at bit 31, * so we can just read RESP0 and return that */ cmd->resp[0] = au_readl(host->iobase + SD_RESP0); } } /* Figure out errors */ if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC)) cmd->error = MMC_ERR_BADCRC; trans = host->flags & (HOST_F_XMIT | HOST_F_RECV); if (!trans || cmd->error != MMC_ERR_NONE) { IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA|SD_CONFIG_RF); tasklet_schedule(&host->finish_task); return; } host->status = HOST_S_DATA; if (host->flags & HOST_F_DMA) { u32 channel = DMA_CHANNEL(host); /* Start the DMA as soon as the buffer gets something in it */ if (host->flags & HOST_F_RECV) { u32 mask = SD_STATUS_DB | SD_STATUS_NE; while((status & mask) != mask) status = au_readl(HOST_STATUS(host)); } au1xxx_dbdma_start(channel); } } static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate) { unsigned int pbus = get_au1x00_speed(); unsigned int divisor; u32 config; /* From databook: divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1 */ pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2); pbus /= 2; divisor = ((pbus / rate) / 2) - 1; config = au_readl(HOST_CONFIG(host)); config &= ~(SD_CONFIG_DIV); config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE; au_writel(config, HOST_CONFIG(host)); au_sync(); } static int au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data) { int datalen = data->blocks * (1 << data->blksz_bits); if (dma != 0) host->flags |= HOST_F_DMA; if (data->flags & MMC_DATA_READ) host->flags |= HOST_F_RECV; else host->flags |= HOST_F_XMIT; if (host->mrq->stop) host->flags |= HOST_F_STOP; host->dma.dir = DMA_BIDIRECTIONAL; host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir); if (host->dma.len == 0) return MMC_ERR_TIMEOUT; au_writel((1 << data->blksz_bits) - 1, HOST_BLKSIZE(host)); if (host->flags & HOST_F_DMA) { int i; u32 channel = DMA_CHANNEL(host); au1xxx_dbdma_stop(channel); for(i = 0; i < host->dma.len; i++) { u32 ret = 0, flags = DDMA_FLAGS_NOIE; struct scatterlist *sg = &data->sg[i]; int sg_len = sg->length; int len = (datalen > sg_len) ? sg_len : datalen; if (i == host->dma.len - 1) flags = DDMA_FLAGS_IE; if (host->flags & HOST_F_XMIT){ ret = au1xxx_dbdma_put_source_flags(channel, (void *) (page_address(sg->page) + sg->offset), len, flags); } else { ret = au1xxx_dbdma_put_dest_flags(channel, (void *) (page_address(sg->page) + sg->offset), len, flags); } if (!ret) goto dataerr; datalen -= len; } } else { host->pio.index = 0; host->pio.offset = 0; host->pio.len = datalen; if (host->flags & HOST_F_XMIT) IRQ_ON(host, SD_CONFIG_TH); else IRQ_ON(host, SD_CONFIG_NE); //IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF); } return MMC_ERR_NONE; dataerr: dma_unmap_sg(mmc_dev(host->mmc),data->sg,data->sg_len,host->dma.dir); return MMC_ERR_TIMEOUT; } /* static void au1xmmc_request This actually starts a command or data transaction */ static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq) { struct au1xmmc_host *host = mmc_priv(mmc); int ret = MMC_ERR_NONE; WARN_ON(irqs_disabled()); WARN_ON(host->status != HOST_S_IDLE); host->mrq = mrq; host->status = HOST_S_CMD; bcsr->disk_leds &= ~(1 << 8); if (mrq->data) { FLUSH_FIFO(host); ret = au1xmmc_prepare_data(host, mrq->data); } if (ret == MMC_ERR_NONE) ret = au1xmmc_send_command(host, 0, mrq->cmd); if (ret != MMC_ERR_NONE) { mrq->cmd->error = ret; au1xmmc_finish_request(host); } } static void au1xmmc_reset_controller(struct au1xmmc_host *host) { /* Apply the clock */ au_writel(SD_ENABLE_CE, HOST_ENABLE(host)); au_sync_delay(1); au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host)); au_sync_delay(5); au_writel(~0, HOST_STATUS(host)); au_sync(); au_writel(0, HOST_BLKSIZE(host)); au_writel(0x001fffff, HOST_TIMEOUT(host)); au_sync(); au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); au_sync(); au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host)); au_sync_delay(1); au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); au_sync(); /* Configure interrupts */ au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host)); au_sync(); } static void au1xmmc_set_ios(struct mmc_host* mmc, struct mmc_ios* ios) { struct au1xmmc_host *host = mmc_priv(mmc); DEBUG("set_ios (power=%u, clock=%uHz, vdd=%u, mode=%u)\n", host->id, ios->power_mode, ios->clock, ios->vdd, ios->bus_mode); if (ios->power_mode == MMC_POWER_OFF) au1xmmc_set_power(host, 0); else if (ios->power_mode == MMC_POWER_ON) { au1xmmc_set_power(host, 1); } if (ios->clock && ios->clock != host->clock) { au1xmmc_set_clock(host, ios->clock); host->clock = ios->clock; } } static void au1xmmc_dma_callback(int irq, void *dev_id, struct pt_regs *regs) { struct au1xmmc_host *host = (struct au1xmmc_host *) dev_id; /* Avoid spurious interrupts */ if (!host->mrq) return; if (host->flags & HOST_F_STOP) SEND_STOP(host); tasklet_schedule(&host->data_task); } #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT) #define STATUS_DATA_IN (SD_STATUS_NE) #define STATUS_DATA_OUT (SD_STATUS_TH) static irqreturn_t au1xmmc_irq(int irq, void *dev_id, struct pt_regs *regs) { u32 status; int i, ret = 0; disable_irq(AU1100_SD_IRQ); for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) { struct au1xmmc_host * host = au1xmmc_hosts[i]; u32 handled = 1; status = au_readl(HOST_STATUS(host)); if (host->mrq && (status & STATUS_TIMEOUT)) { if (status & SD_STATUS_RAT) host->mrq->cmd->error = MMC_ERR_TIMEOUT; else if (status & SD_STATUS_DT) host->mrq->data->error = MMC_ERR_TIMEOUT; /* In PIO mode, interrupts might still be enabled */ IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH); //IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF); tasklet_schedule(&host->finish_task); } #if 0 else if (status & SD_STATUS_DD) { /* Sometimes we get a DD before a NE in PIO mode */ if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE)) au1xmmc_receive_pio(host); else { au1xmmc_data_complete(host, status); //tasklet_schedule(&host->data_task); } } #endif else if (status & (SD_STATUS_CR)) { if (host->status == HOST_S_CMD) au1xmmc_cmd_complete(host,status); } else if (!(host->flags & HOST_F_DMA)) { if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT)) au1xmmc_send_pio(host); else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN)) au1xmmc_receive_pio(host); } else if (status & 0x203FBC70) { DEBUG("Unhandled status %8.8x\n", host->id, status); handled = 0; } au_writel(status, HOST_STATUS(host)); au_sync(); ret |= handled; } enable_irq(AU1100_SD_IRQ); return ret; } static void au1xmmc_poll_event(unsigned long arg) { struct au1xmmc_host *host = (struct au1xmmc_host *) arg; int card = au1xmmc_card_inserted(host); int controller = (host->flags & HOST_F_ACTIVE) ? 1 : 0; if (card != controller) { host->flags &= ~HOST_F_ACTIVE; if (card) host->flags |= HOST_F_ACTIVE; mmc_detect_change(host->mmc, 0); } if (host->mrq != NULL) { u32 status = au_readl(HOST_STATUS(host)); DEBUG("PENDING - %8.8x\n", host->id, status); } mod_timer(&host->timer, jiffies + AU1XMMC_DETECT_TIMEOUT); } static dbdev_tab_t au1xmmc_mem_dbdev = { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 8, 0x00000000, 0, 0 }; static void au1xmmc_init_dma(struct au1xmmc_host *host) { u32 rxchan, txchan; int txid = au1xmmc_card_table[host->id].tx_devid; int