/* * UART driver for 68360 CPM SCC or SMC * Copyright (c) 2000 D. Jeff Dionne , * Copyright (c) 2000 Michael Leslie * Copyright (c) 1997 Dan Malek * * I used the serial.c driver as the framework for this driver. * Give credit to those guys. * The original code was written for the MBX860 board. I tried to make * it generic, but there may be some assumptions in the structures that * have to be fixed later. * To save porting time, I did not bother to change any object names * that are not accessed outside of this file. * It still needs lots of work........When it was easy, I included code * to support the SCCs, but this has never been tested, nor is it complete. * Only the SCCs support modem control, so that is not complete either. * * This module exports the following rs232 io functions: * * int rs_360_init(void); */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_KGDB extern void breakpoint(void); extern void set_debug_traps(void); extern int kgdb_output_string (const char* s, unsigned int count); #endif /* #ifdef CONFIG_SERIAL_CONSOLE */ /* This seems to be a post 2.0 thing - mles */ #include #include /* this defines the index into rs_table for the port to use */ #ifndef CONFIG_SERIAL_CONSOLE_PORT #define CONFIG_SERIAL_CONSOLE_PORT 1 /* ie SMC2 - note USE_SMC2 must be defined */ #endif /* #endif */ #if 0 /* SCC2 for console */ #undef CONFIG_SERIAL_CONSOLE_PORT #define CONFIG_SERIAL_CONSOLE_PORT 2 #endif #define TX_WAKEUP ASYNC_SHARE_IRQ static char *serial_name = "CPM UART driver"; static char *serial_version = "0.03"; static struct tty_driver *serial_driver; int serial_console_setup(struct console *co, char *options); /* * Serial driver configuration section. Here are the various options: */ #define SERIAL_PARANOIA_CHECK #define CONFIG_SERIAL_NOPAUSE_IO #define SERIAL_DO_RESTART /* Set of debugging defines */ #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT #define _INLINE_ inline #define DBG_CNT(s) /* We overload some of the items in the data structure to meet our * needs. For example, the port address is the CPM parameter ram * offset for the SCC or SMC. The maximum number of ports is 4 SCCs and * 2 SMCs. The "hub6" field is used to indicate the channel number, with * a flag indicating SCC or SMC, and the number is used as an index into * the CPM parameter area for this device. * The "type" field is currently set to 0, for PORT_UNKNOWN. It is * not currently used. I should probably use it to indicate the port * type of SMC or SCC. * The SMCs do not support any modem control signals. */ #define smc_scc_num hub6 #define NUM_IS_SCC ((int)0x00010000) #define PORT_NUM(P) ((P) & 0x0000ffff) #if defined (CONFIG_UCQUICC) volatile extern void *_periph_base; /* sipex transceiver * mode bits for are on pins * * SCC2 d16..19 * SCC3 d20..23 * SCC4 d24..27 */ #define SIPEX_MODE(n,m) ((m & 0x0f)<<(16+4*(n-1))) static uint sipex_mode_bits = 0x00000000; #endif /* There is no `serial_state' defined back here in 2.0. * Try to get by with serial_struct */ /* #define serial_state serial_struct */ /* 2.4 -> 2.0 portability problem: async_icount in 2.4 has a few * extras: */ #if 0 struct async_icount_24 { __u32 cts, dsr, rng, dcd, tx, rx; __u32 frame, parity, overrun, brk; __u32 buf_overrun; } icount; #endif #if 0 struct serial_state { int magic; int baud_base; unsigned long port; int irq; int flags; int hub6; int type; int line; int revision; /* Chip revision (950) */ int xmit_fifo_size; int custom_divisor; int count; u8 *iomem_base; u16 iomem_reg_shift; unsigned short close_delay; unsigned short closing_wait; /* time to wait before closing */ struct async_icount_24 icount; int io_type; struct async_struct *info; }; #endif #define SSTATE_MAGIC 0x5302 /* SMC2 is sometimes used for low performance TDM interfaces. Define * this as 1 if you want SMC2 as a serial port UART managed by this driver. * Define this as 0 if you wish to use SMC2 for something else. */ #define USE_SMC2 1 #if 0 /* Define SCC to ttySx mapping. */ #define SCC_NUM_BASE (USE_SMC2 + 1) /* SCC base tty "number" */ /* Define which SCC is the first one to use for a serial port. These * are 0-based numbers, i.e. this assumes the first SCC (SCC1) is used * for Ethernet, and the first available SCC for serial UART is SCC2. * NOTE: IF YOU CHANGE THIS, you have to change the PROFF_xxx and * interrupt vectors in the table below to match. */ #define SCC_IDX_BASE 1 /* table index */ #endif /* Processors other than the 860 only get SMCs configured by default. * Either they don't have SCCs or they are allocated somewhere else. * Of course, there are now 860s without some SCCs, so we will need to * address that someday. * The Embedded Planet Multimedia I/O cards use TDM interfaces to the * stereo codec parts, and we use SMC2 to help support that. */ static struct serial_state rs_table[] = { /* type line PORT IRQ FLAGS smc_scc_num (F.K.A. hub6) */ { 0, 0, PRSLOT_SMC1, CPMVEC_SMC1, 0, 0 } /* SMC1 ttyS0 */ #if USE_SMC2 ,{ 0, 0, PRSLOT_SMC2, CPMVEC_SMC2, 0, 1 } /* SMC2 ttyS1 */ #endif #if defined(CONFIG_SERIAL_68360_SCC) ,{ 0, 0, PRSLOT_SCC2, CPMVEC_SCC2, 0, (NUM_IS_SCC | 1) } /* SCC2 ttyS2 */ ,{ 0, 0, PRSLOT_SCC3, CPMVEC_SCC3, 0, (NUM_IS_SCC | 2) } /* SCC3 ttyS3 */ ,{ 0, 0, PRSLOT_SCC4, CPMVEC_SCC4, 0, (NUM_IS_SCC | 3) } /* SCC4 ttyS4 */ #endif }; #define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state)) /* The number of buffer descriptors and their sizes. */ #define RX_NUM_FIFO 4 #define RX_BUF_SIZE 32 #define TX_NUM_FIFO 4 #define TX_BUF_SIZE 32 #define CONSOLE_NUM_FIFO 2 #define CONSOLE_BUF_SIZE 4 char *console_fifos[CONSOLE_NUM_FIFO * CONSOLE_BUF_SIZE]; /* The async_struct in serial.h does not really give us what we * need, so define our own here. */ typedef struct serial_info { int magic; int flags; struct serial_state *state; /* struct serial_struct *state; */ /* struct async_struct *state; */ struct tty_struct *tty; int read_status_mask; int ignore_status_mask; int timeout; int line; int x_char; /* xon/xoff character */ int close_delay; unsigned short closing_wait; unsigned short closing_wait2; unsigned long event; unsigned long last_active; int blocked_open; /* # of blocked opens */ struct work_struct tqueue; struct work_struct tqueue_hangup; wait_queue_head_t open_wait; wait_queue_head_t close_wait; /* CPM Buffer Descriptor pointers. */ QUICC_BD *rx_bd_base; QUICC_BD *rx_cur; QUICC_BD *tx_bd_base; QUICC_BD *tx_cur; } ser_info_t; /* since kmalloc_init() does not get called until much after this initialization: */ static ser_info_t quicc_ser_info[NR_PORTS]; static char rx_buf_pool[NR_PORTS * RX_NUM_FIFO * RX_BUF_SIZE]; static char tx_buf_pool[NR_PORTS * TX_NUM_FIFO * TX_BUF_SIZE]; static void change_speed(ser_info_t *info); static void rs_360_wait_until_sent(struct tty_struct *tty, int timeout); static inline int serial_paranoia_check(ser_info_t *info, char *name, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%s) in %s\n"; static const char *badinfo = "Warning: null async_struct for (%s) in %s\n"; if (!info) { printk(badinfo, name, routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, name, routine); return 1; } #endif return 0; } /* * This is used to figure out the divisor speeds and the timeouts, * indexed by the termio value. The generic CPM functions are responsible * for setting and assigning baud rate generators for us. */ static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 0 }; /* This sucks. There is a better way: */ #if defined(CONFIG_CONSOLE_9600) #define CONSOLE_BAUDRATE 9600 #elif defined(CONFIG_CONSOLE_19200) #define CONSOLE_BAUDRATE 19200 #elif defined(CONFIG_CONSOLE_115200) #define CONSOLE_BAUDRATE 115200 #else #warning "console baud rate undefined" #define CONSOLE_BAUDRATE 9600 #endif /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void rs_360_stop(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; int idx; unsigned long flags; volatile struct scc_regs *sccp; volatile struct smc_regs *smcp; if (serial_paranoia_check(info, tty->name, "rs_stop")) return; local_irq_save(flags); idx = PORT_NUM(info->state->smc_scc_num); if (info->state->smc_scc_num & NUM_IS_SCC) { sccp = &pquicc->scc_regs[idx]; sccp->scc_sccm &= ~UART_SCCM_TX; } else { /* smcp = &cpmp->cp_smc[idx]; */ smcp = &pquicc->smc_regs[idx]; smcp->smc_smcm &= ~SMCM_TX; } local_irq_restore(flags); } static void rs_360_start(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; int idx; unsigned long flags; volatile struct scc_regs *sccp; volatile struct smc_regs *smcp; if (serial_paranoia_check(info, tty->name, "rs_stop")) return; local_irq_save(flags); idx = PORT_NUM(info->state->smc_scc_num); if (info->state->smc_scc_num & NUM_IS_SCC) { sccp = &pquicc->scc_regs[idx]; sccp->scc_sccm |= UART_SCCM_TX; } else { smcp = &pquicc->smc_regs[idx]; smcp->smc_smcm |= SMCM_TX; } local_irq_restore(flags); } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * Note: rs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * rs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ static _INLINE_ void receive_chars(ser_info_t *info) { struct tty_struct *tty = info->tty; unsigned char ch, flag, *cp; /*int ignored = 0;*/ int i; ushort status; struct async_icount *icount; /* struct async_icount_24 *icount; */ volatile QUICC_BD *bdp; icount = &info->state->icount; /* Just loop through the closed BDs and copy the characters into * the buffer. */ bdp = info->rx_cur; for (;;) { if (bdp->status & BD_SC_EMPTY) /* If this one is empty */ break; /* we are all done */ /* The read status mask tell us what we should do with * incoming characters, especially if errors occur. * One special case is the use of BD_SC_EMPTY. If * this is not set, we are supposed to be ignoring * inputs. In this case, just mark the buffer empty and * continue. */ if (!(info->read_status_mask & BD_SC_EMPTY)) { bdp->status |= BD_SC_EMPTY; bdp->status &= ~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV); if (bdp->status & BD_SC_WRAP) bdp = info->rx_bd_base; else bdp++; continue; } /* Get the number of characters and the buffer pointer. */ i = bdp->length; /* cp = (unsigned char *)__va(bdp->buf); */ cp = (char *)bdp->buf; status = bdp->status; while (i-- > 0) { ch = *cp++; icount->rx++; #ifdef SERIAL_DEBUG_INTR printk("DR%02x:%02x...", ch, status); #endif flag = TTY_NORMAL; if (status & (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV)) { /* * For statistics only */ if (status & BD_SC_BR) icount->brk++; else if (status & BD_SC_PR) icount->parity++; else if (status & BD_SC_FR) icount->frame++; if (status & BD_SC_OV) icount->overrun++; /* * Now check to see if character should be * ignored, and mask off conditions which * should be ignored. if (status & info->ignore_status_mask) { if (++ignored > 100) break; continue; } */ status &= info->read_status_mask; if (status & (BD_SC_BR)) { #ifdef SERIAL_DEBUG_INTR printk("handling break...."); #endif *tty->flip.flag_buf_ptr = TTY_BREAK; if (info->flags & ASYNC_SAK) do_SAK(tty); } else if (status & BD_SC_PR) flag = TTY_PARITY; else if (status & BD_SC_FR) flag = TTY_FRAME; } tty_insert_flip_char(tty, ch, flag); if (status & BD_SC_OV) /* * Overrun is special, since it's * reported immediately, and doesn't * affect the current character */ tty_insert_flip_char(tty, 0, TTY_OVERRUN); } /* This BD is ready to be used again. Clear status. * Get next BD. */ bdp->status |= BD_SC_EMPTY; bdp->status &= ~(BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV); if (bdp->status & BD_SC_WRAP) bdp = info->rx_bd_base; else bdp++; } info->rx_cur = (QUICC_BD *)bdp; tty_schedule_flip(tty); } static _INLINE_ void receive_break(ser_info_t *info) { struct tty_struct *tty = info->tty; info->state->icount.brk++; /* Check to see if there is room in the tty buffer for * the break. If not, we exit now, losing the break. FIXME */ tty_insert_flip_char(tty, 0, TTY_BREAK); tty_schedule_flip(tty); } static _INLINE_ void transmit_chars(ser_info_t *info) { if ((info->flags & TX_WAKEUP) || (info->tty->flags & (1 << TTY_DO_WRITE_WAKEUP))) { schedule_work(&info->tqueue); } #ifdef SERIAL_DEBUG_INTR printk("THRE..."); #endif } #ifdef notdef /* I need to do this for the SCCs, so it is left as a reminder. */ static _INLINE_ void check_modem_status(struct async_struct *info) { int status; /* struct async_icount *icount; */ struct async_icount_24 *icount; status = serial_in(info, UART_MSR); if (status & UART_MSR_ANY_DELTA) { icount = &info->state->icount; /* update input line counters */ if (status & UART_MSR_TERI) icount->rng++; if (status & UART_MSR_DDSR) icount->dsr++; if (status & UART_MSR_DDCD) { icount->dcd++; #ifdef CONFIG_HARD_PPS if ((info->flags & ASYNC_HARDPPS_CD) && (status & UART_MSR_DCD)) hardpps(); #endif } if (status & UART_MSR_DCTS) icount->cts++; wake_up_interruptible(&info->delta_msr_wait); } if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) { #if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR)) printk("ttys%d CD now %s...", info->line, (status & UART_MSR_DCD) ? "on" : "off"); #endif if (status & UART_MSR_DCD) wake_up_interruptible(&info->open_wait); else { #ifdef SERIAL_DEBUG_OPEN printk("scheduling hangup..."); #endif queue_task(&info->tqueue_hangup, &tq_scheduler); } } if (info->flags & ASYNC_CTS_FLOW) { if (info->tty->hw_stopped) { if (status & UART_MSR_CTS) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx start..."); #endif info->tty->hw_stopped = 0; info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); return; } } else { if (!(status & UART_MSR_CTS)) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx stop..."); #endif info->tty->hw_stopped = 1; info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } } } #endif /* * This is the serial driver's interrupt routine for a single port */ /* static void rs_360_interrupt(void *dev_id) */ /* until and if we start servicing irqs here */ static void rs_360_interrupt(int vec, void *dev_id) { u_char events; int idx; ser_info_t *info; volatile struct smc_regs *smcp; volatile struct scc_regs *sccp; info = dev_id; idx = PORT_NUM(info->state->smc_scc_num); if (info->state->smc_scc_num & NUM_IS_SCC) { sccp = &pquicc->scc_regs[idx]; events = sccp->scc_scce; if (events & SCCM_RX) receive_chars(info); if (events & SCCM_TX) transmit_chars(info); sccp->scc_scce = events; } else { smcp = &pquicc->smc_regs[idx]; events = smcp->smc_smce; if (events & SMCM_BRKE) receive_break(info); if (events & SMCM_RX) receive_chars(info); if (events & SMCM_TX) transmit_chars(info); smcp->smc_smce = events; } #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt_single(%d, %x)...", info->state->smc_scc_num, events); #endif #ifdef modem_control check_modem_status(info); #endif info->last_active = jiffies; #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ static void do_softint(void *private_) { ser_info_t *info = (ser_info_t *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) tty_wakeup(tty); } /* * This routine is called from the scheduler tqueue when the interrupt * routine has signalled that a hangup has occurred. The path of * hangup processing is: * * serial interrupt routine -> (scheduler tqueue) -> * do_serial_hangup() -> tty->hangup() -> rs_hangup() * */ static void do_serial_hangup(void *private_) { struct async_struct *info = (struct async_struct *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; tty_hangup(tty); } static int startup(ser_info_t *info) { unsigned long flags; int retval=0; int idx; /*struct serial_state *state = info->state;*/ volatile struct smc_regs *smcp; volatile struct scc_regs *sccp; volatile struct smc_uart_pram *up; volatile struct uart_pram *scup; local_irq_save(flags); if (info->flags & ASYNC_INITIALIZED) { goto errout; } #ifdef maybe if (!state->port || !state->type) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); goto errout; } #endif #ifdef SERIAL_DEBUG_OPEN printk("starting up ttys%d (irq %d)...", info->line, state->irq); #endif #ifdef modem_control info->MCR = 0; if (info->tty->termios->c_cflag & CBAUD) info->MCR = UART_MCR_DTR | UART_MCR_RTS; #endif if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); /* * and