// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "checksum.h" #include "disk_groups.h" #include "ec.h" #include "error.h" #include "journal.h" #include "journal_sb.h" #include "journal_seq_blacklist.h" #include "recovery_passes.h" #include "replicas.h" #include "quota.h" #include "sb-clean.h" #include "sb-counters.h" #include "sb-downgrade.h" #include "sb-errors.h" #include "sb-members.h" #include "super-io.h" #include "super.h" #include "trace.h" #include "vstructs.h" #include #include static const struct blk_holder_ops bch2_sb_handle_bdev_ops = { }; struct bch2_metadata_version { u16 version; const char *name; }; static const struct bch2_metadata_version bch2_metadata_versions[] = { #define x(n, v) { \ .version = v, \ .name = #n, \ }, BCH_METADATA_VERSIONS() #undef x }; void bch2_version_to_text(struct printbuf *out, unsigned v) { const char *str = "(unknown version)"; for (unsigned i = 0; i < ARRAY_SIZE(bch2_metadata_versions); i++) if (bch2_metadata_versions[i].version == v) { str = bch2_metadata_versions[i].name; break; } prt_printf(out, "%u.%u: %s", BCH_VERSION_MAJOR(v), BCH_VERSION_MINOR(v), str); } unsigned bch2_latest_compatible_version(unsigned v) { if (!BCH_VERSION_MAJOR(v)) return v; for (unsigned i = 0; i < ARRAY_SIZE(bch2_metadata_versions); i++) if (bch2_metadata_versions[i].version > v && BCH_VERSION_MAJOR(bch2_metadata_versions[i].version) == BCH_VERSION_MAJOR(v)) v = bch2_metadata_versions[i].version; return v; } const char * const bch2_sb_fields[] = { #define x(name, nr) #name, BCH_SB_FIELDS() #undef x NULL }; static int bch2_sb_field_validate(struct bch_sb *, struct bch_sb_field *, struct printbuf *); struct bch_sb_field *bch2_sb_field_get_id(struct bch_sb *sb, enum bch_sb_field_type type) { /* XXX: need locking around superblock to access optional fields */ vstruct_for_each(sb, f) if (le32_to_cpu(f->type) == type) return f; return NULL; } static struct bch_sb_field *__bch2_sb_field_resize(struct bch_sb_handle *sb, struct bch_sb_field *f, unsigned u64s) { unsigned old_u64s = f ? le32_to_cpu(f->u64s) : 0; unsigned sb_u64s = le32_to_cpu(sb->sb->u64s) + u64s - old_u64s; BUG_ON(__vstruct_bytes(struct bch_sb, sb_u64s) > sb->buffer_size); if (!f && !u64s) { /* nothing to do: */ } else if (!f) { f = vstruct_last(sb->sb); memset(f, 0, sizeof(u64) * u64s); f->u64s = cpu_to_le32(u64s); f->type = 0; } else { void *src, *dst; src = vstruct_end(f); if (u64s) { f->u64s = cpu_to_le32(u64s); dst = vstruct_end(f); } else { dst = f; } memmove(dst, src, vstruct_end(sb->sb) - src); if (dst > src) memset(src, 0, dst - src); } sb->sb->u64s = cpu_to_le32(sb_u64s); return u64s ? f : NULL; } void bch2_sb_field_delete(struct bch_sb_handle *sb, enum bch_sb_field_type type) { struct bch_sb_field *f = bch2_sb_field_get_id(sb->sb, type); if (f) __bch2_sb_field_resize(sb, f, 0); } /* Superblock realloc/free: */ void bch2_free_super(struct bch_sb_handle *sb) { kfree(sb->bio); if (!IS_ERR_OR_NULL(sb->s_bdev_file)) bdev_fput(sb->s_bdev_file); kfree(sb->holder); kfree(sb->sb_name); kfree(sb->sb); memset(sb, 0, sizeof(*sb)); } int bch2_sb_realloc(struct bch_sb_handle *sb, unsigned u64s) { size_t new_bytes = __vstruct_bytes(struct bch_sb, u64s); size_t new_buffer_size; struct bch_sb *new_sb; struct bio *bio; if (sb->bdev) new_bytes = max_t(size_t, new_bytes, bdev_logical_block_size(sb->bdev)); new_buffer_size = roundup_pow_of_two(new_bytes); if (sb->sb && sb->buffer_size >= new_buffer_size) return 0; if (sb->sb && sb->have_layout) { u64 max_bytes = 512 << sb->sb->layout.sb_max_size_bits; if (new_bytes > max_bytes) { struct printbuf buf = PRINTBUF; prt_bdevname(&buf, sb->bdev); prt_printf(&buf, ": superblock too big: want %zu but have %llu", new_bytes, max_bytes); pr_err("%s", buf.buf); printbuf_exit(&buf); return -BCH_ERR_ENOSPC_sb; } } if (sb->buffer_size >= new_buffer_size && sb->sb) return 0; if (dynamic_fault("bcachefs:add:super_realloc")) return -BCH_ERR_ENOMEM_sb_realloc_injected; new_sb = krealloc(sb->sb, new_buffer_size, GFP_NOFS|__GFP_ZERO); if (!new_sb) return -BCH_ERR_ENOMEM_sb_buf_realloc; sb->sb = new_sb; if (sb->have_bio) { unsigned nr_bvecs = buf_pages(sb->sb, new_buffer_size); bio = bio_kmalloc(nr_bvecs, GFP_KERNEL); if (!bio) return -BCH_ERR_ENOMEM_sb_bio_realloc; bio_init(bio, NULL, bio->bi_inline_vecs, nr_bvecs, 0); kfree(sb->bio); sb->bio = bio; } sb->buffer_size = new_buffer_size; return 0; } struct bch_sb_field *bch2_sb_field_resize_id(struct bch_sb_handle *sb, enum bch_sb_field_type type, unsigned u64s) { struct bch_sb_field *f = bch2_sb_field_get_id(sb->sb, type); ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0; ssize_t d = -old_u64s + u64s; if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) return NULL; if (sb->fs_sb) { struct bch_fs *c = container_of(sb, struct bch_fs, disk_sb); lockdep_assert_held(&c->sb_lock); /* XXX: we're not checking that offline device have enough space */ for_each_online_member(c, ca) { struct bch_sb_handle *dev_sb = &ca->disk_sb; if (bch2_sb_realloc(dev_sb, le32_to_cpu(dev_sb->sb->u64s) + d)) { percpu_ref_put(&ca->io_ref); return NULL; } } } f = bch2_sb_field_get_id(sb->sb, type); f = __bch2_sb_field_resize(sb, f, u64s); if (f) f->type = cpu_to_le32(type); return f; } struct bch_sb_field *bch2_sb_field_get_minsize_id(struct bch_sb_handle *sb, enum bch_sb_field_type type, unsigned u64s) { struct bch_sb_field *f = bch2_sb_field_get_id(sb->sb, type); if (!f || le32_to_cpu(f->u64s) < u64s) f = bch2_sb_field_resize_id(sb, type, u64s); return f; } /* Superblock validate: */ static int validate_sb_layout(struct bch_sb_layout *layout, struct printbuf *out) { u64 offset, prev_offset, max_sectors; unsigned i; BUILD_BUG_ON(sizeof(struct bch_sb_layout) != 512); if (!uuid_equal(&layout->magic, &BCACHE_MAGIC) && !uuid_equal(&layout->magic, &BCHFS_MAGIC)) { prt_printf(out, "Not a bcachefs superblock layout"); return -BCH_ERR_invalid_sb_layout; } if (layout->layout_type != 0) { prt_printf(out, "Invalid superblock layout type %u", layout->layout_type); return -BCH_ERR_invalid_sb_layout_type; } if (!layout->nr_superblocks) { prt_printf(out, "Invalid superblock layout: no superblocks"); return -BCH_ERR_invalid_sb_layout_nr_superblocks; } if (layout->nr_superblocks > ARRAY_SIZE(layout->sb_offset)) { prt_printf(out, "Invalid superblock layout: too many superblocks"); return -BCH_ERR_invalid_sb_layout_nr_superblocks; } max_sectors = 1 << layout->sb_max_size_bits; prev_offset = le64_to_cpu(layout->sb_offset[0]); for (i = 1; i < layout->nr_superblocks; i++) { offset = le64_to_cpu(layout->sb_offset[i]); if (offset < prev_offset + max_sectors) { prt_printf(out, "Invalid superblock layout: superblocks overlap\n" " (sb %u ends at %llu next starts at %llu", i - 1, prev_offset + max_sectors, offset); return -BCH_ERR_invalid_sb_layout_superblocks_overlap; } prev_offset = offset; } return 0; } static int bch2_sb_compatible(struct bch_sb *sb, struct printbuf *out) { u16 version = le16_to_cpu(sb->version); u16 version_min = le16_to_cpu(sb->version_min); if (!bch2_version_compatible(version)) { prt_str(out, "Unsupported superblock version "); bch2_version_to_text(out, version); prt_str(out, " (min "); bch2_version_to_text(out, bcachefs_metadata_version_min); prt_str(out, ", max "); bch2_version_to_text(out, bcachefs_metadata_version_current); prt_str(out, ")"); return -BCH_ERR_invalid_sb_version; } if (!bch2_version_compatible(version_min)) { prt_str(out, "Unsupported superblock version_min "); bch2_version_to_text(out, version_min); prt_str(out, " (min "); bch2_version_to_text(out, bcachefs_metadata_version_min); prt_str(out, ", max "); bch2_version_to_text(out, bcachefs_metadata_version_current); prt_str(out, ")"); return -BCH_ERR_invalid_sb_version; } if (version_min > version) { prt_str(out, "Bad minimum version "); bch2_version_to_text(out, version_min); prt_str(out, ", greater than version field "); bch2_version_to_text(out, version); return -BCH_ERR_invalid_sb_version; } return 0; } static int bch2_sb_validate(struct bch_sb_handle *disk_sb, struct printbuf *out, int rw) { struct bch_sb *sb = disk_sb->sb; struct bch_sb_field_members_v1 *mi; enum bch_opt_id opt_id; u16 block_size; int ret; ret = bch2_sb_compatible(sb, out); if (ret) return ret; if (sb->features[1] || (le64_to_cpu(sb->features[0]) & (~0ULL << BCH_FEATURE_NR))) { prt_printf(out, "Filesystem has incompatible features"); return -BCH_ERR_invalid_sb_features; } block_size = le16_to_cpu(sb->block_size); if (block_size > PAGE_SECTORS) { prt_printf(out, "Block size too big (got %u, max %u)", block_size, PAGE_SECTORS); return -BCH_ERR_invalid_sb_block_size; } if (bch2_is_zero(sb->user_uuid.b, sizeof(sb->user_uuid))) { prt_printf(out, "Bad