rxid = au1xmmc_card_table[host->id].rx_devid; /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride of 8 bits. And since devices are shared, we need to create our own to avoid freaking out other devices */ int memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev); txchan = au1xxx_dbdma_chan_alloc(memid, txid, au1xmmc_dma_callback, (void *) host); rxchan = au1xxx_dbdma_chan_alloc(rxid, memid, au1xmmc_dma_callback, (void *) host); au1xxx_dbdma_set_devwidth(txchan, 8); au1xxx_dbdma_set_devwidth(rxchan, 8); au1xxx_dbdma_ring_alloc(txchan, AU1XMMC_DESCRIPTOR_COUNT); au1xxx_dbdma_ring_alloc(rxchan, AU1XMMC_DESCRIPTOR_COUNT); host->tx_chan = txchan; host->rx_chan = rxchan; } struct mmc_host_ops au1xmmc_ops = { .request = au1xmmc_request, .set_ios = au1xmmc_set_ios, }; static int __devinit au1xmmc_probe(struct platform_device *pdev) { int i, ret = 0; /* THe interrupt is shared among all controllers */ ret = request_irq(AU1100_SD_IRQ, au1xmmc_irq, SA_INTERRUPT, "MMC", 0); if (ret) { printk(DRIVER_NAME "ERROR: Couldn't get int %d: %d\n", AU1100_SD_IRQ, ret); return -ENXIO; } disable_irq(AU1100_SD_IRQ); for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) { struct mmc_host *mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev); struct au1xmmc_host *host = 0; if (!mmc) { printk(DRIVER_NAME "ERROR: no mem for host %d\n", i); au1xmmc_hosts[i] = 0; continue; } mmc->ops = &au1xmmc_ops; mmc->f_min = 450000; mmc->f_max = 24000000; mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE; mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT; mmc->ocr_avail = AU1XMMC_OCR; host = mmc_priv(mmc); host->mmc = mmc; host->id = i; host->iobase = au1xmmc_card_table[host->id].iobase; host->clock = 0; host->power_mode = MMC_POWER_OFF; host->flags = au1xmmc_card_inserted(host) ? HOST_F_ACTIVE : 0; host->status = HOST_S_IDLE; init_timer(&host->timer); host->timer.function = au1xmmc_poll_event; host->timer.data = (unsigned long) host; host->timer.expires = jiffies + AU1XMMC_DETECT_TIMEOUT; tasklet_init(&host->data_task, au1xmmc_tasklet_data, (unsigned long) host); tasklet_init(&host->finish_task, au1xmmc_tasklet_finish, (unsigned long) host); spin_lock_init(&host->lock); if (dma != 0) au1xmmc_init_dma(host); au1xmmc_reset_controller(host); mmc_add_host(mmc); au1xmmc_hosts[i] = host; add_timer(&host->timer); printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X (mode=%s)\n", host->id, host->iobase, dma ? "dma" : "pio"); } enable_irq(AU1100_SD_IRQ); return 0; } static int __devexit au1xmmc_remove(struct platform_device *pdev) { int i; disable_irq(AU1100_SD_IRQ); for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) { struct au1xmmc_host *host = au1xmmc_hosts[i]; if (!host) continue; tasklet_kill(&host->data_task); tasklet_kill(&host->finish_task); del_timer_sync(&host->timer); au1xmmc_set_power(host, 0); mmc_remove_host(host->mmc); au1xxx_dbdma_chan_free(host->tx_chan); au1xxx_dbdma_chan_free(host->rx_chan); au_writel(0x0, HOST_ENABLE(host)); au_sync(); } free_irq(AU1100_SD_IRQ, 0); return 0; } static struct platform_driver au1xmmc_driver = { .probe = au1xmmc_probe, .remove = au1xmmc_remove, .suspend = NULL, .resume = NULL, .driver = { .name = DRIVER_NAME, }, }; static int __init au1xmmc_init(void) { return platform_driver_register(&au1xmmc_driver); } static void __exit au1xmmc_exit(void) { platform_driver_unregister(&au1xmmc_driver); } module_init(au1xmmc_init); module_exit(au1xmmc_exit); #ifdef MODULE MODULE_AUTHOR("Advanced Micro Devices, Inc"); MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX"); MODULE_LICENSE("GPL"); #endif