// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 1997-1998 Transmeta Corporation -- All Rights Reserved * Copyright 1999-2000 Jeremy Fitzhardinge * Copyright 2001-2006 Ian Kent */ #include #include #include "autofs_i.h" static int autofs_dir_permission(struct user_namespace *, struct inode *, int); static int autofs_dir_symlink(struct user_namespace *, struct inode *, struct dentry *, const char *); static int autofs_dir_unlink(struct inode *, struct dentry *); static int autofs_dir_rmdir(struct inode *, struct dentry *); static int autofs_dir_mkdir(struct user_namespace *, struct inode *, struct dentry *, umode_t); static long autofs_root_ioctl(struct file *, unsigned int, unsigned long); #ifdef CONFIG_COMPAT static long autofs_root_compat_ioctl(struct file *, unsigned int, unsigned long); #endif static int autofs_dir_open(struct inode *inode, struct file *file); static struct dentry *autofs_lookup(struct inode *, struct dentry *, unsigned int); static struct vfsmount *autofs_d_automount(struct path *); static int autofs_d_manage(const struct path *, bool); static void autofs_dentry_release(struct dentry *); const struct file_operations autofs_root_operations = { .open = dcache_dir_open, .release = dcache_dir_close, .read = generic_read_dir, .iterate_shared = dcache_readdir, .llseek = dcache_dir_lseek, .unlocked_ioctl = autofs_root_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = autofs_root_compat_ioctl, #endif }; const struct file_operations autofs_dir_operations = { .open = autofs_dir_open, .release = dcache_dir_close, .read = generic_read_dir, .iterate_shared = dcache_readdir, .llseek = dcache_dir_lseek, }; const struct inode_operations autofs_dir_inode_operations = { .lookup = autofs_lookup, .permission = autofs_dir_permission, .unlink = autofs_dir_unlink, .symlink = autofs_dir_symlink, .mkdir = autofs_dir_mkdir, .rmdir = autofs_dir_rmdir, }; const struct dentry_operations autofs_dentry_operations = { .d_automount = autofs_d_automount, .d_manage = autofs_d_manage, .d_release = autofs_dentry_release, }; static void autofs_del_active(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino; ino = autofs_dentry_ino(dentry); spin_lock(&sbi->lookup_lock); list_del_init(&ino->active); spin_unlock(&sbi->lookup_lock); } static int autofs_dir_open(struct inode *inode, struct file *file) { struct dentry *dentry = file->f_path.dentry; struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); pr_debug("file=%p dentry=%p %pd\n", file, dentry, dentry); if (autofs_oz_mode(sbi)) goto out; /* * An empty directory in an autofs file system is always a * mount point. The daemon must have failed to mount this * during lookup so it doesn't exist. This can happen, for * example, if user space returns an incorrect status for a * mount request. Otherwise we're doing a readdir on the * autofs file system so just let the libfs routines handle * it. */ spin_lock(&sbi->lookup_lock); if (!path_is_mountpoint(&file->f_path) && autofs_empty(ino)) { spin_unlock(&sbi->lookup_lock); return -ENOENT; } spin_unlock(&sbi->lookup_lock); out: return dcache_dir_open(inode, file); } static void autofs_dentry_release(struct dentry *de) { struct autofs_info *ino = autofs_dentry_ino(de); struct autofs_sb_info *sbi = autofs_sbi(de->d_sb); pr_debug("releasing %p\n", de); if (!ino) return; if (sbi) { spin_lock(&sbi->lookup_lock); if (!list_empty(&ino->active)) list_del(&ino->active); if (!list_empty(&ino->expiring)) list_del(&ino->expiring); spin_unlock(&sbi->lookup_lock); } autofs_free_ino(ino); } static struct dentry *autofs_lookup_active(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct dentry *parent = dentry->d_parent; const struct qstr *name = &dentry->d_name; unsigned int len = name->len; unsigned int hash = name->hash; const unsigned char *str = name->name; struct list_head *p, *head; head = &sbi->active_list; if (list_empty(head)) return NULL; spin_lock(&sbi->lookup_lock); list_for_each(p, head) { struct autofs_info *ino; struct dentry *active; const struct qstr *qstr; ino = list_entry(p, struct autofs_info, active); active = ino->dentry; spin_lock(&active->d_lock); /* Already gone? */ if ((int) d_count(active) <= 0) goto next; qstr = &active->d_name; if (active->d_name.hash != hash) goto next; if (active->d_parent != parent) goto next; if (qstr->len != len) goto next; if (memcmp(qstr->name, str, len)) goto next; if (d_unhashed(active)) { dget_dlock(active); spin_unlock(&active->d_lock); spin_unlock(&sbi->lookup_lock); return active; } next: spin_unlock(&active->d_lock); } spin_unlock(&sbi->lookup_lock); return NULL; } static struct dentry *autofs_lookup_expiring(struct dentry *dentry, bool rcu_walk) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct dentry *parent = dentry->d_parent; const struct qstr *name = &dentry->d_name; unsigned int len = name->len; unsigned int hash = name->hash; const unsigned char *str = name->name; struct list_head *p, *head; head = &sbi->expiring_list; if (list_empty(head)) return NULL; spin_lock(&sbi->lookup_lock); list_for_each(p, head) { struct autofs_info *ino; struct dentry *expiring; const struct qstr *qstr; if (rcu_walk) { spin_unlock(&sbi->lookup_lock); return ERR_PTR(-ECHILD); } ino = list_entry(p, struct autofs_info, expiring); expiring = ino->dentry; spin_lock(&expiring->d_lock); /* We've already been dentry_iput or unlinked */ if (d_really_is_negative(expiring)) goto next; qstr = &expiring->d_name; if (expiring->d_name.hash != hash) goto next; if (expiring->d_parent != parent) goto next; if (qstr->len != len) goto next; if (memcmp(qstr->name, str, len)) goto next; if (d_unhashed(expiring)) { dget_dlock(expiring); spin_unlock(&expiring->d_lock); spin_unlock(&sbi->lookup_lock); return expiring; } next: spin_unlock(&expiring->d_lock); } spin_unlock(&sbi->lookup_lock); return NULL; } static int autofs_mount_wait(const struct path *path, bool rcu_walk) { struct autofs_sb_info *sbi = autofs_sbi(path->dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(path->dentry); int status = 0; if (ino->flags & AUTOFS_INF_PENDING) { if (rcu_walk) return -ECHILD; pr_debug("waiting for mount name=%pd\n", path->dentry); status = autofs_wait(sbi, path, NFY_MOUNT); pr_debug("mount wait done status=%d\n", status); ino->last_used = jiffies; return status; } if (!(sbi->flags & AUTOFS_SBI_STRICTEXPIRE)) ino->last_used = jiffies; return status; } static int do_expire_wait(const struct path *path, bool rcu_walk) { struct dentry *dentry = path->dentry; struct dentry *expiring; expiring = autofs_lookup_expiring(dentry, rcu_walk); if (IS_ERR(expiring)) return PTR_ERR(expiring); if (!expiring) return autofs_expire_wait(path, rcu_walk); else { const struct path this = { .mnt = path->mnt, .dentry = expiring }; /* * If we are racing with expire the request might not * be quite complete, but the directory has been removed * so it must have been successful, just wait for it. */ autofs_expire_wait(&this, 0); autofs_del_expiring(expiring); dput(expiring); } return 0; } static struct dentry *autofs_mountpoint_changed(struct path *path) { struct dentry *dentry = path->dentry; struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); /* * If this is an indirect mount the dentry could have gone away * as a result of an expire and a new one created. */ if (autofs_type_indirect(sbi->type) && d_unhashed(dentry)) { struct dentry *parent = dentry->d_parent; struct autofs_info *ino; struct dentry *new; new = d_lookup(parent, &dentry->d_name); if (!new) return NULL; ino = autofs_dentry_ino(new); ino->last_used = jiffies; dput(path->dentry); path->dentry = new; } return path->dentry; } static struct vfsmount *autofs_d_automount(struct path *path) { struct dentry *dentry = path->dentry; struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); int status; pr_debug("dentry=%p %pd\n", dentry, dentry); /* The daemon never triggers a mount. */ if (autofs_oz_mode(sbi)) return NULL; /* * If an expire request is pending everyone must wait. * If the expire fails we're still mounted so continue * the follow and return. A return of -EAGAIN (which only * happens with indirect mounts) means the expire completed * and the directory was removed, so just go ahead and try * the mount. */ status = do_expire_wait(path, 0); if (status && status != -EAGAIN) return NULL; /* Callback to the daemon to perform the mount or wait */ spin_lock(&sbi->fs_lock); if (ino->flags & AUTOFS_INF_PENDING) { spin_unlock(&sbi->fs_lock); status = autofs_mount_wait(path, 0); if (status) return ERR_PTR(status); goto done; } /* * If the dentry is a symlink it's equivalent to a directory * having path_is_mountpoint() true, so there's no need to call * back to the daemon. */ if (d_really_is_positive(dentry) && d_is_symlink(dentry)) { spin_unlock(&sbi->fs_lock); goto done; } if (!path_is_mountpoint(path)) { /* * It's possible that user space hasn't removed directories * after umounting a rootless multi-mount, although it * should. For v5 path_has_submounts() is sufficient to * handle this because the leaves of the directory tree under * the mount never trigger mounts themselves (they have an * autofs trigger mount mounted on them). But v4 pseudo direct * mounts do need the leaves to trigger mounts. In this case * we have no choice but to use the autofs_empty() check and * require user space behave. */ if (sbi->version > 4) { if (path_has_submounts(path)) { spin_unlock(&sbi->fs_lock); goto done; } } else { if (!autofs_empty(ino)) { spin_unlock(&sbi->fs_lock); goto done; } } ino->flags |= AUTOFS_INF_PENDING; spin_unlock(&sbi->fs_lock); status = autofs_mount_wait(path, 0); spin_lock(&sbi->fs_lock); ino->flags &= ~AUTOFS_INF_PENDING; if (status) { spin_unlock(&sbi->fs_lock); return ERR_PTR(status); } } spin_unlock(&sbi->fs_lock); done: /* Mount succeeded, check if we ended up with a new dentry */ dentry = autofs_mountpoint_changed(path); if (!dentry) return ERR_PTR(-ENOENT); return NULL; } static int autofs_d_manage(const struct path *path, bool rcu_walk) { struct dentry *dentry = path->dentry; struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); int status; pr_debug("dentry=%p %pd\n", dentry, dentry); /* The daemon never waits. */ if (autofs_oz_mode(sbi)) { if (!path_is_mountpoint(path)) return -EISDIR; return 0; } /* Wait for pending expires */ if (do_expire_wait(path, rcu_walk) == -ECHILD) return -ECHILD; /* * This dentry may be under construction so wait on mount * completion. */ status = autofs_mount_wait(path, rcu_walk); if (status) return status; if (rcu_walk) { /* We don't need fs_lock in rcu_walk mode, * just testing 'AUTOFS_INF_WANT_EXPIRE' is enough. * * We only return -EISDIR when certain this isn't * a mount-trap. */ struct inode *inode; if (ino->flags & AUTOFS_INF_WANT_EXPIRE) return 0; if (path_is_mountpoint(path)) return 0; inode = d_inode_rcu(dentry); if (inode && S_ISLNK(inode->i_mode)) return -EISDIR; if (!autofs_empty(ino)) return -EISDIR; return 0; } spin_lock(&sbi->fs_lock); /* * If the dentry has been selected for expire while we slept * on the lock then it might go away. We'll deal with that in * ->d_automount() and wait on a new mount if the expire * succeeds or return here if it doesn't (since there's no * mount to follow with a rootless multi-mount). */ if (!