set the speed of the serial port */ change_speed(info); idx = PORT_NUM(info->state->smc_scc_num); if (info->state->smc_scc_num & NUM_IS_SCC) { sccp = &pquicc->scc_regs[idx]; scup = &pquicc->pram[info->state->port].scc.pscc.u; scup->mrblr = RX_BUF_SIZE; scup->max_idl = RX_BUF_SIZE; sccp->scc_sccm |= (UART_SCCM_TX | UART_SCCM_RX); sccp->scc_gsmr.w.low |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); } else { smcp = &pquicc->smc_regs[idx]; /* Enable interrupts and I/O. */ smcp->smc_smcm |= (SMCM_RX | SMCM_TX); smcp->smc_smcmr |= (SMCMR_REN | SMCMR_TEN); /* We can tune the buffer length and idle characters * to take advantage of the entire incoming buffer size. * If mrblr is something other than 1, maxidl has to be * non-zero or we never get an interrupt. The maxidl * is the number of character times we wait after reception * of the last character before we decide no more characters * are coming. */ /* up = (smc_uart_t *)&pquicc->cp_dparam[state->port]; */ /* holy unionized structures, Batman: */ up = &pquicc->pram[info->state->port].scc.pothers.idma_smc.psmc.u; up->mrblr = RX_BUF_SIZE; up->max_idl = RX_BUF_SIZE; up->brkcr = 1; /* number of break chars */ } info->flags |= ASYNC_INITIALIZED; local_irq_restore(flags); return 0; errout: local_irq_restore(flags); return retval; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(ser_info_t *info) { unsigned long flags; struct serial_state *state; int idx; volatile struct smc_regs *smcp; volatile struct scc_regs *sccp; if (!(info->flags & ASYNC_INITIALIZED)) return; state = info->state; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....", info->line, state->irq); #endif local_irq_save(flags); idx = PORT_NUM(state->smc_scc_num); if (state->smc_scc_num & NUM_IS_SCC) { sccp = &pquicc->scc_regs[idx]; sccp->scc_gsmr.w.low &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); #ifdef CONFIG_SERIAL_CONSOLE /* We can't disable the transmitter if this is the * system console. */ if ((state - rs_table) != CONFIG_SERIAL_CONSOLE_PORT) #endif sccp->scc_sccm &= ~(UART_SCCM_TX | UART_SCCM_RX); } else { smcp = &pquicc->smc_regs[idx]; /* Disable interrupts and I/O. */ smcp->smc_smcm &= ~(SMCM_RX | SMCM_TX); #ifdef CONFIG_SERIAL_CONSOLE /* We can't disable the transmitter if this is the * system console. */ if ((state - rs_table) != CONFIG_SERIAL_CONSOLE_PORT) #endif smcp->smc_smcmr &= ~(SMCMR_REN | SMCMR_TEN); } if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ASYNC_INITIALIZED; local_irq_restore(flags); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(ser_info_t *info) { int baud_rate; unsigned cflag, cval, scval, prev_mode; int i, bits, sbits, idx; unsigned long flags; struct serial_state *state; volatile struct smc_regs *smcp; volatile struct scc_regs *sccp; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; state = info->state; /* Character length programmed into the mode register is the * sum of: 1 start bit, number of data bits, 0 or 1 parity bit, * 1 or 2 stop bits, minus 1. * The value 'bits' counts this for us. */ cval = 0; scval = 0; /* byte size and parity */ switch (cflag & CSIZE) { case CS5: bits = 5; break; case CS6: bits = 6; break; case CS7: bits = 7; break; case CS8: bits = 8; break; /* Never happens, but GCC is too dumb to figure it out */ default: bits = 8; break; } sbits = bits - 5; if (cflag & CSTOPB) { cval |= SMCMR_SL; /* Two stops */ scval |= SCU_PMSR_SL; bits++; } if (cflag & PARENB) { cval |= SMCMR_PEN; scval |= SCU_PMSR_PEN; bits++; } if (!(cflag & PARODD)) { cval |= SMCMR_PM_EVEN; scval |= (SCU_PMSR_REVP | SCU_PMSR_TEVP); } /* Determine divisor based on baud rate */ i = cflag & CBAUD; if (i >= (sizeof(baud_table)/sizeof(int))) baud_rate = 9600; else baud_rate = baud_table[i]; info->timeout = (TX_BUF_SIZE*HZ*bits); info->timeout += HZ/50; /* Add .02 seconds of slop */ #ifdef modem_control /* CTS flow control flag and modem status interrupts */ info->IER &= ~UART_IER_MSI; if (info->flags & ASYNC_HARDPPS_CD) info->IER |= UART_IER_MSI; if (cflag & CRTSCTS) { info->flags |= ASYNC_CTS_FLOW; info->IER |= UART_IER_MSI; } else info->flags &= ~ASYNC_CTS_FLOW; if (cflag & CLOCAL) info->flags &= ~ASYNC_CHECK_CD; else { info->flags |= ASYNC_CHECK_CD; info->IER |= UART_IER_MSI; } serial_out(info, UART_IER, info->IER); #endif /* * Set up parity check flag */ info->read_status_mask = (BD_SC_EMPTY | BD_SC_OV); if (I_INPCK(info->tty)) info->read_status_mask |= BD_SC_FR | BD_SC_PR; if (I_BRKINT(info->tty) || I_PARMRK(info->tty)) info->read_status_mask |= BD_SC_BR; /* * Characters to ignore */ info->ignore_status_mask = 0; if (I_IGNPAR(info->tty)) info->ignore_status_mask |= BD_SC_PR | BD_SC_FR; if (I_IGNBRK(info->tty)) { info->ignore_status_mask |= BD_SC_BR; /* * If we're ignore parity and break indicators, ignore * overruns too. (For real raw support). */ if (I_IGNPAR(info->tty)) info->ignore_status_mask |= BD_SC_OV; } /* * !!! ignore all characters if CREAD is not set */ if ((cflag & CREAD) == 0) info->read_status_mask &= ~BD_SC_EMPTY; local_irq_save(flags); /* Start bit has not been added (so don't, because we would just * subtract it later), and we need to add one for the number of * stops bits (there is always at least one). */ bits++; idx = PORT_NUM(state->smc_scc_num); if (state->smc_scc_num & NUM_IS_SCC) { sccp = &pquicc->scc_regs[idx]; sccp->scc_psmr = (sbits << 12) | scval; } else { smcp = &pquicc->smc_regs[idx]; /* Set the mode register. We want to keep a copy of the * enables, because we want to put them back if they were * present. */ prev_mode = smcp->smc_smcmr; smcp->smc_smcmr = smcr_mk_clen(bits) | cval | SMCMR_SM_UART; smcp->smc_smcmr |= (prev_mode & (SMCMR_REN | SMCMR_TEN)); } m360_cpm_setbrg((state - rs_table), baud_rate); local_irq_restore(flags); } static void rs_360_put_char(struct tty_struct *tty, unsigned char ch) { ser_info_t *info = (ser_info_t *)tty->driver_data; volatile QUICC_BD *bdp; if (serial_paranoia_check(info, tty->name, "rs_put_char")) return; if (!tty) return; bdp = info->tx_cur; while (bdp->status & BD_SC_READY); /* *((char *)__va(bdp->buf)) = ch; */ *((char *)bdp->buf) = ch; bdp->length = 1; bdp->status |= BD_SC_READY; /* Get next BD. */ if (bdp->status & BD_SC_WRAP) bdp = info->tx_bd_base; else bdp++; info->tx_cur = (QUICC_BD *)bdp; } static int rs_360_write(struct tty_struct * tty, const unsigned char *buf, int count) { int c, ret = 0; ser_info_t *info = (ser_info_t *)tty->driver_data; volatile QUICC_BD *bdp; #ifdef CONFIG_KGDB /* Try to let stub handle output. Returns true if it did. */ if (kgdb_output_string(buf, count)) return ret; #endif if (serial_paranoia_check(info, tty->name, "rs_write")) return 0; if (!tty) return 0; bdp = info->tx_cur; while (1) { c = min(count, TX_BUF_SIZE); if (c <= 0) break; if (bdp->status & BD_SC_READY) { info->flags |= TX_WAKEUP; break; } /* memcpy(__va(bdp->buf), buf, c); */ memcpy((void *)bdp->buf, buf, c); bdp->length = c; bdp->status |= BD_SC_READY; buf += c; count -= c; ret += c; /* Get next BD. */ if (bdp->status & BD_SC_WRAP) bdp = info->tx_bd_base; else bdp++; info->tx_cur = (QUICC_BD *)bdp; } return ret; } static int rs_360_write_room(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->name, "rs_write_room")) return 0; if ((info->tx_cur->status & BD_SC_READY) == 0) { info->flags &= ~TX_WAKEUP; ret = TX_BUF_SIZE; } else { info->flags |= TX_WAKEUP; ret = 0; } return ret; } /* I could track this with transmit counters....maybe later. */ static int rs_360_chars_in_buffer(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; if (serial_paranoia_check(info, tty->name, "rs_chars_in_buffer")) return 0; return 0; } static void rs_360_flush_buffer(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; if (serial_paranoia_check(info, tty->name, "rs_flush_buffer")) return; /* There is nothing to "flush", whatever we gave the CPM * is on its way out. */ tty_wakeup(tty); info->flags &= ~TX_WAKEUP; } /* * This function is used to send a high-priority XON/XOFF character to * the device */ static