user UUID (got zeroes)"); return -BCH_ERR_invalid_sb_uuid; } if (bch2_is_zero(sb->uuid.b, sizeof(sb->uuid))) { prt_printf(out, "Bad internal UUID (got zeroes)"); return -BCH_ERR_invalid_sb_uuid; } if (!sb->nr_devices || sb->nr_devices > BCH_SB_MEMBERS_MAX) { prt_printf(out, "Bad number of member devices %u (max %u)", sb->nr_devices, BCH_SB_MEMBERS_MAX); return -BCH_ERR_invalid_sb_too_many_members; } if (sb->dev_idx >= sb->nr_devices) { prt_printf(out, "Bad dev_idx (got %u, nr_devices %u)", sb->dev_idx, sb->nr_devices); return -BCH_ERR_invalid_sb_dev_idx; } if (!sb->time_precision || le32_to_cpu(sb->time_precision) > NSEC_PER_SEC) { prt_printf(out, "Invalid time precision: %u (min 1, max %lu)", le32_to_cpu(sb->time_precision), NSEC_PER_SEC); return -BCH_ERR_invalid_sb_time_precision; } if (rw == READ) { /* * Been seeing a bug where these are getting inexplicably * zeroed, so we're now validating them, but we have to be * careful not to preven people's filesystems from mounting: */ if (!BCH_SB_JOURNAL_FLUSH_DELAY(sb)) SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); if (!BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 1000); if (!BCH_SB_VERSION_UPGRADE_COMPLETE(sb)) SET_BCH_SB_VERSION_UPGRADE_COMPLETE(sb, le16_to_cpu(sb->version)); } for (opt_id = 0; opt_id < bch2_opts_nr; opt_id++) { const struct bch_option *opt = bch2_opt_table + opt_id; if (opt->get_sb != BCH2_NO_SB_OPT) { u64 v = bch2_opt_from_sb(sb, opt_id); prt_printf(out, "Invalid option "); ret = bch2_opt_validate(opt, v, out); if (ret) return ret; printbuf_reset(out); } } /* validate layout */ ret = validate_sb_layout(&sb->layout, out); if (ret) return ret; vstruct_for_each(sb, f) { if (!f->u64s) { prt_printf(out, "Invalid superblock: optional field with size 0 (type %u)", le32_to_cpu(f->type)); return -BCH_ERR_invalid_sb_field_size; } if (vstruct_next(f) > vstruct_last(sb)) { prt_printf(out, "Invalid superblock: optional field extends past end of superblock (type %u)", le32_to_cpu(f->type)); return -BCH_ERR_invalid_sb_field_size; } } /* members must be validated first: */ mi = bch2_sb_field_get(sb, members_v1); if (!mi) { prt_printf(out, "Invalid superblock: member info area missing"); return -BCH_ERR_invalid_sb_members_missing; } ret = bch2_sb_field_validate(sb, &mi->field, out); if (ret) return ret; vstruct_for_each(sb, f) { if (le32_to_cpu(f->type) == BCH_SB_FIELD_members_v1) continue; ret = bch2_sb_field_validate(sb, f, out); if (ret) return ret; } if (rw == WRITE && bch2_sb_member_get(sb, sb->dev_idx).seq != sb->seq) { prt_printf(out, "Invalid superblock: member seq %llu != sb seq %llu", le64_to_cpu(bch2_sb_member_get(sb, sb->dev_idx).seq), le64_to_cpu(sb->seq)); return -BCH_ERR_invalid_sb_members_missing; } return 0; } /* device open: */ static unsigned long le_ulong_to_cpu(unsigned long v) { return sizeof(unsigned long) == 8 ? le64_to_cpu(v) : le32_to_cpu(v); } static void le_bitvector_to_cpu(unsigned long *dst, unsigned long *src, unsigned nr) { BUG_ON(nr & (BITS_PER_TYPE(long) - 1)); for (unsigned i = 0; i < BITS_TO_LONGS(nr); i++) dst[i] = le_ulong_to_cpu(src[i]); } static void bch2_sb_update(struct bch_fs *c) { struct bch_sb *src = c->disk_sb.sb; lockdep_assert_held(&c->sb_lock); c->sb.uuid = src->uuid; c->sb.user_uuid = src->user_uuid; c->sb.version = le16_to_cpu(src->version); c->sb.version_min = le16_to_cpu(src->version_min); c->sb.version_upgrade_complete = BCH_SB_VERSION_UPGRADE_COMPLETE(src); c->sb.nr_devices = src->nr_devices; c->sb.clean = BCH_SB_CLEAN(src); c->sb.encryption_type = BCH_SB_ENCRYPTION_TYPE(src); c->sb.nsec_per_time_unit = le32_to_cpu(src->time_precision); c->sb.time_units_per_sec = NSEC_PER_SEC / c->sb.nsec_per_time_unit; /* XXX this is wrong, we need a 96 or 128 bit integer type */ c->sb.time_base_lo = div_u64(le64_to_cpu(src->time_base_lo), c->sb.nsec_per_time_unit); c->sb.time_base_hi = le32_to_cpu(src->time_base_hi); c->sb.features = le64_to_cpu(src->features[0]); c->sb.compat = le64_to_cpu(src->compat[0]); memset(c->sb.errors_silent, 0, sizeof(c->sb.errors_silent)); struct bch_sb_field_ext *ext = bch2_sb_field_get(src, ext); if (ext) { le_bitvector_to_cpu(c->sb.errors_silent, (void *) ext->errors_silent, sizeof(c->sb.errors_silent) * 8); c->sb.btrees_lost_data = le64_to_cpu(ext->btrees_lost_data); } for_each_member_device(c, ca) { struct