(ino->flags & AUTOFS_INF_EXPIRING)) { /* * Any needed mounting has been completed and the path * updated so check if this is a rootless multi-mount so * we can avoid needless calls ->d_automount() and avoid * an incorrect ELOOP error return. */ if ((!path_is_mountpoint(path) && !autofs_empty(ino)) || (d_really_is_positive(dentry) && d_is_symlink(dentry))) status = -EISDIR; } spin_unlock(&sbi->fs_lock); return status; } /* Lookups in the root directory */ static struct dentry *autofs_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct autofs_sb_info *sbi; struct autofs_info *ino; struct dentry *active; pr_debug("name = %pd\n", dentry); /* File name too long to exist */ if (dentry->d_name.len > NAME_MAX) return ERR_PTR(-ENAMETOOLONG); sbi = autofs_sbi(dir->i_sb); pr_debug("pid = %u, pgrp = %u, catatonic = %d, oz_mode = %d\n", current->pid, task_pgrp_nr(current), sbi->flags & AUTOFS_SBI_CATATONIC, autofs_oz_mode(sbi)); active = autofs_lookup_active(dentry); if (active) return active; else { /* * A dentry that is not within the root can never trigger a * mount operation, unless the directory already exists, so we * can return fail immediately. The daemon however does need * to create directories within the file system. */ if (!autofs_oz_mode(sbi) && !IS_ROOT(dentry->d_parent)) return ERR_PTR(-ENOENT); ino = autofs_new_ino(sbi); if (!ino) return ERR_PTR(-ENOMEM); spin_lock(&sbi->lookup_lock); spin_lock(&dentry->d_lock); /* Mark entries in the root as mount triggers */ if (IS_ROOT(dentry->d_parent) && autofs_type_indirect(sbi->type)) __managed_dentry_set_managed(dentry); dentry->d_fsdata = ino; ino->dentry = dentry; list_add(&ino->active, &sbi->active_list); spin_unlock(&sbi->lookup_lock); spin_unlock(&dentry->d_lock); } return NULL; } static int autofs_dir_permission(struct user_namespace *mnt_userns, struct inode *inode, int mask) { if (mask & MAY_WRITE) { struct autofs_sb_info *sbi = autofs_sbi(inode->i_sb); if (!autofs_oz_mode(sbi)) return -EACCES; /* autofs_oz_mode() needs to allow path walks when the * autofs mount is catatonic but the state of an autofs * file system needs to be preserved over restarts. */ if (sbi->flags & AUTOFS_SBI_CATATONIC) return -EACCES; } return generic_permission(mnt_userns, inode, mask); } static int autofs_dir_symlink(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, const char *symname) { struct autofs_info *ino = autofs_dentry_ino(dentry); struct autofs_info *p_ino; struct inode *inode; size_t size = strlen(symname); char *cp; pr_debug("%s <- %pd\n", symname, dentry); BUG_ON(!ino); autofs_clean_ino(ino); autofs_del_active(dentry); cp = kmalloc(size + 1, GFP_KERNEL); if (!cp) return -ENOMEM; strcpy(cp, symname); inode = autofs_get_inode(dir->i_sb, S_IFLNK | 0555); if (!inode) { kfree(cp); return -ENOMEM; } inode->i_private = cp; inode->i_size = size; d_add(dentry, inode); dget(dentry); p_ino = autofs_dentry_ino(dentry->d_parent); p_ino->count++; dir->i_mtime = current_time(dir); return 0; } /* * NOTE! * * Normal filesystems would do a "d_delete()" to tell the VFS dcache * that the file no longer exists. However, doing that means that the * VFS layer can turn the dentry into a negative dentry. We don't want * this, because the unlink is probably the result of an expire. * We simply d_drop it and add it to a expiring list in the super block, * which allows the dentry lookup to check