void rs_360_send_xchar(struct tty_struct *tty, char ch) { volatile QUICC_BD *bdp; ser_info_t *info = (ser_info_t *)tty->driver_data; if (serial_paranoia_check(info, tty->name, "rs_send_char")) return; bdp = info->tx_cur; while (bdp->status & BD_SC_READY); /* *((char *)__va(bdp->buf)) = ch; */ *((char *)bdp->buf) = ch; bdp->length = 1; bdp->status |= BD_SC_READY; /* Get next BD. */ if (bdp->status & BD_SC_WRAP) bdp = info->tx_bd_base; else bdp++; info->tx_cur = (QUICC_BD *)bdp; } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_360_throttle(struct tty_struct * tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->name, "rs_throttle")) return; if (I_IXOFF(tty)) rs_360_send_xchar(tty, STOP_CHAR(tty)); #ifdef modem_control if (tty->termios->c_cflag & CRTSCTS) info->MCR &= ~UART_MCR_RTS; local_irq_disable(); serial_out(info, UART_MCR, info->MCR); local_irq_enable(); #endif } static void rs_360_unthrottle(struct tty_struct * tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->name, "rs_unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else rs_360_send_xchar(tty, START_CHAR(tty)); } #ifdef modem_control if (tty->termios->c_cflag & CRTSCTS) info->MCR |= UART_MCR_RTS; local_irq_disable(); serial_out(info, UART_MCR, info->MCR); local_irq_enable(); #endif } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ #ifdef maybe /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct async_struct * info, unsigned int *value) { unsigned char status; unsigned int result; local_irq_disable(); status = serial_in(info, UART_LSR); local_irq_enable(); result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0); return put_user(result,value); } #endif static int rs_360_tiocmget(struct tty_struct *tty, struct file *file) { ser_info_t *info = (ser_info_t *)tty->driver_data; unsigned int result = 0; #ifdef modem_control unsigned char control, status; if (serial_paranoia_check(info, tty->name, __FUNCTION__)) return -ENODEV; if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; control = info->MCR; local_irq_disable(); status = serial_in(info, UART_MSR); local_irq_enable(); result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0) | ((control & UART_MCR_DTR) ? TIOCM_DTR : 0) #ifdef TIOCM_OUT1 | ((control & UART_MCR_OUT1) ? TIOCM_OUT1 : 0) | ((control & UART_MCR_OUT2) ? TIOCM_OUT2 : 0) #endif | ((status & UART_MSR_DCD) ? TIOCM_CAR : 0) | ((status & UART_MSR_RI) ? TIOCM_RNG : 0) | ((status & UART_MSR_DSR) ? TIOCM_DSR : 0) | ((status & UART_MSR_CTS) ? TIOCM_CTS : 0); #endif return result; } static int rs_360_tiocmset(struct tty_struct *tty, struct file *file, unsigned int set, unsigned int clear) { #ifdef modem_control ser_info_t *info = (ser_info_t *)tty->driver_data; unsigned int arg; if (serial_paranoia_check(info, tty->name, __FUNCTION__)) return -ENODEV; if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; /* FIXME: locking on info->mcr */ if (set & TIOCM_RTS) info->mcr |= UART_MCR_RTS; if (set & TIOCM_DTR) info->mcr |= UART_MCR_DTR; if (clear & TIOCM_RTS) info->MCR &= ~UART_MCR_RTS; if (clear & TIOCM_DTR) info->MCR &= ~UART_MCR_DTR; #ifdef TIOCM_OUT1 if (set & TIOCM_OUT1) info->MCR |= UART_MCR_OUT1; if (set & TIOCM_OUT2) info->MCR |= UART_MCR_OUT2; if (clear & TIOCM_OUT1) info->MCR &= ~UART_MCR_OUT1; if (clear & TIOCM_OUT2) info->MCR &= ~UART_MCR_OUT2; #endif local_irq_disable(); serial_out(info, UART_MCR, info->MCR); local_irq_enable(); #endif return 0; } /* Sending a break is a two step process on the SMC/SCC. It is accomplished * by sending a STOP TRANSMIT command followed by a RESTART TRANSMIT * command. We take advantage of the begin/end functions to make this * happen. */ static ushort smc_chan_map[] = { CPM_CR_CH_SMC1, CPM_CR_CH_SMC2 }; static ushort scc_chan_map[] = { CPM_CR_CH_SCC1, CPM_CR_CH_SCC2, CPM_CR_CH_SCC3, CPM_CR_CH_SCC4 }; static void begin_break(ser_info_t *info) { volatile QUICC *cp; ushort chan; int idx; cp = pquicc; idx = PORT_NUM(info->state->smc_scc_num); if (info->state->smc_scc_num & NUM_IS_SCC) chan = scc_chan_map[idx]; else chan = smc_chan_map[idx]; cp->cp_cr = mk_cr_cmd(chan, CPM_CR_STOP_TX) | CPM_CR_FLG; while (cp->cp_cr & CPM_CR_FLG); } static void end_break(ser_info_t *info) { volatile QUICC *cp; ushort chan; int idx; cp = pquicc; idx = PORT_NUM(info->state->smc_scc_num); if (info->state->smc_scc_num & NUM_IS_SCC) chan = scc_chan_map[idx]; else chan = smc_chan_map[idx]; cp->cp_cr = mk_cr_cmd(chan, CPM_CR_RESTART_TX) | CPM_CR_FLG; while (cp->cp_cr & CPM_CR_FLG); } /* * This routine sends a break character out the serial port. */ static void send_break(ser_info_t *info, unsigned int duration) { #ifdef SERIAL_DEBUG_SEND_BREAK printk("rs_send_break(%d) jiff=%lu...", duration, jiffies); #endif begin_break(info); msleep_interruptible(duration); end_break(info); #ifdef SERIAL_DEBUG_SEND_BREAK printk("done jiffies=%lu\n", jiffies); #endif } static int rs_360_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int error; ser_info_t *info = (ser_info_t *)tty->driver_data; int retval; struct async_icount cnow; /* struct async_icount_24 cnow;*/ /* kernel counter temps */ struct serial_icounter_struct *p_cuser; /* user space */ if (serial_paranoia_check(info, tty->name, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TCSBRK: /* SVID version: non-zero arg --> no break */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (signal_pending(current)) return -EINTR; if (!arg) { send_break(info, 250); /* 1/4 second */ if (signal_pending(current)) return -EINTR; } return 0; case TCSBRKP: /* support for POSIX tcsendbreak() */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (signal_pending(current)) return -EINTR; send_break(info, arg ? arg*100 : 250); if (signal_pending(current)) return -EINTR; return 0; case TIOCSBRK: retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); begin_break(info); return 0; case TIOCCBRK: retval = tty_check_change(tty); if (retval) return retval; end_break(info); return 0; #ifdef maybe case TIOCSERGETLSR: /* Get line status register */ return get_lsr_info(info, (unsigned int *) arg); #endif /* * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was */ case TIOCMIWAIT: #ifdef modem_control local_irq_disable(); /* note the counters on entry */ cprev = info->state->icount; local_irq_enable(); while (1) { interruptible_sleep_on(&info->delta_msr_wait); /* see if a signal did it */ if (signal_pending(current)) return -ERESTARTSYS; local_irq_disable(); cnow = info->state->icount; /* atomic copy */ local_irq_enable(); if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) return -EIO; /* no change => error */ if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) { return 0; } cprev = cnow; } /* NOTREACHED */ #else return 0; #endif /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ case TIOCGICOUNT: local_irq_disable(); cnow = info->state->icount; local_irq_enable(); p_cuser = (struct serial_icounter_struct *) arg; /* error = put_user(cnow.cts, &p_cuser->cts); */ /* if (error) return error; */ /* error = put_user(cnow.dsr, &p_cuser->dsr); */ /* if (error) return error; */ /* error = put_user(cnow.rng, &p_cuser->rng); */ /* if (error) return error; */ /* error = put_user(cnow.dcd, &p_cuser->dcd); */ /* if (error) return error; */ put_user(cnow.cts, &p_cuser->cts); put_user(cnow.dsr, &p_cuser->dsr); put_user(cnow.rng, &p_cuser->rng); put_user(cnow.dcd, &p_cuser->dcd); return 0; default: return -ENOIOCTLCMD; } return 0; } /* FIX UP modem control here someday...... */ static void rs_360_set_termios(struct tty_struct *tty, struct ktermios *old_termios) { ser_info_t *info = (ser_info_t *)tty->driver_data; change_speed(info); #ifdef modem_control /* Handle transition to B0 status */ if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) { info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); local_irq_disable(); serial_out(info, UART_MCR, info->MCR); local_irq_enable(); } /* Handle transition away from B0 status */ if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) { info->MCR |= UART_MCR_DTR; if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS)) { info->MCR |= UART_MCR_RTS; } local_irq_disable(); serial_out(info, UART_MCR, info->MCR); local_irq_enable(); } /* Handle turning off CRTSCTS */ if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { tty->hw_stopped = 0; rs_360_start(tty); } #endif #if 0 /* * No need to wake up processes in open wait, since they * sample the CLOCAL flag once, and don't recheck it. * XXX It's not clear whether the current behavior is correct * or not. Hence, this may change..... */ if (!