bch_member m = bch2_sb_member_get(src, ca->dev_idx); ca->mi = bch2_mi_to_cpu(&m); } } static int __copy_super(struct bch_sb_handle *dst_handle, struct bch_sb *src) { struct bch_sb_field *src_f, *dst_f; struct bch_sb *dst = dst_handle->sb; unsigned i; dst->version = src->version; dst->version_min = src->version_min; dst->seq = src->seq; dst->uuid = src->uuid; dst->user_uuid = src->user_uuid; memcpy(dst->label, src->label, sizeof(dst->label)); dst->block_size = src->block_size; dst->nr_devices = src->nr_devices; dst->time_base_lo = src->time_base_lo; dst->time_base_hi = src->time_base_hi; dst->time_precision = src->time_precision; dst->write_time = src->write_time; memcpy(dst->flags, src->flags, sizeof(dst->flags)); memcpy(dst->features, src->features, sizeof(dst->features)); memcpy(dst->compat, src->compat, sizeof(dst->compat)); for (i = 0; i < BCH_SB_FIELD_NR; i++) { int d; if ((1U << i) & BCH_SINGLE_DEVICE_SB_FIELDS) continue; src_f = bch2_sb_field_get_id(src, i); dst_f = bch2_sb_field_get_id(dst, i); d = (src_f ? le32_to_cpu(src_f->u64s) : 0) - (dst_f ? le32_to_cpu(dst_f->u64s) : 0); if (d > 0) { int ret = bch2_sb_realloc(dst_handle, le32_to_cpu(dst_handle->sb->u64s) + d); if (ret) return ret; dst = dst_handle->sb; dst_f = bch2_sb_field_get_id(dst, i); } dst_f = __bch2_sb_field_resize(dst_handle, dst_f, src_f ? le32_to_cpu(src_f->u64s) : 0); if (src_f) memcpy(dst_f, src_f, vstruct_bytes(src_f)); } return 0; } int bch2_sb_to_fs(struct bch_fs *c, struct bch_sb *src) { int ret; lockdep_assert_held(&c->sb_lock); ret = bch2_sb_realloc(&c->disk_sb, 0) ?: __copy_super(&c->disk_sb, src) ?: bch2_sb_replicas_to_cpu_replicas(c) ?: bch2_sb_disk_groups_to_cpu(c); if (ret) return ret; bch2_sb_update(c); return 0; } int bch2_sb_from_fs(struct bch_fs *c, struct bch_dev *ca) { return __copy_super(&ca->disk_sb, c->disk_sb.sb); } /* read superblock: */ static int read_one_super(struct bch_sb_handle *sb, u64 offset, struct printbuf *err) { size_t bytes; int ret; reread: bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META); sb->bio->bi_iter.bi_sector = offset; bch2_bio_map(sb->bio, sb->sb, sb->buffer_size); ret = submit_bio_wait(sb->bio); if (ret) { prt_printf(err, "IO error: %i", ret); return ret; } if (!uuid_equal(&sb->sb->magic, &BCACHE_MAGIC) && !uuid_equal(&sb->sb->magic, &BCHFS_MAGIC)) { prt_str(err, "Not a bcachefs superblock (got magic "); pr_uuid(err, sb->sb->magic.b); prt_str(err, ")"); return -BCH_ERR_invalid_sb_magic; } ret = bch2_sb_compatible(sb->sb, err); if (ret) return ret; bytes = vstruct_bytes(sb->sb); if (bytes > 512ULL << min(BCH_SB_LAYOUT_SIZE_BITS_MAX, sb->sb->layout.sb_max_size_bits)) { prt_printf(err, "Invalid superblock: too big (got %zu bytes, layout max %lu)", bytes, 512UL << sb->sb->layout.sb_max_size_bits); return -BCH_ERR_invalid_sb_too_big; } if (bytes > sb->buffer_size) { ret = bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s)); if (ret) return ret; goto reread; } enum bch_csum_type csum_type = BCH_SB_CSUM_TYPE(sb->sb); if (csum_type >= BCH_CSUM_NR) { prt_printf(err, "unknown checksum type %llu", BCH_SB_CSUM_TYPE(sb->sb)); return -BCH_ERR_invalid_sb_csum_type; } /* XXX: verify MACs */ struct bch_csum csum = csum_vstruct(NULL, csum_type, null_nonce(), sb->sb); if (bch2_crc_cmp(csum, sb->sb->csum)) { bch2_csum_err_msg(err, csum_type, sb->sb->csum, csum); return -BCH_ERR_invalid_sb_csum; } sb->seq = le64_to_cpu(sb->sb->seq); return 0; } static int __bch2_read_super(const char *path, struct bch_opts *opts, struct bch_sb_handle *sb, bool ignore_notbchfs_msg) { u64 offset = opt_get(*opts, sb); struct bch_sb_layout layout; struct printbuf err = PRINTBUF; struct printbuf err2 = PRINTBUF; __le64 *i; int ret; #ifndef __KERNEL__ retry: #endif memset(sb, 0, sizeof(*sb)); sb->mode = BLK_OPEN_READ; sb->have_bio = true; sb->holder = kmalloc(1, GFP_KERNEL); if (!sb->holder) return -ENOMEM; sb->sb_name = kstrdup(path, GFP_KERNEL); if (!sb->sb_name) { ret = -ENOMEM; prt_printf(&err, "error allocating memory for sb_name"); goto err; } #ifndef __KERNEL__ if (opt_get(*opts, direct_io) == false) sb->mode |= BLK_OPEN_BUFFERED; #endif if (!opt_get(*opts, noexcl)) sb->mode |= BLK_OPEN_EXCL; if (!opt_get(*opts, nochanges)) sb->mode |= BLK_OPEN_WRITE; sb->s_bdev_file = bdev_file_open_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops); if (IS_ERR(sb->s_bdev_file) && PTR_ERR(sb->s_bdev_file) == -EACCES && opt_get(*opts, read_only)) { sb->mode &= ~BLK_OPEN_WRITE; sb->s_bdev_file = bdev_file_open_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops); if (!IS_ERR(sb->s_bdev_file)) opt_set(*opts, nochanges, true); } if (IS_ERR(sb->s_bdev_file)) { ret = PTR_ERR(sb->s_bdev_file); prt_printf(&err, "error opening %s: %s", path, bch2_err_str(ret)); goto err; } sb->bdev = file_bdev(sb->s_bdev_file); ret = bch2_sb_realloc(sb, 0); if (ret) { prt_printf(&err, "error allocating memory for superblock"); goto err; } if (bch2_fs_init_fault("read_super")) { prt_printf(&err, "dynamic fault"); ret = -EFAULT; goto err; } ret = read_one_super(sb, offset, &err); if (!ret) goto got_super; if (opt_defined(*opts, sb)) goto err; prt_printf(&err2, "bcachefs (%s): error reading default superblock: %s\n", path, err.buf); if (ret == -BCH_ERR_invalid_sb_magic && ignore_notbchfs_msg) bch2_print_opts(opts, KERN_INFO "%s", err2.buf); else bch2_print_opts(opts, KERN_ERR "%s", err2.buf); printbuf_exit(&err2); printbuf_reset(&err); /* * Error reading primary superblock - read location of backup * superblocks: */ bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META); sb->bio->bi_iter.bi_sector = BCH_SB_LAYOUT_SECTOR; /* * use sb buffer to read layout, since sb buffer is page aligned but * layout won't be: */ bch2_bio_map(sb->bio, sb->sb, sizeof(struct bch_sb_layout)); ret = submit_bio_wait(sb->bio); if (ret) { prt_printf(&err, "IO error: %i", ret); goto err; } memcpy(&layout, sb->sb, sizeof(layout)); ret = validate_sb_layout(&layout, &err); if (ret) goto err; for (i = layout.sb_offset; i < layout.sb_offset + layout.nr_superblocks; i++) { offset = le64_to_cpu(*i); if (offset == opt_get(*opts, sb)) continue; ret = read_one_super(sb, offset, &err); if (!ret) goto got_super; } goto err; got_super: if (le16_to_cpu(sb->sb->block_size) << 9 < bdev_logical_block_size(sb->bdev) && opt_get(*opts, direct_io)) { #ifndef __KERNEL__ opt_set(*opts, direct_io, false); bch2_free_super(sb); goto retry; #endif prt_printf(&err, "block size (%u) smaller than device block size (%u)", le16_to_cpu(sb->sb->block_size) << 9, bdev_logical_block_size(sb->bdev)); ret = -BCH_ERR_block_size_too_small; goto err; } sb->have_layout = true; ret = bch2_sb_validate(sb, &err, READ); if (ret) { bch2_print_opts(opts, KERN_ERR "bcachefs (%s): error validating superblock: %s\n", path, err.buf); goto err_no_print; } out: printbuf_exit(&err); return ret; err: bch2_print_opts(opts, KERN_ERR "bcachefs (%s): error reading superblock: %s\n", path, err.buf); err_no_print: bch2_free_super(sb); goto out; } int bch2_read_super(const char *path, struct bch_opts *opts, struct bch_sb_handle *sb) { return __bch2_read_super(path, opts, sb, false); } /* provide a silenced version for mount.bcachefs */ int bch2_read_super_silent(const char *path, struct bch_opts *opts, struct bch_sb_handle *sb) { return __bch2_read_super(path, opts, sb, true); } /* write superblock: */ static void write_super_endio(struct bio *bio) { struct bch_dev *ca = bio->bi_private; /* XXX: return errors directly */ if (bch2_dev_io_err_on(bio->bi_status, ca, bio_data_dir(bio) ? BCH_MEMBER_ERROR_write : BCH_MEMBER_ERROR_read, "superblock %s error: %s", bio_data_dir(bio) ? "write" : "read", bch2_blk_status_to_str(bio->bi_status))) ca->sb_write_error = 1; closure_put(&ca->fs->sb_write); percpu_ref_put(&ca->io_ref); } static void read_back_super(struct bch_fs *c, struct bch_dev *ca) { struct bch_sb *sb = ca->disk_sb.sb; struct bio *bio = ca->disk_sb.bio; bio_reset(bio, ca->disk_sb.bdev, REQ_OP_READ|REQ_SYNC|REQ_META); bio->bi_iter.bi_sector = le64_to_cpu(sb->layout.sb_offset[0]); bio->bi_end_io = write_super_endio; bio->bi_private = ca; bch2_bio_map(bio, ca->sb_read_scratch, PAGE_SIZE); this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_sb], bio_sectors(bio)); percpu_ref_get(&ca->io_ref); closure_bio_submit(bio, &c->sb_write); } static void write_one_super(struct bch_fs *c, struct bch_dev *ca, unsigned idx) { struct bch_sb *sb = ca->disk_sb.sb; struct bio *bio = ca->disk_sb.bio; sb->offset = sb->layout.sb_offset[idx]; SET_BCH_SB_CSUM_TYPE(sb, bch2_csum_opt_to_type(c->opts.metadata_checksum, false)); sb->csum = csum_vstruct(c, BCH_SB_CSUM_TYPE(sb), null_nonce(), sb); bio_reset(bio, ca->disk_sb.bdev, REQ_OP_WRITE|REQ_SYNC|REQ_META); bio->bi_iter.bi_sector = le64_to_cpu(sb->offset); bio->bi_end_io = write_super_endio; bio->bi_private = ca; bch2_bio_map(bio, sb, roundup((size_t) vstruct_bytes(sb), bdev_logical_block_size(ca->disk_sb.bdev))); this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_sb], bio_sectors(bio)); percpu_ref_get(&ca->io_ref); closure_bio_submit(bio, &c->sb_write); } int bch2_write_super(struct bch_fs *c) { struct closure *cl = &c->sb_write; struct printbuf err = PRINTBUF; unsigned sb = 0, nr_wrote; struct bch_devs_mask sb_written; bool wrote, can_mount_without_written, can_mount_with_written; unsigned degraded_flags = BCH_FORCE_IF_DEGRADED; int ret = 0; trace_and_count(c, write_super, c, _RET_IP_); if (c->opts.very_degraded) degraded_flags |= BCH_FORCE_IF_LOST; lockdep_assert_held(&c->sb_lock); closure_init_stack(cl); memset(&sb_written, 0, sizeof(sb_written)); /* Make sure we're using the new magic numbers: */ c->disk_sb.sb->magic = BCHFS_MAGIC; c->disk_sb.sb->layout.magic = BCHFS_MAGIC; le64_add_cpu(&c->disk_sb.sb->seq, 1); struct bch_sb_field_members_v2 *mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); for_each_online_member(c, ca) __bch2_members_v2_get_mut(mi, ca->dev_idx)->seq = c->disk_sb.sb->seq; c->disk_sb.sb->write_time = cpu_to_le64(ktime_get_real_seconds()); if (test_bit(BCH_FS_error, &c->flags)) SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 1); if (test_bit(BCH_FS_topology_error, &c->flags)) SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 1); SET_BCH_SB_BIG_ENDIAN(c->disk_sb.sb, CPU_BIG_ENDIAN); bch2_sb_counters_from_cpu(c); bch2_sb_members_from_cpu(c); bch2_sb_members_cpy_v2_v1(&c->disk_sb); bch2_sb_errors_from_cpu(c); bch2_sb_downgrade_update(c); for_each_online_member(c, ca) bch2_sb_from_fs(c, ca); for_each_online_member(c, ca) { printbuf_reset(&err); ret = bch2_sb_validate(&ca->disk_sb, &err, WRITE); if (ret) { bch2_fs_inconsistent(c, "sb invalid before write: %s", err.buf); percpu_ref_put(&ca->io_ref); goto out; } } if (c->opts.nochanges) goto out; /* * Defer writing the superblock until filesystem initialization is * complete - don't write out a partly initialized superblock: */ if (!BCH_SB_INITIALIZED(c->disk_sb.sb)) goto out; if (le16_to_cpu(c->disk_sb.sb->version) > bcachefs_metadata_version_current) { struct printbuf buf = PRINTBUF; prt_printf(&buf, "attempting to write superblock that wasn't version downgraded ("); bch2_version_to_text(&buf, le16_to_cpu(c->disk_sb.sb->version)); prt_str(&buf, " > "); bch2_version_to_text(&buf, bcachefs_metadata_version_current); prt_str(&buf, ")"); bch2_fs_fatal_error(c, ": %s", buf.buf); printbuf_exit(&buf); return -BCH_ERR_sb_not_downgraded; } for_each_online_member(c, ca) { __set_bit(ca->dev_idx, sb_written.d); ca->sb_write_error = 0; } for_each_online_member(c, ca) read_back_super(c, ca); closure_sync(cl); for_each_online_member(c, ca) { if (ca->sb_write_error) continue; if (le64_to_cpu(ca->sb_read_scratch->seq) < ca->disk_sb.seq) { bch2_fs_fatal_error(c, ": Superblock write was silently dropped! (seq %llu expected %llu)", le64_to_cpu(ca->sb_read_scratch->seq), ca->disk_sb.seq); percpu_ref_put(&ca->io_ref); ret = -BCH_ERR_erofs_sb_err; goto out; } if (le64_to_cpu(ca->sb_read_scratch->seq) > ca->disk_sb.seq) { bch2_fs_fatal_error(c, ": Superblock modified by another process (seq %llu expected %llu)", le64_to_cpu(ca->sb_read_scratch->seq), ca->disk_sb.seq); percpu_ref_put(&ca->io_ref); ret = -BCH_ERR_erofs_sb_err; goto out; } } do { wrote = false; for_each_online_member(c, ca) if (!ca->sb_write_error && sb < ca->disk_sb.sb->layout.nr_superblocks) { write_one_super(c, ca, sb); wrote = true; } closure_sync(cl); sb++; } while (wrote); for_each_online_member(c, ca) { if (ca->sb_write_error) __clear_bit(ca->dev_idx, sb_written.d); else ca->disk_sb.seq = le64_to_cpu(ca->disk_sb.sb->seq); } nr_wrote = dev_mask_nr(&sb_written); can_mount_with_written = bch2_have_enough_devs(c, sb_written, degraded_flags, false); for (unsigned i = 0; i < ARRAY_SIZE(sb_written.d); i++) sb_written.d[i] = ~sb_written.d[i]; can_mount_without_written = bch2_have_enough_devs(c, sb_written, degraded_flags, false); /* * If we would be able to mount _without_ the devices we successfully * wrote superblocks to, we weren't able to write to enough devices: * * Exception: if we can mount without the successes because we haven't * written anything (new filesystem), we continue if we'd be able to * mount with the devices we did successfully write to: */ if (bch2_fs_fatal_err_on(!nr_wrote || !can_mount_with_written || (can_mount_without_written && !can_mount_with_written), c, ": Unable to write superblock to sufficient devices (from %ps)", (void *) _RET_IP_)) ret = -1; out: /* Make new options visible after they're persistent: */ bch2_sb_update(c); printbuf_exit(&err); return ret; } void __bch2_check_set_feature(struct bch_fs *c, unsigned feat) { mutex_lock(&c->sb_lock); if (!