for an incomplete expire. * * If a process is blocked on the dentry waiting for the expire to finish, * it will invalidate the dentry and try to mount with a new one. * * Also see autofs_dir_rmdir().. */ static int autofs_dir_unlink(struct inode *dir, struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dir->i_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); struct autofs_info *p_ino; p_ino = autofs_dentry_ino(dentry->d_parent); p_ino->count--; dput(ino->dentry); d_inode(dentry)->i_size = 0; clear_nlink(d_inode(dentry)); dir->i_mtime = current_time(dir); spin_lock(&sbi->lookup_lock); __autofs_add_expiring(dentry); d_drop(dentry); spin_unlock(&sbi->lookup_lock); return 0; } /* * Version 4 of autofs provides a pseudo direct mount implementation * that relies on directories at the leaves of a directory tree under * an indirect mount to trigger mounts. To allow for this we need to * set the DMANAGED_AUTOMOUNT and DMANAGED_TRANSIT flags on the leaves * of the directory tree. There is no need to clear the automount flag * following a mount or restore it after an expire because these mounts * are always covered. However, it is necessary to ensure that these * flags are clear on non-empty directories to avoid unnecessary calls * during path walks. */ static void autofs_set_leaf_automount_flags(struct dentry *dentry) { struct dentry *parent; /* root and dentrys in the root are already handled */ if (IS_ROOT(dentry->d_parent)) return; managed_dentry_set_managed(dentry); parent = dentry->d_parent; /* only consider parents below dentrys in the root */ if (IS_ROOT(parent->d_parent)) return; managed_dentry_clear_managed(parent); } static void autofs_clear_leaf_automount_flags(struct dentry *dentry) { struct dentry *parent; /* flags for dentrys in the root are handled elsewhere */ if (IS_ROOT(dentry->d_parent)) return; managed_dentry_clear_managed(dentry); parent = dentry->d_parent; /* only consider parents below dentrys in the root */ if (IS_ROOT(parent->d_parent)) return; if (autofs_dentry_ino(parent)->count == 2) managed_dentry_set_managed(parent); } static int autofs_dir_rmdir(struct inode *dir, struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dir->i_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); struct autofs_info *p_ino; pr_debug("dentry %p, removing %pd\n", dentry, dentry); if (ino->count != 1) return -ENOTEMPTY; spin_lock(&sbi->lookup_lock); __autofs_add_expiring(dentry); d_drop(dentry); spin_unlock(&sbi->lookup_lock); if (sbi->version < 5) autofs_clear_leaf_automount_flags(dentry); p_ino = autofs_dentry_ino(dentry->d_parent); p_ino->count--; dput(ino->dentry); d_inode(dentry)->i_size = 0; clear_nlink(d_inode(dentry)); if (dir->i_nlink) drop_nlink(dir); return 0; } static int autofs_dir_mkdir(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, umode_t mode) { struct autofs_sb_info *sbi = autofs_sbi(dir->i_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); struct autofs_info *p_ino; struct inode *inode; pr_debug("dentry %p, creating %pd\n", dentry, dentry); BUG_ON(!ino); autofs_clean_ino(ino); autofs_del_active(dentry); inode = autofs_get_inode(dir->i_sb, S_IFDIR | mode); if (!inode) return -ENOMEM; d_add(dentry, inode); if (sbi->version < 5) autofs_set_leaf_automount_flags(dentry); dget(dentry); p_ino = autofs_dentry_ino(dentry->d_parent); p_ino->count++; inc_nlink(dir); dir->i_mtime = current_time(dir); return 0; } /* Get/set timeout ioctl() operation */ #ifdef CONFIG_COMPAT static inline int autofs_compat_get_set_timeout(struct autofs_sb_info *sbi, compat_ulong_t __user *p) { unsigned long ntimeout; int rv; rv = get_user(ntimeout, p); if (rv) goto error; rv = put_user(sbi->exp_timeout/HZ, p); if (rv) goto error; if (ntimeout > UINT_MAX/HZ) sbi->exp_timeout = 0; else sbi->exp_timeout = ntimeout * HZ; return 0; error: return rv; } #endif static inline int autofs_get_set_timeout(struct autofs_sb_info *sbi, unsigned long __user *p) { unsigned long ntimeout; int rv; rv = get_user(ntimeout, p); if (rv) goto error; rv = put_user(sbi->exp_timeout/HZ, p); if (rv) goto error; if (ntimeout > ULONG_MAX/HZ) sbi->exp_timeout = 0; else sbi->exp_timeout = ntimeout * HZ; return 0; error: return rv; } /* Return protocol version */ static inline int autofs_get_protover(struct autofs_sb_info *sbi, int __user *p) { return put_user(sbi->version, p); } /* Return protocol sub version */ static inline int autofs_get_protosubver(struct autofs_sb_info *sbi, int __user *p) { return put_user(sbi->sub_version, p); } /* * Tells the daemon whether it can umount the autofs mount. */ static inline int autofs_ask_umount(struct vfsmount *mnt, int __user *p) { int status = 0; if (may_umount(mnt)) status = 1; pr_debug("may umount %d\n", status); status = put_user(status, p); return status; } /* Identify autofs_dentries - this is so we can tell if there's * an extra dentry refcount or not. We only hold a refcount on the * dentry if its non-negative (ie, d_inode != NULL) */ int is_autofs_dentry(struct dentry *dentry) { return dentry && d_really_is_positive(dentry) && dentry->d_op == &autofs_dentry_operations && dentry->d_fsdata != NULL; } /* * ioctl()'s on the root directory is the chief method for the daemon to * generate kernel reactions */ static int autofs_root_ioctl_unlocked(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { struct autofs_sb_info *sbi = autofs_sbi(inode->i_sb); void __user *p = (void __user *)arg; pr_debug("cmd = 0x%08x, arg = 0x%08lx, sbi = %p, pgrp = %u\n", cmd, arg, sbi, task_pgrp_nr(current)); if (_IOC_TYPE(cmd) != _IOC_TYPE(AUTOFS_IOC_FIRST) || _IOC_NR(cmd) - _IOC_NR(AUTOFS_IOC_FIRST) >= AUTOFS_IOC_COUNT) return -ENOTTY; if (!autofs_oz_mode(sbi) && !capable(CAP_SYS_ADMIN)) return -EPERM; switch (cmd) { case AUTOFS_IOC_READY: /* Wait queue: go ahead and retry */ return autofs_wait_release(sbi, (autofs_wqt_t) arg, 0); case AUTOFS_IOC_FAIL: /* Wait queue: fail with ENOENT */ return autofs_wait_release(sbi, (autofs_wqt_t) arg, -ENOENT); case AUTOFS_IOC_CATATONIC: /* Enter catatonic mode (daemon shutdown) */ autofs_catatonic_mode(sbi); return 0; case AUTOFS_IOC_PROTOVER: /* Get protocol version */ return autofs_get_protover(sbi, p); case AUTOFS_IOC_PROTOSUBVER: /* Get protocol sub version */ return autofs_get_protosubver(sbi, p); case AUTOFS_IOC_SETTIMEOUT: return autofs_get_set_timeout(sbi, p); #ifdef CONFIG_COMPAT case AUTOFS_IOC_SETTIMEOUT32: return autofs_compat_get_set_timeout(sbi, p); #endif case AUTOFS_IOC_ASKUMOUNT: return autofs_ask_umount(filp->f_path.mnt, p); /* return a single thing to expire */ case AUTOFS_IOC_EXPIRE: return autofs_expire_run(inode->i_sb, filp->f_path.mnt, sbi, p); /* same as above, but can send multiple expires through pipe */ case AUTOFS_IOC_EXPIRE_MULTI: return autofs_expire_multi(inode->i_sb, filp->f_path.mnt, sbi, p); default: return -EINVAL; } } static long autofs_root_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(filp); return autofs_root_ioctl_unlocked(inode, filp, cmd, arg); } #ifdef CONFIG_COMPAT static long autofs_root_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(filp); int ret; if (cmd == AUTOFS_IOC_READY || cmd == AUTOFS_IOC_FAIL) ret = autofs_root_ioctl_unlocked(inode, filp, cmd, arg); else ret = autofs_root_ioctl_unlocked(inode, filp, cmd, (unsigned long) compat_ptr(arg)); return ret; } #endif