(old_termios->c_cflag & CLOCAL) && (tty->termios->c_cflag & CLOCAL)) wake_up_interruptible(&info->open_wait); #endif } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * async structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void rs_360_close(struct tty_struct *tty, struct file * filp) { ser_info_t *info = (ser_info_t *)tty->driver_data; /* struct async_state *state; */ struct serial_state *state; unsigned long flags; int idx; volatile struct smc_regs *smcp; volatile struct scc_regs *sccp; if (!info || serial_paranoia_check(info, tty->name, "rs_close")) return; state = info->state; local_irq_save(flags); if (tty_hung_up_p(filp)) { DBG_CNT("before DEC-hung"); local_irq_restore(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("rs_close ttys%d, count = %d\n", info->line, state->count); #endif if ((tty->count == 1) && (state->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. state->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("rs_close: bad serial port count; tty->count is 1, " "state->count is %d\n", state->count); state->count = 1; } if (--state->count < 0) { printk("rs_close: bad serial port count for ttys%d: %d\n", info->line, state->count); state->count = 0; } if (state->count) { DBG_CNT("before DEC-2"); local_irq_restore(flags); return; } info->flags |= ASYNC_CLOSING; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ info->read_status_mask &= ~BD_SC_EMPTY; if (info->flags & ASYNC_INITIALIZED) { idx = PORT_NUM(info->state->smc_scc_num); if (info->state->smc_scc_num & NUM_IS_SCC) { sccp = &pquicc->scc_regs[idx]; sccp->scc_sccm &= ~UART_SCCM_RX; sccp->scc_gsmr.w.low &= ~SCC_GSMRL_ENR; } else { smcp = &pquicc->smc_regs[idx]; smcp->smc_smcm &= ~SMCM_RX; smcp->smc_smcmr &= ~SMCMR_REN; } /* * Before we drop DTR, make sure the UART transmitter * has completely drained; this is especially * important if there is a transmit FIFO! */ rs_360_wait_until_sent(tty, info->timeout); } shutdown(info); rs_360_flush_buffer(tty); tty_ldisc_flush(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (info->close_delay) { msleep_interruptible(jiffies_to_msecs(info->close_delay)); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING); wake_up_interruptible(&info->close_wait); local_irq_restore(flags); } /* * rs_wait_until_sent() --- wait until the transmitter is empty */ static void rs_360_wait_until_sent(struct tty_struct *tty, int timeout) { ser_info_t *info = (ser_info_t *)tty->driver_data; unsigned long orig_jiffies, char_time; /*int lsr;*/ volatile QUICC_BD *bdp; if (serial_paranoia_check(info, tty->name, "rs_wait_until_sent")) return; #ifdef maybe if (info->state->type == PORT_UNKNOWN) return; #endif orig_jiffies = jiffies; /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. * * Note: we have to use pretty tight timings here to satisfy * the NIST-PCTS. */ char_time = 1; if (timeout) char_time = min(char_time, (unsigned long)timeout); #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("In rs_wait_until_sent(%d) check=%lu...", timeout, char_time); printk("jiff=%lu...", jiffies); #endif lock_kernel(); /* We go through the loop at least once because we can't tell * exactly when the last character exits the shifter. There can * be at least two characters waiting to be sent after the buffers * are empty. */ do { #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("lsr = %d (jiff=%lu)...", lsr, jiffies); #endif /* current->counter = 0; make us low-priority */ msleep_interruptible(jiffies_to_msecs(char_time)); if (signal_pending(current)) break; if (timeout && (time_after(jiffies, orig_jiffies + timeout))) break; /* The 'tx_cur' is really the next buffer to send. We * have to back up to the previous BD and wait for it * to go. This isn't perfect, because all this indicates * is the buffer is available. There are still characters * in the CPM FIFO. */ bdp = info->tx_cur; if (bdp == info->tx_bd_base) bdp += (TX_NUM_FIFO-1); else bdp--; } while (bdp->status & BD_SC_READY); current->state = TASK_RUNNING; unlock_kernel(); #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies); #endif } /* * rs_hangup() --- called by tty_hangup() when a hangup is signaled. */ static void rs_360_hangup(struct tty_struct *tty) { ser_info_t *info = (ser_info_t *)tty->driver_data; struct serial_state *state = info->state; if (serial_paranoia_check(info, tty->name, "rs_hangup")) return; state = info->state; rs_360_flush_buffer(tty); shutdown(info); info->event = 0; state->count = 0; info->flags &= ~ASYNC_NORMAL_ACTIVE; info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * rs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, ser_info_t *info) { #ifdef DO_THIS_LATER DECLARE_WAITQUEUE(wait, current); #endif struct serial_state *state = info->state; int retval; int do_clocal = 0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) return -EAGAIN; else return -ERESTARTSYS; #else return -EAGAIN; #endif } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. * If this is an SMC port, we don't have modem control to wait * for, so just get out here. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR)) || !(info->state->smc_scc_num & NUM_IS_SCC)) { info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, state->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; #ifdef DO_THIS_LATER add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", state->line, state->count); #endif local_irq_disable(); if (!tty_hung_up_p(filp)) state->count--; local_irq_enable(); info->blocked_open++; while (1) { local_irq_disable(); if (tty->termios->c_cflag & CBAUD) serial_out(info, UART_MCR, serial_inp(info, UART_MCR) | (UART_MCR_DTR | UART_MCR_RTS)); local_irq_enable(); set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !(info->flags & ASYNC_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ASYNC_CLOSING) && (do_clocal || (serial_in(info, UART_MSR) & UART_MSR_DCD))) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, state->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) state->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, state->count); #endif #endif /* DO_THIS_LATER */ if (retval) return retval; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } static int get_async_struct(int line, ser_info_t **ret_info) { struct serial_state *sstate; sstate = rs_table + line; if (sstate->info) { sstate->count++; *ret_info = (ser_info_t *)sstate->info; return 0; } else { return -ENOMEM; } } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its async structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ static int rs_360_open(struct tty_struct *tty, struct file * filp) { ser_info_t *info; int retval, line; line = tty->index; if ((line < 0) || (line >= NR_PORTS)) return -ENODEV; retval = get_async_struct(line, &info); if (retval) return retval; if (serial_paranoia_check(info, tty->name, "rs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s, count = %d\n", tty->name, info->state->count); #endif tty->driver_data = info; info->tty = tty; /* * Start up serial port */ retval = startup(info); if (retval) return retval; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("rs_open returning after block_til_ready with %d\n", retval); #endif return retval; } #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s successful...", tty->name); #endif return 0; } /* * /proc fs routines.... */ static inline int line_info(char *buf, struct serial_state *state) { #ifdef notdef struct async_struct *info = state->info, scr_info; char