(c->sb.features & (1ULL << feat))) { c->disk_sb.sb->features[0] |= cpu_to_le64(1ULL << feat); bch2_write_super(c); } mutex_unlock(&c->sb_lock); } /* Downgrade if superblock is at a higher version than currently supported: */ bool bch2_check_version_downgrade(struct bch_fs *c) { bool ret = bcachefs_metadata_version_current < c->sb.version; lockdep_assert_held(&c->sb_lock); /* * Downgrade, if superblock is at a higher version than currently * supported: * * c->sb will be checked before we write the superblock, so update it as * well: */ if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) > bcachefs_metadata_version_current) { SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current); c->sb.version_upgrade_complete = bcachefs_metadata_version_current; } if (c->sb.version > bcachefs_metadata_version_current) { c->disk_sb.sb->version = cpu_to_le16(bcachefs_metadata_version_current); c->sb.version = bcachefs_metadata_version_current; } if (c->sb.version_min > bcachefs_metadata_version_current) { c->disk_sb.sb->version_min = cpu_to_le16(bcachefs_metadata_version_current); c->sb.version_min = bcachefs_metadata_version_current; } c->disk_sb.sb->compat[0] &= cpu_to_le64((1ULL << BCH_COMPAT_NR) - 1); return ret; } void bch2_sb_upgrade(struct bch_fs *c, unsigned new_version) { lockdep_assert_held(&c->sb_lock); if (BCH_VERSION_MAJOR(new_version) > BCH_VERSION_MAJOR(le16_to_cpu(c->disk_sb.sb->version))) bch2_sb_field_resize(&c->disk_sb, downgrade, 0); c->disk_sb.sb->version = cpu_to_le16(new_version); c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALL); } static int bch2_sb_ext_validate(struct bch_sb *sb, struct bch_sb_field *f, struct printbuf *err) { if (vstruct_bytes(f) < 88) { prt_printf(err, "field too small (%zu < %u)", vstruct_bytes(f), 88); return -BCH_ERR_invalid_sb_ext; } return 0; } static void bch2_sb_ext_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { struct bch_sb_field_ext *e = field_to_type(f, ext); prt_printf(out, "Recovery passes required:"); prt_tab(out); prt_bitflags(out, bch2_recovery_passes, bch2_recovery_passes_from_stable(le64_to_cpu(e->recovery_passes_required[0]))); prt_newline(out); unsigned long *errors_silent = kmalloc(sizeof(e->errors_silent), GFP_KERNEL); if (errors_silent) { le_bitvector_to_cpu(errors_silent, (void *) e->errors_silent, sizeof(e->errors_silent) * 8); prt_printf(out, "Errors to silently fix:"); prt_tab(out); prt_bitflags_vector(out, bch2_sb_error_strs, errors_silent, sizeof(e->errors_silent) * 8); prt_newline(out); kfree(errors_silent); } prt_printf(out, "Btrees with missing data:"); prt_tab(out); prt_bitflags(out, __bch2_btree_ids, le64_to_cpu(e->btrees_lost_data)); prt_newline(out); } static const struct bch_sb_field_ops bch_sb_field_ops_ext = { .validate = bch2_sb_ext_validate, .to_text = bch2_sb_ext_to_text, }; static const struct bch_sb_field_ops *bch2_sb_field_ops[] = { #define x(f, nr) \ [BCH_SB_FIELD_##f] = &bch_sb_field_ops_##f, BCH_SB_FIELDS() #undef x }; static const struct bch_sb_field_ops bch2_sb_field_null_ops; static const struct bch_sb_field_ops *bch2_sb_field_type_ops(unsigned type) { return likely(type < ARRAY_SIZE(bch2_sb_field_ops)) ? bch2_sb_field_ops[type] : &bch2_sb_field_null_ops; } static int bch2_sb_field_validate(struct bch_sb *sb, struct bch_sb_field *f, struct printbuf *err) { unsigned type = le32_to_cpu(f->type); struct printbuf field_err = PRINTBUF; const struct bch_sb_field_ops *ops = bch2_sb_field_type_ops(type); int ret; ret = ops->validate ? ops->validate(sb, f, &field_err) : 0; if (ret) { prt_printf(err, "Invalid superblock section %s: %s", bch2_sb_fields[type], field_err.buf); prt_newline(err); bch2_sb_field_to_text(err, sb, f); } printbuf_exit(&field_err); return ret; } void __bch2_sb_field_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { unsigned type = le32_to_cpu(f->type); const struct bch_sb_field_ops *ops = bch2_sb_field_type_ops(type); if (!out->nr_tabstops) printbuf_tabstop_push(out, 32); if (ops->to_text) ops->to_text(out, sb, f); } void bch2_sb_field_to_text(struct printbuf *out, struct bch_sb *sb, struct bch_sb_field *f) { unsigned type = le32_to_cpu(f->type); if (type < BCH_SB_FIELD_NR) prt_printf(out, "%s", bch2_sb_fields[type]); else prt_printf(out, "(unknown field %u)", type); prt_printf(out, " (size %zu):", vstruct_bytes(f)); prt_newline(out); __bch2_sb_field_to_text(out, sb, f); } void bch2_sb_layout_to_text(struct printbuf *out, struct bch_sb_layout *l) { unsigned i; prt_printf(out, "Type: %u", l->layout_type); prt_newline(out); prt_str(out, "Superblock max size: "); prt_units_u64(out, 512 << l->sb_max_size_bits); prt_newline(out); prt_printf(out, "Nr superblocks: %u", l->nr_superblocks); prt_newline(out); prt_str(out, "Offsets: "); for (i = 0; i < l->nr_superblocks; i++) { if (i) prt_str(out, ", "); prt_printf(out, "%llu", le64_to_cpu(l->sb_offset[i])); } prt_newline(out); } void bch2_sb_to_text(struct printbuf *out, struct bch_sb *sb, bool print_layout, unsigned fields) { u64 fields_have = 0; unsigned nr_devices = 0; if (!out->nr_tabstops) printbuf_tabstop_push(out, 44); for (int i = 0; i < sb->nr_devices; i++) nr_devices += bch2_dev_exists(sb, i); prt_printf(out, "External UUID:"); prt_tab(out); pr_uuid(out, sb->user_uuid.b); prt_newline(out); prt_printf(out, "Internal UUID:"); prt_tab(out); pr_uuid(out, sb->uuid.b); prt_newline(out); prt_printf(out, "Magic number:"); prt_tab(out); pr_uuid(out, sb->magic.b); prt_newline(out); prt_str(out, "Device index:"); prt_tab(out); prt_printf(out, "%u", sb->dev_idx); prt_newline(out); prt_str(out, "Label:"); prt_tab(out); prt_printf(out, "%.*s", (int) sizeof(sb->label), sb->label); prt_newline(out); prt_str(out, "Version:"); prt_tab(out); bch2_version_to_text(out, le16_to_cpu(sb->version)); prt_newline(out); prt_str(out, "Version upgrade complete:"); prt_tab(out); bch2_version_to_text(out, BCH_SB_VERSION_UPGRADE_COMPLETE(sb)); prt_newline(out); prt_printf(out, "Oldest version on disk:"); prt_tab(out); bch2_version_to_text(out, le16_to_cpu(sb->version_min)); prt_newline(out); prt_printf(out, "Created:"); prt_tab(out); if (sb->time_base_lo) bch2_prt_datetime(out, div_u64(le64_to_cpu(sb->time_base_lo), NSEC_PER_SEC)); else prt_printf(out, "(not set)"); prt_newline(out); prt_printf(out, "Sequence number:"); prt_tab(out); prt_printf(out, "%llu", le64_to_cpu(sb->seq)); prt_newline(out); prt_printf(out, "Time of last write:"); prt_tab(out); bch2_prt_datetime(out, le64_to_cpu(sb->write_time)); prt_newline(out); prt_printf(out, "Superblock size:"); prt_tab(out); prt_units_u64(out, vstruct_bytes(sb)); prt_str(out, "/"); prt_units_u64(out, 512ULL << sb->layout.sb_max_size_bits); prt_newline(out); prt_printf(out, "Clean:"); prt_tab(out); prt_printf(out, "%llu", BCH_SB_CLEAN(sb)); prt_newline(out); prt_printf(out, "Devices:"); prt_tab(out); prt_printf(out, "%u", nr_devices); prt_newline(out); prt_printf(out, "Sections:"); vstruct_for_each(sb, f) fields_have |= 1 << le32_to_cpu(f->type); prt_tab(out); prt_bitflags(out, bch2_sb_fields, fields_have); prt_newline(out); prt_printf(out, "Features:"); prt_tab(out); prt_bitflags(out, bch2_sb_features, le64_to_cpu(sb->features[0])); prt_newline(out); prt_printf(out, "Compat features:"); prt_tab(out); prt_bitflags(out, bch2_sb_compat, le64_to_cpu(sb->compat[0])); prt_newline(out); prt_newline(out); prt_printf(out, "Options:"); prt_newline(out); printbuf_indent_add(out, 2); { enum bch_opt_id id; for (id = 0; id < bch2_opts_nr; id++) { const struct bch_option *opt = bch2_opt_table + id; if (opt->get_sb != BCH2_NO_SB_OPT) { u64 v = bch2_opt_from_sb(sb, id); prt_printf(out, "%s:", opt->attr.name); prt_tab(out); bch2_opt_to_text(out, NULL, sb, opt, v, OPT_HUMAN_READABLE|OPT_SHOW_FULL_LIST); prt_newline(out); } } } printbuf_indent_sub(out, 2); if (print_layout) { prt_newline(out); prt_printf(out, "layout:"); prt_newline(out); printbuf_indent_add(out, 2); bch2_sb_layout_to_text(out, &sb->layout); printbuf_indent_sub(out, 2); } vstruct_for_each(sb, f) if (fields & (1 << le32_to_cpu(f->type))) { prt_newline(out); bch2_sb_field_to_text(out, sb, f); } }