// SPDX-License-Identifier: GPL-2.0 //! The `kernel` crate. //! //! This crate contains the kernel APIs that have been ported or wrapped for //! usage by Rust code in the kernel and is shared by all of them. //! //! In other words, all the rest of the Rust code in the kernel (e.g. kernel //! modules written in Rust) depends on [`core`], [`alloc`] and this crate. //! //! If you need a kernel C API that is not ported or wrapped yet here, then //! do so first instead of bypassing this crate. #![no_std] #![feature(arbitrary_self_types)] #![feature(coerce_unsized)] #![feature(dispatch_from_dyn)] #![feature(inline_const)] #![feature(lint_reasons)] #![feature(unsize)] // Ensure conditional compilation based on the kernel configuration works; // otherwise we may silently break things like initcall handling. #[cfg(not(CONFIG_RUST))] compile_error!("Missing kernel configuration for conditional compilation"); // Allow proc-macros to refer to `::kernel` inside the `kernel` crate (this crate). extern crate self as kernel; pub mod alloc; #[cfg(CONFIG_BLOCK)] pub mod block; mod build_assert; pub mod device; pub mod error; #[cfg(CONFIG_RUST_FW_LOADER_ABSTRACTIONS)] pub mod firmware; pub mod init; pub mod ioctl; #[cfg(CONFIG_KUNIT)] pub mod kunit; pub mod list; #[cfg(CONFIG_NET)] pub mod net; pub mod page; pub mod prelude; pub mod print; pub mod rbtree; pub mod sizes; mod static_assert; #[doc(hidden)] pub mod std_vendor; pub mod str; pub mod sync; pub mod task; pub mod time; pub mod transmute; pub mod types; pub mod uaccess; pub mod workqueue; #[doc(hidden)] pub use bindings; pub use macros; pub use uapi; #[doc(hidden)] pub use build_error::build_error; /// Prefix to appear before log messages printed from within the `kernel` crate. const __LOG_PREFIX: &[u8] = b"rust_kernel\0"; /// The top level entrypoint to implementing a kernel module. /// /// For any teardown or cleanup operations, your type may implement [`Drop`]. pub trait Module: Sized + Sync + Send { /// Called at module initialization time. /// /// Use this method to perform whatever setup or registration your module /// should do. /// /// Equivalent to the `module_init` macro in the C API. fn init(module: &'static ThisModule) -> error::Result; } /// Equivalent to `THIS_MODULE` in the C API. /// /// C header: [`include/linux/init.h`](srctree/include/linux/init.h) pub struct ThisModule(*mut bindings::module); // SAFETY: `THIS_MODULE` may be used from all threads within a module. unsafe impl Sync for ThisModule {} impl ThisModule { /// Creates a [`ThisModule`] given the `THIS_MODULE` pointer. /// /// # Safety /// /// The pointer must be equal to the right `THIS_MODULE`. pub const unsafe fn from_ptr(ptr: *mut bindings::module) -> ThisModule { ThisModule(ptr) } /// Access the raw pointer for this module. /// /// It is up to the user to use it correctly. pub const fn as_ptr(&self) -> *mut bindings::module { self.0 } } #[cfg(not(any(testlib, test)))] #[panic_handler] fn panic(info: &core::panic::PanicInfo<'_>) -> ! { pr_emerg!("{}\n", info); // SAFETY: FFI call. unsafe { bindings::BUG() }; } /// Produces a pointer to an object from a pointer to one of its fields. /// /// # Safety /// /// The pointer passed to this macro, and the pointer returned by this macro, must both be in /// bounds of the same allocation. /// /// # Examples /// /// ``` /// # use kernel::container_of; /// struct Test { /// a: u64, /// b: u32, /// } /// /// let test = Test { a: 10, b: 20 }; /// let b_ptr = &test.b; /// // SAFETY: The pointer points at the `b` field of a `Test`, so the resulting pointer will be /// // in-bounds of the same allocation as `b_ptr`. /// let test_alias = unsafe { container_of!(b_ptr, Test, b) }; /// assert!(core::ptr::eq(&test, test_alias)); /// ``` #[macro_export] macro_rules! container_of { ($ptr:expr, $type:ty, $($f:tt)*) => {{ let ptr = $ptr as *const _ as *const u8; let offset: usize = ::core::mem::offset_of!($type, $($f)*); ptr.sub(offset) as *const $type }} }