stat_buf[30], control, status; #endif int ret; ret = sprintf(buf, "%d: uart:%s port:%X irq:%d", state->line, (state->smc_scc_num & NUM_IS_SCC) ? "SCC" : "SMC", (unsigned int)(state->port), state->irq); if (!state->port || (state->type == PORT_UNKNOWN)) { ret += sprintf(buf+ret, "\n"); return ret; } #ifdef notdef /* * Figure out the current RS-232 lines */ if (!info) { info = &scr_info; /* This is just for serial_{in,out} */ info->magic = SERIAL_MAGIC; info->port = state->port; info->flags = state->flags; info->quot = 0; info->tty = 0; } local_irq_disable(); status = serial_in(info, UART_MSR); control = info ? info->MCR : serial_in(info, UART_MCR); local_irq_enable(); stat_buf[0] = 0; stat_buf[1] = 0; if (control & UART_MCR_RTS) strcat(stat_buf, "|RTS"); if (status & UART_MSR_CTS) strcat(stat_buf, "|CTS"); if (control & UART_MCR_DTR) strcat(stat_buf, "|DTR"); if (status & UART_MSR_DSR) strcat(stat_buf, "|DSR"); if (status & UART_MSR_DCD) strcat(stat_buf, "|CD"); if (status & UART_MSR_RI) strcat(stat_buf, "|RI"); if (info->quot) { ret += sprintf(buf+ret, " baud:%d", state->baud_base / info->quot); } ret += sprintf(buf+ret, " tx:%d rx:%d", state->icount.tx, state->icount.rx); if (state->icount.frame) ret += sprintf(buf+ret, " fe:%d", state->icount.frame); if (state->icount.parity) ret += sprintf(buf+ret, " pe:%d", state->icount.parity); if (state->icount.brk) ret += sprintf(buf+ret, " brk:%d", state->icount.brk); if (state->icount.overrun) ret += sprintf(buf+ret, " oe:%d", state->icount.overrun); /* * Last thing is the RS-232 status lines */ ret += sprintf(buf+ret, " %s\n", stat_buf+1); #endif return ret; } int rs_360_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int i, len = 0; off_t begin = 0; len += sprintf(page, "serinfo:1.0 driver:%s\n", serial_version); for (i = 0; i < NR_PORTS && len < 4000; i++) { len += line_info(page + len, &rs_table[i]); if (len+begin > off+count) goto done; if (len+begin < off) { begin += len; len = 0; } } *eof = 1; done: if (off >= len+begin) return 0; *start = page + (begin-off); return ((count < begin+len-off) ? count : begin+len-off); } /* * --------------------------------------------------------------------- * rs_init() and friends * * rs_init() is called at boot-time to initialize the serial driver. * --------------------------------------------------------------------- */ /* * This routine prints out the appropriate serial driver version * number, and identifies which options were configured into this * driver. */ static _INLINE_ void show_serial_version(void) { printk(KERN_INFO "%s version %s\n", serial_name, serial_version); } /* * The serial console driver used during boot. Note that these names * clash with those found in "serial.c", so we currently can't support * the 16xxx uarts and these at the same time. I will fix this to become * an indirect function call from tty_io.c (or something). */ #ifdef CONFIG_SERIAL_CONSOLE /* * Print a string to the serial port trying not to disturb any possible * real use of the port... */ static void my_console_write(int idx, const char *s, unsigned count) { struct serial_state *ser; ser_info_t *info; unsigned i; QUICC_BD *bdp, *bdbase; volatile struct smc_uart_pram *up; volatile u_char *cp; ser = rs_table + idx; /* If the port has been initialized for general use, we have * to use the buffer descriptors allocated there. Otherwise, * we simply use the single buffer allocated. */ if ((info = (ser_info_t *)ser->info) != NULL) { bdp = info->tx_cur; bdbase = info->tx_bd_base; } else { /* Pointer to UART in parameter ram. */ /* up = (smc_uart_t *)&cpmp->cp_dparam[ser->port]; */ up = &pquicc->pram[ser->port].scc.pothers.idma_smc.psmc.u; /* Get the address of the host memory buffer. */ bdp = bdbase = (QUICC_BD *)((uint)pquicc + (uint)up->tbase); } /* * We need to gracefully shut down the transmitter, disable * interrupts, then send our bytes out. */ /* * Now, do each character. This is not as bad as it looks * since this is a holding FIFO and not a transmitting FIFO. * We could add the complexity of filling the entire transmit * buffer, but we would just wait longer between accesses...... */ for (i = 0; i < count; i++, s++) { /* Wait for transmitter fifo to empty. * Ready indicates output is ready, and xmt is doing * that, not that it is ready for us to send. */ while (bdp->status & BD_SC_READY); /* Send the character out. */ cp = bdp->buf; *cp = *s; bdp->length = 1; bdp->status |= BD_SC_READY; if (bdp->status & BD_SC_WRAP) bdp = bdbase; else bdp++; /* if a LF, also do CR... */ if (*s == 10) { while (bdp->status & BD_SC_READY); /* cp = __va(bdp->buf); */ cp = bdp->buf; *cp = 13; bdp->length = 1; bdp->status |= BD_SC_READY; if (bdp->status & BD_SC_WRAP) { bdp = bdbase; } else { bdp++; } } } /* * Finally, Wait for transmitter & holding register to empty * and restore the IER */ while (bdp->status & BD_SC_READY); if (info) info->tx_cur = (QUICC_BD *)bdp; } static void serial_console_write(struct console *c, const char *s, unsigned count) { #ifdef CONFIG_KGDB /* Try to let stub handle output. Returns true if it did. */ if (kgdb_output_string(s, count)) return; #endif my_console_write(c->index, s, count); } /*void console_print_68360(const char *p) { const char *cp = p; int i; for (i=0;cp[i]!=0;i++); serial_console_write (p, i); //Comment this if you want to have a strict interrupt-driven output //rs_fair_output(); return; }*/ #ifdef CONFIG_XMON int xmon_360_write(const char *s, unsigned count) { my_console_write(0, s, count); return(count); } #endif #ifdef CONFIG_KGDB void putDebugChar(char ch) { my_console_write(0, &ch, 1); } #endif /* * Receive character from the serial port. This only works well * before the port is initialized for real use. */ static int my_console_wait_key(int idx, int xmon, char *obuf) { struct serial_state *ser; u_char c, *cp; ser_info_t *info; QUICC_BD *bdp; volatile struct smc_uart_pram *up; int i; ser = rs_table + idx; /* Get the address of the host memory buffer. * If the port has been initialized for general use, we must * use information from the port structure. */ if ((info = (ser_info_t *)ser->info)) bdp = info->rx_cur; else /* bdp = (QUICC_BD *)&cpmp->cp_dpmem[up->smc_rbase]; */ bdp = (QUICC_BD *)((uint)pquicc + (uint)up->tbase); /* Pointer to UART in parameter ram. */ /* up = (smc_uart_t *)&cpmp->cp_dparam[ser->port]; */ up = &pquicc->pram[info->state->port].scc.pothers.idma_smc.psmc.u; /* * We need to gracefully shut down the receiver, disable * interrupts, then read the input. * XMON just wants a poll. If no character, return -1, else * return the character. */ if (!xmon) { while (bdp->status & BD_SC_EMPTY); } else { if (bdp->status & BD_SC_EMPTY) return -1; } cp = (char *)bdp->buf; if (obuf) { i = c = bdp->length; while (i-- > 0) *obuf++ = *cp++; } else { c = *cp; } bdp->status |= BD_SC_EMPTY; if (info) { if (bdp->status & BD_SC_WRAP) { bdp = info->rx_bd_base; } else { bdp++; } info->rx_cur = (QUICC_BD *)bdp; } return((int)c); } static int serial_console_wait_key(struct console *co) { return(my_console_wait_key(co->index, 0, NULL)); } #ifdef CONFIG_XMON int xmon_360_read_poll(void) { return(my_console_wait_key(0, 1, NULL)); } int xmon_360_read_char(void) { return(my_console_wait_key(0, 0, NULL)); } #endif #ifdef CONFIG_KGDB static char kgdb_buf[RX_BUF_SIZE], *kgdp; static int kgdb_chars; unsigned char getDebugChar(void) { if (kgdb_chars <= 0) { kgdb_chars = my_console_wait_key(0, 0, kgdb_buf); kgdp = kgdb_buf; } kgdb_chars--; return(*kgdp++); } void kgdb_interruptible(int state) { } void kgdb_map_scc(void) { struct serial_state *ser; uint mem_addr; volatile QUICC_BD *bdp; volatile smc_uart_t *up; cpmp = (cpm360_t *)&(((immap_t *)IMAP_ADDR)->im_cpm); /* To avoid data cache CPM DMA coherency problems, allocate a * buffer in the CPM DPRAM. This will work until the CPM and * serial ports are initialized. At that time a memory buffer * will be allocated. * The port is already initialized from the boot procedure, all * we do here is give it a different buffer and make it a FIFO. */ ser = rs_table; /* Right now, assume we are using SMCs. */ up = (smc_uart_t *)&cpmp->cp_dparam[ser->port]; /* Allocate space for an input FIFO, plus a few bytes for output. * Allocate bytes to maintain word alignment. */ mem_addr = (uint)(&cpmp->cp_dpmem[0x1000]); /* Set the physical address of the host memory buffers in * the buffer descriptors. */ bdp = (QUICC_BD *)&cpmp->cp_dpmem[up->smc_rbase]; bdp->buf = mem_addr; bdp = (QUICC_BD *)&cpmp->cp_dpmem[up->smc_tbase]; bdp->buf = mem_addr+RX_BUF_SIZE; up->smc_mrblr = RX_BUF_SIZE; /* receive buffer length */ up->smc_maxidl = RX_BUF_SIZE; } #endif static struct tty_struct *serial_console_device(struct console *c, int *index) { *index = c->index; return serial_driver; } struct console sercons = { .name = "ttyS", .write = serial_console_write, .device = serial_console_device, .wait_key = serial_console_wait_key, .setup = serial_console_setup, .flags = CON_PRINTBUFFER, .index = CONFIG_SERIAL_CONSOLE_PORT, }; /* * Register console. */ long console_360_init(long kmem_start, long kmem_end) { register_console(&sercons); /*register_console (console_print_68360); - 2.0.38 only required a write function pointer. */ return kmem_start; } #endif /* Index in baud rate table of the default console baud rate. */ static int baud_idx; static const struct tty_operations rs_360_ops = { .owner = THIS_MODULE, .open = rs_360_open, .close = rs_360_close, .write = rs_360_write, .put_char = rs_360_put_char, .write_room = rs_360_write_room, .chars_in_buffer = rs_360_chars_in_buffer, .flush_buffer = rs_360_flush_buffer, .ioctl = rs_360_ioctl, .throttle = rs_360_throttle, .unthrottle = rs_360_unthrottle, /* .send_xchar = rs_360_send_xchar, */ .set_termios = rs_360_set_termios, .stop = rs_360_stop, .start = rs_360_start, .hangup = rs_360_hangup, /* .wait_until_sent = rs_360_wait_until_sent, */ /* .read_proc = rs_360_read_proc, */ .tiocmget = rs_360_tiocmget, .tiocmset = rs_360_tiocmset, }; static int __init rs_360_init(void) { struct serial_state * state; ser_info_t *info; void *mem_addr; uint dp_addr, iobits; int i, j, idx; ushort chan; QUICC_BD *bdp; volatile QUICC *cp; volatile struct smc_regs *sp; volatile struct smc_uart_pram *up; volatile struct scc_regs *scp; volatile struct uart_pram *sup; /* volatile immap_t *immap; */ serial_driver = alloc_tty_driver(NR_PORTS); if (!serial_driver) return -1; show_serial_version(); serial_driver->name = "ttyS"; serial_driver->major = TTY_MAJOR; serial_driver->minor_start = 64; serial_driver->type = TTY_DRIVER_TYPE_SERIAL; serial_driver->subtype = SERIAL_TYPE_NORMAL; serial_driver->init_termios = tty_std_termios; serial_driver->init_termios.c_cflag = baud_idx | CS8 | CREAD | HUPCL | CLOCAL; serial_driver->flags = TTY_DRIVER_REAL_RAW; tty_set_operations(serial_driver, &rs_360_ops); if (tty_register_driver(serial_driver)) panic("Couldn't register serial driver\n"); cp = pquicc; /* Get pointer to Communication Processor */ /* immap = (immap_t *)IMAP_ADDR; */ /* and to internal registers */ /* Configure SCC2, SCC3, and SCC4 instead of port A parallel I/O. */ /* The "standard" configuration through the 860. */ /* immap->im_ioport.iop_papar |= 0x00fc; */ /* immap->im_ioport.iop_padir &= ~0x00fc; */ /* immap->im_ioport.iop_paodr &= ~0x00fc; */ cp->pio_papar |= 0x00fc; cp->pio_padir &= ~0x00fc; /* cp->pio_paodr &= ~0x00fc; */ /* Since we don't yet do modem control, connect the port C pins * as general purpose I/O. This will assert CTS and CD for the * SCC ports. */ /* FIXME: see 360um p.7-365 and 860um p.34-12 * I can't make sense of these bits - mleslie*/ /* immap->im_ioport.iop_pcdir |= 0x03c6; */ /* immap->im_ioport.iop_pcpar &= ~0x03c6; */ /* cp->pio_pcdir |= 0x03c6; */ /* cp->pio_pcpar &= ~0x03c6; */ /* Connect SCC2 and SCC3 to NMSI. Connect BRG3 to SCC2 and * BRG4 to SCC3. */ cp->si_sicr &= ~0x00ffff00; cp->si_sicr |= 0x001b1200; #ifdef CONFIG_PP04 /* Frequentis PP04 forced to RS-232 until we know better. * Port C 12 and 13 low enables RS-232 on SCC3 and SCC4. */ immap->im_ioport.iop_pcdir |= 0x000c; immap->im_ioport.iop_pcpar &= ~0x000c; immap->im_ioport.iop_pcdat &= ~0x000c; /* This enables the TX driver. */ cp->cp_pbpar &= ~0x6000; cp->cp_pbdat &= ~0x6000; #endif for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) { state->magic = SSTATE_MAGIC; state->line = i; state->type = PORT_UNKNOWN; state->custom_divisor = 0; state->close_delay = 5*HZ/10; state->closing_wait = 30*HZ; state->icount.cts = state->icount.dsr = state->icount.rng = state->icount.dcd = 0; state->icount.rx = state->icount.tx = 0; state->icount.frame = state->icount.parity = 0; state->icount.overrun = state->icount.brk = 0; printk(KERN_INFO "ttyS%d at irq 0x%02x is an %s\n", i, (unsigned int)(state->irq), (state->smc_scc_num & NUM_IS_SCC) ? "SCC" : "SMC"); #ifdef CONFIG_SERIAL_CONSOLE /* If we just printed the message on the console port, and * we are about to initialize it for general use, we have * to wait a couple of character times for the CR/NL to * make it out of the transmit buffer. */ if (i == CONFIG_SERIAL_CONSOLE_PORT) mdelay(8); /* idx = PORT_NUM(info->state->smc_scc_num); */ /* if (info->state->smc_scc_num & NUM_IS_SCC) */ /* chan = scc_chan_map[idx]; */ /* else */ /* chan = smc_chan_map[idx]; */ /* cp->cp_cr = mk_cr_cmd(chan, CPM_CR_STOP_TX) | CPM_CR_FLG; */ /* while (cp->cp_cr & CPM_CR_FLG); */ #endif /* info = kmalloc(sizeof(ser_info_t), GFP_KERNEL); */ info = &quicc_ser_info[i]; if (info) { memset (info, 0, sizeof(ser_info_t)); info->magic = SERIAL_MAGIC; info->line = i; info->flags = state->flags; INIT_WORK(&info->tqueue, do_softint, info); INIT_WORK(&info->tqueue_hangup, do_serial_hangup, info); init_waitqueue_head(&info->open_wait); init_waitqueue_head(&info->close_wait); info->state = state; state->info = (struct async_struct *)info; /* We need to allocate a transmit and receive buffer * descriptors from dual port ram, and a character * buffer area from host mem. */ dp_addr = m360_cpm_dpalloc(sizeof(QUICC_BD) * RX_NUM_FIFO); /* Allocate space for FIFOs in the host memory. * (for now this is from a static array of buffers :( */ /* mem_addr = m360_cpm_hostalloc(RX_NUM_FIFO * RX_BUF_SIZE); */ /* mem_addr = kmalloc (RX_NUM_FIFO * RX_BUF_SIZE, GFP_BUFFER); */ mem_addr = &rx_buf_pool[i * RX_NUM_FIFO * RX_BUF_SIZE]; /* Set the physical address of the host memory * buffers in the buffer descriptors, and the * virtual address for us to work with. */ bdp = (QUICC_BD *)((uint)pquicc + dp_addr); info->rx_cur = info->rx_bd_base = bdp; /* initialize rx buffer descriptors */ for (j=0; j<(RX_NUM_FIFO-1); j++) { bdp->buf = &rx_buf_pool[(i * RX_NUM_FIFO + j ) * RX_BUF_SIZE]; bdp->status = BD_SC_EMPTY | BD_SC_INTRPT; mem_addr += RX_BUF_SIZE; bdp++; } bdp->buf = &rx_buf_pool[(i * RX_NUM_FIFO + j ) * RX_BUF_SIZE]; bdp->status = BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT; idx = PORT_NUM(info->state->smc_scc_num); if (info->state->smc_scc_num & NUM_IS_SCC) { #if defined (CONFIG_UCQUICC) && 1 /* set the transceiver mode to RS232 */ sipex_mode_bits &= ~(uint)SIPEX_MODE(idx,0x0f); /* clear current mode */ sipex_mode_bits |= (uint)SIPEX_MODE(idx,0x02); *(uint *)_periph_base = sipex_mode_bits; /* printk ("sipex bits = 0x%08x\n", sipex_mode_bits); */ #endif } dp_addr = m360_cpm_dpalloc(sizeof(QUICC_BD) * TX_NUM_FIFO); /* Allocate space for FIFOs in the host memory. */ /* mem_addr = m360_cpm_hostalloc(TX_NUM_FIFO * TX_BUF_SIZE); */ /* mem_addr = kmalloc (TX_NUM_FIFO * TX_BUF_SIZE, GFP_BUFFER); */ mem_addr = &tx_buf_pool[i * TX_NUM_FIFO * TX_BUF_SIZE]; /* Set the physical address of the host memory * buffers in the buffer descriptors, and the * virtual address for us to work with. */ /* bdp = (QUICC_BD *)&cp->cp_dpmem[dp_addr]; */ bdp = (QUICC_BD *)((uint)pquicc + dp_addr); info->tx_cur = info->tx_bd_base = (QUICC_BD *)bdp; /* initialize tx buffer descriptors */ for (j=0; j<(TX_NUM_FIFO-1); j++) { bdp->buf = &tx_buf_pool[(i * TX_NUM_FIFO + j ) * TX_BUF_SIZE]; bdp->status = BD_SC_INTRPT; mem_addr += TX_BUF_SIZE; bdp++; } bdp->buf = &tx_buf_pool[(i * TX_NUM_FIFO + j ) * TX_BUF_SIZE]; bdp->status = (BD_SC_WRAP | BD_SC_INTRPT); if (info->state->smc_scc_num & NUM_IS_SCC) { scp = &pquicc->scc_regs[idx]; sup = &pquicc->pram[info->state->port].scc.pscc.u; sup->rbase = dp_addr; sup->tbase = dp_addr; /* Set up the uart parameters in the * parameter ram. */ sup->rfcr = SMC_EB; sup->tfcr = SMC_EB; /* Set this to 1 for now, so we get single * character interrupts. Using idle charater * time requires some additional tuning. */ sup->mrblr = 1; sup->max_idl = 0; sup->brkcr = 1; sup->parec = 0; sup->frmer = 0; sup->nosec = 0; sup->brkec = 0; sup->uaddr1 = 0; sup->uaddr2 = 0; sup->toseq = 0; { int i; for (i=0;i<8;i++) sup->cc[i] = 0x8000; } sup->rccm = 0xc0ff; /* Send the CPM an initialize command. */ chan = scc_chan_map[idx]; /* execute the INIT RX & TX PARAMS command for this channel. */ cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cr & CPM_CR_FLG); /* Set UART mode, 8 bit, no parity, one stop. * Enable receive and transmit. */ scp->scc_gsmr.w.high = 0; scp->scc_gsmr.w.low = (SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16); /* Disable all interrupts and clear all pending * events. */ scp->scc_sccm = 0; scp->scc_scce = 0xffff; scp->scc_dsr = 0x7e7e; scp->scc_psmr = 0x3000; /* If the port is the console, enable Rx and Tx. */ #ifdef CONFIG_SERIAL_CONSOLE if (i == CONFIG_SERIAL_CONSOLE_PORT) scp->scc_gsmr.w.low |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); #endif } else { /* Configure SMCs Tx/Rx instead of port B * parallel I/O. */ up = &pquicc->pram[info->state->port].scc.pothers.idma_smc.psmc.u; up->rbase = dp_addr; iobits = 0xc0 << (idx * 4); cp->pip_pbpar |= iobits; cp->pip_pbdir &= ~iobits; cp->pip_pbodr &= ~iobits; /* Connect the baud rate generator to the * SMC based upon index in rs_table. Also * make sure it is connected to NMSI. */ cp->si_simode &= ~(0xffff << (idx * 16)); cp->si_simode |= (i << ((idx * 16) + 12)); up->tbase = dp_addr; /* Set up the uart parameters in the * parameter ram. */ up->rfcr = SMC_EB; up->tfcr = SMC_EB; /* Set this to 1 for now, so we get single * character interrupts. Using idle charater * time requires some additional tuning. */ up->mrblr = 1; up->max_idl = 0; up->brkcr = 1; /* Send the CPM an initialize command. */ chan = smc_chan_map[idx]; cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG; #ifdef CONFIG_SERIAL_CONSOLE if (i == CONFIG_SERIAL_CONSOLE_PORT) printk(""); #endif while (cp->cp_cr & CPM_CR_FLG); /* Set UART mode, 8 bit, no parity, one stop. * Enable receive and transmit. */ sp = &cp->smc_regs[idx]; sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART; /* Disable all interrupts and clear all pending * events. */ sp->smc_smcm = 0; sp->smc_smce = 0xff; /* If the port is the console, enable Rx and Tx. */ #ifdef CONFIG_SERIAL_CONSOLE if (i == CONFIG_SERIAL_CONSOLE_PORT) sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN; #endif } /* Install interrupt handler. */ /* cpm_install_handler(IRQ_MACHSPEC | state->irq, rs_360_interrupt, info); */ /*request_irq(IRQ_MACHSPEC | state->irq, rs_360_interrupt, */ request_irq(state->irq, rs_360_interrupt, IRQ_FLG_LOCK, "ttyS", (void *)info); /* Set up the baud rate generator. */ m360_cpm_setbrg(i, baud_table[baud_idx]); } } return 0; } module_init(rs_360_init); /* This must always be called before the rs_360_init() function, otherwise * it blows away the port control information. */ //static int __init serial_console_setup( struct console *co, char *options) int serial_console_setup( struct console *co, char *options) { struct serial_state *ser; uint mem_addr, dp_addr, bidx, idx, iobits; ushort chan; QUICC_BD *bdp; volatile QUICC *cp; volatile struct smc_regs *sp; volatile struct scc_regs *scp; volatile struct smc_uart_pram *up; volatile struct uart_pram *sup; /* mleslie TODO: * add something to the 68k bootloader to store a desired initial console baud rate */ /* bd_t *bd; */ /* a board info struct used by EPPC-bug */ /* bd = (bd_t *)__res; */ for (bidx = 0; bidx < (sizeof(baud_table) / sizeof(int)); bidx++) /* if (bd->bi_baudrate == baud_table[bidx]) */ if (CONSOLE_BAUDRATE == baud_table[bidx]) break; /* co->cflag = CREAD|CLOCAL|bidx|CS8; */ baud_idx = bidx; ser = rs_table + CONFIG_SERIAL_CONSOLE_PORT; cp = pquicc; /* Get pointer to Communication Processor */ idx = PORT_NUM(ser->smc_scc_num); if (ser->smc_scc_num & NUM_IS_SCC) { /* TODO: need to set up SCC pin assignment etc. here */ } else { iobits = 0xc0 << (idx * 4); cp->pip_pbpar |= iobits; cp->pip_pbdir &= ~iobits; cp->pip_pbodr &= ~iobits; /* Connect the baud rate generator to the * SMC based upon index in rs_table. Also * make sure it is connected to NMSI. */ cp->si_simode &= ~(0xffff << (idx * 16)); cp->si_simode |= (idx << ((idx * 16) + 12)); } /* When we get here, the CPM has been reset, so we need * to configure the port. * We need to allocate a transmit and receive buffer descriptor * from dual port ram, and a character buffer area from host mem. */ /* Allocate space for two buffer descriptors in the DP ram. */ dp_addr = m360_cpm_dpalloc(sizeof(QUICC_BD) * CONSOLE_NUM_FIFO); /* Allocate space for two 2 byte FIFOs in the host memory. */ /* mem_addr = m360_cpm_hostalloc(8); */ mem_addr = (uint)console_fifos; /* Set the physical address of the host memory buffers in * the buffer descriptors. */ /* bdp = (QUICC_BD *)&cp->cp_dpmem[dp_addr]; */ bdp = (QUICC_BD *)((uint)pquicc + dp_addr); bdp->buf = (char *)mem_addr; (bdp+1)->buf = (char *)(mem_addr+4); /* For the receive, set empty and wrap. * For transmit, set wrap. */ bdp->status = BD_SC_EMPTY | BD_SC_WRAP; (bdp+1)->status = BD_SC_WRAP; /* Set up the uart parameters in the parameter ram. */ if (ser->smc_scc_num & NUM_IS_SCC) { scp = &cp->scc_regs[idx]; /* sup = (scc_uart_t *)&cp->cp_dparam[ser->port]; */ sup = &pquicc->pram[ser->port].scc.pscc.u; sup->rbase = dp_addr; sup->tbase = dp_addr + sizeof(QUICC_BD); /* Set up the uart parameters in the * parameter ram. */ sup->rfcr = SMC_EB; sup->tfcr = SMC_EB; /* Set this to 1 for now, so we get single * character interrupts. Using idle charater * time requires some additional tuning. */ sup->mrblr = 1; sup->max_idl = 0; sup->brkcr = 1; sup->parec = 0; sup->frmer = 0; sup->nosec = 0; sup->brkec = 0; sup->uaddr1 = 0; sup->uaddr2 = 0; sup->toseq = 0; { int i; for (i=0;i<8;i++) sup->cc[i] = 0x8000; } sup->rccm = 0xc0ff; /* Send the CPM an initialize command. */ chan = scc_chan_map[idx]; cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cr & CPM_CR_FLG); /* Set UART mode, 8 bit, no parity, one stop. * Enable receive and transmit. */ scp->scc_gsmr.w.high = 0; scp->scc_gsmr.w.low = (SCC_GSMRL_MODE_UART | SCC_GSMRL_TDCR_16 | SCC_GSMRL_RDCR_16); /* Disable all interrupts and clear all pending * events. */ scp->scc_sccm = 0; scp->scc_scce = 0xffff; scp->scc_dsr = 0x7e7e; scp->scc_psmr = 0x3000; scp->scc_gsmr.w.low |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); } else { /* up = (smc_uart_t *)&cp->cp_dparam[ser->port]; */ up = &pquicc->pram[ser->port].scc.pothers.idma_smc.psmc.u; up->rbase = dp_addr; /* Base of receive buffer desc. */ up->tbase = dp_addr+sizeof(QUICC_BD); /* Base of xmt buffer desc. */ up->rfcr = SMC_EB; up->tfcr = SMC_EB; /* Set this to 1 for now, so we get single character interrupts. */ up->mrblr = 1; /* receive buffer length */ up->max_idl = 0; /* wait forever for next char */ /* Send the CPM an initialize command. */ chan = smc_chan_map[idx]; cp->cp_cr = mk_cr_cmd(chan, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cr & CPM_CR_FLG); /* Set UART mode, 8 bit, no parity, one stop. * Enable receive and transmit. */ sp = &cp->smc_regs[idx]; sp->smc_smcmr = smcr_mk_clen(9) | SMCMR_SM_UART; /* And finally, enable Rx and Tx. */ sp->smc_smcmr |= SMCMR_REN | SMCMR_TEN; } /* Set up the baud rate generator. */ /* m360_cpm_setbrg((ser - rs_table), bd->bi_baudrate); */ m360_cpm_setbrg((ser - rs_table), CONSOLE_BAUDRATE); return 0; } /* * Local variables: * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */